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Abstract

Let the Riemannian metric of a three-dimensional Kenmotsu manifold be
a Yamabe soliton. In this paper, we prove that the Kenmotsu manifold is of
constant sectional curvature −1 and the Yamabe soliton is expanding with
the soliton constant λ = −6.

1 Introduction

It is well known that a Riemannian metric g of an n-dimensional complete
Riemannian manifold (Mn, g) is said to be a Yamabe soliton if it satisfies

LV g = (λ − r)g (1.1)

for a constant λ ∈ R and a smooth vector field V on Mn, where r is the scalar
curvature of g and L denotes the Lie-derivative operator. A Yamabe soliton is
said to be shrinking, steady or expanding according to λ > 0, λ = 0 or λ < 0
respectively and λ is said to the soliton constant.

Given a smooth Riemannian manifold (Mn, g0), the evolution of the metric g0

in time t to g = g(t) through the following equation

∂

∂t
gt = −rg, g(0) = g0 (1.2)
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is known as the Yamabe flow (which was introduced by Hamilton [6]). A Yamabe
soliton is a special soliton of the Yamabe flow that moves by one parameter family
of diffeomorphisms φt generated by a fixed vector field V on Mn (for more details
see [2, 12]). Given a Yamabe soliton, if V = D f holds for a smooth function f on
Mn, equation (1.1) becomes

Hess f =
1

2
(λ − r)g, (1.3)

where Hess f denotes the Hessian of f and D denotes the gradient operator of g
on Mn. In this case f is called the potential function of the Yamabe soliton and g
is said to be a gradient Yamabe soliton. A Yamabe soliton (respectively, gradient
Yamabe soliton) is said to be trivial when V is Killing (respectively, f is constant).

On the other hand, in 1969, S. Tanno in [13] classified the connected almost
contact metric manifolds whose automorphism groups have maximal dimen-
sions as follows.

(1) Homogeneous normal contact Riemannian manifolds with constant φ-holo-
morphic sectional curvature if k(ξ, X) > 0;

(2) Global Riemannian product of a line or a circle and a Kählerian manifold
with constant holomorphic sectional curvature if k(ξ, X) = 0;

(3) A warped product space R ×λ Cn if k(ξ, X) < 0; where k(ξ, X) denotes the
sectional curvature of the plane section containing the characteristic vector
field ξ and an arbitrary vector field X.

The manifolds of the first class were characterized by some tensor equations
and have a Sasakian structure. The manifolds of the second class were char-
acterized by some tensor relations admitting a cosymplectic structure. In 1972,
K. Kenmotsu in [9] obtained some tensor equations to characterize the manifolds
of the third class. Since then the manifolds of the third class were called Ken-
motsu manifolds.

Yamabe solitons on a three-dimensional Sasakian manifold were studied by
R. Sharma [12]. As far as we know, Yamabe solitons on the other almost contact
metric manifolds have not yet been studied. In this paper, we start the study
of Yamabe solitons on a three-dimensional Kenmotsu manifold and obtain some
local classification theorems.

Theorem 1.1. Suppose that the Riemannian metric of a three-dimensional Kenmotsu
manifold (M3, φ, ξ, η, g) is a Yamabe soliton. Then the manifold is of constant sectional
curvature −1 and the Yamabe soliton is expanding with λ = −6.

According to Chow-Lu-Ni [2], the metric of any compact Yamabe gradient
soliton is a metric of constant scalar curvature (see also Daskalopoulos-Sesum [3]
and Hsu [7]). Notice that Sharma [12, Theorem 1] implies that the scalar curvature
of a Yamabe soliton on a three-dimensional Sasakian manifold is a constant. From
our Theorem 1.1, we see easily that the scalar curvature of a Yamabe soliton on a
three-dimensional Kenmotsu manifold M3 is also a constant. However, a three-
dimensional Kenmotsu manifold can not be compact because of divξ = 2 (see
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Kenmotsu [9, Section 3]), where ξ is the Reeb vector field of M3 and div denotes
the divergence operator on M3.

The present paper is organized as follows. In Section 2, we recall some well
known basic formulas and properties of Kenmotsu manifolds. Section 3 is
devoted to giving the detailed proof of Theorem 1.1 after we present some key
lemmas. Finally, in the last section, we discuss the relation between the Yamabe
solitons and Ricci solitons on three-dimensional Kenmotsu manifolds.

