Hindawi Publishing Corporation
International Journal of Stochastic Analysis
Volume 2015, Article ID 460472, 23 pages
http://dx.doi.org/10.1155/2015/460472

Research Article

Hindawi

Yamada-Watanabe Results for Stochastic
Differential Equations with Jumps

Mityas Barczy,' Zenghu Li,” and Gyula Pap®

'Faculty of Informatics, University of Debrecen, Pf. 12, Debrecen 4010, Hungary
“School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
’Bolyai Institute, University of Szeged, Aradi vértaniik tere 1, Szeged 6720, Hungary

Correspondence should be addressed to Matyas Barczy; barczy.matyas@inf.unideb.hu

Received 27 May 2014; Revised 30 October 2014; Accepted 27 November 2014

Academic Editor: Agnes Sulem

Copyright © 2015 Matyas Barczy et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, Kurtz (2007, 2014) obtained a general version of the Yamada-Watanabe and Engelbert theorems relating existence and
uniqueness of weak and strong solutions of stochastic equations covering also the case of stochastic differential equations with
jumps. Following the original method of Yamada and Watanabe (1971), we give alternative proofs for the following two statements:
pathwise uniqueness implies uniqueness in the sense of probability law, and weak existence together with pathwise uniqueness
implies strong existence for stochastic differential equations with jumps.

1. Introduction

In order to prove existence and pathwise uniqueness of a
strong solution for stochastic differential equations, it is an
important issue to clarify the connections between weak
and strong solutions. The first pioneering results are due to
Yamada and Watanabe [1] for certain stochastic differential
equations driven by Wiener processes.

We investigate stochastic differential equations with
jumps. Let U be a second-countable locally compact Haus-
dorff space equipped with its Borel o-algebra B(U). Let m
be a o-finite Radon measure on (U, %(U)), meaning that the
measure of compact sets is always finite. Let U,, U; € %B(U)
be disjoint subsets. Let d, € N. Let b : [0, 00) x RY - [R{d,
o:[0,00) x R — R, f: [0, 00) x RYxU — R% and
g : [0,00) x R% xU — R? be Borel measurable functions,
where [0,00) x R? x U is equipped with its Borel o-algebra
B([0,00) x R x U) = B([0,00)) ® BR?) ® B(U) (see,
e.g., Dudley [2, Proposition 4.1.7]). Consider a stochastic
differential equation (SDE)

t t
X, = X0+J b(s,XS)ds+J o (s, X,) dW,
0 0

' r JU f (s, X, u) N (ds, du)

0

-

+J J g (s, X,_,u)N(ds,du), te€[0,00),
0 Ju,
@

where (W,),, is an r-dimensional standard Brownian
motion, N(ds, du) is a Poisson random measure on (0, co)xU
with intensity measure dsm(du), N(ds,du) := N(ds,du) -
dsm(du), and (X,), is a suitable process with values in R,

Yamada and Watanabe [1] proved that weak existence
and pathwise uniqueness imply uniqueness in the sense of
probability law and strong existence for the SDE (1) with
f =0and g = 0. Engelbert [3] and Cherny [4] extended this
result to a somewhat more general class of equations and gave
a converse in which the roles of existence and uniqueness are
reversed; that is, joint uniqueness in the sense of probability
law (see, Engelbert [3, Definition 5]) and strong existence
imply pathwise uniqueness. The original Yamada-Watanabe
result arises naturally in the procedure of proving existence
of solutions of a SDE; for a detailed discussion, see Kurtz [5,
pages 1-2].



Jacod [6] generalized the above mentioned result of Yam-
ada and Watanabe for a SDE driven by a semimartingale,
where the coefficient may depend on the paths both of the
solution and of the driving process. The Yamada-Watanabe
result has been generalized by Ondrejat [7] and Rockner et al.
[8] for stochastic evolution equations in infinite dimensions
and by Tappe [9] for semilinear stochastic partial differential
equations with path-dependent coefficients.

Recently, there has been a renewed interest in general-
izations of the results of Yamada and Watanabe [1]. Kurtz
[5,10] continued the direction of Engelbert [3] and Jacod [6].
He studied general stochastic models which relate stochastic
inputs with stochastic outputs and obtained a general version
of the Yamada-Watanabe and Engelbert theorems relating
existence and uniqueness of weak and strong solutions of
stochastic models with the message that the original results
are not limited to SDEs driven by Wiener processes. In
order to derive the original Yamada-Watanabe results from
this general theory, proofs of pathwise uniqueness require
appropriate adaptedness conditions, so two new notions,
compatibility and partial compatibility between inputs and
outputs, have been introduced. Due to Example 3.9 in Kurtz
[10] and Page 7 in Kurtz [5], the results are valid for SDEs
driven by a Wiener process and Poisson random measures.

Following the ideas of Yamada and Watanabe [1], we
are going to give alternative proofs for the following two
statements.

Theorem 1. Pathwise uniqueness for the SDE (1) implies
uniqueness in the sense of probability law.

Theorem 2. Weak existence and pathwise uniqueness for the
SDE (1) imply strong existence.

Note that Theorems 1 and 2 are generalizations of Propo-
sition 1 and Corollary 1 in Yamada and Watanabe [1] (we do
not intend to deal with generalization of their Corollary 3).
The definition of weak and strong solutions of the SDE (1),
pathwise uniqueness for the SDE (1) and uniqueness in the
sense of probability law, and a detailed, precise formulation
of Theorem 2 will be given in the paper. In the course of the
proofs we developed a sequence of lemmas discussing several
kinds of measurability; see Lemmas 12 and 14, and we also
presented a key observation on the preservation of the joint
distribution of the parts of the SDE (1); see Lemmas A.2 and
A4

Our alternative proofs show the power of the original
method of Yamada and Watanabe [1]; these proofs can be
followed step by step and every technical detail is transparent
in the paper. This raises a question whether Kurtz’s result
could be proved via the walked-out path by Yamada and
Watanabe.

Note that Situ [11, Theorem 137] also considered the SDE
(1) with R \ {0} instead of U and with g = 0 and proved
Theorems 1 and 2 under the resctrictive assumption

ol
———m(du) < co. 2
JRd\{o}uuuuzm(”) 0 @
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This assumption was needed for introducing an auxiliary
cadlag process in Lemma 139 in Situ [11]. In fact, one can get
rid of condition (2) by using the space of point measures on
R, x U as the space of trajectories of Poisson point processes
instead of the space of cadlag functions; see the proofs of
Theorems 1 and 2. We call the attention that in the literature
the result of Situ [11, Theorem 137] has been usually referred
to without checking condition (2); see, for example, Li and
Mytnik [12, (3.1)], Dawson and Li [13, (2.9)], Déring and
Barczy [14, (3.23)], and Li and Pu [15, (4.6) and (5.1)], but
Theorem 2 covers these situations as well.

We remark that Zhao [16] already adapted the original
method of Yamada and Watanabe for the SDE (1) driven
only by a compensated Poisson random measure, that is, with
o = 0and g = 0, but for processes with values in a separable
Hilbert space instead of R?-valued processes. Comparing
with the results of the present paper, note that we explicitly
stated and proved in Theorem 1 that pathwise uniqueness for
the SDE (1) implies uniqueness in the sense of probability law.

2. Preliminaries

Let Z,, N, R, R,, and R,, denote the set of nonnegative
integers, positive integers, real numbers, nonnegative real
numbers, and positive real numbers, respectively. For x, y €
R, we will use the notation x A y := min{x, y}. By [x|| and
IAll, we denote the Euclidean norm of a vector x € R and
the induced matrix norm of a matrix A € R*, respectively.

Throughout this paper, we make the conventions I: = J(a b
and I:O = I(aoo) for any a,b € R with a < b. By C(R,,R")

and D(R,,R"), we denote the set of continuous and cadlag
R-valued functions defined on R, equipped with a metric
inducing the local uniform topology (see, e.g., Jacod and
Shiryaev [17, Section VI.1a]) and a metric inducing the so-
called Skorokhod topology (see, e.g., Jacod and Shiryaev [17,
Theorem VI.1.14]), respectively. Moreover, €(R,, R%) and
D(R,,R") denote the corresponding Borel o-algebras on
them.

Recall that U is a second-countable locally compact
Hausdorff space. Note that U is homeomorphic to a separable
complete metric space; see, for example, Kechris [18, Theorem
5.3]. For our later purposes, we recall the notion of the space
of point measures on R, x U, of the space of simple point
measures on R, xU, and of the vague convergence. We follow
Resnick [19, Chapter 3] and Ikeda and Watanabe [20, Chapter
I, Sections 8 and 9].

A point measure on R, xU is a measure 7 of the following
form: let F < N and let {(t;,u;) : i € F} be a countable
collection of (not necessarily distinct) points of R, x U, and
let

7= ) S (3)

ieF

assuming also that 7([0,¢] x B) < oo forallt € R, and
compact subsets B € AB(U) (i.e., m is a Radon measure
meaning that the measure of compact sets is always finite,
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and consequently, it is locally finite), where §, ,, denotes the
Dirac measure concentrated on the point (;, 1;). Thus

m([0,t] x B) = #{i € F: (t;,u;) € [0,¢] x B},

teR,, Be&BU).

A point function (or point pattern) p on U is a mapping
p: D(p) — U, where the domain D(p) is a countable subset
of R, such that {s € D(p) : s € (0,t], p(s) € B} is finite
forallt € R, and compact subsets B € %B(U). The counting
measure N, on R, x U corresponding to p is defined by

N, ((0,t] x B) := #{s € D(p) : s € (0,¢], p(s) € B},
€)

teR,,, BeRBU).

Note that there is a (natural) bijection between the set of point
functions on U and the set of point measures 7 on R, x U
with n({t} xU) < 1, ¢t € R_,, and ({0} x U) = 0. Namely, if
p: D(p) — U is a point function, then the corresponding
point measure is its counting measure N, = Y D(p) O t,p(t)-
The set of all point measures on R, x U will be denoted by
M(R, xU), and define a o-algebra # (R, xU) on it to be the
smallest o-algebra containing all sets of the form

{mre M (R, xU):m([0,t] xB) € A}
6
Be B U), ©

for t € R,, A € B([0,00]).

Alternatively, #Z(R, x U) is the smallest o-algebra making
all the mappings M(R, xU) > m — m([0,t] x B) € [0, co],
t € R,, B € B(U), measurable.

Note that there is a (natural) bijection between the set
of point processes (randomized point functions) p defined
on a probability space (Q, %, P) with values in the space of
point functions on U (in the sense of Ikeda and Watanabe
(20, Chapter I, Definition 9.1]) and the set of ¥/ Z (R, x U)-
measurable mappings p : Q@ — M(R, x U) with p(w)({t} x
U)<lforallw e Qandt € R,, and p(w)({0} x U) = 0 for
all w € Q (which are (special) point processes in the sense of
Resnick [19, page 124]).

A point process p on U is called a Poisson point process
if its counting measure N, is a Poisson random measure on
R, x U (for the definition of Poisson random measure see,
e.g., Ikeda and Watanabe [20, Chapter I, Definition 8.1]). A
Poisson point process is stationary if and only if its intensity
measure is of the form dsv(du) for some measure v on
(U, B(U)), which is called its charateristic measure. If v is a
Radon measure, then N P((O, t]xB) is Poisson distributed with
parameter tv(B) € R,; hence {s € D(p) : s € (0,t], p(s) € B}
is finite with probability one for all t € R, and compact
subsets B € B(U). Consequently, a stationary Poisson point
process with a Radon charateristic measure is a stationary
Poisson point process in the sense of Ikeda and Watanabe [20,
Chapter I, Definition 9.1].

Next we recall vague convergence. Let C.(R, xU, R, ) be
the space of R, -valued continuous functions defined on R, x
U with compact support. For 7,7, € M(R, xU),n € N, we
say that 77, converges vaguely to masn — oo if

lim J fan, :j fdn @
n=00 Jr, xU xU

+

forall f € C.(R, xU,R,). For a topology on M(R, x U)
giving this notion of convergence, see page 140 in Resnick
[19]. Recall that (R, xU) coincides with the Borel o-algebra
generated by the open sets with respect to the vague topology
on M(R, x U); see, for example, Resnick [19, Exercises
3.4.2(b) and 3.4.5].

In what follows we equip the spaces C(R,,R°),
D(R,,R"), € € N,and M(R, x U) with some o-algebras that
will be used later on. For each £ € N, let us equip C(R,, R)
and D(R,, R®) with the o-algebras

€ (R,.R") =g, (¢(R,.R%)), ©
2, (R,.R) = 9" (2 (R,,R")),
fort € R, respectively, where ¢, : D(R,,R") — D(R,,R")
is the mapping
(9 (@) (s) =z (tAs), zeD(R,R’), seR,, (9
which stops the function z at t. It is easy to check that, for

allt € R,, G,(R,,R") coincides with the smallest o-algebra
containing all the finite-dimensional cylinder sets of the form

fweC(RLRY): (w(t),...,w(t,) € A},
(10)
neN, Ae%(R”e), t,...,t, €[0,t],

and then
€ (R,,R") = a< % (R, R€)> ; (1)
teR,

see, for example, Problem 2.4.2 in Karatzas and Shreve
[21]. Similarly, for all t € R,, 2,(R +,[R{e) coincides with
the smallest o-algebra containing all the finite-dimensional
cylinder sets of the form

Ve D(RLRY): (y(11),op(t) € A,

neN, Ae%(R”e), t,....t, €[0,t],

(12)

and then

2 (R,R") =0 < U2 (r,, R€)> ; (13)

teR,

hence Z,(R,, R®) coincides with 2?(R") in Definition VI.1.1
in Jacod and Shiryaev [17]. Finally, let us equip M(R, x U)
with the o-algebras /,(R, x U),t € R,, being the smallest
o-algebra containing all sets of the form

{mre M(R, xU) :m([0,s] x B) € A}

(14)
with s € [0,t], Be B{U), Ae%(0,00]).
Note that
/%(R+><U):G<U,/%t(R+XU)>, (15)
teR,

since the union of the generator system of the o-algebras
MR, xU),t € R,, forms a generator system of (R, xU).



