
XtremeDistil: Multi-stage Distillation for Massive Multilingual Models

Subhabrata Mukherjee

Microsoft Research AI

Redmond, WA

submukhe@microsoft.com

Ahmed Hassan Awadallah

Microsoft Research AI

Redmond, WA

hassanam@microsoft.com

Abstract

Deep and large pre-trained language models

are the state-of-the-art for various natural lan-

guage processing tasks. However, the huge

size of these models could be a deterrent to

using them in practice. Some recent works

use knowledge distillation to compress these

huge models into shallow ones. In this work

we study knowledge distillation with a fo-

cus on multilingual Named Entity Recognition

(NER). In particular, we study several distil-

lation strategies and propose a stage-wise op-

timization scheme leveraging teacher internal

representations, that is agnostic of teacher ar-

chitecture, and show that it outperforms strate-

gies employed in prior works. Additionally,

we investigate the role of several factors like

the amount of unlabeled data, annotation re-

sources, model architecture and inference la-

tency to name a few. We show that our

approach leads to massive compression of

teacher models like mBERT by upto 35x in

terms of parameters and 51x in terms of la-

tency for batch inference while retaining 95%
of its F1-score for NER over 41 languages.

1 Introduction

Motivation: Pre-trained language models have

shown state-of-the-art performance for various nat-

ural language processing applications like text clas-

sification, named entity recognition and question-

answering. A significant challenge facing practi-

tioners is how to deploy these huge models in prac-

tice. For instance, models like BERT Large (Devlin

et al., 2019), GPT 2 (Radford et al., 2019), Mega-

tron (Shoeybi et al., 2019) and T5 (Raffel et al.,

2019) have 340M , 1.5B, 8.3B and 11B parame-

ters respectively. Although these models are trained

offline, during prediction we need to traverse the

deep neural network architecture stack involving

a large number of parameters. This significantly

increases latency and memory requirements.

Knowledge distillation (Hinton et al., 2015; Ba

and Caruana, 2014) earlier used in computer vision

provides one of the techniques to compress huge

neural networks into smaller ones. In this, shallow

models (called students) are trained to mimic the

output of huge models (called teachers) based on a

transfer set. Similar approaches have been recently

adopted for language model distillation.

Limitations of existing work: Recent works (Liu

et al., 2019; Zhu et al., 2019; Tang et al., 2019; Turc

et al., 2019) leverage soft logits from teachers as op-

timization targets for distilling students, with some

notable exceptions from concurrent work. Sun et al.

(2019); Sanh (2019); Aguilar et al. (2019); Zhao

et al. (2019) additionally use internal representa-

tions from the teacher as additional signals. How-

ever, these methods are constrained by architec-

tural considerations like embedding dimension in

BERT and transformer architectures. This makes it

difficult to massively compress these models (with-

out being able to reduce network width) or adopt

alternate architectures. For instance, we observe

BiLSTMS as students to be more accurate than

Transformers for low latency configurations. Some

of the concurrent works (Turc et al., 2019); (Zhao

et al., 2019) adopt pre-training or dual training to

distil students of arbitrary architecture. However,

pre-training is expensive both in terms of time and

computational resources.

Additionally, most of the above works are

geared for distilling language models for GLUE

tasks (Wang et al., 2018). There has been some lim-

ited exploration of such techniques for sequence

tagging tasks like NER (Izsak et al., 2019; Shi et al.,

2019) or multilingual tasks (Tsai et al., 2019). How-

ever, these works also suffer from similar draw-

backs as mentioned before.

Overview of XtremeDistil: In this work, we com-

XtremeDistil: Multilingual pre-TRainEd ModEl Distillation

pare distillation strategies used in all the above

works and propose a new scheme outperforming

prior ones. In this, we leverage teacher internal rep-

resentations to transfer knowledge to the student.

However, in contrast to prior work, we are not re-

stricted by the choice of student architecture. This

allows representation transfer from Transformer-

based teacher model to BiLSTM-based student

model with different embedding dimensions and

disparate output spaces. We also propose a stage-

wise optimization scheme to sequentially trans-

fer most general to task-specific information from

teacher to student for better distillation.

Overview of our task: Unlike prior works mostly

focusing on GLUE tasks in a single language, we

employ our techniques to study distillation for mas-

sive multilingual Named Entity Recognition (NER)

over 41 languages. Prior work on multilingual

transfer on the same (Rahimi et al., 2019) (MM-

NER) requires knowledge of source and target lan-

guage whereby they judiciously select pairs for ef-

fective transfer resulting in a customized model for

each language. In our work, we adopt Multilingual

Bidirectional Encoder Representations from Trans-

former (mBERT) as our teacher and show that it is

possible to perform language-agnostic joint NER

for all languages with a single model that has a

similar performance but massively compressed in

contrast to mBERT and MMNER.

Perhaps, the closest work to this work is that

of (Tsai et al., 2019) where mBERT is leveraged

for multilingual NER. We discuss this in details

and use their strategy as one of our baselines. We

show that our distillation strategy is better leading

to a much higher compression and faster inference.

We also investigate several unexplored dimensions

of distillation like the impact of unlabeled transfer

data and annotation resources, choice of multilin-

gual word embeddings, architectural variations and

inference latency to name a few.

Our techniques obtain massive compression of

teacher models like mBERT by upto 35x in terms

of parameters and 51x in terms of latency for batch

inference while retaining 95% of its performance

for massive multilingual NER, and matching or

outperforming it for classification tasks. Overall,

our work makes the following contributions:

• Method: We propose a distillation method lever-

aging internal representations and parameter pro-

jection that is agnostic of teacher architecture.

• Inference: To learn model parameters, we pro-

pose stage wise optimization schedule with grad-

ual unfreezing outperforming prior schemes.

• Experiments: We perform distillation for multi-

lingual NER on 41 languages with massive com-

pression and comparable performance to huge

models1. We also perform classification exper-

iments on four datasets where our compressed

models perform at par with significantly larger

teachers.

• Study: We study the influence of several fac-

tors on distillation like the availability of anno-

tation resources for different languages, model

architecture, quality of multilingual word embed-

dings, memory footprint and inference latency.