2 Preliminaries

In this section, we shall recall some basic notions and properties of Kenmotsu
manifolds. An almost contact structure (see [1]) on a (2n + 1)-dimensional smooth
manifold M2n+1 is a triplet (φ, ξ, η), where φ is a (1, 1)-type tensor, ξ a global
vector field and η a 1-form, such that

φ2 = −id + η ⊗ ξ, η(ξ) = 1, (2.1)

where id denotes the identity mapping and relation (2.1) implies that φ(ξ) = 0,
η ◦ φ = 0 and rank(φ) = 2n. Throughout this paper, D is denoted by the contact
distribution defined by D = ker(η) = Im(φ). A Riemannian metric g on M2n+1

is said to be compatible with the almost contact structure (φ, ξ, η) if

g(φX, φY) = g(X, Y)− η(X)η(Y) (2.2)

for any vector fields X, Y on M2n+1. An almost contact structure endowed with a
compatible Riemannian metric is said to be an almost contact metric structure.

The fundamental 2-form Φ on an almost contact metric manifold M2n+1 is
defined by Φ(X, Y) = g(X, φY) for any vector fields X and Y on M2n+1. An
almost contact metric manifold satisfying dη = 0 and dΦ = 2η ∧ Φ is said to be
an almost Kenmotsu manifold (see [8]).

The normality condition of an almost contact structure is expressed by the
vanishing of the tensor Nφ = [φ, φ] + 2dη ⊗ ξ, where [φ, φ] denotes the Nijenhuis
tensor of φ. For more details regarding the normality of an almost contact metric
structure we refer the reader to Blair’s book [1]. A normal almost Kenmotsu
manifold is said to be a Kenmotsu manifold (see [8]).

On an almost Kenmotsu manifold (M2n+1, φ, ξ, η, g) we set h = 1
2Lξφ, where

L is the Lie differentiation. Generally, the vanishing of tensor field h means
that the Reeb foliation of M2n+1 is conformal (see [10]). In particular, a three-
dimensional almost Kenmotsu manifold M3 is a Kenmotsu manifold if and only
if the (1, 1)-type tensor field h vanishes (see Proposition 3 of [4]). This is equiva-
lent to

(∇Xφ)Y = g(φX, Y)ξ − η(Y)φX (2.3)

for any vector fields X, Y on M3, where ∇ denotes the Levi-Civita connection of
the metric g. For a (2n + 1)-dimensional Kenmotsu manifold, the following four
formulas can be found in Kenmotsu [9]:

∇Xξ = X − η(X)ξ, (2.4)
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R(X, Y)ξ = −η(Y)X + η(X)Y, (2.5)

(∇Xη)Y = g(X, Y) − η(X)η(Y), (2.6)

S(ξ, ξ) = g(Qξ, ξ) = −2n, (2.7)

for any X, Y ∈ Γ(TM), where S, Q and Γ(TM) denote the Ricci curvature tensor,
the Ricci operator with respect to the metric g and the Lie algebra of all vector
fields on M2n+1, respectively.

On an almost contact metric manifold M, if the Ricci operator satisfies

Q = αid + βη ⊗ ξ, (2.8)

where both α and β are smooth functions, then the manifold is said to be an
η-Einstein manifold. An η-Einstein manifold with β vanishing and α a constant
is obviously an Einstein manifold. An η-Einstein manifold is said to be proper
η-Einstein if β 6= 0.

3 Main Results

Before giving the detailed proof of our main result, we first present some key
lemmas used later. By equation (1.1), we obtain easily that for a Yamabe soliton
the vector field V is a conformal vector field, that is,

LV g = 2ρg, (3.1)

where ρ is called the conformal coefficient (in this context by relation (1.1) we have

ρ = λ−r
2 ). In particular, a conformal vector field with a vanishing conformal

coefficient reduces to a Killing vector field.

Lemma 3.1 (Yano [14]). On an n-dimensional Riemannian manifold (Mn, g) endowed
with a conformal vector field V, we have

(LVS)(X, Y) = −(n − 2)g(∇X Dρ, Y) + (∆ρ)g(X, Y),

LVr = −2ρr + 2(n − 1)∆ρ

for any vector fields X and Y, where D denotes the gradient operator and ∆ := −divD
denotes the Laplacian operator of g.

Lemma 3.2. On any three-dimensional Kenmotsu manifold (M3, φ, ξ, η, g) we have

ξ(r) = −2(r + 6). (3.2)

Proof. It is well known that on any three-dimensional Riemannian manifold
(M3, g) the following formula holds

R(X, Y)Z = g(Y, Z)QX − g(X, Z)QY + S(Y, Z)X − S(X, Z)Y

−
r

2
{g(Y, Z)X − g(X, Z)Y}

(3.3)
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for any vector fields X, Y, Z on M3. Replacing Y = Z by ξ in the above equation
and using (2.5), (2.7), we have

Q =
( r

2
+ 1

)

id −
( r

2
+ 3

)

η ⊗ ξ. (3.4)

This means that M3 is an η-Einstein manifold. On the other hand, we also have
the following well known formula on Riemannian manifolds

trace{Y → (∇YQ)X} =
1

2
∇Xr

for any vector field X. Making using of (3.4) in the above formula and taking into
account (2.4) and (2.7) we obtain

ξ(r)η(X) = −2(r + 6)η(X)

for any vector field X ∈ Γ(TM). Substituting X with ξ in the above equation we
obtain (3.2). This completes the proof.

