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These lecture notes provide an overview of root systems, generalized associahe-
dra, and the combinatorics of clusters. Lectures 1-2 cover classical material: root
systems, finite reflection groups, and the Cartan-Killing classification. Lectures 3–4
provide an introduction to cluster algebras from a combinatorial perspective. Lec-
ture 5 is devoted to related topics in enumerative combinatorics.

There are essentially no proofs but an abundance of examples. We label un-
proven assertions as either “lemma” or “theorem” depending on whether they are
easy or difficult to prove. We encourage the reader to try proving the lemmas, or
at least get an idea of why they are true.

For additional information on root systems, reflection groups and Coxeter
groups, the reader is referred to [9, 25, 34]. For basic definitions related to convex
polytopes and lattice theory, see [58] and [31], respectively. Primary sources on
generalized associahedra and cluster combinatorics are [13, 19, 21]. Introductory
surveys on cluster algebras were given in [22, 56, 57].

Note added in press (February 2007): Since these lecture notes were written,
there has been much progress in the general area of cluster algebras and Catalan
combinatorics of Coxeter groups and root systems. We have not attempted to
update the text to reflect these most recent advances. Instead, we refer the reader
to the online Cluster Algebras Portal, maintained by the first author.
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LECTURE 1
Reflections and Roots

1.1. The Pentagon Recurrence

Consider a sequence f1, f2, f3, . . . defined recursively by f1 = x, f2 = y, and

(1) fn+1 =
fn + 1
fn−1

.

Thus, the first five entries are

(2) x, y,
y + 1

x
,

x + y + 1
xy

,
x + 1

y
.

Unexpectedly, the sixth and seventh entries are x and y, respectively, so the se-
quence is periodic with period five! We will call (1) the pentagon recurrence.1

This sequence has another important property. A priori, we can only expect its
terms to be rational functions of x and y. In fact, each fi is a Laurent polynomial
(actually, with nonnegative integer coefficients). This is an instance of what is
called the Laurent phenomenon.

It will be helpful to represent this recurrence as the evolution of a “moving
window” consisting of two consecutive terms fi and fi+1:[

f1

f2

]
τ1−→
[
f3

f2

]
τ2−→
[
f3

f4

]
τ1−→
[
f5

f4

]
τ2−→
[
f5

f6

]
−→ · · · ,

where the maps τ1 and τ2 are defined by

(3) τ1 :
[
f
g

]
�−→

[ g+1
f

g

]
and τ2 :

[
f
g

]
�−→

[
f

f+1
g

]
.

Both τ1 and τ2 are involutions: τ2
1 = τ2

2 = 1, where 1 denotes the identity map. The
5-periodicity of the recurrence (1) translates into the identity (τ2τ1)5 = 1. That is,
the group generated by τ1 and τ2 is a dihedral group with 10 elements.

Let us now consider a similar but simpler pair of maps. Throw away the +1’s
that occur in the definitions of τ1 and τ2, and take logarithms. We then obtain a
pair of linear maps

s1 :
[
x
y

]
�−→

[
y − x

y

]
and s2 :

[
x
y

]
�−→

[
x

x− y

]
.

A (linear) hyperplane in a vector space V is a linear subspace of codimension 1.
A (linear) reflection is a map that fixes all the points in some linear hyperplane,
and has an eigenvalue of −1. The maps s1 and s2 are linear reflections satisfying
(s2s1)3 = 1. Thus, the group 〈s1, s2〉 is a dihedral group with 6 elements.

We are led to wonder if the dihedral behavior of 〈τ1, τ2〉 is related to, or even
explained by the dihedral behavior of 〈s1, s2〉. To test this unlikely-sounding hy-
pothesis, let us try to find similar examples. What other pairs (s, s′) of linear

1The discovery of this recurrence and its 5-periodicity are sometimes attributed to R. C. Lyness
(1942); see, e.g., [15]. It was probably already known to N. H. Abel. This recurrence is closely
related to (and easily deduced from) the famous “pentagonal identity” for the dilogarithm function,
first obtained by W. Spence (1809) and rediscovered by Abel (1830) and C. H. Hill (1830). See,
e.g., [37].
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reflections generate finite dihedral groups? To keep things simple, we set s = s1

and confine the choice of s′ to maps of the form

s′ :
[
x
y

]
�−→

[
x

L(x, y)

]
,

where L is a linear function. Keeping in mind that s1 and s2 arose as logarithms,
we require that L have integer coefficients.

After some work, one determines that besides x − y, the functions 2x− y and
3x− y are the only good choices for L. More specifically, define

s3 :
[
x
y

]
�−→

[
x

2x− y

]
and s4 :

[
x
y

]
�−→

[
x

3x− y

]
.

Then (s3s1)4 = 1 and (s4s1)6 = 1. Thus, 〈s1, s3〉 and 〈s1, s4〉 are dihedral groups
with 8 and 12 elements, respectively.

By analogy with (3), we next define

τ3 :
[
f
g

]
�−→

[
f

f2+1
g

]
and τ4 :

[
f
g

]
�−→

[
f

f3+1
g

]
.

Calculations show that (τ3τ1)6 = 1, and the group 〈τ1, τ3〉 is dihedral with 12
elements. We can think of τ1 and τ3 as defining a “moving window” for the sequence

(4) x, y,
y + 1

x
,

x2 + (y + 1)2

x2y
,

x2 + y + 1
xy

,
x2 + 1

y
, x, y, . . .

Notice that the Laurent phenomenon holds: these rational functions are Laurent
polynomials—again, with nonnegative integer coefficients.

Likewise, (τ4τ1)8 = 1, the group 〈τ1, τ4〉 is dihedral with 16 elements, and τ1

and τ4 define an 8-periodic sequence of Laurent polynomials.
In the first two lectures, we will develop the basic theory of finite reflection

groups that will include their complete classification. This theory will later help
explain the periodicity and Laurentness of the sequences discussed above, and pro-
vide appropriate algebraic and combinatorial tools for the study of other similar
recurrences.

1.2. Reflection Groups

Our first goal will be to understand the finite groups generated by linear reflections
in a vector space V . It turns out that for such a group, it is always possible to define
a Euclidean structure on V so that all of the reflections in the group are ordinary
orthogonal reflections. The study of groups generated by orthogonal reflections is
a classical subject, which goes back to the classification of Platonic solids by the
ancient Greeks.

Let V be a Euclidean space. In what follows, all reflecting hyperplanes pass
through the origin, and all reflections are orthogonal. A finite reflection group is a
finite group generated by some reflections in V . In other words, we choose a collec-
tion of hyperplanes such that the group of orthogonal transformations generated by
the corresponding reflections is finite. Infinite reflection groups are also interesting,
but in these lectures, “reflection group” will always mean a finite one.

The set of reflections in a reflection group W is typically larger than a minimal
set of reflections generating W . This is illustrated in Figure 1.1, where W is the
group of symmetries of a regular pentagon. This 10-element group is generated by
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two reflections s and t whose reflecting lines make an angle of π/5. It consists of 5
reflections, 4 rotations, and the identity element. In Figure 1.1, each of the 5 lines
is labeled by the corresponding reflection.

ststs = tstst

tst

ts

sts 1
ts

tsst

tststs

tstsstst
ststs

�
tstst

Figure 1.1. The reflection group I2(5).

Lemma 1.1. If t is the reflection fixing a hyperplane H and w an orthogonal
transformation, then wtw−1 is the reflection fixing the hyperplane wH.

Lemma 1.2. Let W be a finite group generated by a finite set T of reflections.
Then the set of all reflections in W is

{
wtw−1 : w ∈W, t ∈ T

}
.

The set H of all reflecting hyperplanes of a reflection group W is called a
Coxeter arrangement. In light of Lemmas 1.1 and 1.2, one can give an alternate
definition of a Coxeter arrangement: A Coxeter arrangement is a collectionH of hy-
perplanes which is closed under reflections in the hyperplanes. Like any hyperplane
arrangement in V , a Coxeter arrangement cuts V into connected components called
regions. That is, the regions are the connected components of the complement to
the union of all hyperplanes in H.

The regions are in one-to-one correspondence with the elements of W , as fol-
lows. Once and for all, fix an arbitrary region R1 to represent the identity element.

Lemma 1.3. The map w �→ Rw
def= w(R1) is a bijection between a reflection

group W and the set of regions of the corresponding Coxeter arrangement.

To illustrate, each of the 10 regions in Figure 1.1 is labeled by the corresponding
element of the group.

The choice of a region representing the identity element leads to a distinguished
choice of a minimal set of generating reflections. The facet hyperplanes of R1 are
the hyperplanes in H whose intersection with the closure of R1 has dimension n−1.

Lemma 1.4. The reflections in the facet hyperplanes of R1 generate W . This
generating set is minimal by inclusion.
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1.3. Symmetries of Regular Polytopes

A regular polytope in a Euclidean space is a convex polytope whose symmetry group
(i.e., the group of isometries of the space that leave the polytope invariant) acts
transitively on complete flags of faces, i.e., on nested collections of the form

vertex ⊂ edge ⊂ 2-dim. face ⊂ · · ·
Theorem 1.5. The symmetry group of any regular polytope is a reflection group.

The converse is false—see Remark 1.12.
We illustrate Theorem 1.5 with several concrete examples.

Example 1.6. Consider a regular m-gon on a Euclidean plane, centered at the
origin. The symmetry group of the m-gon is denoted by I2(m). This group contains
(and is generated by) m reflections, which correspond to the m lines of reflective
symmetry of the m-gon.

The group I2(m) is a dihedral group with 2m elements. It is generated by two
reflections s and t satisfying (st)m = 1. To define s and t, we use the construction
of Lemma 1.4. Pick a side of the polygon, and consider two reflecting lines: one
perpendicular to the side and another passing through one of its endpoints. The
case m = 5 is shown in Figure 1.1.

Example 1.7. Take a regular tetrahedron in 3-space, with the vertices labeled 1,
2, 3, and 4. Its symmetry group is obviously isomorphic to the symmetric group S4,
which consists of the permutations of the set {1, 2, 3, 4}. For each edge of the tetra-
hedron, choose a plane which is perpendicular to the edge and contains the other
two vertices. Reflections in these six hyperplanes generate the symmetry group.

In general, the symmetry group of a regular simplex can be described as follows.
Let (e1, . . . , en+1) be the standard basis in Rn+1. The standard n-dimensional
simplex (or n-simplex) is the convex hull of the endpoints of the vectors e1, . . . , en+1.
Thus the standard 1-simplex is a line segment in R2, the standard 2-simplex is an
equilateral triangle in R3, and the standard 3-simplex is the regular tetrahedron
described above, sitting in R4. The symmetry group An of the standard n-simplex
is canonically isomorphic to Sn+1, the symmetric group of permutations of the set
[n + 1] def= {1, 2, . . . , n + 1}.

For each edge [ei, ej ] of the standard simplex, there is a hyperplane xi−xj = 0
perpendicular to the edge and containing all the other vertices. Reflection through
this hyperplane interchanges the endpoints of the edge and fixes the rest of the
vertices. These

(
n+1

2

)
reflections generate An.

To construct a minimal generating set of reflections, we again use Lemma 1.4.
Let R1 be the connected component of the complement to the

(
n+1

2

)
reflecting

hyperplanes defined by

(5) R1 = {x1 < x2 < · · · < xn+1}.
The facet hyperplanes of R1 are given by the equations

xi − xi+1 = 0, for i = 1, . . . , n.

Then Lemma 1.4 reduces to the well-known fact that the symmetric group Sn+1

is generated by the adjacent transpositions s1, . . . , sn. (Here each si exchanges i
and i + 1, keeping everything else in its place.)

Figure 1.2 illustrates the special case n=2, the symmetry group of the standard
2-simplex (shaded). The plane of the page represents the plane x + y + z = 1 in R3.
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(0, 0, 1)

(1, 0, 0)(0, 1, 0)

x = y

x = z
y = z

Figure 1.2. The reflection group A2.

Example 1.8. The n-crosspolytope is the convex hull of (the endpoints of) the
vectors ±e1,±e2, . . . ,±en in Rn. For example, the 3-crosspolytope is the regular
octahedron. The symmetry group of this polytope is the hyperoctahedral group Bn.
As in the previous examples, it is generated by the reflections it contains.

The special case n = 3 (the symmetry group B3 of a regular octahedron) is
shown in Figure 1.3. The dotted lines show the intersections of reflecting hyper-
planes with the front surface of the octahedron. Each edge of the octahedron is
also contained in a reflecting plane.

Figure 1.3. The reflection group B3
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There are two types of reflections in the symmetry group of the crosspolytope.
One type of reflection transposes a vertex with its negative and fixes all other
vertices. Also, for each pair i �= j, there is a reflection which transposes ei and ej,
transposes −ei and −ej, and fixes all other vertices.

