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ABSTRACT. We consider a Riemannian manifold (M, g) admitting a concurrent-recurrent vector field

for which the metric g is a Yamabe soliton or a τ -quasi Yamabe gradient soliton. We show that if the

metric of a Riemannian three-manifold (M, g) admitting a concurrent-recurrent vector field is a Yamabe
soliton, then M is of constant negative curvature −α2. In this case, we see that the potential vector

field is Killing. Next, we show that if the metric of a Riemannian manifold M admitting concurrent-
recurrent vector field is a non-trivial τ -quasi Yamabe gradient soliton with potential function f , then M

has constant scalar curvature and is equal to −n(n−1)α2. Finally, an illustrative example is presented.
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1. Introduction

Let (M, g) be a compact Riemannian manifold with s as its scalar curvature. Then, the Yamabe
problem concerns the existence of a Riemannian metric g′ conformal to g, for which the scalar
curvature s′ of the metric g′ is constant. As an effort to solve the Yamabe problem, Hamilton
in [4] came up with the concept of Yamabe flow. Given a conformal class of Riemannian metrics,
Yamabe flow can be used for constructing metrics whose scalar curvature s is constant. The
Yamabe flow is an evolving metric family (g(t)) satisfying

∂

∂t
g(t) = −s(t)g(t) (1.1)

with the initial data g(0) = g. Geometric flows like Yamabe flows, Ricci flows, mean and the
inverse mean curvature flows, and Kaehler-Ricci flows have been applied to a variety of topological,
geometric, and physical problems. It is interesting to note that in dimension two the Yamabe flow
and Ricci flow are equivalent, but in higher dimension they are non-identical.

The Yamabe solitons are special solutions of the Yamabe flows, that is, there exist scalars σ(t)
and diffeomorphisms φt in such manner that g(t) = σ(t)φ∗t (g0) is the solution of the Yamabe flow
(1.1), with σ(0) = 1 and φ0 = I. In other words, a Riemannian metric g is called a Yamabe soliton
if there exist a smooth vector field V ∈ X(M) (called a potential vector field) and a scalar λ ∈ R
such that

1

2
LV g = (s− λ)g, (1.2)
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where V stands for the Lie derivative operator along V . In the case which V is Killing, we say
that the Yamabe soliton is trivial. In particular, if the potential vector field V = Df , where D is
the gradient operator and f is a smooth scalar function, then we say that the metric g is Yamabe
gradient soliton and in this case (1.2) turns into

Hessf = (s− λ)g.

where Hessf is Hessian of f . If f is constant, then the above soliton called trivial Yamabe gradient
soliton.

It is interesting to notice that there is a nice connection between warped product structure
and Yamabe soliton. In [6], Ma and Cheng showed that a non-compact complete Riemannian
manifold admitting a Yamabe gradient soliton has a warped product structure. In [10], Tokura et
al. studied Yamabe gradient soliton on warped product manifold with compact Riemannian base
and in that case it has been shown that the soliton is trivial. Yamabe solitons have been studied by
many geometers in many different contexts (see [1–3,8,9,11,13]). Recently, in [7], the first author
introduced a special vector field ν which satisfies the relation

∇Xν = α{X − ν[(X)ν}, (1.3)

where α ∈ R and ν[ is the 1-form equivalent to ν in a Reimannian manifold (M, g). A unit
non-parallel (i.e., α 6= 0) vector field ν satisfying the preceding equation is called a concurrent-
recurrent vector field. It is shown that an n-dimensional connected Riemannian manifold (M, g)
admits concurrent-recurrent vector field ν, if and only if, (M, g) is the warped product I ×f(t) F ,
where I is an open interval and f(t) = eαt (see [7: Theorem 3]). In this paper, we consider a
Yamabe soliton on a Riemannian manifold admitting concurrent-recurrent vector field and prove:

Theorem 1.1. Let (M, g) be Riemannian three-manifold admitting concurrent-recurrent vector
field. If the metric g is a Yamabe soliton with potential vector field V , then the manifold is of
constant negative curvature −α2 and V is Killing.