Problem Statement: Consider a sequence x =
〈xk〉 with K tokens and y = 〈yk〉 as the corre-

sponding labels. Consider Dl = {〈xk,l〉, 〈yk,l〉} to

be a set of n labeled instances with X = {〈xk,l〉}
denoting the instances and Y = {〈yk,l〉} the corre-

sponding labels. Consider Du = {〈xk,u〉} to be a

transfer set of N unlabeled instances from the same

domain where n≪ N . Given a teacher T (θt), we

want to train a student S(θs) with θ being trainable

parameters such that |θs| ≪ |θt| and the student is

comparable in performance to the teacher based on

some evaluation metric. In the following section,

the superscript ‘t’ always represents the teacher and

‘s’ denotes the student.

2 Related Work

Model compression and knowledge distillation:

Prior works in the vision community dealing with

huge architectures like AlexNet and ResNet have

addressed this challenge in two ways. Works in

model compression use quantization (Gong et al.,

2014), low-precision training and pruning the net-

work, as well as their combination (Han et al.,

2016) to reduce the memory footprint. On the other

hand, works in knowledge distillation leverage stu-

dent teacher models. These approaches include

using soft logits as targets (Ba and Caruana, 2014),

increasing the temperature of the softmax to match

that of the teacher (Hinton et al., 2015) as well as

using teacher representations (Romero et al., 2015)

(refer to (Cheng et al., 2017) for a survey).

Recent and concurrent Works: Liu et al. (2019);

Zhu et al. (2019); Clark et al. (2019) leverage en-

sembling to distil knowledge from several multi-

task deep neural networks into a single model. Sun

1Code and resources available at: https://aka.ms/
XtremeDistil

https://aka.ms/XtremeDistil
https://aka.ms/XtremeDistil

et al. (2019); Sanh (2019);Aguilar et al. (2019) train

student models leveraging architectural knowledge

of the teacher models which adds architectural con-

straints (e.g., embedding dimension) on the stu-

dent. In order to address this shortcoming, more

recent works combine task-specific distillation with

pre-training the student model with arbitrary em-

bedding dimension but still relying on transformer

architectures (Turc et al., 2019); (Jiao et al., 2019);

(Zhao et al., 2019).

Izsak et al. (2019); Shi et al. (2019) extend these

for sequence tagging for Part-of-Speech (POS) tag-

ging and Named Entity Recognition (NER) in En-

glish. The one closest to our work Tsai et al. (2019)

extends the above for multilingual NER.

Most of these works rely on general corpora for

pre-training and task-specific labeled data for dis-

tillation. To harness additional knowledge, (Turc

et al., 2019) leverage task-specific unlabeled data.

(Tang et al., 2019; Jiao et al., 2019) use rule-and

embedding-based data augmentation in absence of

such unlabeled data.

3 Models

The Student: The input to the model are E-

dimensional word embeddings for each token. In

order to capture sequential information in the sen-

tence, we use a single layer Bidirectional Long

Short Term Memory Network (BiLSTM). Given

a sequence of K tokens, a BiLSTM computes a

set of K vectors h(xk) = [
−−−→
h(xk);

←−−−
h(xk)] as the

concatenation of the states generated by a forward

(
−−−→
h(xk)) and backward LSTM (

←−−−
h(xk)). Assuming

the number of hidden units in the LSTM to be H ,

each hidden state h(xk) is of dimension 2H . Prob-

ability distribution for the token label at timestep k
is given by:

p(s)(xk) = softmax(h(xk) ·W
s) (1)

where W s ∈ R2H.C and C is number of labels.

Consider one-hot encoding of the token labels,

such that yk,l,c = 1 for yk,l = c, and yk,l,c = 0
otherwise for c ∈ C. The overall cross-entropy

loss computed over each token obtaining a specific

label in each sequence is given by:

LCE = −
∑

xl,yl∈Dl

∑

k

∑

c

yk,c,l log p
(s)
c (xk,l) (2)

We train the student model end-to-end minimiz-

ing the above cross-entropy loss over labeled data.

The Teacher: Pre-trained language models like

ELMO (Peters et al., 2018), BERT (Devlin et al.,

2019) and GPT (Radford et al., 2018, 2019) have

shown state-of-the-art performance for several

tasks. We adopt BERT as the teacher – specifically,

the multilingual version of BERT (mBERT) with

179MM parameters trained over 104 languages

with the largest Wikipedias. mBERT does not

use any markers to distinguish languages during

pre-training and learns a single language-agnostic

model trained via masked language modeling over

Wikipedia articles from all languages.

Tokenization: Similar to mBERT, we use Word-

Piece tokenization with 110K shared WordPiece

vocabulary. We preserve casing, remove accents,

split on punctuations and whitespace.

Fine-tuning the Teacher: The pre-trained lan-

guage models are trained for general language mod-

eling objectives. In order to adapt them for the

given task, the teacher is fine-tuned end-to-end with

task-specific labeled data Dl to learn parameters θ̃t

using cross-entropy loss as in Equation 2.

4 Distillation Features

Fine-tuning the teacher gives us access to its task-

specific representations for distilling the student

model. To this end, we use different kinds of infor-

mation from the teacher.

4.1 Teacher Logits

Logits as logarithms of predicted probabilities pro-

vide a better view of the teacher by emphasizing

on the different relationships learned by it across

different instances. Consider pt(xk) to be the clas-

sification probability of token xk as generated by

the fine-tuned teacher with logit(pt(xk)) represent-

ing the corresponding logits. Our objective is to

train a student model with these logits as targets.

Given the hidden state representation h(xk) for

token xk, we can obtain the corresponding classifi-

cation score (since targets are logits) as:

rs(xk) = W r · h(xk) + br (3)

where W r ∈ RC·2H and br ∈ RC are trainable

parameters and C is the number of classes. We

want to train the student neural network end-to-

end by minimizing the element-wise mean-squared

error between the classification scores given by the

student and the target logits from the teacher as:

LLL =
1

2

∑

xu∈Du

∑

k

||rs(xk,u)−logit(pt(xk,u; θ̃t))||
2

(4)

4.2 Internal Teacher Representations

Hidden representations: Recent works (Sun

et al., 2019; Romero et al., 2015) have shown the

hidden state information from the teacher to be

helpful as a hint-based guidance for the student.