Lemma 3.3. Suppose that the Riemannian metric of a three-dimensional Kenmotsu man-
ifold (M3, φ, ξ, η, g) is a Yamabe soliton. Then the Yamabe soliton is expanding with
λ = −6 and the scalar curvature of M3 is harmonic, that is,

∆r = 0. (3.5)

Proof. Notice that the Reeb vector field ξ is a unit vector field, that is, g(ξ, ξ) = 1.
Taking the Lie-derivative of this relation along the vector field V and using the
second equation of (2.1) and (1.1), we obtain

η(LV ξ) = −(LVη)(ξ) =
r − λ

2
. (3.6)

As the Riemannian metric g of M3 is a Yamabe soliton, applying ρ = λ−r
2 and

n = 3 in Lemma 3.1 we have

(LVS)(X, Y) =
1

2
g(∇XDr, Y)−

1

2
(∆r)g(X, Y), (3.7)

LVr = r(r − λ)− 2∆r (3.8)

for any vector fields X, Y ∈ Γ(TM). On the other hand, equation (3.4) can be
re-written as

S(X, Y) =
( r

2
+ 1

)

g(X, Y) −
( r

2
+ 3

)

η(X)η(Y)

for any vector fields X, Y ∈ Γ(TM). Taking the Lie-derivative of this relation
along the vector field V and making use of (3.6), (3.8) and (1.1), we obtain

(LVS)(X, Y) =(−∆r + λ − r)g(X, Y) +
(

∆r +
r

2
(λ − r)

)

η(X)η(Y)

−
( r

2
+ 3

)

{(LVη)(X)η(Y) + (LVη)(Y)η(X)}
(3.9)
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for any vector fields X, Y ∈ Γ(TM). Consequently, combining (3.7) with (3.9) we
have

g(∇X Dr, Y) =(−∆r + 2(λ − r))g(X, Y) + (2∆r + r(λ − r))η(X)η(Y)

− (r + 6){(LV η)(X)η(Y) + (LVη)(Y)η(X)}
(3.10)

for any vector fields X, Y ∈ Γ(TM). Putting X = Y = ξ into (3.10) and making
use of (2.3) and (3.6), we obtain

ξ(ξ(r)) = ∆r + 4(r − λ).

Clearly, making use of (3.2) in the above relation we obtain

∆r = 4(λ + 6). (3.11)

Substituting Y with ξ in equation (3.10) and applying Lemma 3.2, relations
(3.6) and (3.11), we obtain

(r + 6)(LV η)X =
(

4(λ + 6)−
( r

2
− 1

)

(r − λ) + 2(r + 6)
)

η(X) + 3X(r)

for any vector field X ∈ Γ(TM). Putting the above equation into (3.10) we get

∇XDr =− 2(λ + r + 12)X

+ 2(λ − 3r − 12)η(X)ξ − 3X(r)ξ − 3η(X)Dr
(3.12)

for any vector field X ∈ Γ(TM). Substituting X with ξ in equation (3.12) and
making use of (3.2), we have ∇ξ Dr = −2(r + 6)ξ − 3Dr.

Next we shall consider a local orthonormal frame {ei : i = 1, 2, 3} on M3.
Making use of (3.12), (2.4), (3.11) and applying Lemma 3.2 we may obtain

S(ξ, Dr)

=−
3

∑
i=1

g(∇ξ∇ei
Dr, ei) +

3

∑
i=1

g(∇ei
∇ξ Dr, ei) +

3

∑
i=1

g(∇[ξ,ei]
Dr, ei)

=4(r + 4λ + 30).

(3.13)

On the other hand, it follows from equations (3.4) and (3.2) that

S(ξ, Dr) = −2ξ(r) = 4(r + 6). (3.14)

Consequently, subtracting (3.13) from (3.14) we obtain

λ = −6. (3.15)

This means that the Yamabe soliton is expanding. Finally, taking into account
(3.15) in relation (3.11) we obtain (3.5). This completes the proof.

