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Recently, Kurtz (2007, 2014) obtained a general version of the Yamada-Watanabe and Engelbert theorems relating existence and
uniqueness of weak and strong solutions of stochastic equations covering also the case of stochastic di
erential equations with
jumps. Following the original method of Yamada andWatanabe (1971), we give alternative proofs for the following two statements:
pathwise uniqueness implies uniqueness in the sense of probability law, and weak existence together with pathwise uniqueness
implies strong existence for stochastic di
erential equations with jumps.

1. Introduction

In order to prove existence and pathwise uniqueness of a
strong solution for stochastic di
erential equations, it is an
important issue to clarify the connections between weak
and strong solutions. 	e �rst pioneering results are due to
Yamada and Watanabe [1] for certain stochastic di
erential
equations driven by Wiener processes.

We investigate stochastic di
erential equations with
jumps. Let � be a second-countable locally compact Haus-
dor
 space equipped with its Borel �-algebra B(�). Let �
be a �-�nite Radon measure on (�,B(�)), meaning that the
measure of compact sets is always �nite. Let �0, �1 ∈ B(�)
be disjoint subsets. Let �, � ∈ N. Let � : [0,∞) × R

� → R
�,� : [0,∞) × R

� → R
�×�, � : [0,∞) × R

� × � → R
�, and� : [0,∞) × R

� × � → R
� be Borel measurable functions,

where [0,∞) × R
� × � is equipped with its Borel �-algebra

B([0,∞) × R
� × �) = B([0,∞)) ⊗ B(R�) ⊗ B(�) (see,

e.g., Dudley [2, Proposition 4.1.7]). Consider a stochastic
di
erential equation (SDE)

X� = X0 + ∫�

0
� (�,X�) d� + ∫�

0
� (�,X�) dW�

+ ∫�

0
∫
�0
� (�,X�−, �) �̃ (d�, d�)

+ ∫�

0
∫
�1
� (�,X�−, �)� (d�, d�) , � ∈ [0,∞) ,

(1)

where (W�)�⩾0 is an �-dimensional standard Brownian
motion,�(d�, d�) is a Poisson randommeasure on (0,∞)×�
with intensity measure d��(d�), �̃(d�, d�) := �(d�, d�) −
d��(d�), and (X�)�⩾0 is a suitable process with values in R

�.
Yamada and Watanabe [1] proved that weak existence

and pathwise uniqueness imply uniqueness in the sense of
probability law and strong existence for the SDE (1) with� = 0 and � = 0. Engelbert [3] and Cherny [4] extended this
result to a somewhatmore general class of equations and gave
a converse in which the roles of existence and uniqueness are
reversed; that is, joint uniqueness in the sense of probability
law (see, Engelbert [3, De�nition 5]) and strong existence
imply pathwise uniqueness. 	e original Yamada-Watanabe
result arises naturally in the procedure of proving existence
of solutions of a SDE; for a detailed discussion, see Kurtz [5,
pages 1-2].
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Jacod [6] generalized the above mentioned result of Yam-
ada and Watanabe for a SDE driven by a semimartingale,
where the coe�cient may depend on the paths both of the
solution and of the driving process. 	e Yamada-Watanabe
result has been generalized byOndreját [7] and Röckner et al.
[8] for stochastic evolution equations in in�nite dimensions
and by Tappe [9] for semilinear stochastic partial di
erential
equations with path-dependent coe�cients.

Recently, there has been a renewed interest in general-
izations of the results of Yamada and Watanabe [1]. Kurtz
[5, 10] continued the direction of Engelbert [3] and Jacod [6].
He studied general stochastic models which relate stochastic
inputs with stochastic outputs and obtained a general version
of the Yamada-Watanabe and Engelbert theorems relating
existence and uniqueness of weak and strong solutions of
stochastic models with the message that the original results
are not limited to SDEs driven by Wiener processes. In
order to derive the original Yamada-Watanabe results from
this general theory, proofs of pathwise uniqueness require
appropriate adaptedness conditions, so two new notions,
compatibility and partial compatibility between inputs and
outputs, have been introduced. Due to Example 3.9 in Kurtz
[10] and Page 7 in Kurtz [5], the results are valid for SDEs
driven by a Wiener process and Poisson random measures.

Following the ideas of Yamada and Watanabe [1], we
are going to give alternative proofs for the following two
statements.

�eorem 1. Pathwise uniqueness for the SDE (1) implies
uniqueness in the sense of probability law.

�eorem 2. Weak existence and pathwise uniqueness for the
SDE (1) imply strong existence.

Note that 	eorems 1 and 2 are generalizations of Propo-
sition 1 and Corollary 1 in Yamada and Watanabe [1] (we do
not intend to deal with generalization of their Corollary 3).
	e de�nition of weak and strong solutions of the SDE (1),
pathwise uniqueness for the SDE (1) and uniqueness in the
sense of probability law, and a detailed, precise formulation
of 	eorem 2 will be given in the paper. In the course of the
proofs we developed a sequence of lemmas discussing several
kinds of measurability; see Lemmas 12 and 14, and we also
presented a key observation on the preservation of the joint
distribution of the parts of the SDE (1); see Lemmas A.2 and
A.4.

