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Summary

Current biomedical research increasingly requires imaging

large and thick 3D structures at high resolution. Prominent

examples are the tracking of fine filaments over long distances

in brain slices, or the localization of gene expression or cell

migration in whole animals like Caenorhabditis elegans or

zebrafish. To obtain both high resolution and a large field

of view (FOV), a combination of multiple recordings (‘tiles’)

is one of the options. Although hardware solutions exist for

fast and reproducible acquisition of multiple 3D tiles, generic

software solutions are missing to assemble (‘stitch’) these tiles

quickly and accurately.

In this paper, we present a framework that achieves

fully automated recombination of tiles recorded at arbitrary

positions in 3D space, as long as some small overlap between

tiles is provided. A fully automated 3D correlation between

all tiles is achieved such that no manual interaction or prior

knowledge about tile positions is needed. We use (1) phase-

only correlation in a multi-scale approach to estimate the

coarse positions, (2) normalized cross-correlation of small

patches extracted at salient points to obtain the precise

matches, (3) find the globally optimal placement for all tiles by

a singular value decomposition and (4) accomplish a nearly

seamless stitching by a bleaching correction at the tile borders.

If the dataset contains multiple channels, all channels are

used to obtain the best matches between tiles. For speedup we

employ a heuristic method to prune unneeded correlations,

and compute all correlations via the fast Fourier transform

(FFT), thereby achieving very good runtime performance.
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We demonstrate the successful application of the proposed

framework to a wide range of different datasets from whole

zebrafish embryos and C. elegans, mouse and rat brain slices

and fine plant hairs (trichome). Further, we compare our

stitching results to those of other commercially and freely

available software solutions.

The algorithms presented are being made available

freely as an open source toolset ‘XuvTools’ at the

corresponding author’s website (http://lmb.informatik.uni-

freiburg.de/people/ronneber), licensed under the GNU

General Public License (GPL) v2. Binaries are provided for

Linux and Microsoft Windows. The toolset is written in

templated C++, such that it can operate on datasets with

any bit-depth. Due to the consequent use of 64bit addressing,

stacks of arbitrary size (i.e. larger than 4 GB) can be stitched.

The runtime on a standard desktop computer is in the range of

a few minutes. A user friendly interface for advanced manual

interaction and visualization is also available.

Introduction

Recent applications in systems biology require optical analyses

of very large samples at sub-micrometer resolution. Optical

resolution in the sub-micron range can only be achieved

with lenses of high numerical aperture (NA), which are

characterized by relatively short working distances. In

addition, high sampling rates and magnification are often

required. As a consequence of the high magnification, the

field of view (FOV) captured by a camera chip of finite size is

rather small, and it will need a large number of 3D image stacks

(‘tiles’) to capture a structure with diameters in the millimeter

range, which is a typical size for a small animal organ, an

embryo, or other biologically relevant specimen.
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Thanks to the steady evolution of 3D microscopy techniques

over the past decades, the acquisition of large datasets

is no longer the limiting factor in the analysis of large

specimen. Recent techniques like Two-Photon microscopy

have extended the capability of the confocal microscope to

image through thicker tissues, whereas very fast acquisition

is made possible by spinning-disc or slit-scan confocal

microscopy. Moreover, recent objectives provide a nearly

distortion-free image over the whole extent of the FOV.

Tiles are acquired by sequentially moving the stage of the

microscope to a new position (that is partially overlapping with

the previous) and locally imaging the specimen in 3D at high

resolution. Different modalities exist: between consecutive

acquisitions, the user can manually move the stage by using a

joystick, or the stage can be programmed to move on a regular

grid or other specified pattern. Depending on the equipment,

the stage positions might be recorded along with the data. It

is important to notice, however, that these positions usually

have a significant error and a stitching algorithm that only

relies on them will generate inaccurate mosaics.

Once the series of tiles has been acquired, the challenge

lies in the accurate reconstruction of the sample from the

number of independently imaged 3D sub-volumes. While 2-

dimensional stitching of single-plane (2D) images (especially

in photography) is now well established and several software

solutions exist, 3D stitching is still in its infancy. Simply

extending these tools to the 3D case is in most cases not

feasible, since they are optimized for the largely different

transformation and distortion models that are needed in

photography.

When refractive index mismatches are avoided as far as

possible, highly corrected objectives like Apochromats, and

no negative zoom optic are used, one can safely assume

that complex distortions and rotations in the signal between

successively acquired tiles are negligible and that translation

is the only transformation that has to be taken into account

when performing the reconstruction. Neglecting complex

distortions and rotations drastically reduces the complexity

of the problem.

In this article, we describe an approach for fully automated,

fast and precise stitching of 3D datasets. The consequent

limitation to the compensation of 3D translations only (all the

other distortions are better compensated on the imaging side

by use of appropriate optics) allows the usage of very robust

techniques that are in most cases equivalent to an exhaustive

search over all possible placements of the tiles. At the same

time considerable effort was spent to reduce the run times of

the algorithms.

The article is structured as follows. In the section ‘State

of the art’, we give an overview of the state of the art

in stitching algorithms and available software. ‘Materials

and methods’ contains the detailed description of the

proposed stitching approach with the sub-sections ‘finding

pairwise displacements’, ‘determination of the absolute tile

positions’, and ‘compensation of bleaching artifacts’. ‘The

XuvTools software’ section highlights implementation details

and workflow of our XuvTools toolset. Finally, the results

of the proposed stitcher on a wide range of datasets

are presented in the ‘Results’ section and compared to

the results of commercially and freely available stitching

programs.

State of the art

The number of publications concerning the stitching (or

mosaicing) of 2D photographs is enormous (e.g. at the

time of writing this article, the Annotated Computer

Vision Bibliography lists 362 papers in the chapter ‘Mosaic

Generation’ (Price, 2008)). The best solutions in this field

are not necessarily the ones best suited for 3D microscopic

applications. This is mainly due to the limitation of these

approaches to 2D images, and due to the significant perspective

and lens distortions found in photographs that need high-order

transformation models. An exhaustive search in such a high-

dimensional parameter space is unfeasible, such that in this

field the use of landmarks (found manually or automatically)

is the most appropriate approach.

In contrast to this, the stitching of image tiles recorded

by a microscope equipped with a scanning stage only needs

to take a comparably low-dimensional parameter space into

account. Due to the fixed optics no perspective distortions

or scale changes are present. Microscope objectives are well

corrected such that lens distortions are very low, and, due to

the scanning stage, rotations of the tiles have little impact.

In the remaining low-dimensional parameter space not only

landmark based techniques (e.g. Becker et al., 1996; Can

et al., 2002; Al-Kofahi et al., 2003; Bajcsy et al., 2006) but

also pixel-intensity-based techniques like cross-correlation

or mutual information are applied (e.g. Capek & Krekule

1999; Karen et al., 2003; Slamani et al., 2006; Thévenaz

& Unser, 2007). Generally, landmark-based techniques are

quite fast, but need to make certain assumptions about the

dataset, e.g. the existence of blob-like objects (Becker et al.,

1996), fine filaments (e.g., Can et al., 2002; Al-Kofahi et al.,

2003) or closed contours (Bajcsy et al., 2006). Pixel-intensity-

based techniques on the other hand are usually slower, but

applicable to every type of dataset. A possibility to combine the

advantages of both techniques is to search for salient points

(like edges or corners, which exist in every type of dataset)

and limit the pixel based techniques to small windows around

these salient points (e.g., Chow et al., 2006; Sun et al., 2006).