Given a large collection of task-specific unlabeled

data, we can transfer the teacher’s knowledge to

the student via its hidden representations. How-

ever, this poses a challenge in our setting as the

teacher and student models have different architec-

tures with disparate output spaces.

Consider hs(xk) and ztl (xk; θ̃t) to be the repre-

sentations generated by the student and the lth deep

layer of the fine-tuned teacher respectively for a

token xk. Consider xu ∈ Du to be the set of unla-

beled instances. We will later discuss the choice of

the teacher layer l and its impact on distillation.

Projection: To make all output spaces compatible,

we perform a non-linear projection of the parame-

ters in student representation hs to have same shape

as teacher representation ztl for each token xk:

z̃s(xk) = Gelu(W f · hs(xk) + bf) (5)

where W f ∈ R|zt
l
|·2H is the projection matrix,

bf ∈ R|zt
l
| is the bias, and Gelu (Gaussian Error

Linear Unit) (Hendrycks and Gimpel, 2016) is the

non-linear projection function. |ztl | represents the

embedding dimension of the teacher. This transfor-

mation aligns the output spaces of the student and

teacher and allows us to accommodate arbitrary

student architecture. Also note that the projections

(and therefore the parameters) are shared across

tokens at different timepoints.

The projection parameters are learned by min-

imizing the KL-divergence (KLD) between the

student and the lth layer teacher representations:

LRL =
∑

xu∈Du

∑

k

KLD(z̃s(xk,u), z
t
l (xk,u; θ̃t))

(6)

Multilingual word embeddings: A large number

of parameters reside in the word embeddings. For

mBERT a shared multilingual WordPiece vocab-

ulary of V = 110K tokens and embedding di-

mension of D = 768 leads to 92MM parame-

ters. To have massive compression, we cannot

directly incorporate mBERT embeddings in our

model. Since we use the same WordPiece vocab-

ulary, we are likely to benefit more from these

embeddings than from Glove (Pennington et al.,

2014) or FastText (Bojanowski et al., 2016).

We use a dimensionality reduction algorithm like

Singular Value Decomposition (SVD) to project

the mBERT word embeddings to a lower dimen-

sional space. Given mBERT word embedding ma-

trix of dimension V×D, SVD finds the best E-

dimensional representation that minimizes sum of

squares of the projections (of rows) to the subspace.

5 Training

We want to optimize the loss functions for repre-

sentation LRL, logits LLL and cross-entropy LCE .

These optimizations can be scheduled differently

to obtain different training regimens as follows.

5.1 Joint Optimization

In this, we optimize the following losses jointly:

1

|Dl|

∑

{xl,yl}∈Dl

α · LCE(xl, yl)+

1

|Du|

∑

{xu,yu}∈Du

(

β · LRL(xu, yu)+γ · LLL(xu, yu)

)

(7)

where α, β and γ weigh the contribution of differ-

ent losses. A high value of α makes the student

focus more on easy targets; whereas a high value of

γ leads focus to the difficult ones. The above loss

is computed over two different task-specific data

segments. The first part involves cross-entropy loss

over labeled data, whereas the second part involves

representation and logit loss over unlabeled data.

5.2 Stage-wise Training

Instead of optimizing all loss functions jointly, we

propose a stage-wise scheme to gradually transfer

most general to task-specific representations from

teacher to student. In this, we first train the student

to mimic teacher representations from its lth layer

by optimizingRRL on unlabeled data. The student

learns the parameters for word embeddings (θw),

BiLSTM (θb) and projections 〈W f , bf 〉.

In the second stage, we optimize for the cross-

entropy RCE and logit loss RLL jointly on both

labeled and unlabeled data respectively to learn the

corresponding parameters W s and 〈W r, br〉.

The above can be further broken down in two

stages, where we sequentially optimize logit loss

RLL on unlabeled data and then optimize cross-

entropy loss RCE on labeled data. Every stage

learns parameters conditioned on those learned in

previous stage followed by end-to-end fine-tuning.

Algorithm 1: Multi-stage distillation.

Fine-tune teacher on Dl and update θ̃t ;
for stage in {1,2,3} do

Freeze all student layers l′ ∈ {1 · · ·L};
if stage=1 then

output = z̃s(xu) ;
target = teacher representations on Du from

the lth layer as ztl (xu; θ̃t) ;
loss = RRL ;

end
if stage=2 then

output = rs(xu) ;
target = teacher logits on Du as

logit(pt(xu; θ̃t)) ;
loss = RLL ;

end
if stage=3 then

output = ps(xl) ;
target = yl ∈ Dl ;
loss = RCE ;

end

for layer l′ ∈ {L · · · 1} do

Unfreeze l′ ;
Update parameters θsl′ , θ

s
l′+1 · · · θ

s
L by

minimizing the optimization loss between
student output and teacher target

end

end

5.3 Gradual Unfreezing

One potential drawback of end-to-end fine-tuning

for stage-wise optimization is ‘catastrophic forget-

ting’ (Howard and Ruder, 2018) where the model

forgets information learned in earlier stages. To

address this, we adopt gradual unfreezing – where

we tune the model one layer at a time starting from

the configuration at the end of previous stage.

We start from the top layer that contains the

most task-specific information and allow the model

to configure the task-specific layer first while oth-

ers remain frozen. The latter layers are gradually

unfrozen one by one and the model trained till con-

vergence. Once a layer is unfrozen, it maintains

the state. When the last layer (word embeddings)

is unfrozen, the entire network is trained end-to-

end. The order of this unfreezing scheme (top-to-

bottom) is reverse of that in (Howard and Ruder,

2018) and we find this to work better in our setting

with the following intuition. At the end of the first

stage on optimizingRRL, the student learns to gen-

erate representations similar to that of the lth layer

of the teacher. Now, we need to add only a few

task-specific parameters (〈W r, br〉) to optimize for

logit loss RLL with all others frozen. Next, we

gradually give the student more flexibility to op-

timize for task-specific loss by tuning the layers

below where the number of parameters increases

Dataset Labels Train Test Unlabeled

NER
Wikiann-41 11 705K 329K 7.2MM

Classification
IMDB 2 25K 25K 50K
DBPedia 14 560K 70K -
AG News 4 120K 7.6K -
Elec 2 25K 25K 200K

Table 1: Full dataset summary.