3. Notions of Weak and Strong Solutions

If (Q, #, P) is a probability space, then, by P-null sets from a
sub-o-algebra # C &, we mean the elements of the set

{AcQ:3Be X such that A c B, P(B) =0}. (16)

Definition 3. Let n be a probability measure on (IRd, &?(Rd)).
A weak solution of the SDE (1) with initial distribution # is a
tuple (Q, #, (9‘7t)teR+, P, W, p,X), where

(D1) (Q, F, (F)ier,»P) is a filtered probability space sat-
isfying the usual hypotheses (i.e., (F,),r, is right
continuous and %, contains all the P-null sets in &);

(D2) (Wy)ser, is an r-dimensional standard (F,);cg, -
Brownian motion;

(D3) pisastationary (%,),eg, -Poisson point process on U
with characteristic measure m;

(D4) (Xy)ier, is an R?-valued (F)ter, -adapted cadlag
process such that
(a) the distribution of X, is 1,
(b) P(Iot(llb(s,Xs)ll + llo(s, X)IP)ds < 00) = 1, €

4+

(c) P( jot on If(s, X, )P dsm(du) < 00) = 1, ¢ €
R,,
@ P(J; [, 965X, wlIN(ds, du) < 00) = 1, €

R, where N(ds, du) is the counting measure of
ponR,, xU,

(e) equation (1) holds P-a.s., where N(ds,du) =
N(ds, du) — dsm(du).

For the definitions of an (%,),cg, -Brownian motion and
an (#,),er, -Poisson point process, see, for example, Ikeda
and Watanabe [20, Chapter I, Definition 7.2 and Chapter II,
Definition 3.2].

In the next remark we point out that the integrals in the
SDE (1) are well defined under the conditions of Definition 3
and have cadlag modifications as functions of ¢.

Remark 4. If conditions (D1), (D2), and (D4)(b) are satisfied,
then (Jot 0(s,X;)dW);cg, is well defined and has continu-
ous sample paths almost surely; see, Ikeda and Watanabe
[20, Chapter II, Definition 1.9]. Indeed, (o(t,Xt))teR+ is
(F)er, -adapted (since X is (F;),cg, -adapted and o is
measurable), (o(t, Xt))teR+ is measurable (since X is mea-
surable, because it has right-continuous paths, see Karatzas
and Shreve [21, Remark 1.1.14], and o is measurable), and
P(f; lo(s, X)IPds < 00) = 1,1 € R,.

Concerning conditions (D4)(c) and (d), note that the
mappings R, x Uy x Q 3 (s,u,w) — f(5, X, (w),u) € R
and R, xU; x Q 3 (s,u,w) = g(s,X,_(w),u) € R are
(Z)ter, -predictable; see Lemma A.L

Hence condition (D4)(c) is satisfied if and only if the
mapping R, x Uy x Q 3 (s,u,w) — f(5,X,_(w),u) € R?isin
the (multidimensional version of the) class Ff;loc defined on

International Journal of Stochastic Analysis

page 62 in Ikeda and Watanabe [20], that is, if it is (gt)t€R+—
predictable and there exists a sequence (7,,),en Of (F()scr, -
stopping times such that 7, T oo almost surelyasn — oo
and

E (JOMTH JUO If (s, X, u)”2 dsm (du)) < 0o,

teR,,

17)

n e N.

Indeed, if (D4)(c) holds then (17) is satisfied for

t
7, := inf {t €R,: J J I (s, X, )| dsm (du) > n} An,
0 Ju,
(18)

for n € N, where 7, T co almost surely asn — ©0. On the
other hand, (17) implies P([;"" [, 1l f(s, X, u)|?ds m(du) <

00) = 1forallt € R, and n € N, and hence (D4)(c), because
7, ] co almost surelyasn — ©0.

Moreover, if conditions (D1), (D3), and (D4)(c) are
satisfied, then the process

(Jt LO F(s, X, w)N(ds, du)> 19)

0 teR,

is well defined and has cadlag sample paths almost surely.
Indeed, for each n € N,

0 teR,

‘ (20)
_ (L JU V0 () £ (5, X, )N (ds, du)> ,

teR,

see page 63 in Ikeda and Watanabe [20]. The integrand
R, xUyx Q3 (s10) — T (8)f(sX (0),u) € R
belongs to the (multidimensional version of the) class F;
defined on page 62 in Ikeda and Watanabe [20]; hence the
process on the right hand side is a square integrable (#,)cg -
martingale; see page 63 in Ikeda and Watanabe [20]. By
Theorem 1.3.13 in Karatzas and Shreve [21], this process has
a cadlag modification. Here we point out that, for using this
theorem, we need completeness and right continuity of the
filtration (% )¢, - Further, we also obtain

0

erﬂ J f(s,X,_,u) N (ds, du)
v @
2 I J f(s,X,_,u)N(ds,du) asn— 0o
0 Ju,

forallt € R,, since 7, T co almost surely asn — oo.

Recalling that the mapping R, x U; x Q 3 (s,u,w)
g(s, X _(w)u) € R is (F)ier, -predictable, condition
(D4)(d) is satisfied if and only if the mapping R, xU; x Q >
(s, u, ) = g(s,X,_(w),u) € R is in the (multidimensional
version of the) class F, defined on page 61 in Ikeda and
Watanabe [20].

P
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Further, if conditions (D1), (D3), and (D4)(d) are satis-
fied, then, by definition, the process

(Lt Jul g(s, X,_,u)N(ds, du))tER+

= < Y 9(sXp) 1y, (p <s>)>
s€(0,6]nD(p)

(22)

teR,

is well defined and has cadlag sample paths, where D(p) is
the domain of p (being a countable subset of R, ). Indeed,
for each w € Q, by definition, the mappings

R,>t

- 2

s€(0,4]nD(p) (w)

9 (s X (@), p(s) (@) Ty, (p(5) (@)

R,>t

- 2

se(0,)ND(p)(w)

9 (s X (@), p(s) (@) Ty, (P (5) ()
(23)
are right and left continuous, respectively.

Remark 5. It m(U;) < oo, then condition (D4)(d) is satis-
fied automatically, since then E(N((0,¢] x U;) = tm(U,)) <

oo implies P(N((0,t] x U;) < 0co) = 1, and hence f; IU llg(s,

X wIN(ds, du) = Yoconpep 1905 X p()I Ty, (p(s)) is
a finite sum with probability one.

Remark 6. Note that if conditions (D1)-(D3) are satisfied,
then W and p are automatically independent according to
Theorem 6.3 in Chapter II of Ikeda and Watanabe [20], since
the intensity measure dsm(du) of p is deterministic.

Moreover, if (Q, #, (F ), P, W, p, X) is a weak solu-
tion of the SDE (1), then &,, W, and p are mutually inde-
pendent, and hence X, W, and p are mutually independent
as well. Indeed, the conditional joint charateristic function of
W and the counting measure of p with respect to %, equals
to the product of the (unconditional) charateristic functions
of W and the counting measure of p; see (6.12) in Chapter II
of Tkeda and Watanabe [20] applied with X = W and s = 0,
and then one can use Lemma 2.6.13 in Karatzas and Shreve
[21]. Since X, is measurable with respect to % due to (D4),
we have the mutual independence of X;, W, and p.

The thinnings p, and p, of p onto U, and U, are
again stationary (#);cg, -Poisson point processes on U, and
U,, respectively, and their characteristic measures are the
restrictions m|y, and mly, of m onto U, and U}, respectively
(this can be checked calculating their conditional Laplace
transforms; see Ikeda and Watanabe [20, page 44]).

Remark that for any weak solution of the SDE (1), X,
the Brownian motion W and the stationary Poisson point
processes p, and p; are mutually independent according
again to Theorem 6.3 in Chapter II of Ikeda and Watanabe
[20]. Indeed, one can argue as before taking into account also

that the intensity measures of p, and p, are deterministic, and
condition (6.11) of this theorem is satisfied, because p, and p,
live on disjoint subsets of U.

Definition 7. One says that pathwise uniqueness holds for
the SDE (1) if whenever (Q, #, (9t)teR+)P’W’P’X) and

(QF(F Dier,» P> W, ps X) are weak solutions of the SDE (1)

such that P(X, = X,) = 1, then P(X, = X, for all t € R,) =
L.

Remark 8. One may also consider the following more strict
definition of pathwise uniqueness. Namely, one could say
that pathwise uniqueness holds for the SDE (1) if when-
ever (O, F, (F)ien,» P W, p,X) and (O, F, (F)ier,» P, W,
ps X) are weak solutions of the SDE (1) such that PX, =
X,) = 1,then P(X, = X, for all t € R,) = 1. Note that in this
definition we require that W is an (#,),cg -Brownian motion

and an (#,),cg, -Brownian motion as well, and since it is not

necessarily true that W is an (o(#, U gt))te[,q{+ -Brownian
motion, it is not clear whether this more strict definition of
pathwise uniqueness and the one given in Definition 7 are
equivalent. According to Ikeda and Watanabe [20, Chapter
IV, Remark 1.3], they are equivalent. We also point out that in
our statements and proofs we use pathwise uniqueness in the
sense of Definition 7, and we do not use the above mentioned
equivalence of the two kinds of definitions.

Definition 9. One says that uniqueness in the sense of prob-
ability law holds for the SDE (1) if whenever (Q, &, (#,) g ,»
P,W, p,X) and (Q, %, (?t)te&,ﬁi, W, p,X) are weak solu-
tions of the SDE (1) with the same initial distribution, that is,
P(X, € B) = P(X, € B) for all B € B(R?), then P(X € C) =
P(X € C) forall C € D(R,,R%).

Now we define strong solutions. Consider the following
objects:
(E1) a probability space (Q, &, P);
(E2) an r-dimensional
(Wiier, s

(E3) a stationary Poisson point process p on U with char-
acteristic measure m;

standard Brownian motion

(E4) a random vector & with values in RY, independent of
W and p.

Remark 10. Note that if conditions (E1)-(E4) are satisfied,
then & W, and p are automatically mutually independent
according to Remark 6.

Provided that the objects (El1)-(E4) are given, let

(9f’w’p )ier, be the augmented filtration generated by §, W,

and p; that is, for eacht € R, # f’W’P is the o-field generated

by 0(§&W,s € [0,£]; p(s),s € (0,¢] N D(p)) and by the P-
null sets from o (& W, s € R,; p(s),s € R,, N D(p)) (which
is similar to the definition in Karatzas and Shreve [21, page
285]). One can check that



(i) (9f’w’p Jeer, satisfies the usual hypotheses;

(i) (Wy)ser, is a standard (gf,w,p )ter, -Brownian mo-
tion;

(iii) p is a stationary (9? P )ter, -Poisson point process
on U with characteristic measure .

Indeed, by Remark 10, W is a standard (o(&§ W, s € [0,¢];
p(s),s € (0,t] N D(p)))ie, -Brownian motion, and p is a
stationary (0(& W, s € [0,t]; p(s),s € (0,¢] N D(p)))yer, -
Poisson point process on U with characteristic measure m.
Hence, by Theorems 6.4 and 6.5 in Chapter II in Ikeda
and Watanabe [20], (W, p) has the strong Markov property
with respect to the filtration (6(&§W,,s € [0,t]; p(s),s €
(0,¢] N D(p)))teR+. Then Proposition 2.7.7 in Karatzas and
Shreve [21] yields that the augmented filtration (& f’w’P )te&
satisfies the usual hypotheses. Moreover, the augmentation
of o-fields does not disturb the definition of a standard
Wiener process and a stationary Poisson point process; hence
(Wy)ier, is a standard (F f’w’P )ter, -Brownian motion, and p
is a stationary (# f’w’p )ter, -Poisson point process on U with
characteristic measure m. For the standard Wiener process,
see, for example, Karatzas and Shreve [21, Theorem 2.7.9]. The
main point is to show that W, — W is independent of # f’w’P
forall s,t € R, with s < ¢, and p(t) — p(s) is independent
of 9§’W’P for all s,t € D(p) with s < t, detailed as follows
(in order to shed some light what is going on behind). Let
s;t € R, withs <t,and F € Pif’w’p. Then, by Problem 2.7.3
in Karatzas and Shreve [21], there exists F € o(&; W,u €
[0,s]; p(u),u € (0,s] N D(p)) such that FAF is a P-null set
from o(§&W,,u € R,; p(u),u € R,, n D(p)), where FAF
denotes the symmetric difference of F and F. Using that

P(A) =P (B)+P(An(Q\B))
24
“P(Q\A)NB), -

ABe Z,
we get for all K € B(R"),
P({W,-W,e€K}nF)
=P ({W,-W, €K} nF)
+P({W, - W, e K}nFn ({W,-W, ¢ K} U(Q\F)))
- P(({W, - W, ¢ K}U(Q\ F)) n{W, - W, e K} nF)
=P ({W,-W,eK}nF)
+P({W, - W, e K}nFn(Q\F))
-P({W, - W, e K}n(Q\F)nF)
=P({W,-W,eK}nF)=P(W,-W, e K)P(F)

=P(W,-W, e€K)P(F),
(25)
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where the last but one step follows from the independence of
W, - W, and F. A similar argument shows the independence

of p(t) — p(s) and F.