Due to the Theorem 3 of [7], we have:

Corollary 1.1.1. Let M = I ×f(t) F with the warping function f(t) = eαt, where α ∈ R, I is
an open interval in R and F is a Riemannian 2-manifold. If the metric of M is a Yamabe soliton,
then the manifold is of constant negative curvature −α2.

In [5], Huang and Li introduced the notion of a τ -quasi Yamabe gradient soliton which naturally
extends the concept of Yamabe gradient soliton. According to Huang and Li [5], a τ -quasi Yamabe
gradient soliton is a Riemannian metric g satisfying

Hessf =
1

τ
df ⊗ ddf + (s− λ)g, (1.4)

where f is a smooth scalar function and τ > 0 is a constant. Notice that a Yamabe gradient
soliton is nothing but an ∞-quasi Yamabe gradient soliton. For λ < 0 the Yamabe soliton (or
τ -quasi Yamabe gradient soliton) is said to be shrinking, for λ > 0 is said to be expanding, and
for λ = 0 is said to be steady. In [12], Wang showed that a non-compact complete Riemannian
manifold admitting a τ -quasi Yamabe gradient soliton has warped product structure. In this
direction, we consider a τ -quasi Yamabe gradient soliton on a Riemannian manifold admitting
concurrent-recurrent vector field and prove the following theorem.

Theorem 1.2. Let M be Riemannian manifold admitting concurrent-recurrent vector field. If
the metric of M is non-trivial τ -quasi Yamabe gradient soliton with potential function f , then the
scalar curvature of M is constant and is equal to −n(n− 1)α2.

From Theorem 3 of [7], we immediately have the following.
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Corollary 1.2.1. Let M = I×f(t) F with the warping function f(t) = eαt, where α ∈ R, I is an
open interval in R and F is a Riemannian n-manifold. If the metric of M is a non-trivial τ -quasi
Yamabe gradient soliton, then the scalar curvature of M is constant and is equal to −n(n− 1)α2.

2. Background and key lemmas

A unit vector field ν on a Reimannian manifold (M, g) is said to be a concurrent-recurrent vector
field if it satisfies

∇Xν = α{X − ν[(X)ν}, (2.1)

where ∇ is the Levi-Civita connection of g and α is a non-zero constant. In [7], the author
constructed certain examples of n-dimensional Riemannian manifolds admitting such vector fields.
An interesting property of this vector field is that it is an eigenvector of the Ricci operator of the
Riemannian manifold (M, g) on which this vector field is defined. Moreover, the defining equation
(2.1) dictates that integral curves of ν are geodesics. The following result has been proved in [7].

Theorem 2.1. A Riemannian n-manifold admitting a concurrent-recurrent vector field is locally
isometric to the warped product I×f(t) F , where I ⊆ R is an open interval and F is a Riemannian
(n − 1)-manifold. Conversely, the warped product I ×f(t) F with the warping function f(t) = eαt

admits a concurrent-recurrent vector field.

2.1. Key lemmas

In this subsection, we give some lemmas that are needed to prove our main results.

Lemma 2.1. A Riemannian manifold equipped with a concurrent-recurrent vector field ν satisfies

ν(s) = −2α(s+ n(n− 1)α2). (2.2)

P r o o f. Using (1.3) in the definition of Riemann curvature tensor, we obtain

R(X,Y )ν = −α2{ν[(Y )X − ν[(X)Y }. (2.3)

Contracting the above equation gives

Ric(X, ν) = −(n− 1)α2ν[(X), (2.4)

which yields Qν = −(n − 1)α2ν, where Q is Ricci operator defined by g(QX,Y ) = Ric(X,Y ).
Differentiating Qν = −(n− 1)α2ν along X implies that

(∇XQ)ν = −(n− 1)α3X − αQX. (2.5)

Taking the g-trace of the above equation gives (2.2). �

Let (M, g) be a Riemannian manifold. If there exists ρ ∈ C∞(M), called the potential function,
such that

£V g = 2ρg

then we say that the vector field V is a conformal vector field (see Yano [14]). Moreover, V is
homothetic when ρ is constant, whereas Killing when ρ = 0. Now, we recall the following result
from Yano [14].