Work PT TA Distil.

Sanh (2019) Y Y D1
Turc et al. (2019) Y N D1

Liu et al. (2019); Zhu et al. (2019);
Shi et al. (2019); Tsai et al. (2019);
Tang et al. (2019); Izsak et al.
(2019); Clark et al. (2019)

N N D1

Sun et al. (2019) N Y D2
Jiao et al. (2019) N N D2
Zhao et al. (2019) Y N D2

XtremeDistil (ours) N N D4

Table 2: Different distillation strategies. D1 leverages

soft logits with hard labels. D2 uses representation loss.

PT denotes pre-training with language modeling. TA

depicts students constrained by teacher architecture.

with depth (|〈W r, br〉| ≪ |θb| ≪ |θw|).

We tune each layer for n epochs and restore

model to the best configuration based on validation

loss on a held-out set. Therefore, the model re-

tains best possible performance from any iteration.

Algorithm 1 shows overall processing scheme.

6 Experiments

Dataset Description: We evaluate our model

XtremeDistil for multilingual NER on 41 languages

and the same setting as in (Rahimi et al., 2019).

This data has been derived from the WikiAnn NER

corpus (Pan et al., 2017) and partitioned into train-

ing, development and test sets. All the NER re-

sults are reported in this test set for a fair com-

parison between existing works. We report both

the average F1-score (µ) and standard deviation

σ between scores across 41 languages for phrase-

level evaluation. Refer to Figure 2 for languages

codes and distribution of training labels across

languages. We also perform experiments with

data from four other domains (refer to Table 1):

IMDB (Maas et al., 2011), SST-2 (Socher et al.,

2013) and Elec (McAuley and Leskovec, 2013) for

sentiment analysis for movie and electronics prod-

uct reviews, DbPedia (Zhang et al., 2015) and Ag

News (Zhang et al., 2015) for topic classification

of Wikipedia and news articles.

NER Tags: The NER corpus uses IOB2 tagging

Strategy Features Transfer = 0.7MM Transfer = 1.4MM Transfer = 7.2MM

D0 Labels per lang. 71.26 (6.2) - -

D0-S Labels across all lang. 81.44 (5.3) - -

D1 Labels and Logits 82.74 (5.1) 84.52 (4.8) 85.94 (4.8)
D2 Labels, Logits and Repr. 82.38 (5.2) 83.78 (4.9) 85.87 (4.9)

D3.1 (S1) Repr. (S2) Labels and Logits 83.10 (5.0) 84.38 (5.1) 86.35 (4.9)
D3.2 + Gradual unfreezing 86.77 (4.3) 87.79 (4.0) 88.26 (4.3)

D4.1 (S1) Repr. (S2) Logits (S3) Labels 84.82 (4.7) 87.07 (4.2) 87.87 (4.1)
D4.2 + Gradual unfreezing 87.10 (4.2) 88.64 (3.8) 88.52 (4.1)

Table 3: Comparison of several strategies with average F1-score (and standard deviation) across 41 languages over

different transfer data size. Si depicts separate stages and corresponding optimized loss functions.

strategy with entities like LOC, ORG and PER.

Following mBERT, we do not use language mark-

ers and share these tags across all languages. We

use additional syntactic markers like {CLS, SEP,

PAD} and ‘X’ for marking segmented wordpieces

contributing a total of 11 tags (with shared ‘O’).

6.1 Evaluating Distillation Strategies

Baselines: A trivial baseline (D0) is to learn mod-

els one per language using only corresponding la-

bels for learning. This can be improved by merging

all instances and sharing information across all lan-

guages (D0-S). Most of the concurrent and recent

works (refer to Table 2 for an overview) leverage

logits as optimization targets for distillation (D1).

A few exceptions also use teacher internal represen-

tations along with soft logits (D2). For our model

we consider multi-stage distillation, where we first

optimize representation loss followed by jointly

optimizing logit and cross-entropy loss (D3.1) and

further improving it by gradual unfreezing of neu-

ral network layers (D3.2). Finally, we optimize the

loss functions sequentially in three stages (D4.1)

and improve it further by unfreezing mechanism

(D4.2). We further compare all strategies while

varying the amount of unlabeled transfer data for

distillation (hyper-parameter settings in Appendix).

Results: From Table 3, we observe all strategies

that share information across languages to work bet-

ter (D0-S vs. D0) with the soft logits adding more

value than hard targets (D1 vs. D0-S). Interestingly,

we observe simply combining representation loss

with logits (D3.1 vs. D2) hurts the model. We

observe this strategy to be vulnerable to the hyper-

parameters (α, β, γ in Eqn. 7) used to combine

multiple loss functions. We vary hyper-parameters

in multiples of 10 and report best numbers.

Stage-wise optimizations remove these hyper-

parameters and improve performance. We also

observe the gradual unfreezing scheme to improve

Stage Unfreezing Layer F1 Std. Dev.

2 Linear (〈W r, br〉) 0 0

2 Projection (〈W f , bf 〉) 2.85 3.9
2 BiLSTM (θb) 81.64 5.2
2 Word Emb (θw) 85.99 4.4

3 Softmax (W s) 86.38 4.2

3 Projection (〈W f , bf 〉) 87.65 3.9
3 BiLSTM (θb) 88.08 3.9
3 Word Emb (θw) 88.64 3.8

Table 4: Gradual F1-score improvement over multiple

distillation stages in XtremeDistil .