Definition 11. Suppose that the objects (E1)-(E4) are given.
A strong solution of the SDE (1) on (Q,%,P) and with
respect to the standard Brownian motion W, the stationary
Poisson point process p and initial value &, is an R?-valued
(P/Tf’w’P )ter, -adapted cadlag process (X,);er, with P(X, =
&) = 1 satistying (D4)(b)-(d).

Clearly, if (X;);eg, is a strong solution, then (Q, %,

(%‘f’w’p Jer, > P> W, p, X) is a weak solution with initial dis-
tribution being the distribution of €.

4. Proof of Theorem 1

Our presentation as follows is a generalization of the one
given in Section 5.3.D in Karatzas and Shreve [21].

Let us consider a weak solution (Q, #,(F)eg ,P, W,
p>X) of the SDE (1) with initial distribution n on (R4,
B(R?). Then P(X, € B) =n(B),B € B(R?Y). We putY, :=
X, -X, fort € R,, and we regard the solution X as consisting
of four parts: X, W, p, and Y. Let us consider the product
space

®:=RxC(R,R")x M (R, xU) x D(R,,R?) (26)
equipped with the Borel o-algebra

%(©)=2(R)e€[R,.R) oM (R, xU)
(27)
® 2 (R,,R);

see, for example, Dudley [2, Proposition 4.1.7]. The quadru-
plet (Xo, W, p,Y) induce the probability measure P on (O,
PB(0)) according to the prescription

P(A) =P [(X,W,p,Y) € A], AcB(©). (28)

We denote by 8 = (x,w,, y) a generic element of ©. The
marginal of P on the x-coordinate of 0 is the probability
measure 1 on (Rd, %(Rd)), the marginal on the w-coordi-
nate is an r-dimensional Wiener measure Py, on (C(R,, R"),
E(R,,R")), the marginal on the 7-coordinate is the distri-
bution Py, on (M(R, x U), #Z(R, x U)) of a stationary
Poisson point process p on U with characteristic measure
m. Moreover, the distribution of the triplet (x, w, ) under P
is the product measure n x Py, X P, because X, is & -
measurable and W, p, and &, are independent; see Remark 6.
Furthermore, P(Y, = 0) = 1.

The product space ® defined in (26) is a complete, sep-
arable metric space, since R? is a complete, separable met-
ric space with the usual Euclidean metric, C(R,,R") is a
complete, separable metric space with a metric inducing
the local uniform topology (see, e.g., Jacod and Shiryaev
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[17, Section VI.la]), D(R,, RY) is a complete, separable
metric space with a metric inducing the so-called Sko-
rokhod topology (see, e.g., Jacod and Shiryaev [17, Theorem
VI.1.14]), and the vague topology on the space M(R, x U)
of all point measures on R, x U is metrizable as a complete,
separable metric space (see, e.g., Resnick [19, Proposition
3.17, page 147]). Hence there exists a regular conditional
probability for %(®) given (x,w, ), by an application of
Karatzas and Shreve [21, Chapter 5, Theorem 3.19] with the
random variable ® > (x,w, 7, y) — (x,w,m). We will be
interested in conditional probabilities of sets in %(®) only
of the form R x C(R,,R") x M(R, x U) x F, where F €
PD(R,,R?). Consequently, with a slight abuse of notation,
there exists a function

Q:RxC(R,,R") x M (R, xU) x 2 (R,,R?) — [0,1]
(29)

enjoying the following properties:

(R1) for eachx € R, w € C(R,,R") and 7 € M(R, xU),
the set function Z(R,, RY) 5 F - Qx,w,m, F)isa
probability measure on (D(R,, R%), 2R, R));

(R2) for each F € 9(R,, R%), the mapping RY x C(R,,
R x M(R, xU) > xw,n) — QX w,mnF)is
BRY) @ BR,,R") @ AR, x U)/B([0,1])-meas-
urable;

(R3) for each G € BR) 8 ER,,R") ® (R, x U) and
F e 9(R,, R%), we have

Py, (A) = J

RIXC(R, R")xM(R, xU) <JD<R+,R">XD<R+,W>

n(dx) Py, (dw) Py, (dm)

for A € %(O) ® 9(|R+,|Rd), where we have denoted by
(x, w, 7, ¥, y¥) a generic element of ), and then we extend
P, to F. Particularly, for all G « BRY ® F(R,,R") ®
MR, xU)and F,, F, € D(R,,R?),

P, (GxF, xF,)

= JG Q, (x,w,m, F)Q, (x, w,m, F,) (35)
n(dx) Py, (dw) Py, (dm).

In order to endow (Q, #, P, ,) with a filtration that satisfies
the usual conditions, for each t € R, we take &, := o(f, 5 :
s € [0,t], B € B(U)), where the mapping f,z : Q — R x
R” x [0, 00] x R% x R is defined by

feB (x, w, 7, y(l),y(z)) = (x, w, 7 ([0, s] x B), J’s(l):)’s(z)) ,

(x, w, 11, y(l), y(z)) €,
(36)

T4 (x, w, 7, y(l), y(z)) Q, (x, w, 7, dy(l)) Q, (x, w, 71, dy(z))>

P(GxF)= J Q (x, w, 7, F) n(dx) Py, (dw) Py, (d7r).
G
(30)

We can call Q(x, w, 71, -) as the regular conditional probability
for (R, [Rd) given (x, w, 7).

Let us now consider two weak solutions (Q(i), F (i),
(F)ren,» PP, WP, p@,XD), i € {1,2} of the SDE (1) with

the same initial distribution 7 on (R, B(R%)); thus

PO X" e B] =P [XP € B] =n(B), Be®B(R).

(31)
According to (28), let
P (A) =P [(xP, W, p,¥?) € 4],
(32)
AeRB(O), ief{l,2},
and, as explained before, there exist functions
Q :R¥xC(R,R")x M (R, xU) )
33

x2(R,,RY) —[0,1], ie{1,2},

enjoying the properties (R1)-(R3).

First, we bring the two triplets (X, W%, p) i € {1,2},
together on the same canonical space, while preserving the
joint distribution of the coordinates within each triplet. Let
Q:=0xD(R,, RY) equipped with the o-algebra &, which is
the completion of the product o-algebra B(®) ® (R, RY)
by the collection .4" of null sets under the probability measure

(34)
and put
G, =0(C,uN), F,:=%,, =% teR,. (37)
>0
We note that, for each t € R,
¢, =% =%(R")e% (R,,R) e (R, xU)
(38)

®2,(R,.R") e, (R,.,R?),

where ?t = a(ﬁ,B : s € [0,t], B € B(U)), and the mapping
fs,B : ) — Qis defined by

s (xow,m, y 0, )

= (X’ (wt/\S)tGR+ ’ T[l[O:S]XB’ (yf/l\l)tER+ > (yt(/z\?s)tER+)
(39)



for (x, w, 7, y(l),y(z)) € Q. Indeed, for allt € R,, by defini-
tion, the o-algebra &, coincides with the o-algebra generated
by the sets

E, x{we C(R,,R"):w(s) € E,}

{
x{me M (R, xU) : m([0,s] x B) € E;}
<y e D (R, R

b ep(.R):
fors € [0,t], B € BU), E, € BRY),E, ¢ BR"), E, €

AB([0,00]), and E,, E5 € B(RY). Moreover, as in Problem

2.4.2 in Karatzas and Shreve [21], the o-algebra &, coincides
with the o-algebra generated by the sets

40
¥V (s) € E,} o

X y(z) (s) € Es}

E, x{w eC(R,,R"): (w(tl)l/\s),...,w(tml /\s)) € EZ}

x{me MR, xU): (n([0,t,, As]xBy),...,

([0, As|xB,)) € Es}

x{y(l) 6D(R+,R ):(y(l)(tll/\s),...,

¥ (ts, As)) € By}

<y e D(R,RY): (5P (tyy As),...,

y(z) (t4,n4 A s)) € Es}
(41)

for s € [0,t], tij € R, i € {1,2,3,4}, j € {L,...,m},
By,....,B, € BWU), E, ¢ BR), E, ¢ BR™), E; €

B([0,00]™), E, € B(R¥), and E; € B(R™). Since, for
any stochastic process (§;);cr, »

(& :tef0,s])

=0 ((&,....& )it;e[0,s],i€{l,...,n},neN), (42)

seR,,

wegetl, =G, teR,.

The r-coordinate process on Q) induces a point process p,,
on U with characteristic measure m in a natural way, since, as
it was recalled, there is a bijection between the set of point
functions on U and the set of point measures 7 on R, x U
with 7({0} xU) = 0 and n({t} xU) < I, t € R,,, and

Py, ({(x, w, rr,y ,y(z))

T{0}xU) =0, ({t}xU) < Lt eR,,}) =1,
(43)
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which follows from (34) using that P, is the distribution on
(M(R,xU), # (R, xU)) of a stationary Poisson point process
on U with characteristic measure m implying that

Py (fre M(R, xU):

r({0}xU)=0,7({t} xU) < Lt e R, }) =

(44)
Next we check that (Q, F,(F,)ier,>P1o W, pro (X +

yfi))teR+), i € {1,2}, are weak solutions of the SDE (1) with
the same initial distribution n. Using the definitions of P,
i € {1,2}, P, ,, (RI) and (R3) we get

P, [w (x w, 7, y y(z)) €Q: (x,w,n,y(i)) € A]
(45)
- p¥ [(Xg),W(i),p(i),Y(i)) c A]

forall A € B(®) andi € {1,2}. Indeed, withi = 1, G €
BRY) ® BR,,R")® MR, xU)and F € Z(R,,R), by
Fubini theorem,

P, [w = (x, w, ﬂ,y(l),y(z)) €Q): (x, w, 1, y(l)) €Gx F]

= J Q (xwm, dy(l)) Q (xwm, dy(z))
{weQ:(x,w,m,yV)eGxF}

n(dx) Py, (dw) P, (dr)
= LQI *xw,m,F)Q, (x,w,m,D(R,,R?))
n(dx) Py, (dw) Py, (dr)
_ L Q, (% w, 7, F) n(dx) Py, (dw) Py, (dr) = P, (G x F)
- PO [(x,

w®, p® ¥y e Gx F].
(46)

So the distribution of (x + ¥y, w, p_) under P, , is the same
as the distribution of (Xé’> + YO, WO, p(i)) = (X9 w, p<i))
under P(l). Due to the definition of a weak solution, under
P®, W is an r-dimensional standard (% ('))te[R -Brownian

motion, and p(i is a stationary (J*())teR -Poisson point
process on U with characteristic measure m. Consequently,
by the definition of (&,),cg, (Which is nothing else but the
natural filtration corresponding to the coordinate processes),
under P, ,, the w-coordinate process is an r-dimensional
standard (&,);eg, -Brownian motion, the process p, is a
stationary (¥,);cg, -Poisson point process on U with char-

acteristic measure m, and (x + yt(i))teR+ is (¥,);cr, -adapted,
i € {1,2}. Further, the same is true if we replace the filtration
(Zier, BY (F)ier, s see, Lemma A.5. Note also that the
filtration (F)cg, satisfies the usual conditions. All in all,
for each i € {1,2}, the tuple (Q, F AF Dier,> P Wy pr (X +
YD) e, ) satisfies (D1)-(D3).

Hence it remains to check that, for each i € {1,2}, the

tuple (Q, F, (F)er, > P12 Ws Prs (X+y§1))teR+) satisfies (D4).
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Foreachi € {1, 2}, let us apply Lemma A.4 with the following
choices:

(Q(i), g0 <g£i))t€R )[p(i)’w(i)’ p(i)’X(i)) ) (47)
(Q, F, (grt)te[R,, > [P)l,z’ W, P, (X + yt(i))te[R{,,) ’ (48)

Since (Q, F, (9§i))teR+, PO, WD p® XDy is a weak
solution of the SDE (1) with initial distribution #, the tuple
QP FO(FD)ep, PO, WD, p@ XD) satisfies (D1)-(D4).
Further, as it was explained before, the tuple (Q, &, (F ) »
Py w, prs (X + yt(i))teR+) satisfies (D1)-(D3), the process
(x + yt(i))teR+ is adapted to the filtration (#,),cg,, and the
distribution of (X®, W%, p@) under P® is the same as the
distribution of (x + y”,w, p.) under P, ,. Then Lemma A.4

yields that the tuple (Q, F, (F )y > P12 W, Prs (x+yt(i))t€R+)
satisfies (D4)(a)-(d) and the distribution of

A A t ) t i i
(%0 -x0 - [ 0(6x0)do- [[ (s x) aw?

0

[ (X080 @)
U

0

- r J f (s, Xi’},u) N (ds, du) (49)
Yo

teR,

on (D(R,, R%), 2R,, R%)) under P% is the same as the dis-
tribution of

<ny) - y(()’) - L b (s,x + yﬁ’)) ds

t
B 0)
L a(s,x+ ¥, )dws

L/

(
Jt J g (s,x + ys(i),u) N, (ds, du))

0 JU

(50)
- X+ yﬁ), u) N, (ds, du)

teR,

on (D(R,, R%), 2R, R%)) under P, ,, where N, (ds, du) is
the counting measure of p, on R, x U, and N, (ds,du) :=

N, (ds, du) — ds m(du). Using also that for each i € {1, 2}, the
first process and the identically 0 process are indistinguish-

able (since the SDE (1) holds P®”-a.s. for (Xgi))tem{+ ), we obtain

that the tuple (Q, F, (F)ier,» P12 W, Pr (X + yt(i))teR+) sat-
isfies (D4), as desired. It is worth mentioning that this is the
place where we use that the filtration (#,),cr, satisfies the
usual conditions in order to ensure that the second process
above has a cadlag modification; see Remark 4. The filtrations
(Z)ier, and (?t)teR+ do not necessarily satisfy the usual
conditions; this is the reason for introducing the filtration
(gt)te[R{,,'

We have P ,(x + y(()l) =X+ y(()z)) = 1, because, by (45),

PLOY =0 = POYY = 0) = 1,i € {1,2}. Since (Q,
Fo(Fier s Pro W, s (X + Y )ier,)s i € {1,2}, are weak
solutions of the SDE (1) with the same initial distribution n,
and P ,(x+ y(()l) =X+ y(()z)) = 1, pathwise uniqueness implies

P&+ yY =x+ y@ for all t € R,) = 1, or equivalently,
P, [w = (x, w, 7, y(l),y(z)) cQ:yV= y(z)] =1, (51)
hence, applying (45),
pW [(X(()l) w® p(l) Y(U) c A]

=P, [w = (x, w, 71, y(l),y(Z)) cQ - (x, w, T, y(l)) c A]
P, [w=(mwmyy?) e Q: (xwmy?) ¢ 4]

= PO [(x2,W?, p?,¥?) € 4]
(52)

forall A € B(®). Since X = Xg) +Y% i € {1,2}, and the
mapping R? x D(R+,Rd) 5> (XpyY) — Xp +Y € D(R+,Rd)
is continuous (see, e.g., Jacod and Shiryaev [17, Proposition
VI.1.23]), we have
POxM e A] =P?[xP € A], Ae2(R.R?),
(53)

and then we obtain uniqueness in the sense of probability law.