Lemma 2.2. A conformal vector field V on a Riemannian n-manifold (Mn, g) satisfies

(£V Ric)(X,Y ) = −(n− 2)g(∇XDρ, Y )− (∆ρ)g(Y,X),

£V s = −2ρs− 2(n− 1)∆ρ,

where ∆ = divD is the Laplacian operator of g.
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Lemma 2.3. If the metric of Riemannian three-manifold M equipped with a concurrent-recurrent
vector field is a Yamabe soliton, then the scalar curvature of M is harmonic and the Yamabe soliton
is shrinking with λ = −6α2.

P r o o f. First, we take Lie-derivative to g(ν, ν) = 1 along V , and employ the equations (1.2) and
(1.3) to get

(LV ν[)ν = −ν[(LV ν) = (s− λ). (2.6)

Now, taking n = 3 and ρ = s− λ in Lemma 2.2, we find

(LV Ric)(X,Y ) = −g(∇XDs, Y )− (∆s)g(X,Y ), (2.7)

LV s = −2s(s− λ)− 4∆s. (2.8)

In Riemannian three-manifolds, the curvature tensor is given by

R(X,Y )Z = g(Z, Y )QX − g(Z,X)QY + g(Z,QY )X − g(Z,QX)Y

− s

2
{g(Z, Y )X − g(Z,X)Y }. (2.9)

Taking Z = ν in the above equation and using (2.3), we easily deduce

Ric(X,Y ) =
(s

2
+ α2

)
g(Y,X)−

(
3α2 +

s

2

)
ν[(X)ν[(Y ). (2.10)

Lie-differentiating of (2.10) along V and employing the equations (2.8) and (1.2), we find

(LV Ric)(X,Y ) = (2α2(s− λ)− 2∆s)g(X,Y ) + (s(s− λ) + 2∆s)ν[(X)ν[(Y )

−
(s

2
+ 3α2

)
{(LV ν[)(X)ν[(Y ) + ν[(X)(LV ν[)(Y )}.

Comparing the above equation with (2.7), we obtain

g(∇XDs, Y ) = (∆s− 2α2(s− λ))g(X,Y )− (s(s− λ) + 2∆s)ν[(X)ν[(Y )

+
(s

2
+ 3α2

)
{(LV ν[)(X)ν[(Y ) + ν[(X)(LV ν[)(Y )}. (2.11)

Replacing X and Y in the above equation by ν and utilizing (2.6), we see that

ν(νs) = −∆s+ 4α2(s− λ).

Now, we use (2.2) in the above equation in order to obtain

∆s = −4α2(λ+ 6α2). (2.12)

We replace Y by ν in (2.11) and use the equations (2.6) and (2.12) to deduce

g(∇XDs, ν) = (4α2(λ+ 6α2) + ((α2 − s

2
)s− λ))ν[(X) + (

s

2
+ 3α2)(LV ν[)X.

On the other hand, differentiating (2.2) along X and utilizing (1.3) we obtain

g(∇XDs, ν) = −3α(Xs)− 2α2(s+ 6α2)ν[(X).

Using the preceding equation in (2.11), we get(s
2

+ 3α2
)

(LV ν[)(X) = {(s− λ)(
s

2
− α2)− 2α2(s+ 6α2)

− 4α2(λ+ 6α2)}ν[(X)− 3α(Xs).