To construct a minimal set of reflections generating Bn, take the minimal gener-
ating set for An−1 given in Example 1.7 and adjoin the reflection that interchanges
e1 and −e1.

The group Bn is also the symmetry group of the n-dimensional cube.

Example 1.9. The symmetry group of a regular dodecahedron (or a regular icosa-
hedron) is the reflection group H3. Figure 1.4 shows the dodecahedron and a
minimal set of three reflections generating its symmetry group. The dotted lines
show the intersections of the corresponding three hyperplanes with the front surface
of the dodecahedron.

Figure 1.4. The reflection group H3

Example 1.10. In 4-space, there are six types of regular polytopes. The obvious
three are the 4-simplex, the 4-cube, and the 4-crosspolytope. There are two regular
polytopes whose symmetry group is the reflection group called H4. One of these,
the 120-cell, has 600 vertices and 120 dodecahedral faces; the other, the 600-cell,
has 120 vertices and 600 tetrahedral faces. The remaining regular 4-dimensional
polytope is the 24-cell, with 24 vertices and 24 octahedral faces. Its symmetry
group is a reflection group denoted by F4.

Not every reflection group is the symmetry group of a regular polytope. A
counterexample is constructed as follows.

Example 1.11. Let n ≥ 3. Returning to the crosspolytope, ignore the reflections
which transpose an opposite pair of vertices. The remaining reflections generate a
reflection group called Dn, which is a proper subgroup of Bn. The reflections of
D3 are represented by the dotted lines in Figure 1.3. We note that the Coxeter
arrangements of types A3 and D3 are related by an orthogonal transformation, so
the reflection groups A3 and D3 are isomorphic to each other.

Remark 1.12. It can be shown that, for n ≥ 4, the group Dn is not a symmetry
group of a regular polytope. See Section 2.3 for further details.
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1.4. Root Systems

Root systems are configurations of vectors obtained by replacing each reflecting
hyperplane of a reflection group by a pair of opposite normal vectors; the resulting
configuration should be invariant under the action of the group. Here is a formal
definition. A finite root system is a finite non-empty collection Φ of nonzero vectors
in V called roots with the following properties:

(i) Each one-dimensional subspace of V either contains no roots, or contains
two roots ±α.

(ii) For each α ∈ Φ, the reflection σα permutes Φ.
The following lemma shows that the study of root systems is essentially equivalent
to the study of reflection groups.

Lemma 1.13. For a finite root system Φ, the group generated by the reflections
{σα : α ∈ Φ} is finite. The corresponding reflecting hyperplanes form a Coxeter
arrangement. Conversely, for any reflection group W , there is a root system Φ
such that the orthogonal reflections {σα}α∈Φ are precisely the reflections in W .

In Section 1.2, we fixed a region R1 of the associated Coxeter arrangement H.
The simple roots in Φ are the roots normal to the facet hyperplanes of R1 and
pointing into the half-space containing R1. The rank of Φ is the cardinality n of
the set of simple roots Π. Since W acts transitively on the regions of H, the rank
of Φ does not depend on the choice of Π, and is equal to the dimension of the linear
span of Φ. It will be convenient to fix an indexing set I so that Π = {αi : i ∈ I}.
The standard choice is I = [n] = {1, . . . , n}.

For any α ∈ Φ, the coefficients ci in the expansion α =
∑

i∈I ciαi are called the
simple root coordinates of α. The set Φ+ of positive roots consists of all roots whose
simple root coordinates are all non-negative. The negative roots Φ− are those with
non-positive simple root coordinates.

Lemma 1.14. Φ is the disjoint union of Φ+ and Φ−.

In these lectures, we focus on the study of the important class of finite crystal-
lographic root systems. These are the finite non-empty collections of vectors that,
in addition to the axioms (i)–(ii) above, satisfy the “crystallographic condition”

(iii) For any α, β∈Φ, we have σα(β) = β−aαβα with aαβ∈Z. (See Figure 1.5.)
Equivalently, the simple root coordinates of any root are integers.

β

α

σα(β)

aαβα

Figure 1.5. Reflecting β in the hyperplane perpendicular to α.

For the rest of these lectures, a “root system” will always be presumed finite
and crystallographic.



74 FOMIN AND READING, ROOTS AND ASSOCIAHEDRA

Example 1.15. A root system of rank 1 is called A1; it consists of a pair of
vectors ±α. There are four non-isomorphic (finite crystallographic) root systems
of rank 2, called A1 ×A1, A2, B2 and G2; see Figure 1.6.

A1 ×A1

σα1 =
[ −1 0

0 1

]

σα2 =
[

1 0
0 −1

] α1

α2

A2

σα1 =
[ −1 1

0 1

]

σα2 =
[

1 0
1 −1

] α1

α2 α1 + α2

B2

σα1 =
[ −1 2

0 1

]

σα2 =
[

1 0
1 −1

] α1

α2 2α1 + α2α1 + α2

G2

σα1 =
[ −1 3

0 1

]

σα2 =
[

1 0
1 −1

] α1

3α1 + α2α1 + α2 2α1 + α2

3α1 + 2α2

α2

Figure 1.6. The finite crystallographic root systems of rank 2
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For the root systems A2, B2 and G2, the reflections σα1 and σα2 have appeared
earlier in Section 1.1. (The matrices of these reflections in the basis (α1, α2) of sim-
ple roots are shown in Figure 1.6.) In these three cases, the pair (σα1 , σα2 ) coincides
with (s2, s1), (s3, s1), and (s4, s1), respectively, in the notation of Section 1.1.

1.5. Root Systems of Types A, B, C, and D

Here we present four classical families of root systems, traditionally denoted by An,
Bn, Cn and Dn. The corresponding reflection groups have types An, Bn, Bn and Dn

(cf. Examples 1.7, 1.8, and 1.11). In each case, n is the rank of a root system.
We realize each root system inside a Euclidean space with a fixed orthonormal

basis (e1, e2, . . . ), and describe particular choices of the sets of simple and positive
roots. There is no “canonical” way to make these choices. Our realizations of root
systems coincide with those in [9, 34], but our choices of simple/positive roots
(which are motivated by notational convenience alone) are different.

The root system An

The root system An can be realized as the set of vectors ei− ej in Rn+1 with i �= j.

Let R1 be given by (5). Then the n simple roots are αi
def= ei+1−ei, for i = 1, . . . , n,

and the positive roots are ei − ej , for 1 ≤ j < i ≤ n + 1.
Figure 1.7 shows a planar projection of the root system A3. The positive roots

are labeled by their simple root coordinates. The solid lines are in the plane of the
page. Thick dotted lines are above the plane, while thin dotted lines are below it.

α1

α2

α3

α1 + α2 + α3

α1 + α2

α2 + α3

Figure 1.7. The root system A3

The root systems Bn and Cn

The root system Bn can be realized as the set of vectors in Rn of the form ±ei or
±ei ± ej with i �= j. Choose R1 = {0 < x1 < x2 < · · · < xn}. Then the vectors
α0 = e1 and αi = ei+1 − ei for i ∈ [n− 1] form a set of simple roots. The positive
roots are ei for i ∈ [n] and ei ± ej for 1 ≤ j < i ≤ n. See Figure 1.8.



76 FOMIN AND READING, ROOTS AND ASSOCIAHEDRA

α1

α2

α3

Figure 1.8. The root system B3. The endpoints of the 9 positive roots are
shown as black circles on the cube’s front. The negative roots are not shown.

The root system Cn can be realized as the set of vectors in Rn of the form ±2ei

or ±ei ± ej. The vectors α0 = 2e1 and αi = ei+1 − ei form a set of simple roots.
The positive roots are 2ei and ei ± ej . See Figure 1.9.

α1

α2

α3

Figure 1.9. The root system C3. The endpoints of the 9 positive roots are
shown on the front of the octahedron. The negative roots are not shown.

The root system Cn is a rescaling of Bn, so the corresponding reflection groups
W coincide. In contrast to the type An, the action of W on the roots of Bn or Cn is
not transitive: there are two orbits, corresponding to two different lengths of roots.

The root system Dn

The root system Dn can be realized as the vectors ±ei± ej with i �= j. One choice
of simple roots is α0 = e2 + e1 and αi = ei+1 − ei, giving the positive roots ei ± ej

for 1 ≤ j < i ≤ n. This comes from setting R1 = {−x2 < x1 < x2 < · · · < xn}.



LECTURE 2
Dynkin Diagrams and Coxeter Groups

2.1. Finite Type Classification

The most fundamental result in the theory of (finite crystallographic) root systems
is their complete classification, obtained by W. Killing and E. Cartan in late nine-
teenth – early twentieth century. (See the historical notes in [9].) To present this
classification, we will need a few preliminaries.

First, we will need the notion of isomorphism. The ambient space QR = QR(Φ)
of a root system Φ is the real span of Φ. It inherits a Euclidean structure from V .
Root systems Φ and Φ′ are isomorphic if there is an isometry map QR(Φ)→ QR(Φ′)
of their ambient spaces that sends Φ to some dilation cΦ′ of Φ′.

The Cartan matrix of a root system Φ is the integer matrix [aij ]i,j∈I , where aij

is such that σαi(αj) = αj − aijαi, as in part (iii) of the definition of a root system.
(This convention agrees with [21, 35] but is “transposed” to the one in [9, 34].)

Lemma 2.1. Root systems Φ and Φ′ are isomorphic if and only if they have the
same Cartan matrix, up to simultaneous rearrangement of rows and columns.

Example 2.2. The Cartan matrices for the root systems of rank two are:

A1 ×A1 :
[

2 0
0 2

]
A2 :

[
2 −1
−1 2

]

B2 :
[

2 −2
−1 2

]
G2 :

[
2 −3
−1 2

]
Example 2.3. The Cartan matrices for the root systems of type A4, B4, C4,
and D4 are, respectively:

A4 :

⎡
⎢⎢⎣

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦ B4 :

⎡
⎢⎢⎣

2 −2 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦

C4 :

⎡
⎢⎢⎣

2 −1 0 0
−2 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦ D4 :

⎡
⎢⎢⎣

2 0 −1 0
0 2 −1 0
−1 −1 2 −1

0 0 −1 2

⎤
⎥⎥⎦

77
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The Cartan matrices of (finite crystallographic) root systems are sometimes
called Cartan matrices of finite type. This class of matrices is completely charac-
terized by several elementary properties.

Theorem 2.4. An integer n× n matrix [aij ] is a Cartan matrix of a root system
if and only if

(i) aii = 2 for every i;
(ii) aij ≤ 0 for any i �= j, with aij = 0 if and only if aji = 0;
(iii) there exists a diagonal matrix D with positive diagonal entries such that

DAD−1 is symmetric and positive definite.

Remark 2.5. Condition (iii) can be replaced by

(iii′) there exists a diagonal matrix D′ with positive integer diagonal entries
such that D′A is symmetric and positive definite.

Example 2.6. For the root systems A1 × A1 and A2, the 2 × 2 identity matrix
serves as D. For B2 and G2, take D =

[
1 0
0
√

2

]
and D =

[
1 0
0
√

3

]
, respectively.

The characterization in Theorem 2.4 can be used to completely classify the
Cartan matrices of finite type, or the corresponding root systems. It turns out that
each of those is built from blocks taken from a certain relatively short list. Let us
be more precise.

A root system Φ is called reducible if Φ is a disjoint union of root systems Φ1

and Φ2 such that every β1 ∈ Φ1 is normal to every β2 ∈ Φ2. If such a decomposition
does not exist, Φ is called irreducible. The parallel definition for Cartan matrices
is that a Cartan matrix of finite type is indecomposable if its rows and columns
cannot be simultaneously rearranged to bring the matrix into block-diagonal form
with more than one block.

The Cartan matrices of finite type can be encoded by their Dynkin diagrams.
The vertices of a Dynkin diagram are labeled by the elements of the indexing set I;
thus they are in bijection with the simple roots. Each pair of vertices i and j is
then connected as shown below (with the vertex i on the left):

if aij = aji = 0

if aij = aji = −1

if aij = −1 and aji = −2

if aij = −1 and aji = −3

(It follows from Theorem 2.4 that these are the only possible pairs of values for aij

and aji. Cf. Example 2.2.)

Lemma 2.7. A Cartan matrix of finite type (resp., a root system) is indecomposable
(resp., irreducible) if and only if its Dynkin diagram is connected.

Theorem 2.8 (Cartan-Killing classification of irreducible root systems and Cartan
matrices of finite type). The complete list of Dynkin diagrams of irreducible root
systems is presented in Figure 2.1.



LECTURE 2. DYNKIN DIAGRAMS AND COXETER GROUPS 79

An (n ≥ 1) � � � � � � � �

Bn (n ≥ 2) � � � � � � � �

Cn (n ≥ 3) � � � � � � � �

Dn (n ≥ 4)
���

���� � � � � � �
�
�

E6

�
� � � � �

E7

�
� � � � � �

E8

�
� � � � � � �

F4
� � � �

G2
� �

Figure 2.1. Dynkin diagrams of finite irreducible root systems.