Proof of Theorem 1.1. Since the metric g is parallel with respect to the Levi-
Civita connection ∇, then by taking the covariant differentiation of (1.1) along
arbitrary vector field X we may obtain

∇XLV g = −X(r)g. (3.16)



Yamabe solitons on three-dimensional Kenmotsu manifolds 351

According to Yano [14], we have the following well known formula

(LV∇Xg −∇XLV g −∇[V,X]g)(Y, Z) =

− g((LV∇)(X, Y), Z) − g((LV∇)(X, Z), Y).

Making use of the parallelism of the metric g again on the above formula we
have

(∇XLV g)(Y, Z) = g((LV∇)(X, Y), Z) + g((LV∇)(X, Z), Y). (3.17)

Since (LV∇) is a symmetric operator, i.e., (LV∇)(X, Y) = (LV∇)(Y, X), mak-
ing use of (3.16) in (3.17) we obtain

(LV∇)(X, Y) =
1

2
g(X, Y)Dr −

1

2
X(r)Y −

1

2
Y(r)X, (3.18)

where D denotes the divergence operator on M3. Taking the covariant differenti-
ation of (3.18) along arbitrary vector field Z ∈ Γ(TM) we have

(∇ZLV∇)(X, Y) =
1

2
g(X, Y)∇Z Dr −

1

2
g(X,∇Z Dr)Y −

1

2
g(Y,∇ZDr)X.

Applying the above relation on the following well known formula

(LV R)(X, Y)Z = (∇XLV∇)(Y, Z) − (∇YLV∇)(X, Z),

it follows that

(LV R)(X, Y)Z

=
1

2
g(Y, Z)∇X Dr −

1

2
g(X, Z)∇Y Dr −

1

2
g(Z,∇X Dr)Y

+
1

2
g(Z,∇Y Dr)X +

1

2
[g(X,∇Y Dr)− g(Y,∇X Dr)]Z.

(3.19)

Substituting Z with ξ in (3.19) and making use of (3.12), (3.15), we get

(LV R)(X, Y)ξ =

(

2(r + 6)η(X) +
3

2
X(r)

)

Y −
3

2
X(r)η(Y)ξ

−

(

2(r + 6)η(Y) +
3

2
Y(r)

)

X +
3

2
Y(r)η(X)ξ

(3.20)

for any vector fields X, Y. On the other hand, by (1.1) and (2.5) and a straightfor-
ward calculation we obtain that

(LV R)(X, Y)ξ = (g(LV ξ, X)− (r + 6)η(X)) Y

− (g(LVξ, Y)− (r + 6)η(Y)) X − R(X, Y)LV ξ
(3.21)

for any vector fields X, Y. Subtracting (3.20) from (3.21) we obtain

R(X, Y)LV ξ

=

(

g(LV ξ, X)− 3(r + 6)η(X) −
3

2
X(r)

)

Y +
3

2
X(r)η(Y)ξ

−

(

g(LVξ, Y)− 3(r + 6)η(Y)−
3

2
Y(r)

)

X −
3

2
Y(r)η(X)ξ.
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Contracting X in this equation we may obtain that

S(Y,LV ξ) = −2g(Y,LV ξ) + 3(r + 6)η(Y) +
3

2
Y(r) (3.22)

for any vector field Y. Making use of (3.4) and (3.6) in (3.22), we have

(r + 6)LVξ =
1

2
(r + 6)(r + 18)ξ + 3Dr. (3.23)

Next we suppose that on an open subset U of M3 there holds r 6= −6, then it
follows from equation (3.23) that

LVξ =
r + 18

2
ξ +

3

r + 6
Dr. (3.24)

Substituting Y with ξ in the following well known formula (see [14])

(LV∇)(X, Y) = LV∇XY −∇XLVY −∇[V,X]Y

and making use of (1.1), (2.4) and (3.24) we obtain

(LV∇)(X, ξ) =
6

r + 6
η(X)Dr +

3

(r + 6)2
X(r)Dr

+
6 − r

2(r + 6)
X(r)ξ +

( r

2
+ 15

)

η(X)ξ −
( r

2
+ 3

)

X

(3.25)

for any vector field X, where we have used the following relation

∇XDr = −2(r + 6)X − 6(r + 6)η(X)ξ − 3X(r)ξ − 3η(X)Dr

deduced from (3.12) and (3.15). On the other hand, replacing Y by ξ in (3.18) and
applying (3.2) we obtain that

(LV∇)(X, ξ) =
1

2
η(X)Dr −

1

2
X(r)ξ + (r + 6)X (3.26)

for any vector field X. Comparing (3.25) with (3.26) implies that

3

(r + 6)2
X(r)Dr +

6 − r

2(r + 6)
η(X)Dr − 3

( r

2
+ 3

)

X

+
6

r + 6
X(r)ξ +

( r

2
+ 15

)

η(X)ξ = 0

(3.27)

for any vector field X. Finally, replacing X by ξ in this relation and applying (3.2)
we obtain

Dr = −2(r + 6)ξ. (3.28)

Using (3.28) again and replacing X by φX in (3.27) we obtain r = −6, this
contradicts the earlier assumption r 6= −6.