Substituting the above equation in (2.11) and using (2.12), we find

g(∇XDs, Y ) = −2α2(λ+ s+ 12α2)g(X,Y ) + 2α2(λ− 3s− 12α2)ν[(X)ν[(Y )

− 3α(Xs)ν[(Y )− 3α(Y s)ν[(X),
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which further leads to

∇XDs = −2α2(λ+ s+ 12α2)X + 2α2(λ− 3s− 12α2)ν[(X)ν

− 3α(Xs)ν − 3αν[(X)Ds. (2.13)

Replacing X in the previous equation by ν and applying (2.2), we get

∇νDs = −2α2(s+ 6α2)ν − 3αDs.

Operating the above equation by ∇X gives us

∇X∇νDs = −2α2(Xs)ν − 3α∇XDs− 2α2(s+ 6α2)∇Xν. (2.14)

On the other hand, differentiating (2.13) along ν, we get

∇ν∇XDs = −2α2(νs)X − 2α2(λ+ s+ 12α2)∇νX − 6α2(νs)ν[(X)ν

+ 2α2(λ− 3s− 12α2)ν[(∇νX)ν − 3αν(Xs)ν

− 3αν[(∇νX)Ds− 3αν[(X)∇νDs.

Again from (2.13) we immediately get

∇[X,ν]Ds = −2α2(λ+ s+ 12α2)(∇Xν −∇νX)− 3αg(∇Xν −∇νX,Ds)ν

+ 2α2(λ− 3s− 12α2)ν[(∇Xν −∇νX)ν − 3αν[(∇Xν −∇νX)Ds. (2.15)

Now, employing the equations (2.14)–(2.15), one can easily get

R(X, ν)Ds = −2α2(Xs)ν − 3α∇XDs− 2α2(s+ 6α2)∇Xν + 2α2(νs)X

+ 2α2(λ+ s+ 12α2)∇νX + 6α2(νs)ν[(X)ν + 3αν[(X)∇νDs

− 2α2(λ− 3s− 12α2)ν[(∇νX)ν + 3αν(Xs)ν + 3αν[(∇νX)Ds

+ 2α2(λ+ s+ 12α2)(∇Xν −∇νX) + 3αg(∇Xν −∇νX,Ds)ν

+ 3αν[(∇Xν −∇νX)Ds− 2α2(λ− 3s− 12α2)ν[(∇Xν −∇νX)ν.

Contracting the above equation, we find

Ric(ν,Ds) = 10α2(νs)− 3α∆s− 4α3(s+ 6α2) + 6αν(νs) + 4α3(λ+ s+ 12α2).

Making use of (2.2) together with (2.12) in the preceding equation, we obtain

Ric(ν,Ds) = 4α3(3λ+ s+ 30α2).

Now, we employ (2.4) and (2.2) in the above equation to deduce the value of soliton constant
λ = −6α2, which means Yamabe soliton is expanding. Using this in (2.12), we have ∆s = 0, that
is, the scalar curvature is harmonic. �

3. Proof of the main results

Proof of Theorem 1.1. First, differentiate (1.2) along Z to achieve

(∇ZLV g) = 2(Zs)g(X,Y ). (3.1)

In [14], Yano reveals the following relation:

(LV∇Xg−∇XLV g −∇[V,X]g)(Y,Z)

= −g((LV∇)(X,Z), Y )− g((LV∇)(X,Y ), Z).
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Due to ∇g = 0, it appears from the preceding equation that

(∇XLV g)(X,Y ) = g((LV∇)(X,Z), Y ) + g((LV∇)(X,Y ), Z).

Utilizing the symmetric property of LV∇, the foregoing equation brings into view

2g((LV∇)(X,Y ), Z) = (∇Y LV g)(Z,X) + (∇XLV g)(Y,Z)− (∇ZLV g)(X,Y ).