5. Precise Formulation and
Proof of Theorem 2

Our first result is a counterpart of Lemma 1.1 in Chapter IV in
Ikeda and Watanabe [20] for stochastic differential equations
with jumps, compare also with Situ [11, page 106, Fact A].

Lemma 12. If (Q, F,(F,);er,» P> W, p, X) is a weak solution
of the SDE (1) with initial distribution n on (R%, B(R?)), then
for every fixedt € R, and F € D,(R,,R?), the mapping

RYx C(R,,R")x M (R, xU) 5 (x,w, ) — Q (x, w, 7, F)
(54)

is ,'931/99([0, 1])-measurable, where @t denotes the completion
of BRY) ® G,(R,,R") ® M,(R, x U) by the null sets of n x
Py, % Py, from BRY) @ G[R,,R") ® M(R, x U).

Proof. Consider the regular conditional probability

Q:R*xC(R,,R") x M (R, xU)
(55)
x 2, (R,,R?) — [0,1]

for 7,(R,,R?) given (x, ¢,(w), v, (1)), where, for each t €
R,, the stopped mapping ¢, : C(R,,R") — C(R,,R")is
defined in (9), and v, : M(R, xU) —» M(R, xU), v, () :=
7l o qxu> T € M(R, xU); that is, y,(7r) denotes the restriction
of 7 onto [0, t] x U. The mapping Q, enjoy properties anal-
ogous to (R1)-(R3). Namely,
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(R1) for eachx € RY, w € C(R,,R"),and 7 € M(R, xU),
the set function 9,(R,, R%) 5 F Q,(x,w,m, F)isa
probability measure on (D(R,, R?), 2,(R,, R%));

(R2) for each F € @,(R,,R%), the mapping R? x C(R,,
R x M(R, xU) > (x,w,m) — Q,x,w,mF)is
BRYSEB,(R,,R") @ M,(R, xU)/B([0,1])-meas-
urable;

(R3) for everyG € %(Rd)®‘€t(|]%+, R ®.#,(R, xU)and
Fe9,R,,RY),
PGXF)= | Qxwm F)n(d) Py, (dw) By, (&),
G
(56)

where the probability measure P is defined in (28).

In order to prove the statement, it suffices to check that

Q(x,w,m, F) = Q, (x,w,m, F)

(57)
for n x Py, X Py, -ae. (X, w,m).
Indeed, then (n x Py, x Py, )(N) = 0 for
N :={xwm) e R xC(R,,R) x M (R, xU):
Qx, w,m, F) # Q, (x,w, 1, F)} (58)

€« 3(R) e (R,,R)eM(R, xU),
and what is more, N € 9,, since

B, =0(B(R")e%, (R, R) e R, xU)ULN),
(59)

where
N = {AcR'xC(R,R)x M (R, xU):
3BeB(R")e%(R,,R)&.#(R, xU) (60)
with A ¢ B,(nx Py, x P,,) (B) =0},
and N € /. Hence, for all E € Z([0, 1]),
{xw.m) eRxC(R,,R") x M (R, xU):
(61)
Qx,w,m, F) € E} =A,UA,,
where
A, = {xwm) e R xC(R,,R") x M (R, xU) :
Qx,w,m, F) €E,
Qx,w,m F) = Q, (x,w, n,F)}
={xwm) e R xC(R,R")x M (R, xU):

Q; (x,w,m,F) € E}
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n{xw,m) e R*xC(R,,R") x M (R, xU):

Q(x,w,m, F) =Q, (x,w,n,F)} ,
(62)

A, = {xwm) e R xC(R,,R) x M (R, xU):

Q(xw,mF) € E,Q(x,w,m,F) # Q (x,w,m, F)}.

(63)
Here A, € 3,, since, by (R2), the set
{xw,m) eRxC(R,R") x M (R, xU):
(64)
Q; (x,w,m,F) € E}
isin Z(R) ® G,(R,,R") ® M,(R, xU) c B,, and
{xwm) e RYxC(R,R)x M(R, xU):
Q(x,w,m,F) = Q, (x,w,m, F)} (65)

=R¥xC(R,,R")x M (R, xU)\N € %,.

Further, A, ¢ N € (R @ €(R,,R") ® A(R, x U) and
(nx Py, x Py, )(N) = 0imply A, € /' ¢ 3,
Unfortunately, (57) does not follow from the comparison
of (R3) with (R3), since still we do not know whether the
function (x, w, ) — Q(x, w,, F) is B(R?) ® %, (R,,R") ®
MR, xU)/AB([0,1])-measurable. In order to show (57), it

suffices to check that (R3) is valid for every G ¢ BRY) ®
E(R,,R") ® #(R, x U). Indeed, then, by (R3),

J Q (x, w, 1, F) n(dx) Py, (dw) Py, (dm)
¢ (66)
= J Q; (%, w, 7, F) n(dx) Py, (dw) Py, (dm)
G

forall G € BRY) @ BR,,R") ® MR, xU) and F ¢
Z,(R,,R?), and hence, using also that the function (x, w,
) - QxwmF) is BRY) ® GR,,R") ® MR, x
U)/%([0, 1])-measurable, by the uniqueness part of the
Radon-Nikodym theorem, we have (57).

The class & of sets G satisfying (R3) is a Dynkin system;
that is,

(i) R x C(R,,R") x M(R, xU) € &, since R? x C(R,,
ROYXM(R, xU) € BR)E,(R,, R")&M, (R, xU)
and one can apply (R3).

(ii) If Gy, G, € €and G, ¢ G,, then G, \ G, € . Indeed,

P((G,\G,) xF)
=P(G,xF)-P(G,xF)
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- J Q, (% w, 7, F) 1 (dx) Py, (dw) Py, (A7)

2

- J Q, (%, w, 7, F) n(dx) Py, (dw) Py, (drr)

Gy

- J Q, (% w, 7, F) n (dx) Py, (dw) Py, (d7).
GZ\GI

(67)

(i) If (G)pey € € and G ¢ G, C ---, then
U2, G, € €.Indeed, by the continuity of probability
and dominated convergence theorem,

Jim P(G, x F)

lim j Q; (%, w, 7, F) n1(dx) Py, (dw) Py, (d7r)
GYl

n— 00

lim J
=00 JRAxC(R,,R")XM(R, xU)

Q xw,mF)1g (x,w,m)
n(dx) Py, (dw) Py, (dm)

- J Q, (% w, 7, F) 1 (dx) Py, (dw) Py, (d1).
U=, G

n=1"-n

(68)

Consider the collection of sets of the form

G=G;x (9’;1 (G)Nng, ' (Gs)) X (W;I (A7 (Gs))
(69)

for G, € B(R?),G,,G, € B(R,,R"), and G,,Gs € (R, X
U), where, for each t € R, ¢, and y, are defined earlier, , :
C(R,,R") — C(R,,R") denotes the increment mapping
(@ (w))(s) =w(t+s)-wt),we C(R,,R"),s e R,,and ¥, :
M(R, xU) — M(R, xU) denotes the increment mapping
given by ¥,()([0, s] x B) := 7([0,t + s] x B) — ([0, t] x B),
s € R,, B € B(U). This collection of sets is closed under
pairwise intersection and generates the o-algebra B(R?) ®
ER,,R") ® #(R, x U), since the collection of sets of the
form (¢;'(G,) N @;'(G;)) with G, = {w € CR,,R") :
(w(ty),...,w(t,)) € Al forn e N,t € R, t,...,t, € [0,¢],
A € B(R™),and G; = C(R,,R") generates (R, R") by
(11), and the collection of sets of the form (v, ! (GHNy, ! (Gs))
with

Gy={mre M(R, xU):m([0,t] xB) € A}  (70)

fort e R,, B e BU), A € B([0,00]),and G5 = M(R, xU)
generates (R, xU) by (15). By the Dynkin system theorem

1

(see, e.g., Karatzas and Shreve [21, Theorem 2.1.3]), BRY ®
E(R,,R") @M (R, xU) c € provided that we prove (R3) for
G of the form (69). For such a G, by Fubini theorem, we have

JG Q; (x, w, , F)n(dx) Py, (dw) Py, (dm)

:J ) (J (J Qt(x,w,ﬂ,F)n(dX)>
v GONT G\ Yo 1 (GG, (Gs) NG,

t

Py, (dw))PU)m (dm)
= [EPw,rXPU,m [JG Qt (X, w, T, F) n (dX) H¢;1(Gz)ﬂ¢;1(G3) (UJ)

X Tyt GongitGy) (”)]

=Ep, xp,, I:[EPW,TXPU,m HG Q; (x, w, m, F) n(dx)
X ‘H(Pt_l(GZ) (w) ‘]]q)'t—l(Ga) (w)
X HW;I(G4) (7'[) ‘]].q;t—l(GS)(T[) |

%, (R, R") .4, (R, ><U)H

= Ep, xpy,, “G Q, (x,w, 7, F) n(dx)

X TG,y W) 1y, (1)
x (Py,, % Py,,) ({0}_1((;3) X ‘P;I(Gs) |

% (R, R) o 4,(R, V)|
= [EPw,,XPu,m “G Q, (x, w, m, F) n(dx) ﬂ¢;l(cz) (w) ﬂ%fl(GA) ()

< (Buy * Po) (7 (G % 7 (6)|

- J Q, (% w, 7, F) n(dx) Py, (dw) Py, (d7)
G x¢9; (G)xy M (Gy)

x (Py, X Py,) (@ (G3) x ;' (Gs))
:P[Gl X‘P;l (Gz)x‘/’t_l (G4)XF]
x (Py,, X Py,,) (‘ﬁ;l (Gs) x {/7;1 (Gs))-

(71)
The fourth equality above follows from the %,(R,,R") ®
MR, xU)/9B([0, 1])-measurability of the function
C(R,,R")xM (R, xU) > (w, )

(72)
— J Q; (x,w,m, F)n(dx),

1
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which is a consequence of (R2) and Fubini theorem. The fifth
equality above follows from the independence of @, ' (G;) x
f/}t_l(G;,) and €,(R,,R") ® A,(R, x U) under the measure
Py, X Py, see, for example, Tkeda and Watanabe [20,
Chapter 2, Theorems 6.4 and 6.5]. For the last equality above
we used (R3) and

G1X‘P;1(G2)X‘/’;1(G4)XF

€ 3(R) e %, (R,,R)® M (R, xU)® P, (R,,R’).
(73)

By (28),
(Pw, % Py) (7 (Gs) ;" (Gs))
=P[(xw,m,y) € @:§, (w) € G, P, () € Gs]
=P[p (W) € G5, ¥, (p) € Gs], (74)
PGy x ;" (Go) x v (GJ) x F]
=P[X, € G, 9, (W) € Gy, v, (p) € G, Y € FJ.
Therefore, if G is of the form (69), then

J Q, (%, w, m, F) n (dx) Py, (dw) By, (dr)
G

=P [X, € G, (W) € Gy, (p) € G, Y € F]
x P [, (W) € G35, %, (p) € Gs]
=P[X, € G, 9, (W) € G, ¢, (W) € Gs,
v (p) € Gy ¥, (p) € G5, Y € F]
=P[(XpW,p) € GY € F|

(75)

=P[GxF].

The second equality above follows from the independence of
X, € G, 9, (W) € Gy, . (p) € Gy, Y € F} and {§,(W) € G5,
V,(p) € G5} under the probability measure PP. This indepen-
dence holds because

{Xo € G (W) € Gy, v, (p) € G, Y € F}
=1{X, € G, ¢, (9, (W) € Gy, v, (v, (p)) € G, Y € F}

= {Xo € G o, (W) E%_I (G.) v (p) € ‘//t_l (Gy),Y e F}

€ F,
(76)

and {¢,(W) € G;, ¥, (p) € Gs}isindependent of &, under the
probability measure [; see, for example, Ikeda and Watanabe
[20, Chapter II, Theorems 6.4 and 6.5]. The relationship (76)
is valid since <p;1(G2) € G, (R,,R"), 1//;1(G4) e M (R, xU),
and F € 9t([R+,[Rd), the mapping Q 3 w — ¢,(W(w))
is #,/%,(R,,R")-measurable, and the mapping Q > w —
v, (p(w)) is F,/ M, (R, x U)-measurable, because the pro-
cesses W and p are (F,),cr, -adapted. O
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Remark 13. The filtration (@t)te& defined in Lemma 12 is the
augmentated filtration generated by the coordinate processes

on the canonical probability space (R% x C(R,,R")xM(R, x
U), BRY) ® B(R,,R") ® M(R, xU),nx Py, x Py,,). This

is the counterpart of the augmentated filtration (F f’w’p Dter, -

The next lemma is a generalization of Corollary 1in Yam-
ada and Watanabe [1] (see also Problem 5.3.22 in Karatzas and
Shreve [21]) for stochastic differential equations with jumps.