Hence, we conclude that r = −6 and by using this relation in (3.4) we obtain
that the Ricci operator of M3 is given by Q = −2id. Making use of this relation in
equation (3.3) we obtain that R(X, Y)Z = −g(Y, Z)X + g(X, Z)Y for any vector
fields X, Y, Z. This means that M3 is of constant sectional curvature −1. This
completes the proof.
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4 Remarks and examples

A Ricci soliton (see [6]) is a generalization of the Einstein metric (that is, the Ricci
tensor is a constant multiple of the Riemannian metric g) and is defined on a
Riemannian manifold (M, g) by

1

2
LV g + Ric + µg = 0 (4.1)

for certain constant µ ∈ R and a potential vector field V. Clearly, a Ricci soliton
with V zero or a Killing vector field reduces to an Einstein metric. The Ricci
soliton is said to be shrinking, steady or expanding according to µ is negative, zero
or positive, respectively. A compact Ricci soliton is a fixed point of the Ricci flow
projected from the space of metrics onto its quotient modulo diffeomorphisms.
If the potential vector field V is the gradient of a potential function − f , then g is
called a gradient Ricci soliton and equation (1.2) becomes

Hess f = Ric + µg. (4.2)

According to G. Perelman [11], we know that a Ricci soliton on any compact
manifold is a gradient Ricci soliton.

Let (M3, φ, ξ, η, g) be a three-dimensional Kenmotsu manifold, if g is a Yamabe
soliton then from Theorem 1.1 we know that the Ricci operator of M3 is Q = −2id
and hence equation (1.1) can be re-written as 1

2LV g + Ric + 2g = 0. This means
that g is an expanding Ricci soliton with µ = 2. Conversely, suppose that g
is a Ricci soliton, then according to Ghosh [5, Theorem 1] we obtain that M3 is
of constant sectional curvature −1 and µ = 2 and hence (4.1) becomes LV g =
(λ − r)g, where we have λ = r = −6. Then we obtain immediately the following
theorem.

Theorem 4.1. The Riemannian metric of a three-dimensional Kenmotsu manifold is a
Yabame soliton if and only it is a Ricci soliton.

Remark 4.1. If the metric g of a three-dimensional Kenmotsu manifold (M3, g) is
a Yamabe soliton for a vector field V and a constant λ, then V can not be pointwise
collinear with ξ. In fact, now we assume that V is pointwise collinear with ξ, that
is, V = f ξ for some smooth function f on M3. It follows from (1.1) and Theorem
1.1 that g(∇XV, Y) + g(∇YV, X) = 0 for any X, Y ∈ Γ(TM). Putting V = f ξ in
this relation and making use of (2.4) we obtain that

X( f )η(Y) + Y( f )η(X) + 2 f g(X, Y) − 2 f η(X)η(Y) = 0 (4.3)

for any vector fields X and Y. Letting X and Y in relation (4.3) belong to the
contact distribution, we get f = 0.

It is worth pointing out that there do exists a non-trivial Ricci soliton on a
strictly almost Kenmotsu manifold (see [15]).

Example 4.1. We consider the product space R × M2 endowed with a Riemannian
metric g defined by

g = dt2 + e2th,
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where (M2, h) is a Riemannian surface of constant negative curvature (Kählerian
surface). Such a three-dimensional manifold is said to be a warped product and
denoted by (R ×et M2, g). Then, according to Kenmotsu [9, Proposition 3] and
Ghosh [5, Section 4], we know that the warped product (R ×et M2, g) is a three-
dimensional Kenmotsu manifold and the metric g is a Ricci soliton. Therefore,
from Theorem 4.1 we know that the metric g of three-dimensional Kenmotsu
manifold (R ×et M2, g) is a Yamabe soliton.

Acknowledgement. This work was supported by the National Natural Science
Foundation of China (No. 11526080), Key Scientific Research Program in
Universities of Henan Province (No. 16A110004), the Research Foundation for
the Doctoral Program of Henan Normal University (No. qd14145) and the Youth
Science Foundation of Henan Normal University (No. 2014QK01). I would like
to thank the anonymous referee for his or her valuable suggestions.

References

[1] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress
in Mathematics, Volume 203, Birkhäuser, 2002.
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