Our alternative proofs show the power of the original
method of Yamada and Watanabe [1]; these proofs can be
followed step by step and every technical detail is transparent
in the paper. 	is raises a question whether Kurtz’s result
could be proved via the walked-out path by Yamada and
Watanabe.

Note that Situ [11, 	eorem 137] also considered the SDE
(1) with R

� \ {0} instead of � and with � = 0 and proved
	eorems 1 and 2 under the resctrictive assumption

∫
R
�\{0}

‖�‖21 + ‖�‖2�(d�) < ∞. (2)

	is assumption was needed for introducing an auxiliary
càdlàg process in Lemma 139 in Situ [11]. In fact, one can get
rid of condition (2) by using the space of point measures on
R+ ×� as the space of trajectories of Poisson point processes
instead of the space of càdlàg functions; see the proofs of
	eorems 1 and 2. We call the attention that in the literature
the result of Situ [11, 	eorem 137] has been usually referred
to without checking condition (2); see, for example, Li and
Mytnik [12, (3.1)], Dawson and Li [13, (2.9)], Döring and
Barczy [14, (3.23)], and Li and Pu [15, (4.6) and (5.1)], but
	eorem 2 covers these situations as well.

We remark that Zhao [16] already adapted the original
method of Yamada and Watanabe for the SDE (1) driven
only by a compensated Poisson randommeasure, that is, with� = 0 and � = 0, but for processes with values in a separable

Hilbert space instead of R�-valued processes. Comparing
with the results of the present paper, note that we explicitly
stated and proved in	eorem 1 that pathwise uniqueness for
the SDE (1) implies uniqueness in the sense of probability law.

2. Preliminaries

Let Z+, N, R, R+, and R++ denote the set of nonnegative
integers, positive integers, real numbers, nonnegative real
numbers, and positive real numbers, respectively. For �, � ∈
R, we will use the notation � ∧ � := min{�, �}. By ‖x‖ and‖A‖, we denote the Euclidean norm of a vector x ∈ R

� and
the induced matrix norm of a matrix A ∈ R

�×�, respectively.

	roughout this paper, we make the conventions ∫�
	 := ∫(	,�]

and ∫∞
	 := ∫(	,∞) for any �, � ∈ R with � < �. By �(R+,Rℓ)

and �(R+,Rℓ), we denote the set of continuous and càdlàg

R
ℓ-valued functions de�ned on R+, equipped with a metric

inducing the local uniform topology (see, e.g., Jacod and
Shiryaev [17, Section VI .1a]) and a metric inducing the so-
called Skorokhod topology (see, e.g., Jacod and Shiryaev [17,

	eorem VI .1.14]), respectively. Moreover, C(R+,Rℓ) and
D(R+,Rℓ) denote the corresponding Borel �-algebras on
them.

Recall that � is a second-countable locally compact
Hausdor
 space. Note that� is homeomorphic to a separable
completemetric space; see, for example, Kechris [18,	eorem
5.3]. For our later purposes, we recall the notion of the space
of point measures on R+ × �, of the space of simple point
measures onR+×�, and of the vague convergence.We follow
Resnick [19, Chapter 3] and Ikeda andWatanabe [20, Chapter
I, Sections 8 and 9].

A pointmeasure onR+×� is ameasure� of the following
form: let � ⊂ N and let {(��, ��) : ! ∈ �} be a countable
collection of (not necessarily distinct) points of R+ × �, and
let

� := ∑
�∈�
#(�� ,��) (3)

assuming also that �([0, �] × $) < ∞ for all � ∈ R+ and
compact subsets $ ∈ B(�) (i.e., � is a Radon measure
meaning that the measure of compact sets is always �nite,
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and consequently, it is locally �nite), where #(�� ,��) denotes the
Dirac measure concentrated on the point (��, ��). 	us

� ([0, �] × $) = # {! ∈ � : (��, ��) ∈ [0, �] × $} ,
� ∈ R+, $ ∈ B (�) . (4)

A point function (or point pattern) ' on � is a mapping' : �(') → �, where the domain�(') is a countable subset
of R++ such that {� ∈ �(') : � ∈ (0, �], '(�) ∈ $} is �nite
for all � ∈ R+ and compact subsets $ ∈ B(�). 	e counting
measure�� on R++ × � corresponding to ' is de�ned by

�� ((0, �] × $) := # {� ∈ � (') : � ∈ (0, �] , ' (�) ∈ $} ,
� ∈ R++, $ ∈ B (�) . (5)