Lemma 14. Suppose that pathwise uniqueness holds for the
SDE (1). If (Q0, FO,(F), e, PO, WD, p@, X)), i e {1,
2}, are two weak solutions of the SDE (1) with the same initial
distribution n on (Rd,gg(Rd)), then there exists a function
k:RYxC(R,,R") x M(R, xU) — D(R,,R%) such that

Q xwmikxwm}) =1 ie{l,2} (77)

holds for n x Py, . X Py,,-almost every (x, w, ) € R?x C(R,,
R") x M(R, x U), where Q,;, i € {1,2}, is given in (33). This
function k is BRY) @ G(R,,R") @ M(R, x U)/D(R,,RY)-
measurable, B,/D,(R,,RY)-measurable for every fixed t €
R,, and

PO (k(x, WD, p?)=Y?) =1, ief{1,2}. (78)
Proof. Fix (x,w,) € R? x C(R,,R") x M(R, x U) and
define the measure Q, ,(x, w, m, dy(l),dy(z)) = Q,xw,m,
dy(l))Qz(x, w, 7T, dy(z)) on the space S := D(R,, R%) x D(R,,
R?) equipped with the o-algebra & := (R, R?) ® P2(R,,
R%). By (34) and Fubini theorem,

P, [GxB] = L Q1 (%, w, 7, B) 1 (dx) Py, (dw) Py, (d)
(79)

forall G € B(RY) ® B(R,,R") ® (R, xU) and B € .
With the choice G = R? x C(R,,R") x M(R, x U) and B =
(Y, y?) € 8: 9V = y@}, using that pathwise uniqueness
holds for the SDE (1), relation (51) yields P ,[G x B] = 1.

Since Q) ,(x, w, m, B) < 1 forall (x,w, ) € R% x C(R,,R") x

M(R, x U), (79) yields the existence of a set N ¢ BRY ®
ER,,R")® MR, xU) with (n x Py, x P, )(N) = 0 such
that

Qua (xwm (¥, yP) es: Y =y} =1,

(x,w, ) ¢ N.

(80)

Again, by Fubini theorem,

1=Qu (v wm {(y, y®) es: y0 = @)
= J Ql (X, w, 11, {y})Q2 (X, w, T, dy), (81)
D(R,.R%)

(x,w,m) ¢ N,
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which can occur only if for some y, € D(R,,R?), call it
k(x, w, 7r), we have

Q; (x,w,n, {E(x,w,n)}) =1, ie{l,2}, (x,w,m) ¢ N.
(82)

Indeed, since for all (x, w, 7, y) € R? x C(R,,R") x M(R, x
U) x D(R,, RY), Q,(x,w,,{y}) € [0, 1], we have

Q (xw,m{yeD(R,RY):Q (xw,m {y}) = 1}) =1,

(x,w, ) ¢ N.
(83)

Since for all (x,w,7) € R? x C(R,,R") x M(R, x U), by
(R1), the set function (R, RY) 5 F — Q;(x,w,m, F) is a
probability measure on (D(R,, Rd),@(R+, RY), i € {1,2},
we get the unique existence of k(x,w,7) for all (x,w,7) ¢ N
satistying (82). Then we have (77) for k.

For (x,w,m) ¢ N and any B ¢ 9(R+,Rd), we have
k(x,w,m) € Bifand only if Q;(x, w,m,B) = 1,i € {1,2}.

The aim of the following discussion is to show the
B,/D,(R,,R%)-measurability of k for all t € R,. For all
t € R, and B € Z,(R,, R%), we have

k' (B) = {xwm) e R*xC(R,,R)x M(R, xU):

k(x,w,7) € B} =A UA,,
(84)
where
A= {xwm) e R?xC(R,,R") x M (R, xU):

k(x,w,7) € B, (x,w, 1) € N},

A, ={xwm) e R xC(R,R") x M (R, xU):
k(x,w,m) € B, (x,w,7) ¢ N}

={xw,m eR'xC(R,R)x M(R, xU):

(x,w,7) ¢ N} N Q; (- B) " ({1})
(85)

for i € {1,2}. Lemma 12 implies Q;(:, ", -, B)'({1}) € @t, ie€
{1,2}. Moreover, N € @t (due to the definition of @t, for
more details, see the proof of Lemma 12); hence A, € @t.
Usingthat A; C N, (nxPy ,xPy,,)(N) = 0and the definition
of the augmented o-algebra 9, (see Lemma 12), we obtain
A, € B, Hencek '(B)= A, UA, ¢ .’932, as desired.

The aim of the following discussion is to show that k is

'XPW,rpr,m

(%(Rd)®<€(R+,Rr)®ﬂ(R+ xU) ,
(86)
D (IR+, IRd)) -measurable,
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><PW,r ><PU,‘m

where Z(R) @ €(R,,R") @ A(R, xU) denotes
the completion of BRY ® F(R,,R") ® A(R, x U) with
respect to the measure nx Py . X Py,,. Forall B € (R, RY),
we have k™'(B) = A, U A,, where A, and A, are defined
in (85). Property (R2) implies Q,(-,--, B) "' ({1}) € B(R?) ®
E(R,,R)e.A(R, xU),i € {1,2}. Moreover, by definition of
completion (see, e.g., Definition 2.7.2 in Karatzas and Shreve
(21]),

1XPy . X Py,

N e BRY) @ E[R,,R") @ MR, xU) , (87

hence

nx Py ,XBy
A, € BRY) B[R, R) e MR, xU) """ (88)

Using that A} ¢ N, (nx Py, x P;,,,)(N) = 0, by definition of
completion, we obtain

A, ¢ BRHeER,,R) @ AR, xU) " (89)
Hence
K'(B)=A,uA,
c BRN % (R, R @ MR, xU) "
(90)

as desired. B
Next we check (78) for k. For i € {1, 2}, by (45), (34), (R1),
and (82),

[p(i) (% (X(()i),W(i),p(i)) _ Y(i))

=Py, (w = (x, w, 71, y(l),y(z)) eQ:k(xwm) = y(i))

; , W, 7T, % , W, TT
RIXC(R,,R")xM (R, xU) Ql (X { x )})
n(dx) Py, (dw) Py, (dm) = 1,

(91)

as desired. N

It remains to check that one can choose a version of k
which is B(R?) ® G(R,,R") ® A(R, x U)/D(R,,RY)-
measurable, %,/J,(R,, RY)-measurable for every fixed t €
R,, and (77) and (78) remain hold for k. Since Kk is

nX Py . X Py,

(% (R)e% (R,.R" e (R, xU) :
(92)
D (IR o IRd)) -measurable,

there exists a function k : R? x C(R,,R") x M(R, xU) —
D(R,,R%) which is B[R @B (R,,R"e.A(R, xU)/D(R,,
R)-measurable and

(nx Py, x Py,) ({xw,m) € RTx C(R,,R")
x M (R, xU): (93)

k(x,w,7) # k(x, w, n)}) =0
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see, for example, Cohn [22, Proposition 2.2.5]. First we check
that k is %,/D,(R,,, R?)-measurable for every fixed t € R,.
Forallt e R, and B € 9,(R,, R?), we have

K'B) = (k' B)n{k=k})u (k" B)n{k+k})
= (k"B nik=k})u (k' B n{k+k}),

where k" }(B) € :gg’t (since k is @t/QZt(RP R%)-measurable),
{k+ke §§t (due to the definition of completion, since (1 x
Py, X Py,)(k # k) = 0), {k = k} € B, (since B, is a o-
algebra), and K'B)ni{k + k} € @t (due to the definition of
completion, since kK '(B)n{k + k} ¢ {k # k}). Hencek *(B) €
%,

Next we check (77) for k. Using that (77) holds for k and
(nx Py, x PU)m)(% # k) = 0, we have

(nx Py, x Py,,) (H; UH,)
= (nx Py, x Py,,) ((Hy uH,) n {k = k})
+(nx Py, x Py,,) (HLUH) n{k #k})  (95)
< (nx Py, x Py,,) (A, UH,)
+(nx Py, xPy,) (k#k)=0+0=0,
where
H = {xwm) e RxC(R,R)x M (R, xU):
Q (xwm {k(xwm}) #1},
H; = {(x,w,m) € R?x C(R,,R") x M (R, xU) : .

Q; (x, w, m, {k (x, w, m)}) # 1}
for i € {1, 2}. This implies (77) for k.
Finally, we check (78) for k. First observe that Pl’z(% =
k) = 1, since, by (79),
Py, (k=k)

=1-P,(k+k)

=1- J{m} Q. (xw,m,D(R,,R?),D(R,,R?))
n(dx) Py, (dw) Py, (dm)

=1- J{m} Q, (x,w,n,D(R,,R?))

x Q, (x, w, T, D (R+, Rd))
n(dx) Py, (dw) Py, (dm)

=1-(nxPy,xPy,)(k+k)=1-0=1,
(97)
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where we used (R1) as well. Then, by (45) and (34), for i €
{1, 2}, we obtain

[Fb(i) (k (Xg),W(i),p(i)) _ Y(i))
=Py, (0= (xwmy",y?) e Q:kxwmn) =y?)
=P, ({o=(xwmy",y?)eq:
k(x,w,m) =y} n{k=k})
=P, (fo = (xwmy",y?)eq:
k(xw,m) = y?} n{k=k})
=Py, (0= (xwmy",y?) e Q: kxwn) =y?)

= PO (& (X0, W®, p) = Y?) = 1,
(98)

where, for the last equality, we applied that (78) holds for k.
O

Remark I5. Note that the function k in Lemma 14 and the n x
Py, x P ,,-null set on which (77) does not hold depend on
the two weak solutions in question.

Applying Lemmal4 for weak solutions (QY,F®,
(F e PO, WO, 50, XO) = (Q,F, (F)), e, P, W, p. X,
i € {1,2}, of the SDE (1) with the same initial distribution »
on (R, 93(|Rd)), we obtain the following corollary.

Corollary 16. If pathwise uniqueness holds for the SDE (1) and
(Q,F, (F ser,» P, W, p, X) is a weak solution of the SDE (1)
with initial distribution n on (R%, B(R?)), then there exists a
functionk : RYxC(R,,R")x M(R, xU) — D(R,,R?) such
that Q(x, w, 71, {k(x, w, m)}) = 1 holds for nx Py, X Py, -almost
every (X,w,m) € R x C(R,,R") x M(R, x U), where Q is
given in (29). This function k is %’(Rd)@‘g([&r, RNe.#(R, x
U)/D(R,, R%)-measurable, @t/gt(ﬂ&r, R)-measurable for
every fixedt € R, and P(k(X,, W, p) =Y) = 1.

Next we give the precise formulation of Theorem 2.

Theorem 17. Suppose that pathwise uniqueness holds for the

SDE (1) and there exists a weak solution (Q, ', (9;)t€R+, P,

W',p',X') of the SDE (1) with initial distribution n'. Then
there exists a function W R x C(R,,R") x M(R, x
U) — D(R,,R%) which is B(R?) ® B(R,,R") ® A(R, x
U)/@(R+,Rd)-measurable, @,/@t(IRJr,IRd)-measumble for
every fixedt € R, and

X =1 (X('),W', p') P'-almost surely. (99)

Moreover, if objects (E1)-(E4) are given such that the distribu-
tion of € is r, then the process

X :=Hh (§,W,p)
is a strong solution of the SDE (1) with initial value &.

(100)
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Proof. Let Wx,wm) = x+ k' (xwmn) forx €¢ R, w ¢

C(R,,R"), 7 € M(R, x U), where k" is as in Corollary 16.

By Corollary 16, for the function /', the desired measurability

properties hold. Using Corollary 16 and X' = X{+Y', we have
P'(X'=H (X, W, p'))

=P (Xg+Y =Xg+K (X, W.,p")) (01

p' (YI — (X(,),W,,p’)) -1,

implying (99).

Note that, for &, W, and p as described in (E1)-(E4), the
triplets (X, W', p) and (§, W, p) induce the same probability
measure r1' X Py, x P, on the measurable space

(R?xC(R,,R")x M (R, xU),
(102)
%(R")® % (R,,R") &4 (R, xU))

with respect to the probability measure P’ and P, respectively,
where PP denotes the probability measure appears in (El),
since X), W', and p' are P'-independent and &, W, and p are
P-independent; see Remarks 6 and 10.