Correlation on such small windows is quite fast and insensitive

to global intensity gradients.

While this search for best correspondences between tiles is

the most crucial part in a stitching approach, there are some

pre- and post-processing steps needed for a fully functional

framework. Before the search for the correspondences

takes place, nearly all algorithms need approximative
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positions of the tiles. All pixel-based approaches mentioned

above rely on positions of the scanning stage or require

manual pre-alignment. Only some of the landmark-based

techniques can infer this prior information from the dataset

itself.

After a successful correspondence search, one usually is

confronted with the problem that every tile overlaps with

multiple other tiles, such that a global solution must be found,

which best satisfies all relative correspondences. Typical

approaches for this are the search for an optimum that satisfies

the relative displacements by the method of least squares

(e.g. Sun et al., 2006), fitting techniques robust to outliers

like Ransac (Fischler & Bolles, 1981), graph-based methods

(e.g. Chow et al., 2006; Bujnak et al., 2007), or dynamic

programming techniques (e.g. Appleton et al., 2005).

Finally, for the combination of all tiles, certain intensity

corrections and blending techniques are needed, to obtain a

seamlessly stitched mosaic image. This correction must be

done according to the type of dataset. For example, histology

images, recorded with transmitted light techniques, have as

the main source for intensity variations at the border the

shading effects of the microscope. (Sun et al., 2006) correct for

them by estimating these shading effects using a second order

polynomial function. For mosaics with a very high number

of tiles, and homogeneous intensities over the whole sample,

such a shading can be estimated by min- and max-images

over all tiles (Chow et al., 2006). Other approaches suggest a

combination of the images in the gradient domain and find

the resulting image as a solution of the Poisson equation (e.g.

Zomet et al., 2006).

Available software solutions

Still many biologists apply manual stitching to their datasets,

for a lack of helpful automated software. This can be a

tedious and difficult task. To the aid comes automatic stitching

software (also denoted as mosaicing software) that tries to

recombine the tiles either based on an initial pre-alignment or

fully automatically. The pre-alignment can be gained from the

scanning stage positions for the individual tiles (if available),

or can be provided by the user via interactive positioning of

the tiles on the screen.

Table 1. Commercially and freely available stitching software we have tested.

Company/Institute Name Data type Automation A priori info License

Adobe Photoshop 2D full None Commercial

Imagic AG ImageAccess 2D semi Reference points Commercial

MediaCybernetics Image-Pro 2D semi Defined grid Commercial

Biomedical Imaging, EPFL MosaicJ for ImageJ 2D semi Manual pre-positioning Free

CarlZeis MicroImaging AxioVision (> V. 4.5) 2D, 3D semi Scanning stage positions Commercial

Molecular Devices Metamorph 2D, 3D semi Scanning stage positions Commercial

Biomathematics, ASCR GlueMRC / LinkMRC 2D, 3D semi Reference points Free

Software that uses pre-alignment is usually fast and quite

successful in adjusting small positional errors, but can seldom

cope with coarse initial misalignment. This can be a major

drawback because the outcome is very much user-dependent.

Furthermore, even if the scanning stage positions of the

individual tiles are stored, it is usually hard to import them into

the stitching software. So an important feature for a stitching

software is the ability to find the initial positions without any

additional information.

With the objective of providing a brief survey of the common

stitching software available at the present, we consider the

applications reported in Table 1.

Adobe Photoshop is an example among others of a tool

that can perform completely automatic 2D stitching without

any a priori knowledge on the stage positions. However, we

experienced mosaic reconstruction failures when the content

of information in an image is low, as can be the case with 2D

neuron tracing.

The other tools we consider have been specifically developed

for microscopy. They perform semi-automatic 2D stitching,

meaning that they need some form of a priori knowledge about

the tile positions. ImageAccess employs pairwise tile stitching

by asking the user to define a couple of correspondence points

in the two images. Then a rigid transformation of one tile

with respect to the other is performed. It is evident that this

approach is very much user-dependent and requires some

expertise. Results are typically acceptable for small mosaics,

but the approach is not applicable in the case of huge datasets,

also because in practice the stitching operation is particularly

slow.

The stitch functionality in MediaCybernetics Image-Pro

is targeted towards stitching of overlapping grid-mode

acquisitions: a general scheme of acquisition that works as

an initial definition of tile positions has to be defined. The

possibility of inserting blank images in the list of tiles to be

stitched and the fact that consistent movements of the tiles

with respect to the initial grid positions are allowed permits

the stitching of free-mode acquisitions too. However, the setup

is time consuming and could require more than one attempt.

Moreover, the more the acquisition scheme strays from a grid-

like regularity, the more the stitching operation is subject to

failure.
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MosaicJ is a 2D stitching plugin for the public-domain

image analysis package ImageJ, developed by the biomedical

imaging group of the École Polytechnique Fédérale de

Lausanne. Starting from an initial manual positioning of

the tiles, it performs image registration with sub-pixel

precision (Thévenaz & Unser 2007). Because of the manual

initialization, the stitching of large numbers of tiles usually

takes quite long and depends on the user’s capability of

reconstructing the initial placement.

Zeiss AxioVision and Molecular Devices Metamorph are tools

that offer the possibility to stitch 3D stacks as well as 2D ones.

(To be precise, Metamorph only performs 2D stitching out

of the box. The pseudo-3D stitching is provided by Visitron

Systems GmbH, an European Molecular Devices distributor,

in form of a Metamorph journal.) Both applications can

process only specific file formats (zvi for AxioVision, stk

for Metamorph) and need to find the information about

scanning stage positions in the image metadata. Thanks to

the fact that they use the stage positions as initial coordinates,

the registration results on the plane are generally good.

Concerning the 3D stitching, a real volumetric approach is

missing. Stacks are stitched plane-by-plane, and no correction

is performed in the third dimension. This can cause the

appearance of artifacts in the stitched volume not only between

different tiles but also between the planes of a single tile.

Moreover, stacks with different dimensions in z-direction

cannot be processed. Both software tools had problems if the

size of the mosaic image exceeded 1 Gigabyte. Several of our

test-datasets exceed this limit by far.

The Department of Biomathematics of the Academy of

Sciences of the Czech Republic distributes its software tools

GlueMRC and LinkMRC for free (Karen et al., 2003). They

represent the only software we could obtain that is able

to perform real 3D stitching, in contrast to the pseudo-3D

approach used by Metamorph and AxioVision that stitch

plane by plane independently or use a single reference plane

for the whole stack. GlueMRC is a Windows software with

a straightforward user interface. Stitching is performed by

adding one tile at a time to the current mosaic image. For

each added tile, the user is asked to select a feature in the

tile and a corresponding feature in the mosaic image. From

these, the 3D fine placement is obtained automatically by the

software, typically with very good results (compare Fig. 21).