Note that there is a (natural) bijection between the set of point
functions on � and the set of point measures � on R+ × �
with �({�} × �) ⩽ 1, � ∈ R++, and �({0} × �) = 0. Namely, if' : �(') → � is a point function, then the corresponding
point measure is its counting measure �� = ∑�∈�(�) #(�,�(�)).
	e set of all point measures on R+ × � will be denoted by/(R+ ×�), and de�ne a �-algebraM(R+ ×�) on it to be the
smallest �-algebra containing all sets of the form

{� ∈ /(R+ × �) : � ([0, �] × $) ∈ 8}
for � ∈ R+, $ ∈ B (�) , 8 ∈ B ([0,∞]) . (6)

Alternatively, M(R+ × �) is the smallest �-algebra making
all the mappings/(R+ × �) ∋ � >→ �([0, �] × $) ∈ [0,∞],� ∈ R+, $ ∈ B(�), measurable.

Note that there is a (natural) bijection between the set
of point processes (randomized point functions) ' de�ned
on a probability space (Ω,F,P) with values in the space of
point functions on � (in the sense of Ikeda and Watanabe
[20, Chapter I, De�nition 9.1]) and the set ofF/M(R+ ×�)-
measurable mappings ' : Ω → /(R+ × �) with '(A)({�} ×�) ⩽ 1 for all A ∈ Ω and � ∈ R++ and '(A)({0} × �) = 0 for
all A ∈ Ω (which are (special) point processes in the sense of
Resnick [19, page 124]).

A point process ' on � is called a Poisson point process
if its counting measure �� is a Poisson random measure on
R+ × � (for the de�nition of Poisson random measure see,
e.g., Ikeda and Watanabe [20, Chapter I, De�nition 8.1]). A
Poisson point process is stationary if and only if its intensity
measure is of the form d�](d�) for some measure ] on(�,B(�)), which is called its charateristic measure. If ] is a
Radonmeasure, then��((0, �]×$) is Poisson distributedwith
parameter �]($) ∈ R+; hence {� ∈ �(') : � ∈ (0, �], '(�) ∈ $}
is �nite with probability one for all � ∈ R+ and compact
subsets $ ∈ B(�). Consequently, a stationary Poisson point
process with a Radon charateristic measure is a stationary
Poisson point process in the sense of Ikeda andWatanabe [20,
Chapter I, De�nition 9.1].

Next we recall vague convergence. Let ��(R+ ×�,R+) be
the space ofR+-valued continuous functions de�ned onR+×� with compact support. For �, �� ∈ /(R+ × �), B ∈ N, we
say that �� converges vaguely to � as B → ∞ if

lim�→∞∫
R+×�

� d�� = ∫
R+×�

� d� (7)

for all � ∈ ��(R+ × �,R+). For a topology on /(R+ × �)
giving this notion of convergence, see page 140 in Resnick
[19]. Recall thatM(R+×�) coincideswith the Borel�-algebra
generated by the open sets with respect to the vague topology
on /(R+ × �); see, for example, Resnick [19, Exercises3.4.2(b) and 3.4.5].

In what follows we equip the spaces �(R+,Rℓ),�(R+,Rℓ), ℓ ∈ N, and/(R+ ×�) with some �-algebras that
will be used later on. For each ℓ ∈ N, let us equip �(R+,Rℓ)
and�(R+,Rℓ) with the �-algebras

C� (R+,Rℓ) := F−1
� (C (R+,Rℓ)) ,

D� (R+,Rℓ) := F−1
� (D (R+,Rℓ)) , (8)

for � ∈ R, respectively, where F� : �(R+,Rℓ) → �(R+,Rℓ)
is the mapping

(F� (G)) (�) := G (� ∧ �) , G ∈ � (R+,Rℓ) , � ∈ R+, (9)

which stops the function G at �. It is easy to check that, for

all � ∈ R+, C�(R+,Rℓ) coincides with the smallest �-algebra
containing all the �nite-dimensional cylinder sets of the form

{I ∈ � (R+,Rℓ) : (I (�1) , . . . , I (��)) ∈ 8} ,
B ∈ N, 8 ∈ B (R�ℓ) , �1, . . . , �� ∈ [0, �] , (10)

and then

C (R+,Rℓ) = �(⋃
�∈R+

C� (R+,Rℓ)) ; (11)

see, for example, Problem 2.4.2 in Karatzas and Shreve

[21]. Similarly, for all � ∈ R+, D�(R+,Rℓ) coincides with
the smallest �-algebra containing all the �nite-dimensional
cylinder sets of the form

{� ∈ � (R+,Rℓ) : (� (�1) , . . . , � (��)) ∈ 8} ,
B ∈ N, 8 ∈ B (R�ℓ) , �1, . . . , �� ∈ [0, �] , (12)

and then

D (R+,Rℓ) = �(⋃
�∈R+

D� (R+,Rℓ)) ; (13)

henceD�(R+,Rℓ) coincides withD0
� (Rℓ) in De�nition VI.1.1

in Jacod and Shiryaev [17]. Finally, let us equip /(R+ × �)
with the �-algebras M�(R+ × �), � ∈ R+, being the smallest�-algebra containing all sets of the form