Observe also that the mappings

Q, > Cl), —> (X(’) ((()I) N (W; (w,))t€R+ ,Npl(wl))

eRYxC(R,,R")x M (R, xU),

(103)

030 — (£(@),(W, @),z > Npw))
(104)
eR¥XC(R,,R")x M (R, xU)
are ' | B(RY) ER,,R") ® #(R, x U)-measurable and
(G(E,Ws,s eR,,p(s),seR,.ND(p)),

B (IRd) ®%(R,,R) .« (R, x U)) -measurable,
(105)

respectively. Further, they are 9;/%(Rd) ® €,(R,,R") ®
M (R, x U)-measurable and

(0 (EW,se[0,t],p(s),s € (0,6]nD(p))

B (Rd) 8%, (R,,R")® 4, (R, xU))-measurable
(106)

for all t € R,, respectively. Indeed, since X(') and & are F'/
%’(Rd)-measurable and G(E)/%(Rd)-measurable, respec-
tively, by (11) and (15), it is enough to check that for allt € R,
neN,A; € BR"),t,....t, € [0,t],s € [0,t], B BU),
A2 € %([0> OO]),

{w' e : (W:1 (w'),...,W;n (a)’)) € Al} € 9',

{w €Q: (W, (@,...,W, (w)) € Al} co(W,seR,),

15
{w' € Q" Ny ([0,5] x B) € A,} € &,
{0 e Q: Ny (0,5]x B) € A}
ea(p(s),seR,, nD(p)).
(107)

These relations hold since W;i, i€{l,...,n},and Wt,-’ ie{l,
..,nhare F' | B(R")-measurable ando(W,,s € R,)/AB(R")-
measurable, and p’ and p are #' /M (R, xU)-measurable and
o(p(s),s € R, ,ND(p))/ M (R, xU)-measurable, respectively.
Similarly, one can argue that the functions in question are
9;/93([]%‘1) ® G,(R,,R") ® M,(R, x U)-measurable and
o(E,W,s € [0,1], p(s),s € (0,t] N D(p))/BR) ® E,(R,,
R") ® #,(R, x U)-measurable for all t € R, respectively.
Next, we check that the process X is adapted to the

augmented filtration (# f’w’P )ter, - First, note that the pro-
cess X is adapted to (gf’W’P )ier, if and only if ¢,(X) is

3‘75’W’P/9,(|R+, R%)-measurable for all ¢ € R,, where ¢, is
given in (9). Indeed,

. &EW,
(X)), 18 (97t P)t€R+ -adapted

=o(X,)cFWP vteR,
—=o(X,:se[0,t]) c FVP VieR,
= ¢, (X) is (?f’w"’, Qt(RJr,Rd))—measurable

vVt e R,,
(108)

where the last equivalence can be checked as follows. Since

P,(R,,R?) coincides with the smallest o-algebra containing
the finite-dimensional cylinder sets of the form

{y € D(R+,Rd) (y(t),.., () GA},

nenN, Ae&?(R”d), t...»t, €[0,1],

(109)

it is enough to check that o(X; : s € [0,t]) C ,9‘75’W’p for all
t € R, is equivalent with

foea: (o), @),....(¢,(X), @))€ A} e FT™?
(110)

foralln e N, A € BR™),¢,,...
readily follows from

{we:((p,X), @,....(p X)), (@) e A}

={weQ: (X, (@),....X, (W)€ A}.

,t, € [0,t],t € R, which

(111)

Since ¢,(X) = ¢, o h' o (E, W, p), t € R,, the mapping ¢, is
2,[R,,RY)/D,(R,,R%)-measurable for all t € R,, 1 is B,/
P,(R,,R?)-measurable for all t € R,, it remains to check
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that the mapping (104) is # Wop /99 -measurable for all t €

R, . Recall that
B, =0(B(R) € (R,R) oM (R, xU)UN),

teR

FP = 6 (0 (EW,se[0,t],p(s),s € (0,6]nD(p))

U/V‘E’W’P), teR

+>

(112)
where
#={AcR'xC(R,R)xM(R, xU):

3B e B(R') e (R,,R)® M (R, xU)
with A ¢ B, (n' x Py, x P,,) (B) = 0},

NP = fAcQ:

B EU(E,WSJE R+,P(5)>5E R++nD(p))

with A ¢ B, P(B) = 0}.
(113)
Since a generator system of Z(R?)®%, (R, R")®./,(R, xU)

together with ./ is a generator system of 9,, and we have
already checked that the mapping (104) is

(O'(E,WS,S eER,p(s),seR,, ﬂD(P)) >

B (Rd) ® € (R,,R") &/ (R, x U)) -measurable,
(114)

it remains to verify that (§, W, p)_l(A) € gf,W,P forall A €
W and t € R,. We show that (£, W, p) " (A) € #*W? for all
A e W, implying (§, W, p)~ Y(A) € JEWP forallt € R,, as

desired. If A € ./, then there exists B € %(Rd)®%(R+, [R’)@
MR, xU) such that A ¢ Band (1’ x Py, x Py,,)(B) = 0.
Hence

EW.p) " (4)
c(&W.p) (B (115)

g (§EWeseR,, p(s),s € R, ND(p)),
P((&W.p)" (B)) = P((§,W.p) € B)

= (n' x Py, x Py,,) (B) =0,

where, for the last but one equality, we used that the distribu-
tion of (§, W, p) under P isn’ x Py, , X P, (as it was explained
at the beginning of the proof). By definition, this means that

(&, W, p)"'(A) € #HWP.

(116)
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Next we check that (Xt)teR+ satisfies the SDE (1) P-almost
surely. Since /' is B(R?) @ G(R,,R") ® (R, x U)/D(R,,
IRd)—measurable, and the triplets (X('),W', p') and (§, W, p)

induce the same probability measure 1’ x Py, X Py, on the
measurable space

(R?xC(R,,R")x M (R, xU),
(117)
%(R")® % (R,,R") & (R, xU))

with respect to the probability measure P’ and P, respectively,
the triplets X', W', p') and (X, W, p) induce the same prob-
ability measure on the measurable space

(D(R,.R?) xC(R,,R") x M (R, xU),
(118)
2 (R,.R)®%(R,.R)e.M(R, xU))

with respect to the probability measure P’ and P, respectively.
Let us apply Lemma A.4 with the following choices:

1) g (1) & 1D D (1) (1)
(. F O (F) PO WD, 0 XD)

= (2, F(F), ., P W, X),
(119)
(Q(Z)) 9;(2)’ (3,»52)) , p@ w®
teR,

= <Q 7 (gf)W)p)tem

Since (Q', %', (gi)te[&, P, W', p’,X') is a weak solution of
the SDE (1) with initial distribution ', the tuple QW FW,
(FD),er PO, WD, p XDy satisfies (D1), (D2), (D3), and
(D4)(b)- (e) Further as 1t was explained before Definition 11,
the tuple Q?, F® (? ) , PP W@, p ), X?) satisfies
(D1), (D2), and (D3), and we " have already checked that X

is adapted to the augmented filtration (%EWP )ter, - Then
Lemma A.4 ylelds that the tuple (Q@,F?,(F ”m,

IP(Z),W(Z) @ X@) satisfies (D4)(b)-(d) and the distribu-
tion of

(x; -X| - Ltb(s,x;)ds— Lta

) Lt Lo (X ou) N' (ds,du)

i p(z)’ X(Z))

,P,W,p,X).

(5X)) !
(120)

- Lt JUI g (s, X, u) N’ (ds, du))

teR,
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on (D(R,, R%), 2R,, R%)) under P’ is the same as the dis-
tribution of

<Xt -X, - Lt b(s,X,)ds - J: o (s, X;)dW,

_J J £ (sX,_,u) N (ds, du) (121)

0 JU

- Jot JUI 9(sX

on (D(R,, R%), 2(R,, R%)) under P, where N'(ds, du) and
N(ds, du) is the counting measure of p' and p on R, x U,
respectively, and N'(ds,du) := N'(ds,du) — dsm(du) and
N(ds, du) := N(ds, du)—ds m(du). Using that the first process
and the 1dent1cally 0 process are indistinguishable (since the
SDE (1) holds P'-a.s. for (X Jter, )> We obtain that the SDE (1)
holds P-a.s. for (X, )tGR as well, “that i is, (D4)(e) holds.

Finally, we show that P(X, = & = 1. Since, as it was
checked that the distribution of X, and X coincide, especially,
the distribution of X;, and X, coincide, and consequently,
the distribution of X, and & coincide (both are equal to
n'). Using Corollary 16 for (Q, %, (FyF),cq ,P,W, p,X)
(which is especially a weak solution of the SDE (1) with initial
distribution 1") we get

P (X, =&) =P (E+K (EW,p), = &)

_,u) N (ds, du))

teR,

=P (k’ (E) w, P)o = 0) (122)
=P (K (EW.p),=Y,) =1,
as desired.
Summarizing, (X,)cg, is a strong solution of the SDE (1)
with initial value &. O
Appendix

Let (Q, F, (F)cr,»P) be a filtered probability space. First
we recall the notion of (%), -predictability; see, for exam-
ple, Ikeda and Watanabe [20, Chapter II, Definition 3.3]. The
predictable o-algebra % on R, x Q x U is given by

P=0h:R,xQxU —R|
ht,--) is (F,® % U), B (R))-measurable
vVteR,,,

h (-, w,u) is left continuous V (w,u) € Q xU).
(A1)
A function H : R, x Q xU — R? is called (Fter, -
predictable if it is P/ %(Rd)-measurable.

Lemma A.L Let (O, F,(F ) e, P) be a filtered probability
space. Let (X,),er, be an (F,)cg, -adapted cadlag process with

values in R?.
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() If w : R? — R is a continuous function, then for
eachT € R, and B € B(U), the function h(t,w,u) :=
wX,_ ()o@ 1pw), (tw,u) € Ry x Q xU, is
(F)ter, -predictable.

(i) IfTeR,,Ac %(Rd) is an open set and B € B(U),
then
{t,w,u) e R, xQAxU :
(A.2)
te[0,T],X,_ (w) € A, u€B} e

(iii) If f: R, xRIxU — R%is B(R,)® BR))®B(U)/
B(RY)-measurable, then the function H(t,w,u) :=
X (w),u), (Lw,u) € Ry x QxU, is (F)er, -
predictable.

Proof. (i) The function h is (¥,)cg_ -predictable, since it
belongs to the generator system of 2. Indeed, for each
t € R,, the mapping Q@ x U > (w,u) — h(t,w,u) is
F, ® BU)/B(R)-measurable, because X is 975/93(Rd)-
measurable and #; ¢ &, for all s < t, and hence X,_ :=
lim, X, is ,/B(R?)-measurable, and w is B(R?)/ B(R)-
measurable. Moreover, for each (w,u) € Q x U, the function
R, >t — h(t, w,u) is left continuous, because the functions
R, >t Tpp(t)and R, > — X, (w) are left continuous
and w is continuous.

(ii) Consider the function w, : R* — R, given by
wy(x) = o(x, R%\ A), x € R%, where ¢ denotes the Euclidean
distance of x and R? \ A. Then w, is continuous and A =
w;l([RH). Put hy(t, w,u) == wy(X,_ (@)1 () T5(w), (¢ w,
u) € R, x Q x U. Then, by (i), we obtain

{t,w,u) e R, xQAxU:te€0,T], X,_(w) € A, uce B}
={t,w,u) e R, xQAxU:
te[0,T], wy (X,_ (w)) € R,,, ue€ B}

={(t,w,u) e R, xQxU:h,(t,wu) eR,,} €.

(A.3)
(iii) We have H = f o G, where G(t,w,u) = (t,X,_(w), u),
(t,w,u) € R, x Q x U; thus it suffices to show that G
is PIBR,) ® B(RY) ® B(U)-measurable. The o-algebra
%’(RQ@%(R%@%(U) is generated by the sets [0, T]x Ax B
with T € R,, open sets A € %’([R{d) and B € %(U); hence it
suffices to show that

{t,w,u) e R, xQxU :
(A.4)
€[0,T],X,_(w) € A, u€ B} € 2.

This holds by (ii). O

Note that using Lemma A.l, one can relax Assumption
6.2.8 in Applebaum [23].

The next lemma plays a similar role as Lemma 139 in Situ
(11].

Lemma A.2. Let (9, F (FD), o , PO WO, p® xO)
i € {1,2}, be tuples satisfying (DI) (D2) (D3), and (D4)(b)—
(d). Suppose that (W(l), M XDy gnd (W(Z), @ XY have
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the same distribution on C(R,,R")x M(R, xU)xD(R,, RY).
Then

<X§1), Lt b (s, Xgl)) ds, Lt o (s, Xﬁl)) dWil),

Jt J £ (X0, u) N (ds, du), (A5)
Yo

0

t
J J g(s,Xil),u) N® (ds, du)) ,
U

0 teR,

<X§2), Jot b (s, XEZ)) ds, Jot o (s, Xﬁz)) dez),

t
J J f (s, Xg), u) N® (ds,du),
Uo

(A.6)
0

t
J J g (s, Xg), u) N@ (ds, du))
U,

0 teR,

have the same distribution on (D(R ,, Rd))s, where, foreachi €
{1,2}, NV (ds, du) is the counting measure of p(i) onR,, xU,
and N9 (ds, du) := N9 (ds, du) - dsm(du).

Proof. By Remark 4, the above processes have cadlag modifi-
cations. According to Lemma VI.3.19 in Jacod and Shiryaev
[17], it suffices to show that the finite-dimensional distribu-
tions of the above processes coincide.