The main drawback is the need to specify corresponding

features by hand, which requires the user not only to know the

rough recording positions, but also to have enough expertise

and patience to find matching structures. Especially if heavy

bleaching is evident in the sample, this can become difficult.

Another limitation is that GlueMRC cannot guarantee that the

stitched dataset will be the one with best possible placement

of the tiles that compose it. Since at iteration j the user can

only specify one feature point in tile f j and one in the current

mosaic, the correct positioning of tile f j is calculated only

against the one tile in the mosaic that contains the user-

selected feature. Information from overlaps with other areas

of the mosaic are not considered for refinement. This can lead

to increasingly large errors the more stacks are added to the

mosaic.

Main contributions

As mentioned above, the main goal of our proposed 3D

stitching algorithms is robustness, speed and accuracy. The

software should be well suited for daily routine work and

be able to cope with any type of structures that appear in

biological research.

• Omitting rotation and subpixel-displacements allows

to place the raw data without modification (i.e. no

interpolation) into a final mosaic.

• True 3D approach. Tiles may be imaged anywhere in 3D

space (as long as sufficient overlap is given). No reduction

to 2D as in other approaches.

• No need for any meta-data or assumptions about the type of

objects (like in landmark-based approaches). Just give the

tiles to the program and get the final mosaic.

• Full multi-channel support. Finds the solution that best

satisfies the correspondences in all channels (no reduction

to single channel as in other approaches). The final mosaic

image has all channels precisely aligned with each other.

• Very fast, but still a good approximation of an exhaustive

search over all possible placements of all tiles.

• No limitations on data type (8bit gray, 16bit, 32bit float),

no limitations on size (especially no 4 GB size limit).

• Quality control: if no perfect solution can be found for

the whole set of tiles, the user is informed about the

largest possible subset(s) that can be stitched. No suboptimal

solution is returned.

• Maximization of the space occupied by unbleached tiles

rather than blending between bleached and unbleached

ones, which could result in smearing and lower signal to

noise ratio. Tries to adjust bleached stacks to eliminate

discontinuities.

Materials and methods

The recombination of multiple datasets is logically split into

three distinct parts (see Fig. 1). First, the pairwise displacements

between tiles must be estimated. This is done by analyzing

the tiles for similarities. Second, the absolute positions of the

tiles have to be determined in a way so that the positions

optimally satisfy all pairwise displacements. Third, all tiles are

combined into a single large image (in the following denoted

‘mosaic image’), where care has to be taken at the overlapping

tiles borders that discontinuities are minimized and useful

information maximized.

C© 2009 The Authors

Journal compilation C© 2009 The Royal Microscopical Society, Journal of Microscopy, 233, 42–60



4 6 M . E M M E N L A U E R E T A L .

Fig. 1. From single 3D image tiles pairwise displacements are determined. These displacements in turn allow the computation of the absolute tile positions

in the final 3D mosaic image.

Fast pairwise displacement estimation

If no information about the positioning of tiles is available,

neither from the scanning stage positions nor from a

manual pre-alignment, this information needs to be obtained

by estimating the pairwise displacements (or translations)

between tiles from similarities in the signal. Comparing all

tiles in a brute force approach can be computationally very

expensive, since there are N(N − 1)/2 stack tuples to test

against each other. This requires a very fast and optimized

algorithm for the comparison. In the sub-section, ‘Heuristic

for finding complete graphs’, we introduce a heuristic method

that can often prune displacement tests; however, the worst

case scenario of comparing all possible tuples remains valid.

Our approach for the estimation of displacements utilizes

phase-only correlation (POC) based on the normalized Fourier

spectrum. This method allows to efficiently determine pairwise

best displacements while being invariant to linear gray value

changes. In the following we derive the expression for the POC

(Eq. 5).

Given two image stacks f (x, y, z) and g(x, y, z), the 3D

correlation c fg under translation (t x, t y, t z) is defined as

c f g (tx, ty, tz) := ( f ◦ g)(tx, ty, tz)

=

Nx−1
∑

x=0

Ny−1
∑

y=0

Nz−1
∑

z=0

f (x, y, z) · g(x − tx, y − ty, z − tz). (1)

The Fourier isomorphism states that Eq. (1) can be computed

in frequency space as follows:

c f g = f ◦ g = DFT−1 (DFT( f ) · DFT(g)∗) , (2)

where ∗ denotes the complex conjugate and DFT denotes the

discrete Fourier transform. Since the DFT assumes periodic

signals, the signals f and g must be zero-padded to double size

before the DFT is applied. The discrete Fourier spectra F (u, v,

w) and G (u, v, w) are given by the DFT:

F (u, v, w) =
1

Nx Ny Nz

·

Nx−1
∑

x=0

Ny−1
∑

y=0

Nz−1
∑

z=0

f (x, y, z) e
− j 2π

(

xu
Nx

+
yv

Ny
+ zw

Nw

)

(3)

G (u, v, w) =
1

Nx Ny Nz

·

Nx−1
∑

x=0

Ny−1
∑

y=0

Nz−1
∑

z=0

g(x, y, z) e
− j 2π

(

xu
Nx

+
yv

Ny
+ zw

Nw

)

. (4)

The DFT is efficiently implemented by the FFT, which has a

total run time complexity of O (N3 log N) for 3D signals of size

N3.

The POC c pho is obtained from the correlation by removal of

the amplitude information from the Fourier spectrum, leaving

the more information-rich phase intact:

cpho, f g = DFT−1

(

F · G ∗

|F | · |G |

)

(5)

It was shown by Ito et al. (2004) that the POC has a

precise peak for shifted images. The position of the peak is

used as an estimation of the pairwise displacement, and is

invariant to linear gray value changes and very robust against

noise. Moreover, correlation, and i.e. POC, performs well on

downscaled signals. Even with low quality downscaling like

nearest neighbor, the relative height of the peak stays almost

the same. At scalings down to 10% of the original image

size, almost no notable neighbouring maxima occurred in

our experiments (see Fig. 2), while downscaling significantly

reduces runtime complexity of the FFT. In the implementation,

tiles are scaled to a size of a power of two, since the FFT can

work more efficiently for these.

Precise pairwise displacement estimation

The POC is applied to downscaled image tiles, so the precision

of the location of the peak is limited by the scaling factor. The

precise pairwise displacement is determined on the unscaled

tiles using normalized cross-correlation (NCC). The correlation

coefficient c norm of the NCC also delivers a quantitative

measure of similarity that could not have been gained from

the POC. The NCC c norm of signals f , g under displacement

C© 2009 The Authors

Journal compilation C© 2009 The Royal Microscopical Society, Journal of Microscopy, 233, 42–60



X U V T O O L S : S T I T C H I N G O F 3 D D A T A S E T S 4 7

Fig. 2. POC of two tiles, scaled to 100%, 25% and 12.5% of the original tile size. While the size of the peak grows with the pixel sizes, the relative height

of the peak compared to the other correlation coefficients stays almost the same.

(t x, t y, t z) is given in Eq. (6):

cnorm(tx, ty, tz)

=

Nx−1
∑

x=0

Ny−1
∑

y=0

Nz−1
∑

y=0

(

f (x, y, z) − f
)

·
(

gtx,ty,tz
(x, y, z) − gtx,ty,tz

)

σ ( f ) · σ (gtx,ty,tz
)

,

(6)

where σ ( f ) denotes the standard deviation of signal f , and

gtx,ty,tz
denotes the shifted version of the second signal g.