Model Avg. F1 Std. Dev

mBERT-single (Devlin et al., 2019) 90.76 3.1
mBERT (Devlin et al., 2019) 91.86 2.7
MMNER (Rahimi et al., 2019) 89.20 2.8
XtremeDistil (ours) 88.64 3.8

Table 5: F1-score comparison of different models with

standard deviation across 41 languages.

both stage-wise distillation strategies significantly.

Focusing on the data dimension, we observe all

models to improve as more and more unlabeled

data is used for transferring teacher knowledge to

student. However, we also observe the improve-

ment to slow down after a point where additional

unlabeled data does not yield significant benefits.

Table 4 shows the gradual performance improve-

ment in XtremeDistil after every stage and unfreez-

ing various neural network layers.

6.2 Performance, Compression and Speedup

Performance: We observe XtremeDistil in Ta-

ble 5 to perform competitively with other models.

mBERT-single models are fine-tuned per language

with corresponding labels, whereas mBERT is fine-

tuned with data across all languages. MMNER

results are reported from Rahimi et al. (2019).

Figure 2 shows the variation in F1-score across

different languages with variable amount of train-

ing data for different models. We observe all the

models to follow the general trend with some aber-

rations for languages with less training labels.

(50,100)
(50,200)

(50,400)

(50,600)

(100,100) (100,200)

(100,400)

(100,600)

(200,100)

(200,200) (200,400) (200,600)

(300,100) (300,200) (300,400) (300,600)
0

5

10

15

20

25

30

35

40

84 84.5 85 85.5 86 86.5 87 87.5 88 88.5 89

Pa
ra

m
et

er
 C

om
pr

es
sio

n

F1 Measure

(a) Parameter compression vs. F1-score.

(50,100) (100,100)

(200,100)

(300,100)

(50,200) (100,200)

(200,200)

(300,200)

(50,400)

(200,400)

(100,400) (300,400)

(100,600)(50,600)

(200,600)

(300,600)
0

10

20

30

40

50

60

70

80

84 84.5 85 85.5 86 86.5 87 87.5 88 88.5 89

In
fe

re
nc

e
Sp

ee
du

p

F1 Measure

(b) Inference speedup vs. F1-score.

Figure 1: Variation in XtremeDistil F1-score with pa-

rameter and latency compression against mBERT. Each

point in the linked scatter plots represents a configu-

ration with corresponding embedding dimension and

BiLSTM hidden states as (E,H). Data point (50, 200)

in both figures correspond to 35x compression and 51x
latency speedup.

Parameter compression: XtremeDistil performs

at par with MMNER in terms of F1-score while

obtaining at least 41x compression. Given L lan-

guages, MMNER learns (L − 1) ensembled and

distilled models, one for each target language. Each

of the MMNER language-specific models is com-

parable in size to our single multilingual model.

We learn a single model for all languages, thereby,

obtaining a compression factor of at least L = 41.

Figure 1a shows the variation in F1-scores of

XtremeDistil and compression against mBERT

with different configurations corresponding to the

embedding dimension (E) and number of BiLSTM

hidden states (2×H). We observe that reducing the

embedding dimension leads to great compression

with minimal performance loss. Whereas, reducing

the BiLSTM hidden states impacts the performance

more and contributes less to the compression.

Inference speedup: We compare the runtime in-

ference efficiency of mBERT and our model in a

single P100 GPU for batch inference (batch size

= 32) on 1000 queries of sequence length 32. We

average the time taken for predicting labels for all

the queries for each model aggregated over 100
runs. Compared to batch inference, the speedups

are less for online inference (batch size = 1) at 17x
on Intel(R) Xeon(R) CPU (E5-2690 v4 @2.60GHz)

(refer to Appendix for details).

Model #Transfer Samples F1

MMNER - 62.1

mBERT - 79.54

XtremeDistil 4.1K 19.12
705K 76.97

1.3MM 77.17
7.2MM 77.26

Table 6: F1-score comparison for low-resource setting

with 100 labeled samples per language and transfer set

of different sizes for XtremeDistil .

Figure 1b shows the variation in F1-scores

of XtremeDistil and inference speedup against

mBERT with different (linked) parameter config-

urations as before. As expected, the performance

degrades with gradual speedup. We observe that

parameter compression does not necessarily lead

to an inference speedup. Reduction in the word

embedding dimension leads to massive model com-

pression, however, it does not have a similar effect

on the latency. The BiLSTM hidden states, on

the other hand, constitute the real latency bottle-

neck. One of the best configurations leads to 35x
compression, 51x speedup over mBERT retaining

nearly 95% of its performance.

6.3 Low-resource NER and Distillation

Models in all prior experiments are trained on

705K labeled instances across all languages. In

this setting, we consider only 100 labeled samples

for each language with a total of 4.1K instances.

From Table 6, we observe mBERT to outperform

MMNER by more than 17 percentage points with

XtremeDistil closely following suit.

Furthermore, we observe our model’s perfor-

mance to improve with the transfer set size de-

picting the importance of unlabeled transfer data

for knowledge distillation. As before, a lot of addi-

tional data has marginal contribution.

6.4 Word Embeddings

From Table 7, we observe that random initializa-

tion of word embeddings works quite well. Mul-

tilingual 300d FastText embeddings (Bojanowski

et al., 2016) leads to minor improvement due to

38% overlap between FastText tokens and mBERT

wordpieces. English 300d Glove does much better.

We experiment with dimensionality reduction tech-

niques and find SVD to work better. Surprisingly,

it leads to marginal improvement over mBERT em-

beddings before reduction. As expected, mBERT

embeddings after fine-tuning perform better than

that from pre-trained checkpoints.

0

5

10

15

20

25

70

75

80

85

90

95

100

af hi sq bn lt lv mk tl bs et sl ta ar bg ca cs da de el en es fa fi fr he hr hu id it ms nl no pl pt ro ru sk sv tr uk vi

XtremeDistil MBERT-Single MBERT MMNER #Train-Samples

Figure 2: F1-score comparison for different models across 41 languages. The y-axis on the left shows the scores,

whereas the axis on the right (plotted against blue dots) shows the number of training labels (in thousands).

Word Embedding F1-
score

Std.
Dev.