By Proposition 1.4.44 in Jacod and Shiryaev [17], for each

. [pv(i) . B H:u(i>
i€ {L2andt € R, 10(t) — [ b(s, XP)dsand I{)(£) —
_[Ot o(s, Xgi))dWEi) asn — 00, where

Lnt)
) 1 k-1 _a
19 (1) = = b<—,x >
s (k-1)/
ng n "

(A7)

nt]
D () . k=1 i M _ W
Ly (t) = Z“( » ’X(;H)/n> (Wl:/n - W(;H)/n)-
k=1
Let Uy; € %BU), j € N, be such that they are disjoint,
m(U, ;) < 00, j € NyandU; = U;’il U,,; (such a sequence
exists since m is o-finite; see, e.g., Cohn [22, page 9]). Then
; 0 t i
foreachi € {1,2} and t € R,, I;)(t) — Jo JU] g(s,Xi’_),

N

wND(ds,du) asn — oo PV-almost surely, where

I5), () := Z H 9 (X%, u) N? (ds, du)

J=1 0 Ul,j
(A.8)

n

1

> (X0 p0),
J nD|

s€(0,t] (pg’)])
where pi’)J denotes the thinning of p® onto U, see, for
example, Ikeda and Watanabe [20, page 62]. Since m(U ]-) <

00, by Remark 5, the set (0,t] N D( p&’)J) is finite P® -almost
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surely forall t € R, andi € {1,2}, j € N, and hence one can
order the set D( pi’))j) according to magnitude, say 0 < { 5’31 <
451)]2 <.+, jeN, ie€{l,2}. Namely,
(@, =inf{teR,:N?((0,1]xU, ) > ¢},
(A.9)
CeN,

jeN, ie{l,2}

on the event

(e
Q(f)' - {w c0?: N ((0, k] x U, ) < 00} ’
J IQ pi;j(@) ! (A.10)

jeN, ie{l1,2},

having P"”-probability 1, where we used that the point

measure corresponding to the point function pif)].(w) is its

counting measure N 0 ()5 S€€ Section 2. Then we can write
Lj

Ig?l(t) in the form

n oo
(1) () () @ (@ (&)
16023 Yo(a0 X, 2 (0)) toa (@650),
j=1€=1 )
teR,, neN, ie{l,2},
(A1)

where Y2, g(Ci’,},e,XE?)‘e_, pg'))j((%e))ﬂ(O,t](Ci’)}’e) is a finite
S

sum P®-almost surely. Furthermore, by Remark 4, for i €
L2tandt € R, IO® — [0 ], f(.X2,0)N(ds, du)

asn — oo P¥-almost surely, where

. t . —
1) (t) = L JU U0, ) f (X0, u) N (ds, du) (A12)

with

0]
Tn

= inf {t eR,: Jt J “f (S,Xgi),u)uz dsm (du) > n} Amn,
0 Ju,
(A.13)

foralln € N, i € {1,2}, satisfying Tr(j) T oo P _almost surely
asn — o0.LetU,; € B(U), j € N, be such that they are
disjoint, m(Uy;) < 0, j € N,and Uy = U}, Uy (such a
sequence exists since m is o-finite; see, e.g., Cohn [22, page
9]). Then, by pages 47 and 63 in Ikeda and Watanabe [20], for

allt e R,,i € {l,2}andn ¢ N,I(i)

PO ;
4)n)j(t) — I,(t)asj — oo,

where
t
(1) ._ ()
I4in,j (t) = L JU T (ﬂ (0.7 (S)f(s’ Xsl—’”))

X ‘“U(LJ' (M) 1 [O,Tﬁ,ﬂ] (S) f (S, Xil_))u>

N® (ds, du)
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0

- J | JUO,,. Ve (f (5 X2.u))

X ﬂ[o,rfj)] (s) f (s, Xy_), u) N® (ds,du).
(A14)

By page 62 in Ikeda and Watanabe [20], for allt € R,,i €

. . ) i
{1,2L,n e N,and j € N, I{) () = I (t) — I (), where

[[[,, 7o (0 (x20)

iy ®) =

X “[o,rﬁ”] () f (s, Xgi), u) N® (ds, du),

i),b
I () :

t o
[, e (620 1000

x f (s, XE’E, u) m (du)) ds.
(A.15)

Similarly as for the integrals _[Ot jU g(s, Xgi_),u)N(i)(ds, du)

¢ .
and JO b(s, Xi’))ds, there exist sequences of random variables
Q)

,’ ',b .’ |]:D
(Iifil’“j’e(t))eeN and (I " o(D)een such that Iifl,“j,e(t) —

(i)a ()b PO b ;
I, j(t) and I o j,é(t) — Iy j(t) as £ — 00, respectively.

4 . P
Then, forallt € R, and i € {1,2}, Iifi;;)e(t) - Iifil’f’j)e(t) —

Iot IU fGs, Xgi_),u)ﬁ(i)(ds, du) as ¢ — oo;then j — 00, and,
finally, n — o0o0. Using part (vi) of Theorem 2.7 in van der
Vaart [24], we get forall K e N, t,...,tx € R, andi € {1,2},

(i) 7() (1) (i) (@), (i),b
(X1, Tt T, T, (1), T o (1) = I4in,j,€(tk))k€{1 ‘‘‘‘‘ 1

PO (i [* () b Y gy
o (xt; , J b(5X9) ds, j o (5X) dw?,

tk . .
J J g (s, Xg, u) N (ds, du),
0o Ju,

[ ], X 9as i) )
Uo

0
(A.16)

as ¢, j,n — oo. Since (W(l),p(l),X(l)) and (W(z),p(z),X(z))
have the same distribution, the random vectors

(1) £(1) (1) (1) (1), (1),b
(th > Il,n(tk)’ 12,71 (tk)’ 13,11 (tk)> I4,n,;'1,€ (tk)_I4,n,j,€(tk))k€{l K}

,,,,

(A.17)

(2) 1(2) (2) ) (2), 2),b
(X5, T (80, Loy (60, T (s T o0 = I (t))
(A.18)
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have the same distribution for all ¢,j,n € N, as well.
Indeed, the random vectors above can be considered as
some appropriate measurable function of (W, p, X))
and (W(z), p(z),X(z)), respectively. For this, it is enough to
verify that each coordinate of the above random vectors can
be considered as some appropriate measurable function of

WD, pM XDy and (WP, p®, X@), respectively, hence we
fixk e {1,...,K}.

(i) First observe that ch) isa (R, Rd)/gé’(Rd)—meas-
urable function of X(i); namely, XE:) =Y, (X(i)), where
¥, : D(R,, RY) — R%is given by ¥ (y) == y(ty), y €
D(R,,R%).

(ii) Next, I;’;L(tk) is a 9(R,, R%)/%B(R?)-measurable
function of X as well; namely, I&(tk) =Y xy,
where V¥, : D(R,, [Rd) - R%is givenby ¥, (y) := (1/
) Y b((k — 1)/, y((k - 1)/n)), y € DR, R?).

(iii) In a similar way, I{),(t,) is a Z(R,, R?) x €(R,, R")/
B(R%)-measurable function of (X, W®); namely,
Igzl(tk) = ¥,(XD W), where ¥, : D(R,,R%) x
CR,,R") — R%isgivenby ¥, (y, w) := ,[Citfj o((k-
1)/n, y((k—1)/n)(w(k/n) —w((k-1)/n)), y € D(R,,
R, w € C(R,,R").

(iv) Now we show that Igzl(tk) isa 2(R,, RY) ® MR, x
U)/RB(R?%)-measurable function of (X7, p(i)). As a
first step, we show that for each 7, € € N there exist
functions @, : M(R, xU) — R, and&;, : M(R, x
U) — U such that Q,, is MR, x U)/BR,)-
measurable, Eje is MR, x U)/B(U)-measurable,
and (01, p)(¢17,00) = (@56 (N ), Z,,(N y9)) holds
P?-almost surely. Then it will follow that Ig;(tk) =
(X9, p@), where ¥, : D(R,,R%) x M(R, xU) —
R? given by

¥ (v, 7)

= Z 29(Pie 1),y (i (1)=)2Ejp () 1o (@ (1)
(A.19)

for (y,7m) € D(R,,R?) x M(R, x U) is Z(R,,RY)®
MR, x U)/%’(Rd)—measurable. To prove the exis-

tence of ®;, and E;,, first we verify that ((ii; 2
pY)j(( i’i ,)) is measurable with respect to the o-algebra

o(N 0 )N QEI)J having the form
Lj >

0. N _
a<{w €0l Ny, (011X B) kH
(A.20)
teR,, Be (%’(UL]-), ke N).
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We have
{weal: (& e (@), P (w) (& 10 (@))) € (0,1] x B}

:ﬁO{wGQ(ll)J

n=1 k=1

N

(k-=1)t

Pl,(w)<<0’ " xUp;|s€-1,
(k—=1)t kt

Vi (5575 <) >

kt
o (0] 401

fort e R,,, j,¢ € N,Be BU, ) i€ {1,2}. Indeed,
on the one hand, if w € Q(l) is such that ( @ () €
(0,t] and p(') (w)((i’i (w)) € B, then for each neN,
there exists a unique k € {1,...,n} with Ci’}’e(w) €
((k = 1)t/n, kt/n], and hence Npg(w)((o, (k= 1Dt/n] x
Uy <e€-1, prw)(((k - 1)t/n,kt/n] x B) > 1 and
Np%_(w)((o,kt/n] x Uy,j) 2 €. On the other hand,

(A.21)

{weal ¢, () ¢ 0,11}

- {w cqf N (,)(w)((O,t] xUp;)<e- 1}

o n . kt
CUﬂ wte N(z)(w) 0, — " ><U1] <£-1 s

n=1k=1

(A.22)

{oeal): 07, (@ e 1], pl) (@) (¢, @) ¢ B

cGﬁ({weQ(’) N<, <<0,(k_1)t]><U1,j>>€}
n=1 k=1 n
U{weQ(’) Np(, )<<(k_l)t,k—t]xB>=0}
1] n n

o{eca);

kt
(0] 1) 261

(A.23)

For the second inclusion, for each w € Q(li)j, let us

choose n(w) € N such that

n(w)

1 1
> max " " 5 " . .
( (0@ =00 @) ) @ =0, (@) >
(A.24)
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Ifw € Q(i). is such that Cii)e(w) € (0,t] and
pﬁl)](w)(f il 0 e(“’)) ¢ B, then there exists a unique k* €
{1,...,n} with { (@) € ((k" = Dt/n,k*t/n], and
hence we have N Pt ((0 kt/n] xU, j) <f-1forke
{1,...,k"-1L, N 0 )(((k* t/n, k*t/n]xB) = 0,and

Pﬁ}(w)((o, (k- l)t/n]xUL]) > ffork e {k*+1,...,n}.
Since the set on right hand side of (A.21) is in the o-
algebra given in (A.20) and {(0,t] xB : t € R,,B €
PB(U,,;)} is a generator system of B(R, )03)92‘>’(U1 j)»we
readily get that the random variable (¢ Lie p1 (€ i’i P

is measurable with respect to the o-algebra given in
(A.20). Let us apply Theorem 4.2.8 in Dudley [2] with
the following choices:

(@ X:= O, Y = MR, xU),
®) T: 0, — MR, xU), T(w) =
(1)
oy,
©f : 0 = R xU, fl0 = (),
pi’i(w)(éi'}e(w»), we Ol
Then there exist functions @;, : M(R, xU) — R,

and &, : M(R, xU) — U such that @, is #(R,x
U)/%(R,)-measurable, B¢ is MR, x U)/BU)-

measurable, and (Clje,plj(C(’) ) = ((Dj)g(Npii)j))
-e(N m)) holds on Q(’) Since P(i)(Q(i)) = 1, we

have ({1 ]€’P(l) ({1 ]e)) = (q) €(N (,) ), = Z(N x))) P
almost surely, as desired.

Oy @ €

In what follows we provide an alternative argument
for verifying that (ilie is an MA(R, x U)/AB(R)-
measurable function of p® with the advantage that
the measurable function in question shows up explic-

itly. We have cif},l = inf{t € R, : |Ay, ()] > 1/2},

where y, (t) = NP((0,] x U, ;) and Ay, ;(t) =
Vi) =y (t-) = N} ><U1 ) fort € R,,. Further,

Ci’,ﬂ-,m = inf{t € ((ﬂe, : |Ay, ;(B)] > 1/2} for all
¢ € N. Consider the mappings ¥;, : D(R,,R) —
R,, ¢ € N, defined by ¥;,(y) := inf{t € R, :
[Ay(t)] > 1/2} and ¥; ,,,(y) = inf{t € (¥;,(y),00) :
[Ay(t)] > 1/2}, y € D(R,,R), £ € N. By Proposition
VI.2.7 in Jacod and Shiryaev [17], the mappings ¥; ,,
¢ € N, are continuous at each point y € D(R,,R)
such that |[Ay(t)| # 1/2 for all t € R,. Moreover,
we have 5’; o = W50 (Yy ( 7)), where the mappings
Yy M([R xU) — D(R,,R),j € N, are given by
Yy (n) = (m((0,t] X Uy )yer,» # € M(R, x U).
Observe that, for each m € M(R, x U), we have
|AY, ;(m)(t)] # 1/2forallt € R, (since |A¥, ;(m)(t)] €
Z, for all t € R,); hence, it remains to cfleck that
the mappings ¥, ;, j € N, are MR, xU)/D(R,,R)-
measurable. This follows from {m € M(IR x U) :

.....
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alL € N, t,...,t; € R, and B ¢ RE, which is a
consequence of the definition of #Z(R, x U).

(v) Finally, we verify that Ii’il’; () — Ii’if; (t) is a
2R, Rd)®%(IR+ xU)/%B(R%)-measurable function
of (X7, p(i)). Based on the findings for Iffil(tk) and

Igle(tk), it is enough to check that

o (G 20 (Soe) 7)1 Q)

@ @) O]
C o(X ’p0]>nQO,j C

o ~ (A25)
o (X9, p) n 02,

where ((()’z , and Q(’) can be defined similarly as Cﬂ ’

and Q(‘) foralli € {1,2} and j,€ € N, respectlvely

(replacmg in the definitions U, ; and p1 by U,,; and

p(()’)], resp.). Note that

{we 0l 0, () e 1], pf (@) (&) (@) € B,

7 (w) € [0, T1}
" o .
U {a) € Qo,j :
1k=1
(k—1)t
Npl(];)J(w)<<0, UO,j <f€-1,
N(x) <<( mL kt] B)ZL
Po,; (@) n
k >
pr,’] @ 0,; ><U0’j >¢

N{eea)

I
_ 8

S
I

~

" @) 2
: Jo JUO Hf (s, X, (w),u)" dsm (du) > n}
(A.26)

fort € R,,T € R, ¢ € N,B e BU;),i ¢
{1, 2}. Similarly, as it was explained in case of Ilil)l(t)
one can approximate f IU I f(s, X(l),u)ll dsm(du)
by 2(R,, Rd)/gé?([&r) measurable functions of X,
which yields (A.25).