Normalizing a signal f by subtracting the mean f and

dividing through the standard deviation σ ( f ) maps all linear

transformations f ′ = a f + b, a , b ∈ R to the normalized

signal f n, making it invariant to linear gray value changes.

In our application, the shifted signal gtx,ty,tz
is a sub-signal

that is extracted at the relative position (−t x, −t y, −t z).

Note that both the mean value as well as the standard

deviation of this signal are different for each (t x, t y, t z).

This dependency is often neglected, especially if the cross-

correlation is computed by means of the FFT. In images with

very heterogeneous structures (and consequently with large

variations of the mean and the standard deviation within small

areas), this approximation can lead to significantly biased

results. Therefore, to compute the unbiased normalized cross-

correlation by means of the DFT, some additional efforts are

necessary (Ronneberger, 1998). First we use the equivalence
∑

x

(

f (x) − f
)

·
(

gt(x) − gt

)

=
∑

x

f (x)gt(x) −
1

N

∑

x

f (x)
∑

x

gt(x) (7)

to move the mean values f and gt to a second independent

term. For a more compact notation we use a vectorial notation

here with x = (x, y, z), t = (t x, t y, t z) and N = N x · N y · N z . To

replace the direct correlation in the first term with the cyclic

correlation that is provided by the DFT-approach, both signals

are enlarged to (N x + T x) × (N y + T y) × (N z + T z), where T x,

T y, T z are the number of translations in x, y, z-direction. Signal

f is enlarged by padding with zeros, and signal g by simply

cropping a larger region. The enlarged signals are denoted as

f E and g E. The normalized cross-correlation (6) can thus be

rewritten using the DFT as

cnorm(t)

=

DFT−1 (DFT( fE) · DFT(gE)∗) −
1

N

∑

x

f (x)
∑

x

gt(x)

σ ( f ) · σ (gt)
.

(8)

The fast computation of the sums
∑

x gt(x) and standard

deviations σ (g t) is done by an iterative scheme with

linear complexity. For the computation of σ (g t) again the

equivalence relation

∑

x

(

gt(x) − gt

)2
=

∑

x

g 2
t (x) −

1

N

(

∑

x

gt(x)

)2

(9)

is used, such that the same fast iterative scheme for its

computation can be used.

Placement of correlation windows at interest points

The overlapping region of tiles can be used for correlation.

For this, we divide the overlapping region into smaller

windows, which has several advantages compared to blindly

correlating the whole overlap. First, using multiple windows

(and normalizing each of them independently to zero mean and

unit variance as described for the NCC) minimizes the influence

of large-scale intensity variations inside the overlapping region

(which can arise i.e. from bleaching). Second, correlation is

faster as long as the combined volume of the windows is

smaller than that of the whole overlapping region. A further

advantage is given by targeting the windows to regions with

high image contrast. These regions are likely candidates for

high information density and should give more informative

correlation result. As a consequence the signal-to-noise ratio

of the obtained correlation is better than that of a correlation of

the full overlapping region. This selection is depicted in Fig. 3,

where fine neuronal axons are detected (blue windows) in the

overlapping part (yellow dashed region) of two neighbouring

tiles. Only at these positions the normalized cross-correlation

will be calculated.
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Fig. 3. Schematic of neuronal processes in two neighbouring tiles. The

blue windows in the left tile are the interest points P. The larger blue

windows in the right tile mark the region against which the interest point

will be correlated using NCC.

As a measure of image contrast we use the gradient

magnitude ||∇ f || of signal f , and integrate over small regions

(about 2/3 of the correlation window size). The n regions

with the highest summed contrast are selected, and their

centers pi are stored as a set of ‘interest points’ P = {p1,

p2, . . . , pn}. It is sufficient to extract interest points from the

overlapping region of one of the tiles, since the overlaps are

assumed to be identical. For this, we have arbitrarily chosen

the overlapping region with the higher mean gray value, as the

darker one usually has a worse signal to noise ratio (again as

a result of bleaching). If more than one channel is present, the

interest point detection is performed on all available channels

individually, since distinctive structures can vary between

them, resulting in an individual set of interest points P 1, . . . ,

P k for each of the k channels. Once interest points P 1, . . . ,

P k have been extracted for all channels, the per-window NCC

can be calculated. The iteration over all channels and interest

points is shown in pseudo-code in Algorithm 1. Note that the

coefficients computed by the NCC can be summarized over

the channels, leading to an additive information gain. For

every pair of tiles it is sufficient if one of the channels provides

enough information for a successful stitching, no matter which

channel. See Fig. 14 for an example where in some regions

only channel one, in others only channel two contained useful

structure. Stitching with only one of the channels would not

have been possible.

Finding absolute tile positions from pairwise displacements

Once the precise pairwise displacements have been

determined, the absolute tile positions can be computed from

them. The normalized correlation coefficient c norm from the

NCC is used as a measure of quality of the corresponding

correlation. Using a threshold δ, the displacements with low

correlation coefficient c norm < δ can be removed from the set.

From the remaining displacements with high coefficient,

we estimate the absolute stack positions. Two problems

arise: first, there can be more displacements than tiles (as

Algorithm 1 Interest-point-based, normalized cross-correlation for two

tiles f and g

Input: For the k channels: the image tiles f 1, . . . , f k and g 1, . . . , g k ,

sets of interest points P 1, . . . , P k , displacement estimate destimatefg

between tiles f and g.

Output: dfg as the pixel-precise displacement between tiles f and g.

// Initialize correlation coefficients to zero

1: c norm := 0

2: for all channels do

3: for all interest points pi ∈ P channel do

4: w f := Window taken from tile f at position pi , zero-padded to

the size of the fixed window

5: wg := Window taken from tile g at position pi + destimatefg,

zero-padded where overlapping the tile border

// Summarize correlation coefficients over all channels and positions

6: c norm += normalized cross-correlation of w f and wg

7: end for

8: end for

9: Normalize c norm with number of loop iterations:

cnorm/ = |channels| · |interestpoints|

10: dfg := d estimatefg + Position of the maximum of c norm

each tile overlaps with several others) so the placing is

not straightforward. Second, if the displacements form loops

(compare Fig. 4) they can contradict each other. This second

problem is rare, but currently being worked on using an

improved placement algorithm. To find a globally optimal

placement from more displacements than tiles, we use a

solution that weights all displacements equally and solves

them by minimizing the squared error. For that, we set up the

system of linear equations that relates the required absolute

positions p f , p g to the measured displacement d fg:

d f g = p f − pg . (10)

For N tiles there can be up to N(N − 1)/2 linear equations,

forming a probably over-determined equation system as

Fig. 4. Three tiles f , g and h with pairwise displacements between them.