{� ∈ /(R+ × �) : � ([0, �] × $) ∈ 8}
with � ∈ [0, �] , $ ∈ B (�) , 8 ∈ B ([0,∞]) . (14)

Note that

M (R+ × �) = �(⋃
�∈R+

M� (R+ × �)) , (15)

since the union of the generator system of the �-algebras
M�(R+×�), � ∈ R+, forms a generator system ofM(R+×�).
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3. Notions of Weak and Strong Solutions

If (Ω,F,P) is a probability space, then, by P-null sets from a
sub-�-algebraH ⊂ F, we mean the elements of the set

{8 ⊂ Ω : ∃$ ∈ H such that 8 ⊂ $, P ($) = 0} . (16)

De�nition 3. Let B be a probability measure on (R�,B(R�)).
A weak solution of the SDE (1) with initial distribution B is a
tuple (Ω,F, (F�)�∈R+ ,P,W, ',X), where
(D1) (Ω,F, (F�)�∈R+ ,P) is a �ltered probability space sat-

isfying the usual hypotheses (i.e., (F�)�∈R+ is right
continuous andF0 contains all theP-null sets inF);

(D2) (W�)�∈R+ is an �-dimensional standard (F�)�∈R+-
Brownian motion;

(D3) ' is a stationary (F�)�∈R+-Poisson point process on�
with characteristic measure�;

(D4) (X�)�∈R+ is an R
�-valued (F�)�∈R+-adapted càdlàg

process such that

(a) the distribution of X0 is B,
(b) P(∫�

0 (‖�(�,X�)‖ + ‖�(�,X�)‖2)d� < ∞) = 1, � ∈
R+,

(c) P(∫�
0 ∫�0 ‖�(�,X�, �)‖2d��(d�) < ∞) = 1, � ∈

R+,

(d) P(∫�
0 ∫�1 ‖�(�,X�−, �)‖�(d�, d�) < ∞) = 1, � ∈

R+, where�(d�, d�) is the counting measure of' on R++ × �,
(e) equation (1) holds P-a.s., where �̃(d�, d�) :=�(d�, d�) − d��(d�).

For the de�nitions of an (F�)�∈R+-Brownian motion and
an (F�)�∈R+-Poisson point process, see, for example, Ikeda
and Watanabe [20, Chapter I, De�nition 7.2 and Chapter II,
De�nition 3.2].

In the next remark we point out that the integrals in the
SDE (1) are well de�ned under the conditions of De�nition 3
and have càdlàg modi�cations as functions of �.
Remark 4. If conditions (D1), (D2), and (D4)(b) are satis�ed,

then (∫�
0 �(�,X�)dW�)�∈R+ is well de�ned and has continu-

ous sample paths almost surely; see, Ikeda and Watanabe
[20, Chapter II, De�nition 1.9]. Indeed, (�(�,X�))�∈R+ is(F�)�∈R+-adapted (since X is (F�)�∈R+-adapted and � is
measurable), (�(�,X�))�∈R+ is measurable (since X is mea-
surable, because it has right-continuous paths, see Karatzas
and Shreve [21, Remark 1.1.14], and � is measurable), and

P(∫�
0 ‖�(�,X�)‖2d� < ∞) = 1, � ∈ R+.
Concerning conditions (D4)(c) and (d), note that the

mappings R+ × �0 × Ω ∋ (�, �, A) >→ �(�,X�−(A), �) ∈ R
�

and R+ × �1 × Ω ∋ (�, �, A) >→ �(�,X�−(A), �) ∈ R
� are(F�)�∈R+-predictable; see Lemma A.1.

Hence condition (D4)(c) is satis�ed if and only if the

mappingR+ ×�0 ×Ω ∋ (�, �, A) >→ �(�,X�−(A), �) ∈ R
� is in

the (multidimensional version of the) class F2,loc
� de�ned on

page 62 in Ikeda and Watanabe [20], that is, if it is (F�)�∈R+-
predictable and there exists a sequence (P�)�∈N of (F�)�∈R+-
stopping times such that P� ↑ ∞ almost surely as B → ∞
and

E(∫�∧��

0
∫
�0

SSSS� (�,X�, �)SSSS2 d�� (d�)) < ∞,
� ∈ R+, B ∈ N. (17)

Indeed, if (D4)(c) holds then (17) is satis�ed for

P� := inf {� ∈ R+ : ∫�

0
∫
�0

SSSS� (�,X�, �)SSSS2 d�� (d�) ⩾ B} ∧ B,
(18)

for B ∈ N, where P� ↑ ∞ almost surely as B → ∞. On the

other hand, (17) implies P(∫�∧��
0 ∫�0 ‖�(�,X�, �)‖2d��(d�) <∞) = 1 for all � ∈ R+ and B ∈ N, and hence (D4)(c), becauseP� ↑ ∞ almost surely as B → ∞.