Root systems are just one example among a large number of mathematical
objects of “finite type” which are classified by (some class of) Dynkin diagrams. The
appearance of the ubiquitous Dynkin diagrams in a variety of seemingly unrelated
classification problems has fascinated several generations of mathematicians, and
helped establish nontrivial connections between different areas of mathematics. See
Section 2.3 and references therein.

2.2. Coxeter Groups

Let Φ be a (finite crystallographic) root system and α �= β a pair of roots in Φ.
The angle between the corresponding reflecting hyperplanes is a rational multiple
of π with denominator 2, 3, 4 or 6. Thus the rotation σασβ has order 2, 3, 4, or 6
as an element of the associated reflection group W . The insight that the order of
a product of reflections is directly related to the angle between the corresponding
hyperplanes leads to the definition of a Coxeter group.
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Definition 2.9. A Coxeter system (W, S) is a pair consisting of a group W together
with a finite subset S ⊂W satisfying the following conditions:

(i) each s ∈ S is an involution: s2 = 1;
(ii) some pairs {s, t} ⊂ S satisfy relations of the form (st)mst =1 with mst ≥ 2;
(iii) the relations in (i)–(ii) form a presentation of the group W .

In other words, S generates W , and any identity in W is a formal consequence of
(i)–(ii) and the axioms of a group.

A group W is called a Coxeter group if it has a presentation of the above form.

The following theorem demonstrates that the notion of a Coxeter group indeed
captures the geometric essence of reflection groups.

Theorem 2.10. Any finite Coxeter group is isomorphic to a reflection group.

Conversely, a reflection group associated with a (finite crystallographic) root
system Φ is a Coxeter group, in the following sense. Let Π be the set of simple roots
in Φ. For each simple root αi ∈ Π, the associated simple reflection is si

def= σαi .

Theorem 2.11. Let W be the group generated by the reflections {σβ : β ∈ Φ}. Let

S = {si}i∈I = {σα : α ∈ Π}

be the set of simple reflections. Then (W, S) is a Coxeter system.

Furthermore, W is a crystallographic Coxeter group, where the adjective “crys-
tallographic” refers to restricting the integers mst to the set {2, 3, 4, 6}.

2.3. Other “Finite Type” Classifications

The classification of root systems is similar or identical to several other classifica-
tions of objects of “finite type,” briefly reviewed below.

Non-crystallographic root systems

Lifting the crystallographic restriction does not allow very many additional root
systems. The only non-crystallographic irreducible finite root systems are those of
types H3, H4 and I2(m) for m = 5 or m ≥ 7. See [34].

Coxeter groups and reflection groups

By Theorems 2.10 and 2.11, the classification of finite Coxeter groups is parallel to
the classification of reflection groups and is essentially the same as the classification
of root systems. The difference is that the root systems Bn and Cn correspond to
the same Coxeter group Bn. A Coxeter group is encoded by its Coxeter diagram,
a graph whose vertex set is S, with an edge s—t whenever mst > 2. If mst > 3,
the edge is labeled by mst. Figure 2.2 shows the Coxeter diagrams of the finite
irreducible Coxeter systems, including the non-crystallographic Coxeter groups H3,
H4 and I2(m). The group G2 appears as I2(6). See [34] for more details.
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An (n ≥ 1) � � � � � � � �

Bn (n ≥ 2) � � � � � � � �4

Dn (n ≥ 4)
���

���� � � � � � �
�
�

E6

�
� � � � �

E7

�
� � � � � �

E8

�
� � � � � � �

F4
� � � �4

H3
� � �5

H4
� � � �5

I2(m) (m ≥ 5) � �m

Figure 2.2. Coxeter diagrams of finite irreducible Coxeter systems

Regular polytopes

By Theorem 1.5, the symmetry group of a regular polytope is a reflection group. In
fact, it is a Coxeter group whose Coxeter diagram is linear : the underlying graph
is a path with no branching points. This narrows down the possibilities, leading to
the conclusion that there are no other regular polytopes besides the ones described
in Section 1.2. In particular, there are no “exceptional” regular polytopes beyond
dimension 4: only simplices, cubes, and crosspolytopes. See [14].

Lie algebras

The original motivation for the Cartan-Killing classification of root systems came
from Lie theory. Complex finite-dimensional simple Lie algebras correspond nat-
urally, and one-to-one, to finite irreducible crystallographic root systems. There
exist innumerable expositions of this classical subject; see, e.g., [25].
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Quivers of finite type

A quiver is a directed graph; its representation assigns a complex vector space to
each vertex, and a linear map to each directed edge. A quiver is of finite type if it
has only a finite number of indecomposable representations (up to isomorphism); a
representation is indecomposable if it cannot be obtained as a nontrivial direct sum.
By Gabriel’s Theorem, a quiver is of finite type if and only if its underlying graph
is a Dynkin diagram of type A, D or E. See [45] and references therein.

Et cetera

And the list goes on: simple singularities, finite subgroups of SU(2), symmetric
matrices with nonnegative integer entries and eigenvalues between −2 and 2, etc.
For more, see [28, 33, 59]. In Section 4.2, we will present yet another classification
that is parallel to Cartan-Killing: the classification of the cluster algebras of finite
type.

2.4. Reduced Words and Permutohedra

Each element w ∈ W can be written as a product of elements of S:

w = si1 · · · si�
.

A shortest factorization of this form (or the corresponding sequence of subscripts
(i1, . . . , i�)) is called a reduced word for w; the number of factors � is called the
length of w.

Any finite Coxeter group has a unique element w◦ of maximal length. In the
symmetric group Sn+1 = An, this is the permutation w◦ that reverses the order of
the elements of the set {1, . . . , n + 1}.
Example 2.12. Let W = S4 be the Coxeter group of type A3. The standard
choice of simple reflections yields S = {s1, s2, s3}, where s1, s2 and s3 are the
transpositions which interchange 1 with 2, 2 with 3, and 3 with 4, respectively. (Cf.
Example 1.7.)

The word s1s2s1s3s2s3 is a non-reduced word for the permutation that inter-
changes 1 with 3 and 2 with 4. This permutation has two reduced words s2s1s3s2

and s2s3s1s2.
An example of a reduced word for w◦ is s1s2s1s3s2s1. There are 16 such reduced

words altogether. (Cf. Example 2.14 and Theorem 2.15.)

Recall from Section 1.2 that we label the regions Rw of the Coxeter arrangement
by the elements of the reflection group W , so that Rw is the image of R1 under the
action of w. More generally, Ruv = u(Rv).

Lemma 2.13. In the Coxeter arrangement associated with a reflection group W ,
regions Ru and Rv are adjacent (that is, share a codimension 1 face) if and only if
u−1v is a simple reflection.

Thus, moving to an adjacent region is encoded by multiplying on the right by a
simple reflection; cf. Figure 1.1. (Warning: this simple reflection is generally not the
same as the reflection through the hyperplane separating the two adjacent regions.)
Consequently, reduced words for an element w ∈ W correspond to equivalence
classes of paths from R1 to Rw in the ambient space of the Coxeter arrangement.
More precisely, we consider the paths that cross hyperplanes of the arrangement
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one at a time, and cross each hyperplane at most once; two paths are equivalent if
they cross the same hyperplanes in the same order.

In order to make the correspondence between paths and reduced words more
explicit, one can restrict the paths to the edges of the W -permutohedron, a convex
polytope that we will now define. Fix a point x in the interior of R1. The W -
permutohedron is the convex hull of the orbit of x under the action of W . The name
“permutohedron” comes from the fact that the vertices of an An-permutohedron
are obtained by permuting the coordinates of a generic point in Rn+1.

Example 2.14. The A2, B2 and G2 permutohedra are respectively a hexagon, an
octagon and a dodecagon; under the right choices of x, these polygons are regular.
Figures 2.3 and 2.4 show the permutohedra of types A3 and B3. Each of these
realizations derives from a choice of x ∈ R1 which makes the permutohedron an
Archimedean solid, so that in particular its facets are all regular polygons. The
non-crystallographic H3-permutohedron is also an Archimedean solid1.

Figure 2.3. The permutohedron of type A3

In both pictures, the bottom vertex can be associated with the identity ele-
ment 1∈W , so that the top vertex is w◦. A reduced word for w corresponds to a
path along edges from 1 to w which moves up in a monotone fashion. There are 16
such paths from 1 to w◦ in the A3-permutohedron; cf. Example 2.12.

The following beautiful formula is due to R. Stanley [49].

Theorem 2.15. The number of reduced words for w◦ in the reflection group An is(
n+1

2

)
!

1n3n−15n−2 · · · (2n− 1)1
.

1An Archimedean solid is a non-regular polytope whose all facets are regular polygons, and whose
symmetry group acts transitively on vertices. In dimension 3, there are 13 Archimedean solids.
The permutohedra of types A3, B3, and H3 are also known as the truncated octahedron, great
rhombicuboctahedron, and great rhombicosidodecahedron, respectively. See, e.g., [55].
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Figure 2.4. The permutohedron of type B3

2.5. Coxeter Element and Coxeter Number

The underlying graph of the Coxeter diagram for a finite Coxeter group has no
cycles. Hence it is bipartite, i.e., we can write a disjoint union I = I+ ∪ I− such
that each of the sets I+ and I− is totally disconnected in the Coxeter diagram. An
example is shown in Figure 2.5, where the elements of I+ and I− are marked by +
and −, respectively.

�
� � � � � � �+

−

− + − + − +

Figure 2.5. Bi-partition of the nodes of the Coxeter diagram of type E8

The simple reflections associated with I+ (resp., I−) commute pairwise. Con-
sequently, the following is well-defined:

c =

(∏
i∈I+

si

)(∏
i∈I−

si

)
.

The element c ∈W is called the Coxeter element2.

Example 2.16. In type An, let I− (resp., I+) consist of the odd (resp., even)
numbers in I = [n]. Then for example in A5 = S6, we have c = s2s4s1s3s5.

Thinking of W as a reflection group, the Coxeter element c is an interesting
orthogonal transformation. One important feature of c is that it fixes a certain
two-dimensional plane L (as a set, not pointwise). The action of c on L can be
analyzed to determine the order of c as an element of W . This order is called the
Coxeter number of W , and is denoted by h.

2 More broadly, one often calls the product of the elements in S (in any order) a Coxeter element,
but for our present purposes the definition above will do.
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Example 2.17. Figure 2.6 shows the Coxeter arrangement of type A3 and the
plane L fixed by the Coxeter element c = s2s1s3 (dotted). The great circles rep-
resent the intersections of the six reflecting hyperplanes with a unit hemisphere.
The sphere is opaque, so only half of each circle is visible, and appears either as a
half of an ellipse or as a straight line segment. (The “equator” does not represent
a hyperplane in the arrangement.) The restriction of c onto L has order 4, so the
Coxeter number for A3 is h = 4.

Example 2.18. Figure 2.7 is a similar picture for B3, illustrating that the Coxeter
number for B3 is h = 6. In this picture, the equator does represent a hyperplane
in the arrangement.

s2

s3s1

Figure 2.6. The Coxeter arrangement A3 and the plane fixed by the Coxeter element

s2

s1

s3

Figure 2.7. The Coxeter arrangement B3 and the plane fixed by the Coxeter element
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The action of c on L also leads to a determination of its eigenvalues, which all
have the form e2miπ/h, where m is a positive integer less than h. The n values of
m which arise in this way are called the exponents of W . We denote the exponents
by e1, . . . , en. They pop up everywhere in the combinatorics of root systems and
Coxeter groups. For instance, the order (i.e., cardinality) of W is expressed in terms
of the exponents by

|W | =
n∏

i=1

(ei + 1) .

See Section 5.1 for more examples.
For a finite irreducible Coxeter group W Figure 2.8 tabulates some classical

numerical invariants associated to W and the corresponding (not necessarily crys-
tallographic) root system Φ.

type of Φ |Φ+| h e1, . . . , en |W |
An n(n + 1)/2 n + 1 1, 2, . . . , n (n + 1)!

Bn, Cn n2 2n 1, 3, 5, . . . , 2n− 1 2nn!
Dn n(n− 1) 2(n− 1) 1, 3, 5, . . . , 2n− 3, n− 1 2n−1n!
E6 36 12 1, 4, 5, 7, 8, 11 27345
E7 63 18 1, 5, 7, 9, 11, 13, 17 210345 · 7
E8 120 30 1, 7, 11, 13, 17, 19, 23, 29 21435527
F4 24 12 1, 5, 7, 11 2732

G2 6 6 1, 5 223
H3 15 10 1, 5, 9 233 · 5
H4 60 30 1, 11, 19, 29 263252

I2(m) m m 1, m−1 2m

Figure 2.8. Number of positive roots, Coxeter number, exponents, and the order of W .