If all three displacements have a sufficiently high correlation coefficient

they will be used for computing absolute positions. Since they form a loop

they can be contradictory (e.g. d fh + d gh < d fg).
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shown exemplary for three tiles:
⎛

⎜

⎝

d f g

dgh

d f h
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⎟
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=

⎛

⎜

⎝

−1 1 0
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−1 0 1

⎞

⎟

⎠

⎛

⎜

⎝

p f
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ph

⎞

⎟

⎠
(11)

The position of one of the tiles must be fixed in advance, the

other positions will then be computed relative to this arbitrary

position. We chose the position of the first tile to be zero

p f = (0, 0, 0) and can then drop the corresponding (i.e. the

first) column in the matrix:
⎛

⎜

⎝

d f g

dgh

d f h

⎞

⎟

⎠
=

⎛

⎜

⎝

1 0

−1 1

0 1

⎞

⎟

⎠

(

pg

ph

)

. (12)

Solving the equation system is done using the singular value

decomposition (SVD) for all dimensions x, y, z independently.

The SVD leads to a solution that is optimal in the sense of

smallest squared error.

In some cases it can happen that not all tiles are connected

to the mosaic with a sufficiently high correlation coefficient.

This is especially the case if a tile (or its borders) consist only of

background, or if the overlap between tiles is not wide enough

for correlation. In the case that not all tiles are connected to

each other via displacements after applying the threshold, the

user is informed about the problem, is presented with the list

of connected components and can stitch these independently

of each other. Examples can be seen in Fig. 15 where two

large components are stitched independently due to a too

small overlap between them, and in Fig. 13 where the tiles

containing only background noise could not be stitched and

were left out.

Heuristic for finding complete graphs

Our software does not make assumptions by default about

initial tile positions but tries to find them automatically,

yielding N(N − 1)/2 pairwise tests in the worst case. If the

recording positions are available from the microscope, they

are used to estimate which tiles have been recorded close to

each other, and only these are used for the correlation. In this

case, we test a tile against its neighbours in a relatively large

region around it (i.e. a radius of half the tiles size), which is

motivated by the fact that table positions are typically biased

with errors.

If no recording positions are available, it is unknown

which tiles have to be correlated against which others.

We have arbitrarily selected to start with tiles from close

positions in their storage order, i.e. first test each tile with

the immediately following one in the file, then continue with

increasing distance. This is motivated by the fact that in a

typical microscopic imaging scenario, tiles are recorded next

to each other to avoid gaps in the mosaic image, yielding

close positions in the file storage. Note that this heuristic

method does not reduce the total number of tested pairs of tiles.

Fig. 5. Tiles that have been correlated form connected components,

of which the relative positions can already be computed. These allow

implications about the remaining correlation candidates, i.e. the pair (1,

3) does not need to be tested anymore since tile 1 is not in the search radius

around tile 3.

However, in our tests it has shown to find the good correlations

earlier on.

Once several good correlations have been found, the pairs

of tiles that match with high certainty (i.e. with sufficiently

high correlation coefficient) form a connected component. The

relative positions of tiles in a connected component can be

computed by means of the SVD as described above. These

positions allow implications about other test candidates from

the same component. Figure 5 shows an example of three tiles,

where the relative positions of (1, 2) and (2, 3) indicate that

(1, 3) do not overlap, since tile 1 is not in the search radius

(depicted as yellow hatched region) of tile 3. All pairs ( f , g)

from the same connected component where f is not inside

the search radius of g can be pruned from the test set. It is

evident that the sooner large connected components emerge,

the more implications about the remaining test candidates can

be drawn (resulting in a large speedup). From our tests it has

emerged that this heuristic is useful for arbitrary recording

positions, and results in an especially large speedup for many

common recording patterns (see Table 2).

Bleaching correction

When recombining image tiles to one mosaic image, borders

with a strong drop in intensity can emerge (see Fig. 6a).

These borders are not artifacts introduced by the positioning,

but result from bleaching, the destruction of fluorophores

that are hit by the excitation light during acquisition of

the prior recorded tiles. This bleaching of neighboring tiles

occurs even if the laser (in the case of confocal microscopy) is

switched off exactly at the border of the current tile. See Fig. 7

for an illustration. In the previous processing step ‘Precise

pairwise displacement estimation’, the pixel-precise match for

all overlapping tiles was obtained. Making use of the fact that

two overlapping regions should have identical content, the

pixel-by-pixel gray value mapping in the overlapping region

can be computed. Let f be the unbleached tile and g the

bleached tile, pi denotes a position in f and p
′

i = pi + dfg

the corresponding position in g. By mapping the gray values

from the darker overlapping region to the brighter one, we
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Table 2. Amount of correlations performed with our proposed heuristic, compared to brute

force and known recording positions.

Dataset 3D tiles Brute force With heuristic With stage positions

Cortex of rat (Fig. 16) 4 × 5 = 20 190 73 55

Fig. 6. Zebrafish 72hpf embryo stained with TOTO3 to visualize all cell

nuclei, two neighbouring tiles of one recording. (a) The top tile has been

imaged first, the bottom tile third in the series. Bleaching in the bottom

tile is clearly visible. (b) Our proposed bleaching correction applied to the

bottom tile before recombination. No visible discontinuities remain.

Fig. 7. During recording of the first tile not only the overlapping regions,

but also certain areas beside the tile are bleached. This is a consequence

of the recording in different layers and the conical shape of the excitation

light beam. If bleaching is not corrected, significant discontinuities can

appear in the stitched image.

compute the gray value co-occurrence matrix. We have found

bleaching to be modelled by a linear process f (pi ) = m · g(p
′

i )

+ b that maps gray values from the bleached overlapping

region to those of the unbleached one. From the co-occurrence

matrix, the linear parameters m, b of the mapping can be

deduced by means of the least squares method. We also infer

the mapping variance as a measure of quality of the linear

parameter estimation. An example is shown in Fig. 8 (right).

In most experiments, a small step in the bleaching effects

at the border of the overlapping region was observed. This

is modelled by the correction of the factor m with a certain

constant suppression factor w < 1 outside the overlapping

region.

The original (i.e. unbleached) gray values g
′

of the bleached

tile g are reconstructed only outside of the overlapping region,

because inside this region the unbleached tile f provides the

identical content with better signal to noise ratio. For the

reconstruction, the linearly corrected intensities are cross-

faded to the original intensities with increasing distance d to

the tile border. The decreasing contribution of the corrected

signal is modeled with a Gaussian-shaped distribution

Nσ (d ) = e−d 2/σ 2

, (13)

where N σ (d ) ∈ [0, 1]. The reconstructed gray values in tile g

are

g ′(p′
i ) = Nσ (d ) · (m · g(p′

i ) + b) + (1 − Nσ (d )) · g(p′
i ).

(14)

The standard deviation σ can be seen as the bleaching width

in µm, and has to be estimated by the user through visual

inspection, since no prior knowledge about the unbleached

gray values outside the overlapping region is available.

However, σ stays typically the same for all samples with the

same staining and recording settings, and can therefore be re-

used. Fig. 16 shows an example of bleaching, and our proposed

corrected mosaic image.