SVD + mBERT (fine-tuned) 88.64 3.8
mBERT (fine-tuned) 88.60 3.9
SVD + mBERT (pre-trained) 88.54 3.9
PCA + PPA (d=14) (Raunak et al., 2019) 88.35 3.9
PCA + PPA (d=17) (Raunak et al., 2019) 88.25 4.0
Glove (Pennington et al., 2014) 88.16 4.0
FastText (Bojanowski et al., 2016) 87.91 3.9
Random 87.43 4.1

Table 7: Impact of using various word embeddings for

initialization on multilingual distillation. SVD, PCA,

and Glove uses 300-dimensional word embeddings.

6.5 Architectural Considerations

Which teacher layer to distil from? The topmost

teacher layer captures more task-specific knowl-

edge. However, it may be difficult for a shallow

student to capture this knowledge given its limited

capacity. On the other hand, the less-deep repre-

sentations at the middle of teacher model are easier

to mimic by shallow student. From Table 8 we

observe the student to benefit most from distilling

the 6th or 7th layer of the teacher.

Layer (l) F1-score Std. Dev.

11 88.46 3.8
9 88.31 3.8
7 88.64 3.8
6 88.64 3.8
4 88.19 4
2 88.50 4
1 88.51 4

Table 8: Comparison of XtremeDistil performance on

distilling representations from lth mBERT layer.

Which student architecture to use for distilla-

tion? Recent works in distillation leverage both

BiLSTM and Transformer as students. In this ex-

periment, we vary the embedding dimension and

hidden states for BiLSTM-, and embedding dimen-

sion and depth for Transformer-based students to

obtain configurations with similar inference latency.

Each of 13 configurations in Figure 3 depict F1-

(50,100)

(200,100)

(300,100)

(50,200)
(300,200)

(50,400)

(200,400)

(100,400)

(300,400)

(50,600)
(100,600)

(200,600)

(300,600)

(48,2)

(144,1)

(72,2)

(96,2) (132,2)

(204,2)
(228,2)

(240,2)

(252,2)

(228,3) (240,3)
(252,3) (276,3)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

72

74

76

78

80

82

84

86

1 2 3 4 5 6 7 8 9 10 11 12 13

BiLSTM F-score Transformer Fscore BiLSTM Latency Transformer Latency

Figure 3: BiLSTM and Transformer F1-score (left y-

axis) vs. inference latency (right y-axis) in 13 different

settings with corresponding embedding dimension and

width / depth of the student as (E,W/D).

Dataset Student Distil Distil BERT BERT
no distil. (Base) (Large) Base Large

Ag News 89.71 92.33 94.33 92.12 94.63
IMDB 89.37 91.22 91.70 91.70 93.22
Elec 90.62 93.55 93.56 93.46 94.27
DbPedia 98.64 99.10 99.06 99.26 99.20

Table 9: Distillation performance with BERT.

scores obtained by students of different architecture

but similar latency (refer to Table 15 in Appendix

for statistics) – for strategy D0-S in Table 3. We

observe that for low-latency configurations BiL-

STMs with hidden states {2×100, 2×200} work

better than 2-layer Transformers. Whereas, the lat-

ter starts performing better with more than 3-layers

although with a higher latency compared to the

aforementioned BiLSTM configurations.

6.6 Distillation for Text Classification

We switch gear and focus on classification tasks. In

contrast to sequence tagging, we use the last hidden

state of the BiLSTM as the final sentence represen-

tation for projection, regression and softmax.

Table 9 shows the distillation performance of

XtremeDistil with different teachers on four bench-

mark text classification datasets. We observe the

student to almost match the teacher performance

for all of the datasets. The performance also im-

proves with a better teacher, although the improve-

ment is marginal as the student capacity saturates.

Dataset Student Student BERT
no distil. with distil. Large

AG News 85.85 90.45 90.36
IMDB 61.53 89.08 89.11
Elec 65.68 91.00 90.41
DBpedia 96.30 98.94 98.94

Table 10: Distillation with BERT Large on 500 labeled

samples per class.

Model Transfer Set Acc.

BERT Large Teacher - 94.95
XtremeDistil SST+Imdb 93.35

BERT Base Teacher - 92.78
XtremeDistil SST+Imdb 92.89
Sun et al. (2019) SST 92.70
Turc et al. (2019) SST+IMDB 91.10

Table 11: Model accuracy on of SST-2 (dev. set).

Table 10 shows the distillation performance with

only 500 labeled samples per class. The distilled

student improves over the non-distilled version by

19.4 percent and matches the teacher performance

for all of the tasks demonstrating the impact of

distillation for low-resource settings.

Comparison with other distillation techniques:

SST-2 (Socher et al., 2013) from GLUE (Wang

et al., 2018) has been used as a test bed for other

distillation techniques for single instance classifi-

cation tasks (as in this work). Table 11 shows the

accuracy comparison of such methods reported in

SST-2 development set with the same teacher.

We extract 11.7MM sentences from all IMDB

movie reviews in Table 1 to form the unlabeled

transfer set for distillation. We obtain the best per-

formance on distilling with BERT Large (uncased,

whole word masking model) than BERT Base –

demonstrating a better student performance with a

better teacher and outperforming other methods.

7 Summary

Teacher hidden representation and distillation

schedule: Internal teacher representations help in

distillation, although a naive combination hurts the

student model. We show that a distillation schedule

with stagewise optimization, gradual unfreezing

with a cosine learning rate scheduler (D4.1 + D4.2

in Table 3) obtains the best performance. We also

show that the middle layers of the teacher are eas-

ier to distil by shallow students and result in the

best performance (Table 8). Additionally, the stu-

dent performance improves with bigger and better

teachers (Tables 9 and 11).

Student architecture: We compare different stu-

dent architectures like BiLSTM and Transformer in

terms of configuration and performance (Figure 3,

Table 15 in Appendix), and observe BiLSTM to per-

form better at low-latency configurations, whereas

the Transformer outperforms the former with more

depth and higher latency budget.