Moreover, if conditions (D1), (D3), and (D4)(c) are
satis�ed, then the process

(∫�

0
∫
�0
�(�,X�−, �)�̃(d�, d�))

�∈R+
(19)

is well de�ned and has càdlàg sample paths almost surely.
Indeed, for each B ∈ N,

(∫�∧��

0
∫
�0
�(�,X�−, �)�̃(d�, d�))

�∈R+

= (∫�

0
∫
�0
1[0,��](�)�(�,X�−, �)�̃(d�, d�))

�∈R+
, (20)

see page 63 in Ikeda and Watanabe [20]. 	e integrand

R+ × �0 × Ω ∋ (�, �, A) >→ 1[0,��](�)�(�,X�−(A), �) ∈ R
�

belongs to the (multidimensional version of the) class F2
�

de�ned on page 62 in Ikeda and Watanabe [20]; hence the
process on the right hand side is a square integrable (F�)�∈R+-
martingale; see page 63 in Ikeda and Watanabe [20]. By
	eorem 1.3.13 in Karatzas and Shreve [21], this process has
a càdlàg modi�cation. Here we point out that, for using this
theorem, we need completeness and right continuity of the
�ltration (F�)�∈R+ . Further, we also obtain
∫�∧��

0
∫
�0
� (�,X�−, �) �̃ (d�, d�)

a.s.X→ ∫�

0
∫
�0
� (�,X�−, �) �̃ (d�, d�) as B X→ ∞ (21)

for all � ∈ R+, since P� ↑ ∞ almost surely as B → ∞.
Recalling that the mapping R+ × �1 × Ω ∋ (�, �, A) >→�(�,X�−(A), �) ∈ R

� is (F�)�∈R+-predictable, condition
(D4)(d) is satis�ed if and only if the mapping R+ × �1 × Ω ∋(�, �, A) >→ �(�,X�−(A), �) ∈ R

� is in the (multidimensional
version of the) class F� de�ned on page 61 in Ikeda and
Watanabe [20].
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Further, if conditions (D1), (D3), and (D4)(d) are satis-
�ed, then, by de�nition, the process

(∫�

0
∫
�1
�(�,X�−, �)�(d�, d�))

�∈R+

= ( ∑
�∈(0,�]∩�(�)� (�,X�−, ' (�)) 1�1 (' (�)))

�∈R+

(22)

is well de�ned and has càdlàg sample paths, where �(') is
the domain of ' (being a countable subset of R++). Indeed,
for each A ∈ Ω, by de�nition, the mappings

R+ ∋ �
>X→ ∑

�∈(0,�]∩�(�)(�)
� (�,X�− (A) , ' (�) (A)) 1�1 (' (�) (A)) ,

R+ ∋ �
>X→ ∑

�∈(0,�)∩�(�)(�)
� (�,X�− (A) , ' (�) (A)) 1�1 (' (�) (A))

(23)

are right and le� continuous, respectively.

Remark 5. If �(�1) < ∞, then condition (D4)(d) is satis-
�ed automatically, since then E(�((0, �] × �1) = ��(�1)) <∞ implies P(�((0, �] × �1) < ∞) = 1, and hence ∫�

0 ∫�1 ‖�(�,
X�−, �)‖�(d�, d�) = ∑�∈(0,�]∩�(�) ‖�(�,X�−, '(�))‖1�1('(�)) is
a �nite sum with probability one.

Remark 6. Note that if conditions (D1)–(D3) are satis�ed,
then W and ' are automatically independent according to
	eorem 6.3 in Chapter II of Ikeda andWatanabe [20], since
the intensity measure d��(d�) of ' is deterministic.

Moreover, if (Ω,F, (F�)�∈R+ ,P,W, ',X) is a weak solu-
tion of the SDE (1), then F0, W, and ' are mutually inde-
pendent, and hence X0, W, and ' are mutually independent
as well. Indeed, the conditional joint charateristic function of
W and the counting measure of ' with respect to F0 equals
to the product of the (unconditional) charateristic functions
ofW and the counting measure of '; see (6.12) in Chapter II
of Ikeda and Watanabe [20] applied with ^ = W and � = 0,
and then one can use Lemma 2.6.13 in Karatzas and Shreve
[21]. Since X0 is measurable with respect to F0 due to (D4),
we have the mutual independence of X0,W, and '.

	e thinnings '0 and '1 of ' onto �0 and �1 are
again stationary (F�)�∈R+-Poisson point processes on�0 and�1, respectively, and their characteristic measures are the
restrictions �|�0 and �|�1 of � onto �0 and �1, respectively
(this can be checked calculating their conditional Laplace
transforms; see Ikeda and Watanabe [20, page 44]).