LECTURE 3
Associahedra and Mutations

3.1. Associahedron

We start by discussing two classical problems of combinatorial enumeration.
(i) Count the number of bracketings (parenthesizations) of a non-associative

product of n + 2 factors. Note that we need n pairs of brackets in order
to make the product unambiguous.

(ii) Count the number of triangulations of a convex (n+3)-gon by diagonals.
Note that each triangulation involves exactly n diagonals.

Example 3.1. In the special cases n = 1, 2, 3, there are, respectively:
• 2 bracketings (ab)c and a(bc) of a product of 3 factors;
• 5 bracketings ((ab)c)d, (a(bc))d, a((bc)d), (ab)(cd), and a(b(cd)) of a prod-

uct of 4 factors;
• 14 bracketings of a product of 5 factors (check!).

As to triangulations, there are:
• 2 triangulations of a convex quadrilateral (n = 1);
• 5 triangulations of a pentagon (n = 2, Figure 3.3);
• 14 triangulations of a hexagon (n = 3, Figure 3.4).

Theorem 3.2. Both bracketings and triangulations described above are enumerated
by the Catalan numbers 1

n+2

(
2n+2
n+1

)
.

There are a great many families of combinatorial objects enumerated by the
Catalan numbers; more than a hundred of those are listed in [50]. This list includes:
ballot sequences; Young diagrams and tableaux satisfying certain restrictions; non-
crossing partitions; trees of various kinds; Dyck paths; permutations avoiding pat-
terns of length 3; and much more. In Lecture 5, we will discuss several additional
members of the “Catalan family,” together with their analogues for arbitrary root
systems. (We will see that the ordinary Catalan numerology should be considered
as “type A.”)

A bijection between bracketings and triangulations is described in Figure 3.1.
For a fixed n, the bracketings naturally form the set of vertices of a graph whose

edges correspond to applications of the associativity axiom. Figure 3.2 shows this
graph for n = 2.

87
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a

b
c d

e

f

a b c d e f

a b c d e f(( ( ))( ))

Figure 3.1. The bijection between triangulations and bracketings.

(ab)(cd)

a(b(cd))

a((bc)d)(a(bc))d

((ab)c)d

Figure 3.2. Applying associativity to the bracketings of abcd.

The bijection illustrated in Figure 3.1 translates an application of the associa-
tivity axiom into a diagonal flip on the corresponding triangulation. That is, one
removes a diagonal to create a quadrilateral, then replaces the removed diagonal
with the other diagonal of the quadrilateral.

We call the graph defined by diagonal flips the exchange graph. The exchange
graphs for n = 2 and n = 3 are shown in Figures 3.3 and 3.4.

The drawing of the exchange graph in Figure 3.4 fails to convey its crucial prop-
erty: this exchange graph is the 1-skeleton of a convex polytope, the 3-dimensional
associahedron. (Sometimes it is also called the Stasheff polytope, after J. Stash-
eff, who first defined it in [52].) Figure 3.5 shows a polytopal realization of this
associahedron.
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Figure 3.3. The exchange graph for triangulations of a pentagon.

Figure 3.4. The exchange graph for triangulations of a hexagon.
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Figure 3.5. The 3-dimensional associahedron.

In order to formally define the n-dimensional associahedron, we start by de-
scribing the object which is dual to it, in the same sense in which the octahedron
is dual to the cube, and the dodecahedron is dual to the icosahedron.

Definition 3.3 (The dual complex of an associahedron). Consider the following
simplicial complex:

vertices: diagonals of a convex (n+3)-gon

simplices: partial triangulations of the (n+3)-gon
(viewed as collections of non-crossing diagonals)

maximal simplices: triangulations of the (n+3)-gon
(collections of n non-crossing diagonals).

Figure 3.6 shows this simplicial complex for n = 3, superimposed on a faint
copy of the exchange graph. Note that the facial structures of the 3-dimensional
associahedron and its dual complex are indeed “dual” to each other: two vertices
of one polyhedron are adjacent if and only if the corresponding faces of the other
polyhedron share an edge.
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Figure 3.6. The simplicial complex dual to the 3-dimensional associahedron.

It is not clear a priori that these complexes are topological spheres. But, as
already mentioned, more is true.

Theorem 3.4. The simplicial complex described in Definition 3.3 can be realized
as the boundary of an n-dimensional convex polytope.

Theorem 3.4 (or its equivalent reformulations) were proved independently by
J. Milnor, M. Haiman, and C. W. Lee (first published proof [36]). This theorem
also follows as a special case of the very general theory of secondary polytopes
developed by I. M. Gelfand, M. Kapranov and A. Zelevinsky [30].

Definition 3.5 (The associahedron). The n-dimensional associahedron is the con-
vex polytope (defined up to combinatorial equivalence) that is dual (or polar, see
[58, Sec. 2.3]) to the polytope of Theorem 3.4.
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The facial structure of an associahedron as a cell complex is dual to that of its
polar:

(6)

vertices: triangulations

faces: partial triangulations

facets: diagonals

edges: diagonal flips

The labeling of the facets of an n-dimensional associahedron by the diagonals of
an (n + 3)-gon is illustrated in Figure 3.7 for the special case n = 3 (compare to
Figure 3.4).

Figure 3.7. Labeling the facets of the associahedron by diagonals

We note that we could have defined the associahedron directly, as a cell com-
plex whose cell structure is described by (6). (This would require resolving some
technical issues that we would rather avoid here.) The fact that these cell complexes
are polytopal—i.e., the fact that a combinatorially defined associahedron can be
realized as a convex polytope—is essentially equivalent to Theorem 3.4.
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Associahedra play an important role in homotopy theory and the study of
operads [53], in the analysis of real moduli/configuration spaces [16], and other
branches of mathematics. In these notes, we restrict our attention to the combina-
torial aspects of the associahedra.

An n-dimensional polytope is called simple if every vertex is incident to exactly
n edges. This is the case for the associahedron, as every triangulation of an (n+3)-
gon is adjacent to precisely n others in the exchange graph.

Much is known about the facial structure and enumerative invariants of the
associahedron. For example, each face is the direct product of smaller associahedra.
The entries of the h-vector of the associahedron are the Narayana numbers (see
Section 5.2). This allows one to calculate the number of faces of each dimension.

3.2. Cyclohedron

The n-dimensional cyclohedron (also known as the Bott-Taubes polytope [8]) is con-
structed similarly to the associahedron using centrally-symmetric triangulations of
a regular (2n + 2)-gon. Each edge of the cyclohedron represents either a diagonal
flip involving two diameters of the polygon, or a pair of two centrally-symmetric
diagonal flips. Figures 3.8 and 3.9 show the 2- and 3-dimensional cyclohedra re-
spectively. As these figures suggest, the cyclohedron is a convex polytope for any n.
Explicit polytopal realizations of cyclohedra were constructed by M. Markl [38] and
R. Simion [47]. Each face of a cyclohedron is a product of smaller cyclohedra and
associahedra.

Figure 3.8. The 2-dimensional cyclohedron

Further details about the combinatorics of cyclohedra, and about their appear-
ance in the study of configuration spaces can be found in [17].

The geometry of associahedra and cyclohedra is related to the geometry of
permutohedra, as the following theorem (due to Tonks [54]) shows.

Theorem 3.6. The 1-skeleton of the n-dimensional associahedron (resp., cyclohe-
dron) can be obtained from the 1-skeleton of the permutohedron of type An (resp.,
type Bn) by contraction of edges.

Theorem 3.6 is further discussed in Section 5.4 in connection with Theorem 5.11.
For n = 3, the theorem is illustrated in Figure 3.10. (Cf. Figures 2.3 and 2.4.)

In light of Theorem 3.6, the cyclohedron can be viewed as a “type B counter-
part” of the associahedron (which is a “type A” object).
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Figure 3.9. The 3-dimensional cyclohedron

Figure 3.10. Contracting edges of permutohedra of types A3 and B3 yields
an associahedron and a cyclohedron
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3.3. Matrix Mutations

Having looked closely at the associahedron and the cyclohedron, one is naturally led
to wonder: are these two just a pair of isolated constructions, or is there a general
framework that includes them as special cases? Given that the associahedra and
the cyclohedra are related to the root systems of types A and B, respectively, is
there a classification of polytopes arising within this framework that is similar to
the Cartan-Killing classification of root systems?

As a first step towards answering these questions, we will develop the machinery
of matrix mutations, which encode the combinatorics of various models similar
to the associahedron and the cyclohedron. We begin our discussion of matrix
mutations by continuing the example of the associahedron.

Fix a triangulation T of the (n+3)-gon. Label the n diagonals of T arbi-
trarily by the numbers 1, . . . , n, and label the n + 3 sides of T by the numbers
n + 1, . . . , 2n + 3. The combinatorics of T can be encoded by the (signed) edge-
adjacency matrix B̃ = (bij). This is the (2n+3)×n matrix whose entries are given
by

bij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i and j label two sides in some triangle of T so that j follows i

in the clockwise traversal of the triangle’s boundary;
−1 if the same holds, with the counter-clockwise order;
0 otherwise.

Note that the first index i is a label for a side or a diagonal of the (n+3)-gon,
while the second index j must label a diagonal. The principal part of B̃ is an
n × n submatrix B = (bij)i,j∈[n] that encodes the signed adjacencies between the
diagonals of T . An example is shown in Figure 3.11.

� �

� �

�

6

4

7 5

3

1 2 B̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
−1 0

0 1
−1 0

0 −1
1 −1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =
[

0 1
−1 0

]

Figure 3.11. Matrices B and B̃ for a triangulation

In the language of matrices B̃ and B, diagonal flips can be described as certain
transformations called matrix mutations.

Definition 3.7. Let B = (bij) and B′ = (b′ij) be integer matrices. We say that B′

is obtained from B by a matrix mutation in direction k, and write B′ = μk(B), if

(7) b′ij =

⎧⎪⎪⎨
⎪⎪⎩
−bij if k ∈ {i, j};
bij + |bik|bkj if k /∈ {i, j} and bikbkj > 0;
bij otherwise.

It is easy to check that a matrix mutation is an involution, i.e., μk(μk(B)) = B.
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Lemma 3.8. Assume that B̃ and B̃′ (resp., B and B′) are the edge-adjacency
matrices (resp., their principal parts) for two triangulations T and T ′ obtained
from each other by flipping the diagonal numbered k; the rest of the labels are the
same in T and T ′. Then B̃′ = μk(B̃) (resp., B′ = μk(B)).

Lemma 3.8 is illustrated in Figures 3.12 and 3.13. Note that the numbering of
diagonals used in defining the matrices B̃ and B can change as we move along the
exchange graph. For instance, the sequence of 5 flips shown in Figure 3.13 results
in switching the labels of the two diagonals.

3

2

1 4

3
2

1 4

⎡
⎢⎢⎣

0 0 1 −1
0 0 1 0
−1 −1 0 1

1 0 −1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 −1 0
0 0 −1 1
1 1 0 −1
0 −1 1 0

⎤
⎥⎥⎦

μ3

Figure 3.12. A diagonal flip and the corresponding matrix mutation

One can similarly define edge-adjacency matrices for centrally symmetric tri-
angulations (those matrices will have entries 0, ±1, and ±2), and verify that cyclo-
hedral flips translate precisely into matrix mutations.

3.4. Exchange Relations

We next introduce a set of algebraic (more precisely, birational) transformations
that will go hand in hand with the matrix mutations. We start by explaining this
construction in the case of an associahedron.

Let us fix an arbitrary initial triangulation T◦ of a convex (n + 3)-gon, and
introduce a variable for each diagonal of this triangulation, and also for each side
of the (n + 3)-gon. This gives 2n + 3 variables altogether. We are now going to
associate a rational function in these 2n+3 variables to every diagonal of the (n+3)-
gon. This will be done in a recursive fashion. Whenever we perform a diagonal flip
as the one shown in Figure 3.14, all but one rational functions associated to the
current triangulation remain unchanged: the rational function x associated with
the diagonal being removed gets replaced by the rational function x′ associated
with the “new” diagonal, where x′ is determined from the exchange relation

(8) xx′ = a c + b d .
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[
0 1
−1 0

]

[
0 −1
1 0

]

[
0 1
−1 0

]

[
0 −1
1 0

]

[
0 1
−1 0

]

[
0 −1
1 0

]

1 2

1 2

1

2

1

2

1

2

12

Figure 3.13. Diagonal flips in a pentagon, and the corresponding matrix mutations
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Figure 3.14. A diagonal flip

Lemma 3.9. The rational function xγ associated to each diagonal γ does not de-
pend on the particular choice of a sequence of flips that connects the initial trian-
gulation with another one containing γ.

Lemma 3.9 can be rephrased as saying that there are no “monodromies” asso-
ciated with sequences of flips that begin and end at the same triangulation.

To illustrate Lemma 3.9, consider the triangulations of a pentagon (i.e., n = 2).
We label the sides of the pentagon by the variables q1, q2, q3, q4, q5, as shown in
Figure 3.15.