The XuvTools software

Implementation details

The software we have described in this paper is freely

available as an open source toolbox. We currently provide

ready-to-use binaries for Linux and Microsoft Windows,

and a complete build environment for both platforms. The

software is entirely written in C++ and should be easily

portable to other platforms as well. We make use of several

open source libraries, most notably the fastest Fourier

Transform in the West (FFTW) (http://www.fftw.org/)

and a highly optimized C++ class library for scientific

computing ‘blitz++’ (http://www.oonumerics.org/blitz/). For

file input/output, at present NetCDF (http://www.unidata.

ucar.edu/software/netcdf/), HDF5 (http://www.hdfgroup.

org/products/hdf5/index.html) and the current Bitplane

Imaris 5.5 (ims) are supported. More major microscopy

formats are being worked on, the most important

ones being tiffs, tiff stacks, Zeiss lsm and Metamorph

stk. Users interested in working with NetCDF or

HDF5 might be interested in our ImageJ reader/writer

plugin (freely available at http://lmb.informatik.uni-

freiburg.de/lmbsoft/imagej_plugins/).

Our software is split into core library, command line tools

for batch processing and a graphical user interface (GUI, in

the XuvTools-GUI module). Certain features like interactive
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Fig. 8. Left figure: border region between two overlapping image tiles. The average gray value of the left tile is shown in red, the average gray value of

the right tile in green. The blue curve denotes the gray value after correction, with an average factor of m = 1, 29 in the overlapping part, and a smooth

decrease of this factor to 1 beside the stitching border. Right figure: mapping of gray values inside the overlapping region of two image tiles.

refinement or manual correction of the stitching are best used

through the GUI. Most notable implementation details are:

• Independence of data type through the use of C++

templates.

• All internal functions and libraries have been tested to

support arbitrarily large datasets, i.e. can read and write

files of more than 4 GB in size and utilize more than 4 GB of

RAM on 64bit platforms.

• We make use of the highly optimized FFTW for the Fourier

transform.

• For fastest operation, all datasets are kept in RAM. Typical

memory usage is twice the size of the dataset. Optimizations

that allow operation on low-memory machines are being

worked on.

• The command line tools are split into three parts

(‘tile alignment’, ‘bleaching correction’, ‘stitching with

blending’). The parts communicate via status-files,

therefore it is easy to replace one part with a different

program (e.g. leave out bleaching correction for samples

without bleaching artifacts).

• Support for multi-threading via OpenMP is already

implemented (currently in alpha status).

The goal of the XuvTools-GUI module is to offer a user interface

to the command line XuvTools (see Fig. 9) that is on one

side appealing to users that are less comfortable with the

command line, and on the other hand greatly enhances

the interactivity with the software. In more detail, the GUI

allows the iterative refinement of the stitching by allowing

user intervention at all steps. Thus, for instance, the fast

pairwise displacement estimation can be reviewed graphically

and corrected by dragging misplaced tiles in the approximately

correct position. Parameters for the creation of the final overlay

like the blending between tiles or the strength and width of the

bleaching correction can be adapted interactively. Moreover,

the graphical user interface offers advanced handling of

the initial tile positioning by allowing their initialization

on regular shapes and grids. The XuvTools-GUI module is

written in C++ using Trolltech’s cross-platform framework

Qt (http://trolltech.com/products/qt), which allows to create

Linux and Microsoft Windows programs from the identical

source code.

A sample workflow

The actual use of the XuvTools software is structured in a

clear step-wise approach. Both the command line and the GUI

share the same workflow (as depicted in Fig. 10), and cover the

sequence of algorithms presented in ‘Materials and methods’.

In the following, a typical workflow is presented.

First, input files are added to the project. The files are

scanned, and the information relevant to the stitching is

extracted. This information can be reviewed and adjusted in

the GUI with the Project Editor, that also allows to disable

incidental tiles that should be omitted from the stitching. The

command line tools export the result of the file inspection as

a comma-separated value (CSV) table that can be read and

written by many common office packages like OpenOffice Calc

or Microsoft Excel. This allows for batch processing of datasets

that were taken with the same microscope settings. For the

file formats NetCDF and HDF5 that are not bound to a specific

internal organization, the user manually assigns the internal

paths to the datasets in the GUI or CSV-file.

If stage positions could be gathered from the input file(s),

they are used for the display of the tiles in the GUI, otherwise

the user can use the Grid Tool to arrange the tiles in one from a

series of common grid-layouts. Also, tiles can be (re)arranged

by hand. The positions can optionally be used as initial values

for the stitching, since positioning can improve speed and

decrease the chance of failure when stitching more difficult

datasets. However, this is not essential to a successful outcome
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Fig. 9. The XuvTools–GUI user interface. The mosaic image shows a tiling of a worm (Caenorhabditis elegans) expressing nuclear periphery marker (GFP

lmn-1).

and was not used for the results we present in the next

chapter.

The GUI can display the progress of stitching graphically by

combining the stitching algorithms (first three sub-sections of

‘Materials and Methods’) with the algorithm for finding the

absolute tile positions (see ‘Materials and methods’), that will

reposition the tiles to the currently estimated position at every

iteration. In the ideal case, at the end of stitching all tiles will

already belong to the same connected component (i.e. the

complete mosaic). If this is not the case, the user can change

the threshold parameter for finding the absolute tile positions,

and apply it again. This is very fast, since the displacement

estimation does not need to be repeated.

In the GUI, this is done by changing the slider

‘correlation threshold’. On the command line, the tool

find absolute positions can be run, passing the new value as

a parameter. The threshold needs to be decreased if more than

one connected component was found. The threshold should be

increased if tiles tend to merge to a large blob. A good strategy

is to start with a high threshold, and to decrease it stepwise

until a complete mosaic image is found.

At any time the current layout of the dataset can be saved

to an output file, which is typically done as the last step of the

workflow. On the command line, overlay stacks is run on the

project file to export the current mosaic to a file. In the GUI the

save-button can be used to select an output file.

Additional parameters (e.g. the size and search radius of

correlation windows, etc.) are available for advanced users,

however there was no need to change the default values for all

test datasets described in this paper. A detailed description can

be found in the supplied manual file. It is worthwhile to note

that our implementation was fast enough for a fluent work

flow even on the largest datasets we have encountered so far.

A state of the art single core computer is sufficient, as long as

it provides RAM of roughly twice the size of the dataset.

Results

We have applied our software toolset to various biomedical

datasets in which cellular structures need to be imaged at

high resolution in the context of whole organs or organisms.

These include: whole zebrafish brain and head at single

cell resolution, neurons and axons in mouse and rat brain

slices, whole C. elegans animals, and trichome hairs of the

Arabidopsis plant. With the pruning method (‘Heuristic for

finding complete graphs’), very large datasets of up to 68 tiles

of size 512 × 512 × 73 voxels (Fig. 15) recorded at arbitrary

positions could be stitched in less than 6 min on a state of the

art single core computer, given a sufficient amount of RAM.

For smaller datasets, stitching takes on average less time than

needed to load and store the data, typically below 3 min. See

‘Results’ for more detailed benchmark results.

To measure the quality of the final mosaic image, visual

inspection is most often sufficient, discontinuities and artifacts

are obvious to laymen. However, if the final mosaic image

should be used for automatic processing, like in filament

tracing, more stringent constraints about the introduction

of discontinuities in the image structure need to be enforced.
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Fig. 10. Sample workflow of the XuvStitch command line tools (left), and a screen shot of the workflow pane of the graphical user interface. The optional

bleaching correction that can be applied after running stitching is not shown here. In the command line example, ‘infile.ims’ is an Imaris file that contains

the recorded tiles (stored as time series), ‘outfile.ims’ is an Imaris file that contains the stitched Volume.