Utilizing (3.1) in the previous equation, we find

(LV∇)(X,Y ) = (Xs)Y + (Y s)X − g(Y,X)Ds. (3.2)

Taking differentiation of (3.2) covariantly along Z yields

(∇ZL∇)(X,Y ) = g(∇ZDs,X)Y + g(∇ZDs, Y )X − g(Y,X)∇ZDs.
Applying the above relation on the following well known formula

(LVR)(X,Y )Z = (∇XLV∇)(Y,Z)− (∇Y LV∇)(X,Z),

appears that

(LVR)(X,Y )Z = g(∇XDs,Z)Y − g(Z, Y )∇XDs− g(∇YDs,Z)X + g(X,Z)∇YDs.
Replacing Z in the previous equation by ν and calling back λ = −6α2 and the equation (2.13), we
infer

(LVR)(X,Y )ν =(4α2(s+ 6α2)ν[(Y ) + 3α(Y s))X − 3α(Y s)ν[(X)ν

− (4α2(s+ 6α2)ν[(X) + 3α(Xs))Y + 3α(Xs)ν[(Y )ν. (3.3)

At this point, we differentiate (2.3) and apply (1.2) to ensure

(LVR)(X,Y )ν =− α2{(g(Y,LV ν) + 2(s+ 6α2)ν[(Y ))X

− (g(X,LV ν) + 2(s+ 6α2)ν[(X))Y } −R(X,Y )LV ν. (3.4)

Subtracting (3.3) from (3.4), we see that

R(X,Y )LV ν = (6α2(s+ 6α2)ν[(X) + 3α(Xs) + α2g(LV ν,X))Y + 3α(Y s)ν[(X)ν

−(6α2(s+ 6α2)ν[(Y ) + 3α(Y s) + α2g(Y,LV ν))X − 3α(Xs)ν[(Y )ν.

Contracting the above equation, we may obtain that

Ric(Y,LV ν) = −6α2(s+ 6α2)− 3α(Y s)− 2α2g(Y,LV ν).

By the support of (2.10) and (2.6), the above equation shows that

(s+ 6α2)LV ν = −(s+ 18α2)(s+ 6α2)ν − 6αDs. (3.5)

If possible, we suppose that on an open subset O of M there holds s 6= −6α2. Then it appears
from equation (3.5) that

LV ν = −(s+ 18α2)ν − 6α

s+ 6α2
Ds. (3.6)

Replacing Y with ν in the well-known formula (see [14]):

(LV∇)(X,Y ) = LV∇XY −∇XLV Y −∇[V,X]Y,

and then utilizing λ = −6α2, (1.3) and (3.6) we obtain the following equality

(LV∇)(X, ν) =− α(s+ 30α2)ν[(X)ν +
s− 6α2

s+ 6α2
(Xs)ν − 12α2

s+ 6α2
ν[(X)Ds

+ α(s+ 6α2)X − 6α

(s+ 6α2)2
(Xs)Ds. (3.7)
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On the other hand, replacing Y in (3.2) by ν and using (2.2) we have

(LV∇)(X, ν) = (Xs)ν − 2α(s+ 6α2)X − ν[(X)Ds. (3.8)

Comparing (3.7) with (3.8) implies that(
1− s− 6α2

s+ 6α2

)
(Xs)ν − 3α(s+ 6α2)X +

(
12α2

s+ 6α2

)
ν[(X)Ds

+α(s+ 30α2)ν[(X)ν +
6α

(s+ 6α2)2
(Xs)Ds = 0. (3.9)

Finally, replacing X by ν in (3.9) and applying (2.2) we get

Ds = −2α(s+ 6α2)ν. (3.10)

Using the previous equation in (3.6) gives us LV ν = −(s+6α2)ν. This relation together with (1.2)
gives

(LV ν[)(X) = (LV g)(X, ν) + g(X,LV ν) = (s+ 6α2)ν[(X). (3.11)

With the help of Lemma 2.3, one can easily derived from (2.8) that

LV s = −2s(s+ 6α2). (3.12)

Now we write (3.10) as: ds = −2α(s + 6α2)ν[. Now, we take Lie derivative to this equation in
order to deduce