� �

� �
�

q4

q2

q5 q3

q1

Figure 3.15. Labeling the sides of a pentagon

We then label the diagonals incident to the top vertex by the variables y1 and y2.
Thus, our initial triangulation T◦ appears at the top of Figure 3.16. The rational
functions y3, y4, y5 associated with the remaining three diagonals are then computed
from the exchange relations associated with the flips shown in Figure 3.16.

Starting at the top of Figure 3.16 and moving clockwise, we recursively express
y3, y4, . . . in terms of y1, y2 and q1, . . . , q5:

y3 =
q2y2 + q4q5

y1
,

y4 =
q3y3 + q5q1

y2
=

q3q2y2 + q3q4q5 + q5q1y1

y1y2
,

y5 =
q4y4 + q1q2

y3
= · · · = q3q4 + q1y1

y2
(check!),

and, finally,

y1 =
q5y5 + q2q3

y4
= · · · = y1 ,

y2 =
q1y1 + q3q4

y5
= · · · = y2 ,



LECTURE 3. ASSOCIAHEDRA AND MUTATIONS 99

y1 y2

y2

y3

y4

y3

y4

y5

y1

y5

y1y3 = q2y2 + q4q5y5y2 = q1y1 + q3q4

y4y1 = q5y5 + q2q3

y3y5 = q4y4 + q1q2

y2y4 = q3y3 + q5q1

Figure 3.16. Exchange relations for the flips in a pentagon

recovering the original values and completing the cycle.
We note that under the specialization q1 = · · · = q5 = 1, the phenomenon

we just observed is nothing else but the 5-periodicity of the pentagon recurrence,
which we have thus generalized.

Lemma 3.9 is a special case of a much more general result from the theory of
cluster algebras. It can also be proved directly in at least two different ways briefly
sketched below; these proofs point at connections of this subject to other areas of
mathematics.

Ptolemy’s Theorem and hyperbolic geometry

The classical Ptolemy’s Theorem asserts that in an inscribed quadrilateral, the
sum of the products of the two pairs of opposite sides equals the product of the two
diagonals. This relation looks exactly like the exchange relation (8). It suggests that
one can prove Lemma 3.9 simply by interpreting the rational function associated
with each side or diagonal as the Euclidean length of the corresponding segment.
There is however a problem with this type of argument: the space of inscribed
(n + 3)-gons (up to congruence) is (n + 3)-dimensional, whereas we need 2n + 3
independent variables in our setup.

The problem can be resolved by passing from Euclidean to hyperbolic geometry,
where an analogue of Ptolemy’s Theorem holds, and where one can “cook up” the
required additional degrees of freedom. For much more on this topic, see [24, 29].
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Plücker coordinates on the Grassmannian Gr(2, n + 3)

Take a 2× (n+3) matrix z = (zij). For any k, l ∈ [n + 3], k < l, let us denote by

Pkl = det
(

z1k z1l

z2k z2l

)
the 2× 2 minor of z that occupies columns k and l. These minors are the homoge-
neous Plücker coordinates of the row span of z as an element of the Grassmannian
Gr(2, n + 3) of all 2-dimensional subspaces of an (n+3)-space. See, e.g., [25].

It is easy to check (the special case of) the Grassmann-Plücker relations :

PikPjl = PijPkl + PilPjk .

Once again, one recognizes the exchange relation (8). It is straightforward to con-
struct, for a particular special choice of initial triangulation T◦, a matrix z for which
the values of the minors Pkl corresponding to the sides and diagonals of T◦ are equal
to the variables associated with these segments. It then follows by induction that
the rational function associated to every diagonal is equal to the corresponding
minor Pkl, implying Lemma 3.9.



LECTURE 4
Cluster Algebras

Our next task is to create a general axiomatic theory of mutations (“flips”)
and exchanges, using the above examples as prototypes. This will lead us to the
basic notions and results of the theory of cluster algebras. Cluster algebras were
introduced in [20] as a combinatorial/algebraic framework for the study of dual
canonical bases and related total positivity phenomena. They since found appli-
cations in higher Teichmüller theory and representation theory of quivers, among
other fields. All these motivations and applications will remain behind the scenes
in these lectures.

Most of this lecture is based on [19, 20, 21]. Sections 4.4 and 4.5 are based
on [13] and [4, 23], respectively.

4.1. Seeds and Clusters

Consider a diagonal flip that transforms a triangulation T of a convex (n + 3)-gon
into another triangulation T ′, as shown in Figure 3.14. The corresponding exchange
relation (8) can be written entirely in terms of the edge-adjacency matrix B̃. To be
more precise, let us assume, as before, that the diagonals of T have been labeled in
some way by the numbers 1, . . . , n, whereas the sides of the (n + 3)-gon have been
assigned the labels going from n+1 through m = 2n+3. The labeling for T ′ is the
same except for the one diagonal (say, labeled k) that is getting exchanged between
T and T ′.

This labeling of sides and diagonals of T allows us to (temporarily) denote
the associated rational functions by x1, . . . , xm. For T ′, we get the same rational
functions except that xk is replaced by x′

k. Then the exchange relation under
consideration takes the form

(9) xk x′
k =

∏
bik>0

1≤i≤m

xbik

i +
∏

bik<0
1≤i≤m

x−bik

i .

In other words, the right-hand side of (9) is the sum of two monomials whose
exponents are the absolute values of the entries in the kth column of B̃, while the
sign of an entry determines which monomial the corresponding term contributes to.

Example 4.1. Let T be the triangulation of a pentagon in Figure 3.11, with its
edges labeled 1, . . . , 7 as shown. The exchange relations corresponding to flipping

101
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the diagonals 1 and 2 are, respectively:

x1x
′
1 = x6x7 + x2x4 ,

x2x
′
2 = x1x3 + x5x6 ,

in agreement with (9).

To summarize, both the combinatorics of flips and the algebra of exchange rela-
tions can be encoded entirely in terms of the matrices B̃ using, first, the machinery
of matrix mutations and, second, the “birational dynamics” governed by (9). We
shall now use this observation to lay out the axioms of a cluster algebra. The for-
mulation of these axioms will require some technical preparation, which hopefully
will make sense to the reader in light of the examples discussed above.

A cluster algebra A is a commutative ring contained in an ambient field F
isomorphic to the field of rational functions in m variables over Q. (Think of the
rational functions in the variables associated with the sides and diagonals of a fixed
initial triangulation.)
A is generated inside F by a (possibly infinite) set of generators. These gen-

erators are obtained from an initial seed via an iterative process of seed mutations
which follows a set of canonical rules.

A seed in F is a pair (x̃, B̃), where
• x̃={x1, . . . , xm} is a set1 of m algebraically independent generators of F ,

which is split into a disjoint union of an n-element cluster x = {x1, . . . , xn}
and an (m− n)-element set of frozen variables c={xn+1, . . . , xm};
• B̃ =(bij) is an m × n integer matrix of rank n whose principal part B =

(bij)i,j∈[n] is skew-symmetrizable, i.e., there exists a diagonal matrix D

with positive diagonal entries such that DBD−1 is skew-symmetric.
(Equivalently, there exist positive integers d1, . . . , dn such that dibij = −djbji for
all i and j.) The matrix B is called the exchange matrix of a seed.

A seed mutation μk in direction k ∈ {1, . . . , n} transforms a seed (x̃, B̃) into
another seed (x̃′, B̃′) defined as follows:

• x̃′ = x̃− {xk} ∪ {x′
k}, where x′

k is found from the exchange relation (9);
• B̃′ = μk(B̃), i.e., B̃ undergoes a matrix mutation (hence so does B).

The following lemma justifies the definition of a seed mutation by showing that
(x̃′, B̃′) is indeed a seed.

Lemma 4.2. Matrix mutations preserve the rank of a matrix. If B is skew-
symmetrizable, then so is μk(B), with the same skew-symmetrizing matrix D.

Note that seed mutations do not change the frozen variables c={xn+1, . . . , xm}.
Example 4.3. Let x and c be the sets of variables associated with the diagonals and
sides, respectively, of some triangulation of a convex (n+3)-gon. (Thus m = 2n+3.)
Let B̃ be the sign-adjacency matrix of the triangulation. The mutations of seeds
(x̃, B̃) of this kind correspond to combining the exchange relations (8) with the
matrix mutations associated with diagonal flips.

1A diligent reader might object that we call x̃ a set rather than a sequence. This is because we
regard any two seeds obtained from each other by simultaneous relabeling of the elements xi and
the matrix entries bij as identical. That is, for any permutation w ∈ Sm such that w(i) = i

for i > n, we make no distinction between the seeds (x̃, B̃) and (w(x̃), w(B̃)), where w(x̃) =

(xw(1), . . . , xw(m)) and w(B̃) = (bw(i),w(j)).
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Seed mutations generate the mutation equivalence relation on seeds: (x̃, B̃) ∼
(x̃′, B̃′). Let S be an equivalence class for this relation. Thus, S is obtained by
repeated mutations of an arbitrary initial seed in all possible directions. This creates
an exchange graph. See Figure 4.1.
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�seed
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Figure 4.1. Seed mutations and the exchange graph

Let X = X (S) be the union of all clusters for all the seeds in S. The elements
of X are called cluster variables. See Figure 4.2.
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Figure 4.2. Cluster variables

The cluster algebra2 A = A(S) associated with S is generated inside F by the
cluster variables in X together with the frozen variables xn+1, . . . , xm and their
inverses. (A variation of this definition includes cluster and frozen variables, but
none of their inverses, in the generating set.) The integer n is called the rank of A.

Theorem 4.4 (The Laurent phenomenon [20]). Any cluster variable is expressed
in terms of the variables x1, . . . , xm of any given seed as a Laurent polynomial with
integer coefficients.

2Strictly speaking, this is a definition of a skew-symmetrizable cluster algebra of geometric type.
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Conjecture 4.5 (Nonnegativity conjecture [20]). Every coefficient in these Lau-
rent polynomials is nonnegative.

Conjecture 4.5 has been proved in a number of special cases, including our main
motivating example of an associahedron, to which we return in Example 4.6.

Example 4.6. In the case of Example 4.3, the exchange graph on seeds is precisely
the exchange graph on triangulations illustrated in Figures 3.3 and 3.4. The cluster
algebra in this example is generated inside the ring of rational functions in 2n + 3
independent variables by the rational functions associated with all diagonals and
sides of the (n+3)-gon. (Cf. Lemma 3.9.) Here we use a variation of the definition
of a cluster algebra where the inverses of frozen variables are not included in the
set of generators.

This cluster algebra is canonically isomorphic to the homogeneous coordinate
ring of the Grassmannian Gr(2, n + 3) with respect to its Plücker embedding. The
cluster variables, together with the frozen variables, form the set of all Plücker
coordinates on this Grassmannian. Theorem 4.4 and Conjecture 4.5 (proven in this
special case) assert that any Plücker coordinate is written in terms of the Plücker
coordinates associated with a given triangulation as a Laurent polynomial with
nonnegative integer coefficients.

4.2. Finite Type Classification

All results in this section were obtained in [21].
A cluster algebra is said to be of finite type if it has finitely many distinct seeds.

Amazingly, the classification of the cluster algebras of finite type turns out to be
completely parallel to the Cartan-Killing classification of (finite crystallographic)
root systems. Thus there is a cluster algebra of finite type for each Dynkin diagram,
or each Cartan matrix of finite type. We shall now explain how.

For a Cartan matrix A = (aij) of finite type, we define a skew-symmetrizable
matrix B(A)=(bij) by

bij =

⎧⎪⎨
⎪⎩

0 if i = j;
aij if i �= j and i ∈ I+;
−aij if i �= j and i ∈ I−,

where I+ and I− are defined as in Section 2.5. To illustrate, in type B4, we have
(cf. Example 2.3):

A =

⎡
⎢⎢⎣

2 −2 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦ , B(A) =

⎡
⎢⎢⎣

0 −2 0 0
1 0 1 0
0 −1 0 −1
0 0 1 0

⎤
⎥⎥⎦ ,

under the convention I+ = {1, 3}, I− = {2, 4}.
Theorem 4.7 (Finite type classification). A cluster algebra A is of finite type if
and only if the exchange matrix at some seed of A is of the form B(A), where A is
a Cartan matrix of finite type.

The type of A (in the Cartan-Killing nomenclature) is uniquely determined by
the cluster algebra A, and is called the “cluster type” of A.
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We note that in deciding whether a cluster algebra is of finite type, the bottom
part of the matrix B̃ plays no role whatsoever: everything is determined by its
principal part B.

In the special cases where a cluster algebra has rank n = 2, is of finite type
(that is, one of the types A2, B2, and G2), and has no frozen variables (that is,
m = 2), Theorem 4.7 brings us back to the recurrences of Section 1.1. Indeed, these
recurrences are precisely given by the exchange relations in those cluster algebras.
The periodicity of the corresponding sequences is simply a reformulation of the
“finite type” property for cluster algebras.