Hence we obtain the statement. O

Remark A.3. In case of f = 0 and g = 0, the statement of
Lemma A.2 basically follows by Exercise (5.16) in Chapter
IV in Revuz and Yor [25]; see also Lemma 12.4.5 in von
Weizsacker and Winkler [26].

Next we formulate a corollary of Lemma A.2.

Lemma A.4. Let (QV, FW, (g(l)) ,PW WO, p(l) xM)y
beatuplesatzsfyzng (D1), (D2), (D3), and (D4)(b) (d) and let
(Q S F 0”(2), (9;2))teR+, [P’(z),W(z),p(z),X ) be another tuple
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satisfying (D1), (D2), and (D3) such that (sz))teR+ is an R?-
valued (ggz))te& -adapted cadlag process. Suppose that (W™,
p(l),X(l)) and (W(Z),p(z),X(z)) have the same distribution on
C(R,,R")xM(R,xU)xD(R,, R%). Then (D4)(b)- (d) hold for
the tuple (Q?, FO AF D), PP, WD, p@ XDy a5 well,
and the processes (A.5) and (A 6) have the same distribution
on (D(R,,R%))°.

Proof. First we check that P(Z)(Ig [1b(s, XEZ))IIds < 00) =
forall t € R,. Since b is B(R,) ® B(RY) ® B(U)/B(RY)-
measurable and X'V and X have the same law, the processes
(b5, X)) seq, and (b(s, X)) e, have the same law as well,
. . t

Since the mapping D(R,,R%) > f (IO f()ds)er, €
D(R+,Rd) is continuous (see, e.g., Ethier and Kurtz [27,
Chapter III, Section 11, Exercise 26], or Barczy et al. [28, Proof
of Lemma B.3]), and consequently 2(R,,RY)/2(R,, RY)-
measurable, the processes (_[Ot 1b(s, Xil))llds)te[& and (Jot |b(s,
Xﬁz))llds)teR+ have the same distribution with respect to PV
and P?, respectively. Since IP’(I)(_[; lb(s, Xﬁl))Hds < 00) =
forall ¢ € R,, this yields PP ([} b(s, X?)[lds < co) = 1 for
allt € R,, as desired.

Similarly, one can check that P(z)(.[ot lo(s, ng))llzds <
00) =1forallt € R, and

(L b
It remains to check that

t
([ ] bt

fort € R,, where N®(ds, du) is the counting measure of
p? on R,, x U. Recall that, in the proof of Lemma A.2,
Uy € BU), j € N, have been chosen such that they are
disjoint, m(U, ;) < 0o, j € N,and U, = |2, U, ;. Further, the
set D(p(l) 8 1

(1,1‘,2 -+, j€N,ie{l,2};see (A.9). Then, for eachi € {1,2}
andt € R, Kf,’)(t) — Jo IUI I g, Xg_),u) I NO(ds, du) as

n — oo P”-almost surely, where

SR N J 0
Kn (t) e ]; J() U, “g (S’ Xs—’
5y

Lse(o,tInD(p{"))

“zdsm(du) < 00) =1, teR,.
(A.27)

u)" N®@ (ds, du) < oo> =1,
(A.28)

) is ordered according to magnitude as 0 < {

u) “ N® (ds, du)

(A.29)
la (s X2 0))],

where pgl)] denotes the thinning of p” onto U,,;- Since ( Y,

XMy and ( p(z), X@) have the same distribution with respect
to P and P?, respectively, Kfll) (t)and K,(lz) (t) have the same
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distribution with respect to P™") and P, respectively, for all

n € Nandt € R, (which can be checked in the same way as

in the proof of Lemma A.2 by replacing g with [|gl|). Conse-
t t

quently, jo JUl lg(s, X, 1) INY(ds, du) and Jo '|-U1 llg(s, Xg),

u)|IN®(ds, du) have the same distribution with respect to

PY and PP, respectively, for all t € R,. Since

P[] Jo(ox

fort € R,, we have (A.28). All in all, the tuple (Q®, %@
(F)iep,, PP, W, p?, XP) satisfies (D4)(b)-(d), and
then Lemma A.2 yields that the processes (A.5) and (A.6)
have the same distribution on (D(R,, [Rd))s. O

|| )| N (ds, du) < oo> =1,
(A.30)

The next lemma corresponds to Fact B on page 107 in Situ
(11].

Lemma A.5. Let us consider the filtered probability space
(QF(Fer,»P1,) given in the proof of Theorem 1. The

process Q) > (x,w,n,y(l),y(z)) — w, € R, ¢t € R, isan
r-dimensional standard (% ,),cg -Brownian motion, and the

process Q 3 (x,w, 7, yV, y?@) N, logxv € MR, xU),
t € Ry, is a stationary (F,),eg, -Poisson point process on U
with characteristic measure m under the measure P ,.

Proof. Using that the w-coordinate process is an r-dimen-
sional standard (¥,)c, -Brownian motion under P, ,, for
the first statement, it is enough to prove the independence
of w, —w, and F for every s,t € R, with s < t. For this, it is
sufficient to show

i(y,w;—w) _ —=9)lyl*/2
Ep,, (e Ig)=e P, (G), (A
yeR, Ge¥%, 0<s<t
Indeed, if A € ?s, then there exists some G € &, such that
AAG = (A\G)U(G\A) € /,and consequently P, ,(AAG) =
0. Then,

IE[PLZ (ei<Y)w;—wS) 1 A) — [EIPLZ (ei(y,wr—ws> 1 AnG)

Ep,, (¢7716)

- e—(t—s)nyuz/zu)l’2 G) (A32)

2
= I 2p (),

Ae@, 0<s<t.

Moreover, if A € F, then A € €, forall ¢ > 0, and hence

S+e

. 2
[E[P’m (e1<Y>wﬁws+s)ﬂA) _ e*(f*S*E)"Y" /2[p>1)2 (A),

(A.33)

AeF, 0<s<t, &£>0.
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By dominated convergence theorem, using that w has contin-
uous sample paths P, ,-almost surely, we get
iy, w,—wy) _ o =9lyI?/2
B, (77 14) = IR, (4),
(A.34)
AeF, 0<

N

s<t
that is,
Ep [e“y’“)‘*w*‘> | %s] =e

(t=9)lyl*/2
12 >

0<s<t. (A35)

Thus, in the light of Lemma 2.6.13 of Karatzas and Shreve [21],
we get the independence of w, —w, and F for everys,t € R,
with s < t.

Using that w, —
obtain

[E[Fbl,z [ei(Y’Wt_Wf)ﬂG] = [Epl,z [[EIP’Lz [ei(Y’wrlUS)ﬂG | ?s”

w; is independent of ¥ under P, ,, we

= Ep,, [16Ep,
-, [t [

2
— Ep, [1ge ]

g ]

= EIMRp ()
(A.36)

forally € R"and G € & ; hence we conclude (A.31) and then
the first statement.

Using that the process p,, is a stationary (¥,);cg  -Poisson
point process on U with characteristic measure m, as it was
explained in the proof of the first statement, for the second
statement, it is enough to show that for every s,t € R, with

s < t,everyn € N, every disjoint subsets B, ..., B, € B(U)
and Ay,...,4, € R,,
[E[FDlz [e Y h p,,((Sl‘]XB)]]G:I
(A.37)
n -Aj
I Ep (G), Geg,

Using that an((s, t] x Bj), j €11,...,n}, are independent of
each other and from & under P ,, we get

Ep,, [ TR N8 ]
1,2

= [E[pu [EI]:D12 [ = 1)L]an((st]><Bj)]]G | gs]]

|
Ep,, [16Ep,, [ 5V CP0 1 5]
s (A.38)

[ "o AN, ((st]xB; )H

=Ep, [ﬂGe(t 9 Zja (- l)m(B)]

(t s)z (e” Ao l)mB)ﬂ:D (G)

for all G € Z,. The last but one equality above is a conse-
quence that N Pﬂ((s, t] x B j) is a Poisson distributed random
variable with parameter (t — s)m(Bj), j € {1,...,n}, under
P, ,. Hence we conclude the second statement as well. O



International Journal of Stochastic Analysis

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research of Matyas Barczy and Gyula Pap was realized
in the frames of TAMOP 4.2.4. A/2-11-1-2012-0001 “National
Excellence Program, Elaborating and operating an inland
student and researcher personal support system.” The project
was subsidized by the European Union and cofinanced by
the European Social Fund. Zenghu Li has been partially
supported by NSFC under Grant no. 11131003 and 973
Program under Grant no. 2011CB808001.

References

[1] T. Yamada and S. Watanabe, “On the uniqueness of solutions
of stochastic differential equations,” Journal of Mathematics of
Kyoto University, vol. 11, no. 1, pp. 155-167, 1971.

[2] R. M. Dudley, Real Analysis and Probability, The Wadsworth
& Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole
Advanced Books & Software, Pacific Grove, Calif, USA, 1989.

[3] H.]J.Engelbert, “On the theorem of T. Yamada and S. Watanabe,”
Stochastics and Stochastics Reports, vol. 36, no. 3-4, pp. 205-216,
1991.

[4] A.S. Cherny, “On strong and weak uniqueness for stochastic
differential equations,” Theory of Probability and Its Applica-
tions, vol. 46, no. 3, pp. 406-419, 2000.

[5] T. G. Kurtz, “Weak and strong solutions of general stochastic
models,” Electronic Communications in Probability, vol. 19,
article 58, 16 pages, 2014.

[6] J. Jacod, “Weak and strong solutions of stochastic differential
equations,” Stochastics, vol. 3, no. 3, pp. 171-191, 1980.

[7] M. Ondrejat, “Uniqueness for stochastic evolution equations in
Banach spaces,” Dissertationes Mathematicae, vol. 426, 63 pages,
2004.

[8] M. Rockner, B. Schmuland, and X. Zhang, “Yamada-Watanabe
theorem for stochastic evolution equations in infinite dimen-
sions,” Condensed Matter Physics, vol. 11, no. 2, pp. 247-259,
2008.

[9] S. Tappe, “The Yamada-Watanabe theorem for mild solutions
to stochastic partial differential equations,” Electronic Commu-
nications in Probability, vol. 18, article 24, 13 pages, 2013.

[10] T. G. Kurtz, “The Yamada-Watanabe-Engelbert theorem for
general stochastic equations and inequalities,” Electronic Journal
of Probability, vol. 12, no. 33, pp. 951-965, 2007.

[11] R. Situ, Theory of Stochastic Differential Equations with Jumps
and Applications, Mathematical and Analytical Techniques with
Applications to Engineering, Springer, New York, NY, USA,
2005.

[12] Z.Liand L. Mytnik, “Strong solutions for stochastic differential
equations with jumps,” Annales de I'Institut Henri Poincaré,
Probabilités et Statistiques, vol. 47, no. 4, pp. 1055-1067, 2011.

[13] D. A. Dawson and Z. Li, “Stochastic equations, flows and
measure-valued processes,” The Annals of Probability, vol. 40,
no. 2, pp. 813-857, 2012.

(14] L.Déringand M. Barczy, “A jump type SDE approach to positive
self-similar Markov processes,” Electronic Journal in Probability,
vol. 17, no. 94, pp. 1-39, 2012.

23

[15] Z. Li and E Pu, “Strong solutions of jump-type stochastic
equations,” Electronic Communications in Probability, vol. 17,
article 33, pp. 1-13, 2012.

[16] H. Zhao, “Yamada-Watanabe theorem for stochastic evolution
equation driven by Poisson random measure,” ISRN Probability
and Statistics, vol. 2014, Article ID 982190, 7 pages, 2014.

[17] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic
Processes, Springer, Berlin, Germany, 2nd edition, 2003.

[18] A.S. Kechris, Classical Descriptive Set Theory, vol. 156 of Grad-
uate Texts in Mathematics, Springer, New York, NY, USA, 1995.

[19] S. I. Resnick, Extreme Values, Regular Variation, and Point
Processes, Springer, 2008.

[20] N.Ikeda and S. Watanabe, Stochastic Differential Equations and
Diffusion Processes, North-Holland/Kodansha, Amsterdam,
The Netherlands, 2nd edition, 1989.

[21] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic
Calculus, Springer, Berlin, Germany, 2nd edition, 1991.

[22] D. L. Cohn, Measure Theory, Birkhduser, Boston, Mass, USA,
2nd edition, 2013.

[23] D. Applebaum, Lévy Processes and Stochastic Calculus, Cam-
bridge University Press, Cambridge, UK, 2nd edition, 2009.

[24] A.W.vander Vaart, Asymptotic Statistics, Cambridge University
Press, 1998.

[25] D. Revuz and M. Yor, Continuous Martingales and Brownian
Motion, Springer, Berlin, Germany, 3rd edition, 2001.

[26] H. von Weizsicker and G. Winkler, Stochastic Integrals,
Advanced Lectures in Mathematics, Vieweg, Braunschweig,
Germany, 1990.

[27] S. N. Ethier and T. G. Kurtz, Markov Processes, John Wiley &
Sons, New York, NY, USA, 1986.

[28] M. Barczy, M. Ispany, and G. Pap, “Asymptotic behavior of CLS
estimators for unstable INAR(2) models,” http://arxiv.org/abs/
1202.1617.



Advances in Advances in Journal of Journal of
Operations Research Applied Mathematics Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

ces In

matical Physics

Journal of

: Journal of Mathematical Problems Abstract and Discrete Dynamics in
Complex Analysis

Mathematics in Engineering Applied Analysis Nature and Society

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

Disciete Mathemalics

Journal of International Journal of Journal of

Function Spaces Stochastic Analysis [l Optimization