LV ds = −2α(LV s)ν[ − 2α(s+ 6α2)LV ν[.
From (3.12), the preceding equation transforms into

LV ds = 4αs(s+ 6α2)ν[ − 2α(s+ 6α2)LV ν[. (3.13)

Operating the equation (3.12) by d and using ds = −2α(s+ 6α2)ν[, we have

LV ds = 4α(s+ 6α2)2ν[ + 4αs(s+ 6α2)ν[, (3.14)

where used the fact that Lie-derivative commutes with the exterior derivative. Now, comparing
(3.13) with (3.14), leads us to the following formula

(s+ 6α2){LV ν[ + 2(s+ 6α2)}ν[ = 0.

As we know s 6= −6α2 on O, we must have

LV ν[ = −2(s+ 6α2)ν[.

Comparing the previous equation with (3.11) shows that the scalar curvature s = −6α2 on O and
this is a contradiction. So, we must have s = −6α2 on M . Substituting this in (2.10) we see that
Ric = (1−n)α2g which along with (2.9) shows that the manifold is of constant negative curvature
−α2, and consequently, V is Killing. This concludes the proof of the theorem.

Proof of Theorem 1.2. We may write the equation (1.4) as

∇XDf =
1

τ
g(X,Df)Df + (s− λ)Df. (3.15)

Using the previous equation in the definition of curvature tensor, we find

R(X,Y )Df =
(s− λ)

τ
{(Y f)X − (Xf)Y }+ (Xs)Y − (Y s)X. (3.16)

Replacing X by ν in the previous equation and comparing the obtained equation with R(ν,X)Df =
−α2{g(X,Df)ν − (νf)X} (which follows from (2.3)), we have

− α2(Y f)ν + α2(νf)Y =
s− λ
τ

(Y f)ν − s− λ
τ

(νf)Y + (νs)Y − (Y s)ν. (3.17)
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On the other hand, we contract the equation (3.16) over X to find the expression of Ricci tensor
as

Ric(Y,Df) =
(n− 1)(s− λ)

τ
(Y f)− (n− 1)(Y s). (3.18)

Replacing Y in the above equation by ν and utilizing (2.4) imply

(νs)− α2(νf) =
s− λ
τ

(νf), (3.19)

which is a relation involving the scalar curvature and the potential function of the τ -quasi Yamabe
gradient soliton. Feeding (3.19) in (3.17), we obtain

τDs = (s− λ+ τα2)Df. (3.20)

Differentiating (3.20) with respect to X and using (3.15), we reach at

τ∇XDs = (Xs)Df + (Xf)Df + (s− λ+ τα2)(s− λ)X. (3.21)

Taking scalar product of (3.16) with Df , we have (Xs)Df = (Xf)Ds. Employing this in (3.21),
we find

τ∇XDs = 2g(X,Df)Ds+ (s− λ+ τα2)(s− λ)X. (3.22)

At this stage, we use (3.20) in (3.18) in order to ensure

QDf = −α2(n− 1)Df.

Differentiating the previous equation with respect to X and calling back (3.15) give

(∇XQ)Df + (s− λ)QX + α2(n− 1)(s− λ)X = 0. (3.23)

On the other hand, from second Bianchi identity one can find

traceg{X → (∇XQ)Y } = (div Q)(Y ) =
1

2
Y (s).

Now, we contract (3.23) over X and utilize the above identity to deduce

g(Ds,Df) + 2(s− λ)(s+ nα2(n− 2)) = 0. (3.24)

Combining the equations (3.15), (3.20) and (3.22) one can easily find

3

τ
g(X,Df)g(Ds,Df) + 2

(s− λ+ τα2)(s− λ)

τ
g(X,Df)

= −2
(2s− 2λ+ τα2)(s− λ+ τα2)

τ
g(X,Df) = 0.