Theorem 4.8 (Combinatorial criterion for finite type). A cluster algebra A is of
finite type if and only if the exchange matrix B = (bij) for any seed of A satisfies
the inequalities |bijbji| ≤ 3 for all i, j ∈ {1, . . . , n}.

To rephrase, a mutation equivalence class of skew-symmetrizable n×n matrices
defines a class of cluster algebras of finite type if and only if, for each matrix B=(bij)
in this equivalence class, the inequality |bijbji| ≤ 3 holds for all i and j.

Combining Theorems 4.8 and 2.4 yields the following completely elementary
statement about integer matrices, no direct proof of which is known3.

Corollary 4.9. Let B be a mutation equivalence class of skew-symmetrizable in-
teger matrices, with the skew-symmetrizing matrix D. (Cf. Lemma 4.2.) The fol-
lowing are equivalent:

• any matrix B=(bij)∈B satisfies the inequalities |bijbji|≤3, for all i and j;
• there exists a matrix B = (bij) ∈ B with the following property. Define

A = (aij) by

aij =

{
−|bij | if i �= j;

2 if i = j.

Then DAD−1 is positive definite.

Let Φ be an irreducible finite root system with Cartan matrix A, and let A
be a cluster algebra of the corresponding cluster type. Theorem 4.7 tells us that
the set X of cluster variables is finite. A more detailed description of this set is
provided by Theorem 4.10 below.

Let α1, . . . , αn be the simple roots of Φ, and let {x1, . . . , xn} be the cluster at
a seed in A with the exchange matrix B(A).

Let Φ≥−1 denote the set of roots in Φ which are either negative simple or
positive. Theorem 4.10 shows that the cluster variables in A are naturally labeled
by the roots in Φ≥−1 .

Theorem 4.10. For any root α = c1α1 + · · · + cnαn ∈ Φ≥−1 , there is a unique
cluster variable x[α] given by

(10) x[α] =
Pα(x1, . . . , xm)

xc1
1 · · ·xcn

n
,

where Pα is a polynomial in x1, . . . , xm with nonzero constant term. The map
α �→ x[α] is a bijection between Φ≥−1 and X .

3Note added in revision. According to A. Zelevinsky, such a proof has been recently found in his
joint work with M. Barot and C. Geiss.
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Note that the right-hand side of (10) is a Laurent polynomial, in agreement
with Theorem 4.4.

4.3. Cluster Complexes and Generalized Associahedra

This section is based on [19, 21], except for the last statement in Theorem 4.11,
which was proved in [13].

It can be shown that in a given cluster algebra of finite type, each seed is
uniquely determined by its cluster. Consequently, the combinatorics of exchanges
is encoded by the cluster complex, a simplicial complex (indeed, a pseudomanifold)
on the set of all cluster variables whose maximal simplices (facets) are the clusters.
See Figure 4.3. By Theorem 4.10, the cluster variables—hence the vertices of the
cluster complex—can be naturally labeled by the set Φ≥−1 of “almost positive
roots” in the associated root system Φ.

x1

x2x3

x′
1

x′
2 x′

3

Figure 4.3. The cluster complex

This dual graph of the cluster complex is precisely the exchange graph of the
cluster algebra.

Theorem 4.11 below shows that the cluster complex is always spherical, and
moreover polytopal.

Recall that QR denotes the R-span of Φ. The Z-span of Φ is the root lattice,
denoted by Q.

Theorem 4.11. The n roots that label the cluster variables in a given cluster form
a Z-basis of the root lattice Q. The cones spanned by such n-tuples of roots form
a complete simplicial fan in the ambient real vector space QR (the “cluster fan”).
This fan is the normal fan4 of a simple n-dimensional convex polytope in the dual
space Q∗

R
.

This polytope is called the generalized associahedron of the corresponding type.
Thus, the cluster complex of a cluster algebra of finite type is canonically iso-

morphic to the dual simplicial complex of a generalized associahedron of the corre-
sponding type. Conversely, the dual graph of the cluster complex is the 1-skeleton
of the generalized associahedron.

4Let P ⊂ V ∼= R
n be an n-dimensional simple convex polytope. The support function F : V ∗ → R

of P is given by
F (γ) = max

z∈P
〈z, γ〉.

The normal fan N (P ) is a complete simplicial fan in the dual space V ∗ whose full-dimensional
cones are the domains of linearity for F . More precisely, each vertex z of P gives rise to the cone
{γ ∈ V ∗ : F (γ) = 〈z, γ〉} in N (P ).
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In type An, this construction recovers the n-dimensional associahedron (cf.
Figure 4.4). The explanation involves an identification of the roots in Φ≥−1 with
diagonals of a convex (n + 3)-gon that will be discussed later in Example 4.16.
In type Bn, one obtains the n-dimensional cyclohedron. Thus the n-dimensional
associahedron (resp., cyclohedron) is dual to the cluster complex of an arbitrary
cluster algebra of type An (resp., Bn).

α1−α1

α1+α2α2

−α2

Figure 4.4. Associahedron of type A2 and its dual fan

Theorem 4.11 leaves the following two questions unanswered:

• Which n-subsets of “almost positive” roots (“root clusters”) label the
clusters of the cluster algebra of finite type? (An answer to this question
would make explicit the combinatorics of a generalized associahedron.)
• What are the inequalities defining a generalized associahedron inside Q∗

R
?

(We already know they are of the form 〈z, α〉 ≤ const, for α ∈ Φ≥−1.)

We are now going to answer these questions, one after another. The answer to
the first question is facilitated by the following property of a cluster complex.

Theorem 4.12. The cluster complex is a clique complex for its 1-skeleton. In other
words, a subset S ⊂ Φ≥−1 is a simplex in the cluster complex if and only if every
2-element subset of S is a 1-simplex in this complex.

In type An, Theorem 4.12 reflects the basic property of the dual complex of an
associahedron: a collection of diagonals forms a simplex if and only if any two of
them do not cross.

In order to describe the cluster complex, we therefore need only to clarify which
pairs of roots label the edges of the cluster complex. Thus, we need to define the
root-theoretic analogue of the notion of “non-intersecting diagonals” that lies at
the heart of the combinatorial construction of an associahedron.

We will assume from now on that the root system Φ underlying a cluster alge-
bra A is irreducible. (The general case can be obtained by taking direct products.)
We retain the notation of Lecture 2. Thus, n is the rank of Φ (and A); I is the
n-element indexing set, which is partitioned into disconnected pieces I+ and I−;
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W is the corresponding reflection group, generated as a Coxeter group by the gen-
erators si, for i ∈ I; w◦ is the element of maximal length in W ; A = (aij) is the
Cartan matrix; h is the Coxeter number.

Definition 4.13. Define involutions τ± : Φ≥−1 → Φ≥−1 by

τε(α) =

⎧⎪⎨
⎪⎩

α if α = −αi , for i ∈ I−ε;∏
i∈Iε

si (α) otherwise.

For example, in type A2, we get:

−α1
τ+←→ α1

τ−←→ α1 + α2
τ+←→ α2

τ−←→ −α2

� �
τ− τ+

The product τ−τ+ can be viewed as a deformation of the Coxeter element. Hence,
what is the counterpart of the Coxeter number?

Theorem 4.14. The order of τ−τ+ is (h + 2)/2 if w◦ = −1, and is h + 2 other-
wise. Every 〈τ−, τ+〉-orbit in Φ≥−1 has a nonempty intersection with −Π. These
intersections are precisely the 〈−w◦〉-orbits in (−Π).

Theorem 4.15. There is a unique binary relation (called “compatibility”) on Φ≥−1

that has the following two properties:
• 〈τ−, τ+〉-invariance: α and β are compatible if and only if τεα and τεβ

are, for ε ∈ {+,−};
• a negative simple root −αi is compatible with a root β if and only if the

simple root expansion of β does not involve αi.
This compatibility relation is symmetric. The clique complex for the compatibility
relation is canonically isomorphic to the cluster complex.

In other words (cf. Theorem 4.12), a subset of roots in Φ≥−1 forms a simplex
in the cluster complex if and only if every pair of roots in this subset is compatible.

Example 4.16. In type An, the compatibility relation can be described in concrete
combinatorial terms using a particular identification of the roots in Φ≥−1 with the
diagonals of a regular (n + 3)-gon. Under this identification, the roots in −Π
correspond to the diagonals on the “snake” shown in Figure 4.5. Each positive root
αi + αi+1 + · · ·+ αj corresponds to the unique diagonal that crosses precisely the
diagonals −αi,−αi+1, . . . ,−αj from the snake (see Figure 4.6). It is easy to check
that the transformations τ+ and τ− act on the set of diagonals as if they were the
reflections generating the dihedral group of symmetries of the (n + 3)-gon. It then
follows that two roots are compatible if and only if the corresponding diagonals do
not cross each other (at an interior point).

4.4. Polytopal Realizations of Generalized Associahedra

We now demonstrate how to explicitly describe each generalized associahedron by
a set of linear inequalities.
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Figure 4.5. The “snake” in type A5

� �

� �

�

α1 + α2

−α2−α1

α1 α2

Figure 4.6. Labeling of the diagonals in type A2

Theorem 4.17. Suppose that a (−w◦)-invariant function F : −Π → R satisfies
the inequalities ∑

i∈I

aijF (−αi) > 0 for all j ∈ I.

Let us extend F (uniquely) to a 〈τ−, τ+〉-invariant function on Φ≥−1 . The gener-
alized associahedron is then given in the dual space Q∗

R
by the linear inequalities

〈z, α〉 ≤ F (α) , for all α ∈ Φ≥−1 .

An example of a function F satisfying the conditions in Theorem 4.17 is ob-
tained by setting F (−αi) equal to the coefficient of the simple coroot α∨

i in the
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half-sum of all positive coroots. (Coroots are the roots of the “dual” root system;
see [9, 34].)

Example 4.18. In type A3, Theorem 4.17 is illustrated in Figure 4.7, which shows
a 3-dimensional associahedron given by the inequalities

max(−z1 , −z3 , z1 , z3 , z1 + z2 , z2 + z3) ≤ 3/2 ,

max(−z2 , z2 , z1 + z2 + z3) ≤ 2 .

Example 4.19. In type C3, Theorem 4.17 is illustrated in Figure 4.8 that shows
a 3-dimensional cyclohedron given by the inequalities

max(−z1 , z1 , z1 + z2 , z2 + z3) ≤ 5/2 ,

max(−z2 , z2 , z1 + z2 + z3 , z1 + 2z2 + z3) ≤ 4 ,

max(−z3 , z3 , 2z2 + z3 , 2z1 + 2z2 + z3) ≤ 9/2 .
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Figure 4.7. Polytopal realization of the type A3 associahedron
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Figure 4.8. Polytopal realization of the type C3 associahedron (cyclohedron)

4.5. Double Wiring Diagrams and Double Bruhat Cells

The goal of this section is to give a glimpse into how cluster algebras come up
in “real life.” We will present just one example: the coordinate ring of the open
double Bruhat cell in GLn(C).

We will need the notion of a double wiring diagram (of type (w◦, w◦)), which
is illustrated in Figure 4.9. Such a diagram consists of two families of n piecewise-
straight lines, each family colored with one of two colors. The crucial requirement
is that each pair of lines of like color intersect exactly once. The lines in a double
wiring diagram are numbered separately within each color, as shown in Figure 4.9.
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Figure 4.9. Double wiring diagram

We note in passing that double wiring diagrams correspond naturally to shuffles
of two reduced words for the element w◦ in the symmetric group Sn.

From now on, we will not distinguish between double wiring diagrams that are
isotopic, i.e., have the same “topology.” For example, the diagrams in Figures 4.9
and 4.10 are isotopic to each other. The diagram in Figure 4.10 is obtained from
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Figure 4.9 by sliding the two leftmost crossings past each other, and also doing the
same for the two rightmost crossings.
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Figure 4.10. An isotopic double wiring diagram

The following lemma is a direct corollary of a theorem of G. Ringel (1956). It
can also be obtained from the type A version of a classical result by J. Tits (1969)
concerning the word problem in Coxeter groups.

Lemma 4.20. Any two (isotopy classes of) double wiring diagrams can be trans-
formed into each other by a sequence of local “moves” of three different kinds, shown
in Figure 4.11. (Each of these local moves only changes a small portion of a double
wiring diagram, leaving the rest of it intact.)

The reader is asked to ignore, for now, the labels A, B, . . . , Z in Figure 4.11.
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Figure 4.11. Local “moves”

To illustrate Lemma 4.20, the double wiring diagram in Figure 4.9 allows 4 dif-
ferent local moves, all of which are of the kind shown at the bottom of Figure 4.11.
Two of these moves can be performed by first passing to the isotopic Figure 4.10.
To make each of the other two moves, slide the two innermost crossings in Figure 4.9
past each other; this will create two patterns of the form shown at the bottom of
Figure 4.11.