Discontinuities can be both in space (from bad positioning of

tiles) as well as intensity (most often as a result of bleaching).

We use color overlay for visual inspection, stitching artifacts

become visible by imbalanced color mixing of colorized

overlapping tiles. Figure 18 is an example of errors that can

very well be detected in the color overlay. We have also applied

a filament tracing software (‘NeuronTracer’ from Bitplane AG)

to stitched neuron images to compare correctly and incorrectly

traced filaments (Fig. 20).

Datasets that benefit from small correlation windows

The zebrafish dataset shown in Fig. 11 has a large extent in z-

direction of about 500 planes (respectively 500 µm). Inside the

overlapping regions, structures vary between homogeneous

gray (i.e. in the eye) to fine neuronal axons in the brain.

This along with the strong nonlinear gradient introduced

by bleaching, makes the use of small correlation windows

preferable. A smaller window is subject to only a portion of

the gradient of bleaching, so the normalized cross-correlation

is less affected by it, leading to good correlation results on this

dataset. The interest point detection was also rendered more

robust by avoiding low-contrast areas, i.e. where no staining

took place like the mouth/nasal area, eye pupil, etc.

Another example for the effectiveness of our approach

is shown in Fig. 12, where axonal trajectories, and fine

filament structures generate signal intensities only little over

the background noise. NCC of the whole overlapping region

would yield a low correlation coefficient due to the low

overall contrast. This stitching also shows that the proposed

computation of absolute tile positions is robust. Even though

not all displacement estimations where correctly determined

by the POC, a subset of the displacements was sufficient for

placing the tiles.

A more complicated example is introduced by the neuronal

cell in Fig. 13, where the cell and its fibers are highly

overexposed, whereas the background consists mainly of

noise. The image was done as a recording example for

structured light imaging (Apotome, Carl Zeiss MicroImaging).

The overexposed cell has a constant value of 255 and does not

contain structure, whereas the background is superimposed

by noise and not useful for correlation. Here, our proposed
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Fig. 11. Zebrafish embryo stained with TOTO3 to visualize all cell nuclei. Middle section of a confocal stack, gamma corrected (γ = 0.3). For quality

control each tile is colored differently. The homogeneous mix color in the overlapping regions indicates a good placement of the tiles.

Fig. 12. Biocytin filled bitufted interneuron in the primary somatosensory cortex of the rat, visualized by Alexa Fluor-488. (a) Color overlay indicates a

good matching of the long, fine axon in the center that is hard to see even for humans. (b) The fine axonal branches can be seen better in the maximum

intensity projection.

interest point detection based on the gradient magnitude

reaches maximizing positions at the exact border of the cell

where the value drops from overexposed to almost zero. This is

indeed the only area with sufficient structure to be correlated,

which was successfully done. Note that some tiles could not be

stitched because they contained only background. These can

be detected from their low correlation coefficient. They were

rejected by the software rather than placed in a suboptimal

way.

Results that make special use of the automatic pre-alignment

For almost none of our tested datasets, microscope stage

positions were available. After stitching, however, often

a regular grid structure emerged that showed proof that

the computed stitching positions were indeed correct. The

Arabidopsis trichome dataset from Fig. 14, however, was

recorded at arbitrary positions in 3D space with no regular

pattern, as can be seen from the estimated tile positions in

Fig. 14(a). Since most tiles overlap mainly in z-direction, it

is very difficult for the scientist to place the tiles manually.

Also, from the maximum intensity projection in Fig. 14(c) it

can be seen that in z-direction the top region (trichomes) is

only imaged in the green channel whereas the bottom region

(Arabidopsis leaf) is only imaged in the red channel. The phase-

only correlation was able to find the displacements between

tiles automatically, and by combining the information from

both channels it was successful on the whole leaf.

The very large dataset in Fig. 15, consisting of 68 tiles, was

also recorded at arbitrary positions with no stage positions

available. The tiles were recorded with 16 bit precision to

maintain the details in spite of the large intensity difference
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Fig. 13. Mouse hippocampal granule cell selected as an example for very difficult stitching conditions. Recorded with structured light technique (Zeiss

Apotome) and too high exposure times (necessary to visualize the fine intensity structures in the sample), which induced significant stripe artifacts to the

stacks. Nonetheless, the proposed algorithms were able to find a reasonable solution for the seven tiles (out of 12) that contain filaments.

Fig. 14. Arabidopsis trichome dataset. Image consists of 12 stacks with two channels, recorded at arbitrary 3D positions (a). This image could not be

stitched by using only one of the two channels, because some overlapping regions contain valuable information only in the red channel, others only in

the green channel (c).

between the upper region and the lower region. Therefore,

for the human reference stitching we needed to apply

gamma correction to achieve a more homogeneous brightness

distribution. This on the other hand is a disadvantage for the

visibility of the fine fibers in the lower region, so stitching

remained difficult for humans. The POC, however, benefits

from the additional information delivered by 16 bit data, and

provides very precise and distinct results on the dataset.

Bleaching correction and recombination of the mosaic image

The large dataset in Fig. 16 consists of two channels, of which

only the first exhibited strong bleaching. By visual inspection,

we estimated a bleaching width σ = 45 µm and a suppression

factor w = 0.8 for the intensity drop. Both parameters need to

be estimated manually, but can often be re-used from sample

to sample as long as the same staining and imaging parameters

are used. The mosaic image built from the bleaching-corrected

tiles shows significantly less discontinuities at the tile borders

(Fig. 16b).

If visible borders emerge in the recombined mosaic image

that are not caused by bleaching, blending of tiles is a good way

to improve the continuity. We implement a sigmoid blending

with variable width. All previously shown mosaic images did

not have these artifacts and have therefore been blended with

only a very narrow sigmoid (width approx. 4 pixels). The C.

elegans dataset in Fig. 17, however, had visible artifacts at the

tile borders from stray light in the microscope. Blending with a
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Fig. 15. Ex vivo image of an horizontal section of the cerebellar lobule V of a transgenic mouse expressing membrane-bound green fluorescent protein

(Thy-1 mGFP) in a subset of neuronal cells. Stitching sectioned in 20 + 43 stacks. Due to too small overlap of less than 16 pixels between neighboring

tiles in left third, it was not possible to stitch it to one complete mosaic image.

Fig. 16. Biocytin filled pyramidal neuron and parvalbumin specific antibody labeled interneurons in the primary somatosensory cortex of the rat. (a) The

stitched image using the raw data of the tiles shows significant dark stripes at the tile borders. (b) The proposed bleaching correction is able to significantly

reduce these discontinuities. A full correction can not be achieved by this technique, though.

sigmoid of 30 pixels width mostly eliminates the artifacts, and

thereby improves the overall continuity in the signal.

Lens distortions

As noted earlier, our software does not correct for lens

distortions as that would significantly increase the number

of degrees of freedom of the transformation. These distortions

should better be corrected by improving image acquisition. An

example for barrel distortions is shown in Fig. 18 where the

correction ring of a multi-immersion objective was not set to

the correct refractive index of the used immersion medium.