Setting X = Df in the above equation and using the fact that |Df | 6= 0 (as the soliton is non-
trivial), we have

3

τ
g(Ds,Df) + 2

(s− λ+ τα2)(s− λ)

τ
+ 2

(2s− 2λ+ τα2)(s− λ+ τα2)

τ
= 0.

Now, we employ (3.24) in the preceding equation to deduce

(s− λ+ τα2)(3s− 3λ+ τα2)− 3(s− λ)(s+ nα2(n− 1)) = 0.

The above equation shows that s is constant. So that we have ν(s) = 0, which together tracing of
(2.5) gives that s = −nα2(n− 1). This completes the proof.
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4. Example

In this section, we construct a Riemannian manifold (M, g) admitting a concurrent-recurrent
vector field for which the metric g is a Yamabe soliton.

Consider a manifold M = {(u, v, w) ∈ R3 : v > 0, w 6= 0} with a coordinate system (u, v, w).
Let us define a Riemannian metric on M as

g = 2α2w2(du)2 +
α2w2

2v
(du⊗ dv + dv ⊗ du) +

α2w2

4v2
(dv)2 +

1

α2w2
(dw)2,

where α(6= 0) ∈ R. From Koszul’s formula, one can easily compute

∇ ∂
∂u

∂

∂u
= −2α4w3 ∂

∂w
, ∇ ∂

∂u

∂

∂v
= −α

4w3

2v

∂

∂w
, ∇ ∂

∂u

∂

∂w
=

1

w

∂

∂u
,

∇ ∂
∂v

∂

∂u
= −α

4w3

2v

∂

∂w
, ∇ ∂

∂v

∂

∂v
= −1

v

∂

∂v
− α4w3

4v2
∂

∂w
, ∇ ∂

∂v

∂

∂w
=

1

w

∂

∂v
,

∇ ∂
∂w

∂

∂u
=

1

w

∂

∂u
, ∇ ∂

∂w

∂

∂v
=

1

w

∂

∂v
, ∇ ∂

∂w

∂

∂w
= − 1

w

∂

∂w
.

Let us take ν = αw ∂
∂w . Then, from above we can verify that

∇Xi
ν = α{Xi − ν[(Xi)ν},

for all 1 ≤ i ≤ 3, where X1 = ∂
∂u , X2 = ∂

∂v and X3 = ∂
∂w . Thus, the vector field ν = αw ∂

∂w is
concurrent-recurrent vector field. Now we use Levi-Civita connection to find the non-zero compo-
nents of curvature tensor as given below

R(
∂

∂u
,
∂

∂v
)
∂

∂u
= −α

4w2

2v

∂

∂u
+ 2α4w2 ∂

∂v
, R(

∂

∂v
,
∂

∂w
)
∂

∂v
=
α4w2

4v2
∂

∂w
,

R(
∂

∂u
,
∂

∂w
)
∂

∂w
= − 1

w2

∂

∂u
, R(

∂

∂u
,
∂

∂w
)
∂

∂v
=
α4w2

2v

∂

∂w
,

R(
∂

∂u
,
∂

∂v
)
∂

∂v
=
α4w2

2v

∂

∂v
− α4w2

4v2
∂

∂u
, R(

∂

∂v
,
∂

∂w
)
∂

∂w
= − 1

w2

∂

∂v
,

R(
∂

∂u
,
∂

∂w
)
∂

∂u
= 2α4w2 ∂

∂w
, R(

∂

∂v
,
∂

∂w
)
∂

∂u
=
α4w2

2v

∂

∂w
,

From the curvature tensor we find the scalar curvature as s = −6α2. Also, it is not hard to verify
that

R(Xi, Xj)Xk = −α2(g(Xj , Xk)Xi − g(Xi, Xk)Xj),

for all 1 ≤ i, j, k ≤ 3. This shows that (M, g) is of constant curvature −α2.