A chamber of a double wiring diagram is a connected component of the com-
plement to the union of the lines, with the exception of the “crumbs” made of
narrow horizontal isthmuses and small triangular regions; the large component at
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the very bottom is not included either. With these conventions, there are exactly
n2 chambers altogether (e.g., 9 chambers in Figure 4.9). We then assign to every
chamber a pair of subsets of the set [1, n] = {1, . . . , n}: each subset indicates which
lines of the corresponding color pass below that chamber; see Figure 4.12.
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Figure 4.12. Chamber minors

Suppose we are given an n × n matrix x = (xij). For any subsets I, J ⊂
{1, . . . , n} of equal cardinality, we denote by ΔI,J(x) the corresponding minor of x,
that is, the determinant of the submatrix of x occupying the rows and columns
specified by the sets I and J . Then each chamber of a double wiring diagram
is naturally associated with a chamber minor ΔI,J (viewed as a function on the
general linear group GLn(C)), where I and J are the sets written into that chamber.

We note that two double wiring diagrams have the same associated collections
of chamber minors if and only if they are isotopic.

Let F denote the field of rational functions on GLn(C), i.e., the field of rational
functions with complex coefficients in the matrix entries xij (viewed as indetermi-
nates).

Lemma 4.21. The n2 chamber minors of an arbitrary double wiring diagram form
a set of algebraically independent generators of the field F .

Notice that each local move in Figure 4.11 exchanges a single chamber minor Y
(associated with a bounded, or interior, chamber) with another chamber minor Z,
and keeps all other chamber minors in place. We can therefore define, by analogy
with triangulations, a graph of exchanges whose vertices correspond to (isotopy
classes of) double wiring diagrams, and whose edges correspond to the moves in
Figure 4.11.

Example 4.22. For n = 3, there are 34 non-isotopic double wiring diagrams. The
corresponding 34-vertex graph of exchanges can be found in [23, Figure 10]. It has
18 vertices of degree 4, and 16 vertices of degree 3. They correspond, respectively, to
the double wiring diagrams that allow 4 local moves (as the diagram in Figure 4.12)
and those allowing only 3 local moves (as the diagram in Figure 4.13).

Lemma 4.23. Whenever two double wiring diagrams differ by a single local move
of one of the three types shown in Figure 4.11, the chamber minors appearing there
satisfy the identity AC + BD = Y Z.

Lemmas 4.21 and 4.23 suggest the existence of a cluster algebra structure asso-
ciated with n×n matrices. We next present one of several versions of this structure,
leaving out most of the technical details. The ambient field for our cluster alge-
bra is the field F of rational functions on GLn(C) introduced above. Each double
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Figure 4.13. A double wiring diagram allowing 3 local moves

wiring diagram provides us with a seed whose cluster variables are the (n − 1)2

chamber minors associated with the bounded chambers; the frozen variables are
the 2n− 1 chamber minors associated with the unbounded chambers at the edges
of the diagram. It remains to define the matrices B̃.

Take any double wiring diagram in which every bounded chamber can be
“flipped” (such a diagram can be constructed for any n). Comparing the cor-
responding exchange relations AC + BD = Y Z with (9), determine the matrix
entries of B̃. It can be shown that exchanges associated with the local moves
on double wiring diagrams are compatible with the cluster algebra axioms. Fur-
thermore, applying these axioms uncovers hitherto hidden clusters which do not
correspond to any wiring diagrams. Each variable in these clusters is a regular
function on GLn(C) (a polynomial in the matrix entries). The resulting cluster
algebra coincides with the coordinate ring of the open double Bruhat cell Gw◦,w◦

in GLn(C). We refer to [4] for further details.

Example 4.24. The open double Bruhat cell Gw◦,w◦ ⊂ GL3(C) consists of all
complex 3× 3 matrices x = (xij) whose minors

(11) x13,
∣∣∣∣∣∣ x12 x13

x22 x23

∣∣∣∣∣∣, x31,
∣∣∣∣∣∣ x21 x22

x31 x32

∣∣∣∣∣∣, det(x)

are nonzero. (These 5 minors correspond to the unbounded chambers of any double
wiring diagram for GL3(C).) The coordinate ring C[Gw◦,w◦ ] turns out to be a
cluster algebra of type D4 over the ground ring generated by the minors in (11)
and their inverses. Thus, the ring of rational functions on GL3 exhibits some quite
unexpected symmetries of type D4.

This cluster algebra has 16 cluster variables, corresponding to the 16 roots
in Φ≥−1. These variables are:

• 14 (among the 19 total) minors of x, namely, all except those listed in (11);
• two “hidden” variables: x12x21x33 − x12x23x31 − x13x21x32 + x13x22x31

and x11x23x32 − x12x23x31 − x13x21x32 + x13x22x31.
These 16 variables form 50 clusters of size 4, one for each of the 50 vertices of the
type D4 associahedron.

For any n ≥ 4, the construction described above produces a cluster algebra of
infinite type.



LECTURE 5
Enumerative Problems

5.1. Catalan Combinatorics of Arbitrary Type

Let Φ be a finite irreducible crystallographic root system of rank n, and W the
corresponding reflection group. We retain the root-theoretic notation used in Lec-
tures 2 and 4. In particular, e1, . . . , en are the exponents of Φ, and h is the Coxeter
number.

The number of vertices of an n-dimensional associahedron (or, equivalently, the
number of clusters in a cluster algebra of type An) is the Catalan number 1

n+2

(
2n+2
n+1

)
.

It is natural to ask similar enumerative questions for other Cartan-Killing types.

Theorem 5.1 ([19]). The number of clusters in a cluster algebra of finite type
associated with a root system Φ (or, equivalently, the number of vertices of the
corresponding generalized associahedron) is equal to

(12) N(Φ) def=
n∏

i=1

ei + h + 1
ei + 1

.

Figure 5.1 shows the values of N(Φ) for all Φ. Recall that the exponents of
root systems are tabulated in Figure 2.8.

An Bn, Cn Dn E6 E7 E8 F4 G2

1
n+2

(
2n+2
n+1

) (
2n
n

)
3n−2

n

(
2n−2
n−1

)
833 4160 25080 105 8

Figure 5.1. The numbers N(Φ)

As the numbers N(Φ) given by (12) can be thought of as generalizations of
the Catalan numbers to an arbitrary Cartan-Killing type, it comes as no surprise
that they count a host of various combinatorial objects related to the root sys-
tem Φ. Below in this section, we briefly describe several families of objects counted
by N(Φ). We refer the reader to the introductory sections of [1, 3, 2, 12, 39]
for the history of research in this area, for further details and references, and for
numerous generalizations and connections.

The numbers N(Φ) seem to have first appeared in D. Djoković’s work [18] on
enumeration of conjugacy classes of elements of finite order in Lie groups.

115
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Antichains in the root poset (non-nesting partitions)

The root poset of Φ is the partial order on the set of positive roots Φ+ such that
β ≤ γ if and only if γ − β is a nonnegative (integer) linear combination of simple
roots. See Figures 5.2 and 5.3.

Theorem 5.2 ([11, 43, 46]). The number of antichains (i.e., sets of pairwise
non-comparable elements) in the root poset of Φ is equal to N(Φ).

α1 α2

α1 + α2

α1 α2

α1 + α2

2α1 + α2

α1 α2

α1 + α2

2α1 + α2

3α1 + α2

3α1 + 2α2

Figure 5.2. The root posets of types A2, B2 and G2.

Figure 5.3. The root posets of types A5 and B5.
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Positive regions of the Shi arrangement

The Shi arrangement is the arrangement of affine hyperplanes defined by the equa-
tions

〈β, x〉 = 0
〈β, x〉 = 1 for all β ∈ Φ+.

(Thus, the number of hyperplanes in the Shi arrangement is equal to the number
of roots in the root system Φ.) The positive regions of this arrangement are the
regions contained in the positive cone, which consists of the points x such that
〈β, x〉 > 0 for any β ∈ Φ+ .

Theorem 5.3 ([46]). The number of positive regions in the Shi arrangement is
equal to N(Φ).

Figure 5.4 shows the Shi arrangements of types A2, B2 and G2, oriented so as
to agree with the root systems as drawn in Figure 1.6.

Figure 5.4. The Shi arrangements of types A2, B2 and G2. The positive
cone is shaded.
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W -orbits in a discrete torus

The reflection group W acts on the root lattice Q = ZΦ, hence on the “discrete
torus” Q/(h + 1)Q obtained as a quotient of Q by its subgroup (h + 1)Q.

Theorem 5.4 ([32]). The number of W -orbits in Q/(h + 1)Q is equal to N(Φ).

Figures 5.5 and 5.6 illustrate these orbits in types A2 and B2, where h = 3 and
h = 4, respectively. Each figure shows the reflection lines of the Coxeter arrange-
ment; the shaded region is a fundamental domain for the translations in (h + 1)Q.

Figure 5.5. A2-orbits in Q/4Q. Each orbit is labeled by a different symbol.

Figure 5.6. B2-orbits in Q/5Q.
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Non-crossing partitions

The classical non-crossing partitions introduced by Kreweras are (unordered) par-
titions of the set [n+1] = {1, . . . , n+1} into non-empty subsets called blocks which
satisfy the following “non-crossing” condition:

• there does not exist an ordered quadruple (a < b < c < d) such that the
two-element sets {a, c} and {b, d} are contained in different blocks.

(1)(2)(3)(4)

(12)(3)(4) (13)(2)(4) (1)(23)(4) (14)(2)(3) (1)(24)(3) (1)(2)(34)

(123)(4) (14)(23) (124)(3) (134)(2) (12)(34) (1)(234)

(1234)

Figure 5.7. The non-crossing partition lattice of type A3

1

2

3

4

Figure 5.8. Planar representation of non-crossing partitions
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Figure 5.7 shows the 14 non-crossing partitions for n = 3, partially ordered
by refinement. Such partial order is in fact a lattice for any n; the number of
non-crossing partitions is a Catalan number.

An alternative way of representing non-crossing partitions is shown in Fig-
ure 5.8. Place the elements of [n + 1] around a circle. Then the non-crossing
partitions are those set partitions in which the convex hulls of blocks do not inter-
sect.

We will now explain how this construction arises as a type-A special case of a
general construction valid for any (possibly infinite) Coxeter system (W, S).

A reflection in a Coxeter group W is an element conjugate to a generator s ∈ S.
Any element w ∈ W can be written as a product of reflections. Let L(w) denote the
length (i.e., number of factors) of a shortest such factorization. We then partially
order W by setting u � uv whenever L(uv) = L(u) + L(v), i.e., whenever con-
catenating shortest factorizations for u and v gives a shortest factorization for uv.
Equivalently, w covers u in this partial order if and only if L(w) = L(u) + 1 and
there is a reflection t such that w = ut.

Let c be a product (in an arbitrary order) of the generators in S. Thus, c is a
Coxeter element in W , in the broader sense of the notion alluded to in a footnote
in Section 2.5. The non-crossing partition lattice for W (see [7, 10]) is the interval
[1, c] in the partial order (W,�) defined above. It is a classical result that all Coxeter
elements are conjugate to each other. Since the set of all reflections is fixed under
conjugation, it follows that different choices of c yield isomorphic posets. (These
posets are lattices, which is a non-trivial theorem.)

The following theorem was obtained in [7, 40]. A version for the classical types
ABCD appeared earlier in [43].

Theorem 5.5. Let W be the reflection group associated with a finite root system Φ.
Then the non-crossing partition lattice for W has N(Φ) elements.

In type An, the general construction presented above recovers the ordinary non-
crossing partition lattice. To realize why, look again at Figure 5.7, and interpret
each element of the poset as a permutation in S4 written in cycle notation.

The non-crossing partition lattice of type Bn can also be given a direct combi-
natorial description. Let us take the ordinary lattice of non-crossing partitions of
a 2n-element set in its representation illustrated in Figure 5.8. Then consider the
sublattice consisting of those partitions whose planar representations are centrally
symmetric. The result (for n = 3) is shown in Figure 5.9.