Remark that for any weak solution of the SDE (1), X0,
the Brownian motion W and the stationary Poisson point
processes '0 and '1 are mutually independent according
again to 	eorem 6.3 in Chapter II of Ikeda and Watanabe
[20]. Indeed, one can argue as before taking into account also

that the intensitymeasures of'0 and'1 are deterministic, and
condition (6.11) of this theorem is satis�ed, because '0 and '1
live on disjoint subsets of �.
De�nition 7. One says that pathwise uniqueness holds for
the SDE (1) if whenever (Ω,F, (F�)�∈R+ ,P,W, ',X) and(Ω,F, (F�)�∈R+ ,P,W, ', X̃) are weak solutions of the SDE (1)
such that P(X0 = X̃0) = 1, then P(X� = X̃� for all � ∈ R+) =1.
Remark 8. One may also consider the following more strict
de�nition of pathwise uniqueness. Namely, one could say
that pathwise uniqueness holds for the SDE (1) if when-

ever (Ω,F, (F�)�∈R+ ,P,W, ',X) and (Ω,F, (F̃�)�∈R+ ,P,W,', X̃) are weak solutions of the SDE (1) such that P(X0 =
X̃0) = 1, thenP(X� = X̃� for all � ∈ R+) = 1. Note that in this
de�nitionwe require thatW is an (F�)�∈R+-Brownianmotion

and an (F̃�)�∈R+-Brownian motion as well, and since it is not

necessarily true that W is an (�(F� ∪ F̃�))�∈R+-Brownian
motion, it is not clear whether this more strict de�nition of
pathwise uniqueness and the one given in De�nition 7 are
equivalent. According to Ikeda and Watanabe [20, Chapter
IV, Remark 1.3], they are equivalent. We also point out that in
our statements and proofs we use pathwise uniqueness in the
sense of De�nition 7, and we do not use the abovementioned
equivalence of the two kinds of de�nitions.

De�nition 9. One says that uniqueness in the sense of prob-
ability law holds for the SDE (1) if whenever (Ω,F, (F�)�∈R+ ,
P,W, ',X) and (Ω̃, F̃, (F̃�)�∈R+ , P̃, W̃, '̃, X̃) are weak solu-
tions of the SDE (1) with the same initial distribution, that is,
P(X0 ∈ $) = P̃(X̃0 ∈ $) for all $ ∈ B(R�), then P(X ∈ �) =
P̃(X̃ ∈ �) for all � ∈ D(R+,R�).

Now we de�ne strong solutions. Consider the following
objects:

(E1) a probability space (Ω,F,P);
(E2) an �-dimensional standard Brownian motion(W�)�∈R+ ;
(E3) a stationary Poisson point process ' on � with char-

acteristic measure�;

(E4) a random vector � with values in R
�, independent of

W and '.
Remark 10. Note that if conditions (E1)–(E4) are satis�ed,
then �, W, and ' are automatically mutually independent
according to Remark 6.

Provided that the objects (E1)–(E4) are given, let(F�,W,�
� )�∈R+ be the augmented �ltration generated by �, W,

and '; that is, for each � ∈ R+,F
�,W,�
� is the �-�eld generated

by �(�;W�, � ∈ [0, �]; '(�), � ∈ (0, �] ∩ �(')) and by the P-
null sets from �(�;W�, � ∈ R+; '(�), � ∈ R++ ∩ �(')) (which
is similar to the de�nition in Karatzas and Shreve [21, page
285]). One can check that
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(i) (F�,W,�
� )�∈R+ satis�es the usual hypotheses;

(ii) (W�)�∈R+ is a standard (F�,W,�
� )�∈R+-Brownian mo-

tion;

(iii) ' is a stationary (F�,W,�
� )�∈R+-Poisson point process

on � with characteristic measure�.

Indeed, by Remark 10, W is a standard (�(�;W�, � ∈ [0, �];'(�), � ∈ (0, �] ∩ �(')))�∈R+-Brownian motion, and ' is a

stationary (�(�;W�, � ∈ [0, �]; '(�), � ∈ (0, �] ∩ �(')))�∈R+-
Poisson point process on � with characteristic measure �.
Hence, by 	eorems 6.4 and 6.5 in Chapter II in Ikeda
and Watanabe [20], (W, ') has the strong Markov property
with respect to the �ltration (�(�;W�, � ∈ [0, �]; '(�), � ∈(0, �] ∩ �(')))�∈R+ . 	en Proposition 2.7.7 in Karatzas and

Shreve [21] yields that the augmented �ltration (F�,W,�
� )�∈R+

satis�es the usual hypotheses. Moreover, the augmentation
of �-�elds does not disturb the de�nition of a standard
Wiener process and a stationary Poisson point process; hence(W�)�∈R+ is a standard (F�,W,�

� )�∈R+-Brownian motion, and '
is a stationary (F�,W,�

� )�∈R+-Poisson point process on � with
characteristic measure �. For the standard Wiener process,
see, for example, Karatzas and Shreve [21,	eorem 2.7.9].	e

main point is to show thatW� −W� is independent ofF
�,W,�
�

for all �, � ∈ R+ with � < �, and '(�) − '(�) is independent
of F�,W,�

� for all �, � ∈ �(') with � < �, detailed as follows
(in order to shed some light what is going on behind). Let�, � ∈ R+ with � < �, and � ∈ F

�,W,�
� . 	en, by Problem 2.7.3

in Karatzas and Shreve [21], there exists �̃ ∈ �(�;W�, � ∈[0, �]; '(�), � ∈ (0, �] ∩ �(')) such that �Δ�̃ is a P-null set

from �(�;W�, � ∈ R+; '(�), � ∈ R++ ∩ �(')), where �Δ�̃
denotes the symmetric di
erence of � and �̃. Using that

P (8) = P ($) + P (8 ∩ (Ω \ $))
− P ((Ω \ 8) ∩ $) , 8, $ ∈ F, (24)

we get for alld ∈ B(R�),
P ({W� −W� ∈ d} ∩ �)
= P ({W� −W� ∈ d} ∩ �̃)
+ P({W� −W� ∈ d} ∩ � ∩ ({W� −W� ∉ d} ∪ (Ω \ �̃)))
− P(({W� −W� ∉ d} ∪ (Ω \ �)) ∩ {W� −W� ∈ d} ∩ �̃)
= P ({W� −W� ∈ d} ∩ �̃)
+ P({W� −W� ∈ d} ∩ � ∩ (Ω \ �̃))
− P({W� −W� ∈ d} ∩ (Ω \ �) ∩ �̃)

= P ({W� −W� ∈ d} ∩ �̃) = P (W� −W� ∈ d)P (�̃)
= P (W� −W� ∈ d)P (�) ,

(25)

where the last but one step follows from the independence of

W� −W� and �̃. A similar argument shows the independence
of '(�) − '(�) and �.
De�nition 11. Suppose that the objects (E1)–(E4) are given.
A strong solution of the SDE (1) on (Ω,F,P) and with
respect to the standard Brownian motion W, the stationary

Poisson point process ' and initial value �, is an R
�-valued(F�,W,�

� )�∈R+-adapted càdlàg process (X�)�∈R+ with P(X0 =
�) = 1 satisfying (D4)(b)–(d).

Clearly, if (X�)�∈R+ is a strong solution, then (Ω,F,(F�,W,�
� )�∈R+ ,P,W, ',X) is a weak solution with initial dis-

tribution being the distribution of �.

4. Proof of Theorem 1

Our presentation as follows is a generalization of the one
given in Section 5.3.D in Karatzas and Shreve [21].

Let us consider a weak solution (Ω,F, (F�)�∈R+ ,P,W,',X) of the SDE (1) with initial distribution B on (R�,
B(R�)). 	en P(X0 ∈ $) = B($), $ ∈ B(R�). We put Y� :=
X�−X0 for � ∈ R+, and we regard the solutionX as consisting
of four parts: X0, W, ', and Y. Let us consider the product
space

Θ := R
� × � (R+,R�) × /(R+ × �) × � (R+,R�) (26)

equipped with the Borel �-algebra
B (Θ) = B (R�) ⊗C (R+,R�) ⊗M (R+ × �)

⊗D (R+,R�) ; (27)

see, for example, Dudley [2, Proposition 4.1.7]. 	e quadru-
plet (X0,W, ',Y) induce the probability measure g on (Θ,
B(Θ)) according to the prescription

g (8) := P [(X0,W, ',Y) ∈ 8] , 8 ∈ B (Θ) . (28)

We denote by j = (x, I, �, �) a generic element of Θ. 	e
marginal of g on the x-coordinate of j is the probability

measure B on (R�,B(R�)), the marginal on the I-coordi-
nate is an �-dimensionalWienermeasuregW,� on (�(R+,R�),
C(R+,R�)), the marginal on the �-coordinate is the distri-
bution g�,� on (/(R+ × �),M(R+ × �)) of a stationary
Poisson point process ' on � with characteristic measure�. Moreover, the distribution of the triplet (x, I, �) under g
is the product measure B × gW,� × g�,� because X0 is F0-
measurable andW,', andF0 are independent; seeRemark 6.
Furthermore, P(Y0 = 0) = 1.

	e product space Θ de�ned in (26) is a complete, sep-

arable metric space, since R� is a complete, separable met-
ric space with the usual Euclidean metric, �(R+,R�) is a
complete, separable metric space with a metric inducing
the local uniform topology (see, e.g., Jacod and Shiryaev
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[17, Section VI .1a]), �(R+,R�) is a complete, separable
metric space with a metric inducing the so-called Sko-

rokhod topology (see, e.g., Jacod and Shiryaev [17, 	eorem
VI .1.14]), and the vague topology on the space /(R+ × �)
of all point measures on R+ × � is metrizable as a complete,
separable metric space (see, e.g., Resnick [19, Proposition
3.17, page 147]). Hence there exists a regular conditional
probability for B(Θ) given (x, I, �), by an application of
Karatzas and Shreve [21, Chapter 5, 	eorem 3.19] with the
random variable Θ ∋ (x, I, �, �) >→ (x, I, �). We will be
interested in conditional probabilities of sets in B(Θ) only
of the form R