Now we shall show that the metric g is a Yamabe soliton on M . Let

V =
ln(v)

2

∂

∂u
− 2v(ln(v) + 2u)

∂

∂v
+ w

∂

∂w

be a vector field on M . It is not hard to see that LV g = 0, and so V is Killing. Thus, we see that

LV g = (s− λ)g

for λ = −6α2. Hence, g is a Yamabe soliton having the potential vector field V = ln(v)
2

∂
∂u −

2v(ln(v)+2u) ∂∂v +w ∂
∂w and the soliton constant λ = −6α2. Also, we see that this example verifies

our Theorem 1.1.

509



D. M. NAIK — G. FASIHI-RAMANDI — H. A. KUMARA — V. VENKATESHA

REFERENCES

[1] DESHMUKH, S.—CHEN, B. Y.: A note on Yamabe solitons, Balkan J. Geom. Appl. 23(1) (2018), 37–43.
[2] ERKEN, I. K.: Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Period.

Math. Hungar. 80 (2020), 172–184.

[3] GHOSH, A.: Yamabe soliton and quasi Yamabe soliton on Kenmotsu manifold, Math. Slovaca 70(1) (2020),
151–160.

[4] HAMILTON, R.: The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237–262.

[5] HUANG, G. Y.—LI, H. Z.: On a classification of the quasi Yamabe gradient solitons, Methods Appl. Anal.
21(3) (2014), 379–390.

[6] MA, L.—CHENG, L.: Properties of complete non-compact Yamabe solitons, Ann. Global Anal. Geom. 40(3)

(2011), 379–387.
[7] NAIK, D. M.: Ricci solitons on Riemannian manifolds admitting certain vector field, Ric. Mat. (2021), https:

//doi.org/10.1007/s11587-021-00622-z.

[8] SUH, Y. J.—DE, U. C.: Yamabe solitons and Ricci solitons on almost co-Kähler manifolds, Canad. Math.
Bull. 62 (2019), 653–661.

[9] SUH, Y. J.—DE, U. C.: Yamabe solitons and gradient Yamabe solitons on three-dimensional N(κ)-contact
manifolds, Int. J. Geom. Methods Mod. Phys. 17(12) (2020), Art. ID 2050177.

[10] TOKURA, W.—ADRIANO, L.—PINA, R.—BARBOZA, M.: On warped product gradient Yamabe solitons,

J. Math. Anal. Appl. 473(1) (2019), 201–214.
[11] VENKATESHA, V.—NAIK, D. M.: Yamabe Solitons on 3-dimensional contact metric manifolds with Qϕ =

ϕQ, Int. J. Geom. Methods Mod. Phys. 16(3) (2019), Art. ID 1950039.

[12] WANG, L. F.: On non compact quasi Yamabe gradient solitons, Differential Geom. Appl. 31 (2013), 337–347.
[13] WANG, Y.: Yamabe soliton on three dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin

23 (2016), 345–355.

[14] YANO, K.: Integral Formulas in Riemannian Geometry, Marcel Dekker, 1970.

Received 11. 1. 2022
Accepted 19. 3. 2022

* Department of Mathematics
Kuvempu University

Shivamogga, Karnataka 577451

INDIA

E-mail : devarajamaths@gmail.com

** Department of Pure Mathematics

Faculty of Science
Imam Khomeini International University

Qazvin

IRAN

E-mail : fasihi@sci.ikiu.ac.ir

*** Department of Mathematics

BMS Institute of Technology and Management

Yelahanka, Bangalore 560064
INDIA

E-mail : arunmathsku@gmail.com

**** Department of Mathematics
Kuvempu University

Shankaraghatta, Karnataka 577451

INDIA

E-mail : vensmath@gmail.com

510

https://doi.org/10.1007/s11587-021-00622-z
https://doi.org/10.1007/s11587-021-00622-z

	1. Introduction
	2. Background and key lemmas
	2.1. Key lemmas

	3. Proof of the main results
	4. Example
	REFERENCES