5.2. Generalized Narayana Numbers

For any enumerative problem whose answer is a Catalan number, replacing a simple
count by a generating function with respect to some combinatorial statistic results
in a q-analogue of a Catalan number. There are at least three such q-analogues
that routinely pop up in various contexts. One is obtained from the usual formula

1
n+2

(
2n+2
n+1

)
by replacing n + 2 and

(
2n+2
n+1

)
with their standard q-analogues. A dif-

ferent answer is obtained while counting order ideals in the root poset of type An

by the cardinality of an ideal. For more on these q-analogues, see [26, 27, 51].
We will focus on a third q-analogue that is related to the Narayana numbers,

defined by the formula 1
n+1

(
n+1

k

)(
n+1
k+1

)
. The Narayana numbers form a triangle

shown on the right in Figure 5.10. Thus, the numbers in each row of this triangle
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1

2

3

-1

-2

-3

Figure 5.9. The non-crossing partitions of type B3.

are obtained by looking at the corresponding row of Pascal’s triangle on the left,
computing products of consecutive pairs of entries, and dividing them by n + 1.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1
1 1

1 3 1
1 6 6 1

1 10 20 10 1

Figure 5.10. The Pascal triangle and the Narayana numbers

Remarkably, the row sums in the triangle of Narayana numbers are the Catalan
numbers:

n∑
k=0

1
n + 1

(
n + 1

k

)(
n + 1
k + 1

)
=

1
n + 2

(
2n + 2
n + 1

)
.

This suggests introducing a q-analogue of the Catalan numbers given by

(13)
n∑

k=0

1
n + 1

(
n + 1

k

)(
n + 1
k + 1

)
qk .

We will now explain the connection between this q-analogue and the classical
(type A) associahedron. This connection will lead us to an extension of the de-
finition to other root systems.
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We will need the notions of the f -vector and h-vector of an (n−1)-dimensional
simplicial complex. The f -vector is (f−1, f0, . . . , fn−1) where fi denotes the number
of i-dimensional faces. The unique “(−1)-dimensional” face is the empty face. The
h-vector (h0, h1, . . . , hn) is determined from the f -vector by the “reverse Pascal’s
triangle” recursion which we illustrate by an example.

Example 5.6. The f -vector of the simplicial complex dual to the associahedron
of type A3 is (1, 9, 21, 14). (See Figure 3.6.) To calculate the h-vector, we place
the f -vector and a row of 1’s in a triangular array as shown in Figure 5.11 on the
left, with most of the entries as yet undetermined. The remaining entries are then
filled in by applying the following rule: each entry is the difference between the
entry preceding it in its row and the entry directly southwest of it. Thus, we get
9−1 = 8, 21−8 = 13, etc. Finally, we obtain the h-vector (1, 6, 6, 1) by reading the
rightmost entries in every row. Notice that these are exactly the Narayana numbers
appearing in the third row in Figure 5.10.

14 ?
21 ? ?

9 ? ? ?
1 1 1 1 1

14 1
21 13 6

9 8 7 6
1 1 1 1 1

Figure 5.11. Computing the h-vector

Lemma 5.7. The components of the h-vector of the simplicial complex dual to an
n-dimensional associahedron are the Narayana numbers 1

n+1

(
n+1

k

)(
n+1
k+1

)
.

Motivated by Lemma 5.7, we define the (generalized) Narayana numbers Nk(Φ)
(k = 0, . . . , n) for an arbitrary root system Φ as the entries of the h-vector of the
simplicial complex dual to the corresponding generalized associahedron.

Example 5.8. The f -vector of the simplicial complex dual to the 3-dimensional
cyclohedron (the associahedron of type B3) is (1, 12, 30, 20). The corresponding
h-vector is (1, 9, 9, 1). In general, the Narayana numbers of type Bn are the squares
of entries of Pascal’s triangle: Nk(Bn) =

(
n
k

)2.
It is easy to see that the entries of an h-vector always add up to fn−1, the num-

ber of top-dimensional faces in the simplicial complex. Thus,
∑

k Nk(Φ) = N(Φ).
Consequently, the generating function for the Narayana numbers of type Φ

N(Φ, q) =
∑n

k=0 Nk(Φ)qk

provides a q-analogue of N(Φ) which generalizes (13). These generating functions
for the finite crystallographic root systems are tabulated in Figure 5.12.

The Narayana numbers provide refined counts for the various interpretations
of N(Φ) given in Section 5.1. These enumerative results are listed in Theorem 5.9
below; we elaborate on the items in the theorem in subsequent comments.

Theorem 5.9 is a combination of results in [2, 19, 39, 44, 48]; see [2] for a
historical overview, and for further generalizations.
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N(An, q) =
n∑

k=0

1
n + 1

(
n + 1

k

)(
n + 1
k + 1

)
qk

N(Bn, q) =
n∑

k=0

(
n

k

)2

qk

N(Dn, q) = 1 + qn +
n−1∑
k=1

[(
n

k

)2

− n

n− 1

(
n− 1
k − 1

)(
n− 1

k

)]
qk

N(E6, q) = 1 + 36q + 204q2 + 351q3 + 204q4 + 36q5 + q6

N(E7, q) = 1 + 63q + 546q2 + 1470q3 + 1470q4 + 546q5 + 63q6 + q7

N(E8, q) = 1 + 120q + 1540q2 + 6120q3 + 9518q4

+6120q5 + 1540q6 + 120q7 + q8

N(F4, q) = 1 + 24q + 55q2 + 24q3 + q4

N(G2, q) = 1 + 6q + q2

Figure 5.12. Generating functions for generalized Narayana numbers

Theorem 5.9. The following numbers are equal to each other, and to Nk(Φ):
(i) the kth component of the h-vector for the dual complex of a generalized

associahedron of type Φ;
(ii) the number of elements of rank k in the non-crossing partition lattice

for W ;
(iii) the number of antichains of size k in the root poset for Φ;
(iv) the number of W -orbits in Q/(h + 1)Q consisting of elements whose sta-

bilizer has rank k;
(v) the components of the h-vector for the dual cell complex of the positive

part of the Shi arrangement.

Remark 5.10 (Comments on Theorem 5.9).
(i) This was our definition of Nk(Φ).
(ii) The lattice of non-crossing partitions of type Φ is graded, and Nk(Φ) is the

number of elements of rank k.
(iii) The h-vector of any simplicial polytope satisfies the Dehn-Sommerville

equations hi = hd−i. Thus interpretation (i) implies that Nk(Φ) = Nn−k(Φ). This
symmetry of the Narayana numbers is also apparent in the interpretation (ii) be-
cause the non-crossing partition lattices are self-dual. However, this symmetry is
not at all obvious in the interpretations (iii)–(v). In particular, no direct combina-
torial explanation is known for why the number of antichains of size k in the root
poset is the same as the number of antichains of size n− k.

(iv) The stabilizer of an element in Q/(h + 1)Q is a reflection subgroup of W .
The stabilizers of elements in the same W -orbit are conjugate, and therefore have
the same rank. Nk(Φ) is the number of orbits in which the stabilizers have rank k.
For example, in type A2 there is 1 orbit whose stabilizer has rank 2 (the unfilled
circle in Figure 5.5), 3 orbits whose stabilizers have rank 1 (each symbolized by a
triangle) and 1 orbit whose stabilizers have rank 0 (the filled circles), in agreement
with N(A2, q) = 1 + 3q + q2.
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(v) The positive regions of the Shi arrangement can be used to define a “dual”
cell complex. The vertices of this complex correspond to the positive regions of the
Shi arrangement. The faces of the complex correspond to those faces of the closures
of these regions that are not contained in the boundary of the positive cone. Accord-
ingly, the maximal faces correspond to the vertices of the arrangement which lie in
the interior of the positive cone. See Figure 5.13. Amazingly, this cell complex has
the same f -vector (hence the same h-vector) as the corresponding associahedron.
In the example of Figure 5.13, we get 5 vertices, 5 faces, and 1 two-dimensional
face, matching the numbers for the pentagon (the type A2 associahedron).

Figure 5.13. The dual complex for the positive part of the Shi arrangement of type A2.

5.3. Non-crystallographic Types

The construction of generalized associahedra via Definition 4.13 and Theorems 4.14
and 4.15 can be carried out verbatim for the non-crystallographic root systems
I2(m), H3 and H4. (However, the last sentence of Theorem 4.15 must be ignored,
since no “cluster complex” exists for non-crystallographic root systems.) The asso-
ciahedron of type I2(m) is an (m + 2)-gon. The 1-skeleton of the associahedron for
H3 is shown in Figure 5.14. (The vertex at infinity completes the three unbounded
regions to heptagons.)

The analogue of Theorem 5.1 holds true in types H3, H4, and I2(m): the
number of vertices of a generalized associahedron is equal to N(Φ). The latter
number is still given by (12), with the exponents taken from Figure 2.8. Figure 5.15
shows these values of N(Φ) explicitly.

The corresponding h-vectors (“Narayana numbers”) are given by

N(I2(m), q) = 1 + mq + q2,

N(H3, q) = 1 + 15q + 15q2 + q3,

N(H4, q) = 1 + 60q + 158q2 + 60q3 + q4.

The construction of the non-crossing partition lattice does not require a crys-
tallographic Coxeter group. Theorem 5.5 and Theorem 5.9(ii) remain valid for the
finite non-crystallographic root systems. At present, the other manifestations of
N(Φ) and Nk(Φ) presented in Sections 5.1 and 5.2 (including Parts (iii)–(v) of
Theorem 5.9) do not appear to extend to the non-crystallographic cases.
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Figure 5.14. The associahedron of type H3

H3 H4 I2(m)

32 280 m + 2

Figure 5.15. The numbers N(Φ) in non-crystallographic cases

5.4. Lattice Congruences and the Weak Order

This section is based on [41]. Its main goal is to establish a relationship between
two fans associated with a root system Φ and the corresponding reflection group W :

• the Coxeter fan created by (the regions of) the Coxeter arrangement, and
• the cluster fan described in Theorem 4.11.

These fans are the normal fans of a permutahedron and an associahedron of the
corresponding type, respectively.

Let ωi denote the fundamental weight [9] corresponding to αi. For i∈I, we set

ε(i) =

{
+1 if i ∈ I+ ,
−1 if i ∈ I− .

Theorem 5.11. The linear automorphism QR → QR defined by αi �→ ε(i)ωi moves
the cluster fan to a fan refined by the Coxeter fan.

The gluing of maximal cones of the Coxeter fan corresponds to contraction of
edges in the 1-skeleton of a permutahedron. By Theorem 5.11, this can be done
in such a way that the result of the contraction is the 1-skeleton of a generalized
associahedron. We have thus extended Theorem 3.6 to all types.
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The statement of Theorem 5.11 does not specify which regions of the Coxeter
arrangement should be combined together to produce the maximal cones of the
transformed cluster fan. We next present a lattice-theoretic construction that,
conjecturally, answers this question.

The weak order on W is the partial order in which u ≤ v if and only if some
reduced word for u occurs as an initial segment of a reduced word for v. In partic-
ular, v covers u in the weak order if and only if u−1v is a simple reflection, and the
length of v is greater than the length of u (necessarily by 1). Lemma 2.13 (see also
the paragraph that follows it) implies that the Hasse diagram of the weak order
can be identified with the 1-skeleton of a W -permutohedron.

Theorem 5.12 ([6]). The weak order on a finite Coxeter group is a lattice.

Example 5.13. The weak order of type An can be described in the language of
permutations of [n+1], written in one-line notation. Permutation v = (v1, . . . , vn+1)
covers u=(u1, . . . , un+1) if v is obtained from u by exchanging two entries ui and
ui+1 with ui <ui+1 . Figure 5.16 shows the weak order on A3. (Cf. Figure 2.3.)

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 5.16. The weak order of type A3

A congruence on a lattice is an equivalence relation which respects the meet
and join operations. A (bipartite) Cambrian congruence on the weak order of W
is defined as the (unique) coarsest congruence “≡” such that, for each edge (s, t) in
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the Coxeter diagram, with t ∈ I−, we have

t ≡ tsts · · · (mst − 1 factors).

Example 5.14. Figure 5.17 shows the bipartite Cambrian congruence for W of
type A3, i.e., the coarsest congruence on the weak order of the symmetric group S4

such that 1324 ≡ 3124 and 1324 ≡ 1342. The congruence classes are shaded.

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 5.17. A bipartite Cambrian congruence of type A3

Conjecture 5.15. Two regions Ru and Rv of the Coxeter arrangement are con-
tained in the same maximal cone of the transformed cluster fan (see Theorem 5.11)
if and only if u ≡ v under the bipartite Cambrian congruence.

Conjecture 5.15 has been proved in types An and Bn. The proof makes explicit
the combinatorics of the Cambrian congruence and connects it to constructions
given by Billera and Sturmfels [5] (type A) and Reiner [42] (type B). The conjecture
implies in particular that the Hasse diagram of the quotient of the weak order by the
Cambrian congruence (called the Cambrian lattice) is isomorphic to the 1-skeleton
of the generalized associahedron.

More concretely, the Cambrian lattice is obtained as the induced subposet of
the weak order formed by taking the (unique) smallest element in each (Cambrian)
congruence class; see Figure 5.18. We omit the description of the bijection used to
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translate the top picture in Figure 5.18 (the Cambrian lattice labeled by permuta-
tions) into the bottom one (the associahedron labeled by triangulations).

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

1234

2134 1324 1243

2314 2143 1423

3214 2413 1432

2431 4213

4231

4321

Figure 5.18. A bipartite Cambrian lattice of type A3
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