This lead to aberrations in the periphery of each image and

thus at the tile border.

Comparison with other stitching software

Among the stitching software solutions we have considered

in our comparison (‘State of the art’), only Metamorph from

Molecular Devices, AxioVision from Carl Zeiss MicroImaging,

and GlueMRC from the Academy of Sciences of the Czech

Republic are able to perform a 3D stitching.

We have been provided with many test datasets from

different imaging facilities, recorded in many different file

formats. AxioVision and Metamorph can read scanning stage

positions only from their own file formats (zvi and stk,

respectively), but not from any of the others. Since both

software toolsets essentially require scanning stage positions

for stitching, we could only test them on the datasets that

were recorded with the according software. This is an implicit
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Fig. 17. Tiling of a worm (Caenorhabditis elegans, first larval stage)

expressing a muscle-specific nuclear GFP at low level. Diameter of the

worm is about 15µm. The stitching consists of six tiles, which have rather

low signal to noise ratio.

Fig. 18. Example for very strong barrel distortions. At the left and right

sides the red tile should have been placed higher (visible red edge at

bottom of particle). At the center the red tile should have been placed

lower (visible red edge at top of particle). The proposed algorithm does

not correct for such distortions, because this would significantly reduce

speed and robustness. Recent high-end objectives are so well corrected

that such problems can be solved on the imaging side (in this case the

correction ring for the refractive index was misadjusted). The total tile

width is 1366 pixels, or 190 µm.

limitation of the software and can not be easily circumvented

on the users side.

In AxioVision’s zvi file format, we had only one rather ‘easy’

dataset available. This dataset contains dense structures and

Table 3. Benchmark for Stitching on 2.6 GHz Xeon (single core) with 32 GB of RAM.

Dataset Figure Final Size [voxel] Tiles × Channels Time

Cortex of the rat 16 5000 × 6300 × 128 20×2 2 min 33 s

Mouse, cereb. sec. 15 9300 × 4200 × 77 68 6 min 10 s

Single neuron cell 12 2800 × 2000 × 80 6 13 s

Zebrafish 11 970 × 970 × 480 4 30 s

does not need corrections in z-direction, so the pseudo 3D

approach of AxioVision performed well.

In Metamorph’s stk format, several datasets with different

degrees of difficulty were available. While Metamorph’s own

pseudo 3D approach performed well on the datasets with dense

structures and no z-offset, it had significant problems with the

more difficult datasets that contain only very sparse structures

and had axial mismatches. Since Metamorph performs a plane-

by-plane stitching of 3D stacks, good results in one plane do not

necessarily imply good results in other planes. We therefore

validate the results on z-direction projections and volumetric

rendering.

The maximum intensity projection (MIP) shown in Fig. 19

is a detailed view of a stitching consisting of 22 stacks.

While in several of the single planes the Metamorph stitching

appears seamless, in some planes discontinuities can be found.

As seen in the projection, artifacts are also introduced by

the dislocation of planes against each other. These artifacts

are most prominent not at the tiles borders but instead in the

center, leading to severe misjudgement of the tile content. The

highlighted region of Fig. 19 shows two examples of structures

that appear multiple times in the projection while being there

only once in the original tiles. The manifold structures can

be seen in the volume rendering as well (Fig. 20). When

applying filament tracing (NeuronTracer from Bitplane AG)

the additional fibers are detected as neuron fibers or, with

worse results, introduce discontinuities. This can make a

successful tracing more difficult.

The stitching with GlueMRC can generally be considered as

good. From the manually selected pair of features between the

currently added tile and the mosaic, it is able to fine-place the

added tile automatically and with high precision, as shown in

Fig. 21(a). Due to the high amount of time it takes for the user to

manually select corresponding features, we have stitched only

four of the originally 40 stacks with GlueMRC. Our XuvTools

stitching of the same four stacks provides a result of quality

similar to the stitching of GlueMRC, see Fig. 21(b). It was

achieved fully automatically and in a fraction of the time.

Benchmark

All results shown in this paper have been computed on a Linux

server in our lab. For our tests a single core of an 8-core Xeon

server running at 3 Ghz equipped with 32 GB of RAM was

used. The results should be equivalent to those on a state of

the art Core 2 Duo desktop computer with 16 GB of RAM. Note
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Fig. 19. Ex vivo image of the mossy fiber projection in the hippocampal CA3 region of a 3 month-old Thy-1 mGFP transgenic mouse. The maximum

intensity projection shows ambiguities in the Metamorph stitching that introduce the impression of more presynaptic terminals than available in the

original recording.

that while improvements are being implemented to be able to

stitch large datasets on low-memory machines, the algorithms

benefit more from a sufficient amount of RAM than from a fast

CPU.

Conclusions and outlook

The stitching quality and speed that was reached with

XuvTools is significantly higher than those of other available

tools. From our tests we conclude that a distinguishing

feature of our software is that it works fully automatically,

and does not require a priori information on the tile (stage)

positions.

The POC we use for the automatic pre-alignment works

robustly and (due to scaling) also very fast. With 16bit data as

seen in Fig. 15, it benefits from the additional information

that in contrast severely hinders humans when manually

pre-aligning tiles. Our proposed interest-point detection based

on the gradient magnitude successfully detects structures

that can be correlated even under difficult circumstances.

This is well demonstrated by the highly overexposed mouse

hippocampal granule cell dataset, yielding a sufficiently good

result (Fig. 13). The normalized cross-correlation (NCC) on

the proposed small correlation windows gives strong peak

results even with only fine fibers, and in the presence of

bleaching.

Concerning the high difficulty when stitching noisy

and very sparse neuronal datasets, we assume that every

additional degree of freedom in the transformation parameters

may cause a complete failure of the transformation parameter

estimation. Due to the intentional limitation of our approach

to the minimal set of necessary transformations, the demands

to the imaging hardware are a little bit higher than those

of other stitching approaches. However, for most biological

applications the important feature is robustness and precision

of the overall work flow. An investment into high-quality

objectives therefore appears highly recommended compared

to spending hours of man-power on manual stitching.

At the current state XuvTools work very smoothly and

enable a fast work flow on a state of the art computer (see

‘Benchmark’ section, in ‘Results’).

Still, there are some possibilities to further optimize the

XuvTools for productive use in the biomedical field. From the

algorithmic side, the estimation of the tile positions should

become less sensitive to spurious but high correlation peaks,

that appear in rare cases, when no valuable information

is available in the overlapping regions. In these cases, the

estimation of absolute tile positions using singular value

C© 2009 The Authors
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Fig. 20. Section of a 3D rendering of Fig. 19, with neuron tracing applied. (a) Erroneous duplicate tracings in the Metamorph stitching due to introduced

ambiguities are clearly visible. (b) Tracing in the XuvTools stitching.

decomposition (SVD) is inaccurate for all tiles, and not just for

the tile with the faulty correlation. An improved estimation

is currently being worked on that optimizes all placements

individually, thereby achieving a good overall positioning

even in case of errors with the NCC.

For a better user experience with the XuvTools, in addition,

we are currently working on the support of more file formats,

and the addition of an alternative memory management that

is optimized for lower memory usage at the cost of a slight

runtime penalty. Both these features are currently being

worked on.
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