Unlabeled transfer data: We explored the data di-

mension in Tables 3 and 6 and observed unlabeled

data to be the key for knowledge transfer from deep

pre-trained teachers to shallow students and bridge

the performance gap.

We observed a moderate amount of unlabeled

transfer samples (0.7 - 1.5 million) lead to the best

student, whereas larger amounts of transfer data

does not result in significant gains. This is particu-

larly helpful for low-resource NER (with only 100
labeled samples per language as in Table 6).

Performance trade-off: Parameter compression

does not necessarily reduce inference latency, and

vice versa. We explore model performance in terms

of parameter compression, inference latency and

F1 to show the trade-off for distillation in Figure 1

and Table 16 in Appendix.

Multilingual word embeddings: Random initial-

ization of word embeddings work well. A bet-

ter initialization, which is also parameter-efficient,

is given by Singular Value Decomposition (SVD)

over fine-tuned mBERT word embeddings with the

best performance for downstream task (Table 7).

Generalization: The outlined distillation tech-

niques and strategies are model-, architecture-, and

language-agnostic and can be easily extended to

arbitrary tasks and languages, although we only

focus on NER and classification in this work.

Massive compression: Our techniques demon-

strate massive compression (35x for parameters)

and inference speedup (51x for latency) while re-

taining 95% of the teacher performance allowing

deep pre-trained models to be deployed in practice.

8 Conclusions

We develop XtremeDistil for massive multi-lingual

NER and classification that performs close to huge

pre-trained models like MBERT but with massive

compression and inference speedup. Our distil-

lation strategy leveraging teacher representations

agnostic of its architecture and stage-wise opti-

mization schedule outperforms existing ones. We

perform extensive study of several distillation di-

mensions like the impact of unlabeled transfer set,

embeddings and student architectures, and make

interesting observations outlined in summary.

References

Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao,
Xing Fan, and Edward Guo. 2019. Knowledge dis-
tillation from internal representations.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Advances in Neural Information
Processing Systems 27: Annual Conference on Neu-
ral Information Processing Systems 2014, Decem-
ber 8-13 2014, Montreal, Quebec, Canada, pages
2654–2662.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017.
A survey of model compression and acceleration for
deep neural networks. CoRR, abs/1710.09282.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D. Manning, and Quoc V. Le. 2019.
Bam! born-again multi-task networks for natural
language understanding. Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D.
Bourdev. 2014. Compressing deep convolu-
tional networks using vector quantization. CoRR,
abs/1412.6115.

Song Han, Huizi Mao, and William J. Dally. 2016.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. ICLR.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units. CoRR, abs/1606.08415.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers, pages 328–339.

Peter Izsak, Shira Guskin, and Moshe Wasserblat. 2019.
Training compact models for low resource entity tag-
ging using pre-trained language models.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Improving multi-task deep neural
networks via knowledge distillation for natural lan-
guage understanding. CoRR, abs/1904.09482.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In The 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, Proceedings of the Conference, 2011, Port-
land, Oregon, USA, pages 142–150.

Julian J. McAuley and Jure Leskovec. 2013. Hidden
factors and hidden topics: understanding rating di-
mensions with review text. In Seventh ACM Confer-
ence on Recommender Systems, RecSys ’13, Hong
Kong, China, October 12-16, 2013, pages 165–172.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2014, Doha, Qatar, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), pages 2227–2237.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. ArXiv, abs/1910.10683.

http://arxiv.org/abs/1910.03723
http://arxiv.org/abs/1910.03723
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1710.09282
https://doi.org/10.18653/v1/p19-1595
https://doi.org/10.18653/v1/p19-1595
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
http://arxiv.org/abs/1910.06294
http://arxiv.org/abs/1910.06294
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1904.09482
http://arxiv.org/abs/1904.09482
http://arxiv.org/abs/1904.09482
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
https://aclanthology.info/papers/N18-1202/n18-1202
https://aclanthology.info/papers/N18-1202/n18-1202

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Mas-
sively multilingual transfer for NER. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 151–164, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Vikas Raunak, Vivek Gupta, and Florian Metze. 2019.
Effective dimensionality reduction for word embed-
dings. Proceedings of the 4th Workshop on Repre-
sentation Learning for NLP (RepL4NLP-2019).

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2015. Fitnets: Hints for thin deep nets. In
3rd International Conference on Learning Represen-
tations, ICLR2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

Victor Sanh. 2019. Introducing distilbert, a dis-
tilled version of bert. https://medium.com/

huggingface/distilbert-8cf3380435b5.

Yangyang Shi, Mei-Yuh Hwang, Xin Lei, and Haoyu
Sheng. 2019. Knowledge distillation for recurrent
neural network language modeling with trust regu-
larization. ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP).

Mohammad Shoeybi, Mostofa Ali Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion pa-
rameter language models using model parallelism.
ArXiv, abs/1909.08053.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing with compo-
sitional vector grammars. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
455–465, Sofia, Bulgaria. Association for Computa-
tional Linguistics.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. CoRR, abs/1903.12136.

Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Ari-
vazhagan, Xin Li, and Amelia Archer. 2019. Small
and practical bert models for sequence labeling. Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP).

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 649–
657.

Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny
Zhou. 2019. Extreme language model compression
with optimal subwords and shared projections.

Wei Zhu, Xiaofeng Zhou, Keqiang Wang, Xun Luo,
Xiepeng Li, Yuan Ni, and Guotong Xie. 2019.
PANLP at MEDIQA 2019: Pre-trained language
models, transfer learning and knowledge distillation.
In Proceedings of the 18th BioNLP Workshop and
Shared Task, pages 380–388, Florence, Italy. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1015
https://doi.org/10.18653/v1/P19-1015
https://doi.org/10.18653/v1/w19-4328
https://doi.org/10.18653/v1/w19-4328
http://arxiv.org/abs/1412.6550
https://medium.com/huggingface/distilbert-8cf3380435b5
https://medium.com/huggingface/distilbert-8cf3380435b5
https://doi.org/10.1109/icassp.2019.8683533
https://doi.org/10.1109/icassp.2019.8683533
https://doi.org/10.1109/icassp.2019.8683533
https://www.aclweb.org/anthology/P13-1045
https://www.aclweb.org/anthology/P13-1045
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1903.12136
https://doi.org/10.18653/v1/d19-1374
https://doi.org/10.18653/v1/d19-1374
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification
http://arxiv.org/abs/1909.11687
http://arxiv.org/abs/1909.11687
https://doi.org/10.18653/v1/W19-5040
https://doi.org/10.18653/v1/W19-5040

A Appendices

A.1 Implementation

The model uses Tensorflow backend. Code

and resources available at: https://aka.ms/

XtremeDistil.

A.2 Parameter Configurations

All the analyses in the paper — except compres-

sion and speedup experiments that vary embed-

ding dimension E and BiLSTM hidden states H
— are done with the following model configura-

tion in Table 12 with the best F1-score. Optimizer

Adam is used with cosine learning rate scheduler

(lr high = 0.001, lr low = 1e− 8).

The model corresponding to the 35x parameter

compression and 51x speedup for batch inference

uses E = 50 and H = 2× 200.

Parameter Value

SVD + MBERT word emb. dim. E = 300
BiLSTM hidden states H = 2× 600
Dropout 0.2
Batch size 512
Teacher layer 7
Optimizer Adam

Table 12: XtremeDistil config. with best F1 = 88.64.

Following hyper-parameter tuning was done to

select dropout rate and batch size at the start of the

parameter tuning process.

Dropout Rate F1-score

1e-4 87.94
0.1 88.36
0.2 88.49
0.3 88.46
0.6 87.26
0.8 85.49

Table 13: Impact of dropout.

Batch size F1-score

128 87.96
512 88.4

1024 88.24
2048 88.13
4096 87.63

Table 14: Impact of batch size.

https://aka.ms/XtremeDistil
https://aka.ms/XtremeDistil

BiLSTM Transformer

Emb Hidden F1 Params (MM) Latency Emb Depth Params (MM) Latency F1

50 100 80.26 4.7 0.311 48 2 4.4 0.307 76.67
200 100 79.21 18.1 0.354 144 1 13.4 0.357 78.49
300 100 79.63 27 0.385 72 2 6.7 0.388 77.98

50 200 81.22 5.1 0.472 96 2 9 0.47 79.19
300 200 80.04 27.7 0.593 132 2 12.5 0.6 80

50 400 81.98 6.5 0.892 204 2 19.7 0.88 80.96
200 400 80.61 20.2 0.978 228 2 22.1 0.979 80.87
100 400 81.54 11.1 1 240 2 23.3 1.03 80.79
300 400 80.16 29.4 1.06 252 2 24.6 1.075 80.84

50 600 81.78 8.5 1.5 228 3 22.7 1.448 83.75
100 600 81.94 13.1 1.53 240 3 24 1.498 84.07
200 600 80.7 22.5 1.628 252 3 25.3 1.591 84.08
300 600 81.42 31.8 1.766 276 3 28 1.742 84.06

Table 15: Pairwise BiLSTM and Transformer configurations (with varying embedding dimension, hidden states

and depth) vs. latency and F1 scores for distillation strategy D0− S.

Embedding BiLSTM F1-score Std. Dev. Params (MM) Params(Compression) Speedup (bsz=32) Speedup (bsz=1)

300 600 88.64 3.8 31.8 5.6 14 8
200 600 88.5 3.8 22.5 8 15 9
300 400 88.21 4 29.4 6.1 23 11
200 400 88.16 3.9 20.2 8.9 25 12
100 600 87.93 4.1 13.1 13.7 16 9
100 400 87.7 4 11.1 16.1 24 13
50 600 87.67 4 8.5 21.1 16 10
300 200 87.54 4.1 27.7 6.5 40 15
200 200 87.47 4.2 18.7 9.6 46 16
50 400 87.19 4.3 6.5 27.5 27 13
100 200 86.89 4.2 9.6 18.6 49 15
50 200 86.46 4.3 5.1 35.1 51 16
300 100 86.19 4.3 27 6.6 62 16
200 100 85.88 4.4 18.1 9.9 68 17
100 100 85.64 4.5 9.2 19.5 74 15
50 100 84.6 4.7 4.7 38.1 77 16

Table 16: Parameter compression and inference speedup vs. F1-score with varying embedding dimension and

BiLSTM hidden states. Online inference is in Intel(R) Xeon(R) CPU (E5-2690 v4 @2.60GHz) and batch inference

is in a single P100 GPU for distillation strategy D4.

Lang #Train Ours BERT MBERT MMNER

af 5 87 89 91 84
hi 5 84 85 88 85
sq 5 91 93 93 88
bn 10 91 83 95 95
lt 10 87 89 90 86
lv 10 90 92 93 91
mk 10 92 93 94 91
tl 10 94 88 95 93
bs 15 91 93 93 92
et 15 89 92 91 90
sl 15 92 93 94 92
ta 15 77 82 84 84
ar 20 85 88 89 88
bg 20 90 93 93 90
ca 20 91 94 93 91
cs 20 91 92 93 90
da 20 91 93 93 90
de 20 84 89 89 86
el 20 86 90 90 89
en 20 78 83 84 81
es 20 90 92 93 90

Lang #Train Ours BERT MBERT MMNER

fa 20 90 92 93 93
fi 20 89 91 92 89
fr 20 87 91 91 88
he 20 79 85 85 85
hr 20 90 92 93 89
hu 20 90 93 93 90
id 20 92 92 93 91
it 20 88 93 92 89
ms 20 90 92 93 91
nl 20 89 93 92 89
no 20 91 93 93 90
pl 20 88 91 92 89
pt 20 89 92 93 90
ro 20 93 94 94 92
ru 20 85 88 90 86
sk 20 92 93 94 91
sv 20 94 95 95 93
tr 20 90 92 93 90
uk 20 88 92 93 89
vi 20 89 91 92 88

Table 17: F1-scores of different models per language. BERT represents MBERT fine-tuned separately for each

language. Other models including XtremeDistil (ours) is jointly fine-tuned over all languages.