� × �(R+,R�) × /(R+ × �) × �, where � ∈
D(R+,R�). Consequently, with a slight abuse of notation,
there exists a function

k : R� × � (R+,R�) × /(R+ × �) ×D (R+,R�) X→ [0, 1]
(29)

enjoying the following properties:

(R1) for each x ∈ R
�, I ∈ �(R+,R�) and � ∈ /(R+ × �),

the set function D(R+,R�) ∋ � >→ k(x, I, �, �) is a
probability measure on (�(R+,R�),D(R+,R�));

(R2) for each � ∈ D(R+,R�), the mapping R
� × �(R+,

R
�) × /(R+ × �) ∋ (x, I, �) >→ k(x, I, �, �) is

B(R�) ⊗ C(R+,R�) ⊗ M(R+ × �)/B([0, 1])-meas-
urable;

(R3) for each l ∈ B(R�) ⊗ C(R+,R�) ⊗M(R+ × �) and� ∈ D(R+,R�), we have

g (l × �) = ∫
�
k (x, I, �, �) B (dx) gW,� (dI)g�,� (d�) .

(30)

We can callk(x, I, �, ⋅) as the regular conditional probability
forD(R+,R�) given (x, I, �).

Let us now consider two weak solutions (Ω(�),F(�),(F(�)
� )�∈R+ ,P(�),W(�), '(�),X(�)), ! ∈ {1, 2} of the SDE (1) with

the same initial distribution B on (R�,B(R�)); thus
P

(1) [X(1)
0 ∈ $] = P

(2) [X(2)
0 ∈ $] = B ($) , $ ∈ B (R�) .

(31)

According to (28), let

g� (8) := P
(�) [(X(�)

0 ,W(�), '(�),Y(�)) ∈ 8] ,
8 ∈ B (Θ) , ! ∈ {1, 2} , (32)

and, as explained before, there exist functions

k� : R
� × � (R+,R�) × /(R+ × �)×D (R+,R�) X→ [0, 1] , ! ∈ {1, 2} , (33)

enjoying the properties (R1)–(R3).

First, we bring the two triplets (X(�),W(�), '(�)), ! ∈ {1, 2},
together on the same canonical space, while preserving the
joint distribution of the coordinates within each triplet. LetΩ := Θ×�(R+,R�) equipped with the �-algebraF, which is

the completion of the product �-algebraB(Θ) ⊗D(R+,R�)
by the collectionN of null sets under the probabilitymeasure

P1,2 (8) := ∫
R
�×�(R+ ,R�)×�(R+×�)

(∫
�(R+ ,R�)×�(R+ ,R�)

1� (x, I, �, �(1), �(2))k1 (x, I, �, d�(1))k2 (x, I, �, d�(2)))
B (dx) gW,� (dI)g�,� (d�) (34)

for 8 ∈ B(Θ) ⊗ D(R+,R�), where we have denoted by(x, I, �, �(1), �(2)) a generic element ofΩ, and then we extend
P1,2 to F. Particularly, for all l ∈ B(R�) ⊗ C(R+,R�) ⊗
M(R+ × �) and �1, �2 ∈ D(R+,R�),

P1,2 (l × �1 × �2)
= ∫

�
k1 (x, I, �, �1) k2 (x, I, �, �2)
B (dx) gW,� (dI)g�,� (d�) .

(35)

In order to endow (Ω,F,P1,2) with a �ltration that satis�es
the usual conditions, for each � ∈ R+, we take G� := �(��,� :� ∈ [0, �], $ ∈ B(�)), where the mapping ��,� : Ω → R

� ×
R

� × [0,∞] ×R
� ×R

� is de�ned by

��,� (x, I, �, �(1), �(2)) := (x, I�, � ([0, �] × $) , �(1)
� , �(2)

� ) ,
(x, I, �, �(1), �(2)) ∈ Ω,

(36)

and put

G̃� := � (G� ∪N) , F� := G̃�+ := ⋂
�>0

G̃�+�, � ∈ R+. (37)

We note that, for each � ∈ R+,

G� = Ĝ� = B (R�) ⊗C� (R+,R�) ⊗M� (R+ × �)
⊗D� (R+,R�) ⊗D� (R+,R�) , (38)

where Ĝ� := �(�̂�,� : � ∈ [0, �], $ ∈ B(�)), and the mapping�̂�,� : Ω → Ω is de�ned by

�̂�,� (x, I, �, �(1), �(2))
:= (x, (I�∧�)�∈R+ , �|[0,�]×�, (�(1)

�∧�)�∈R+ , (�(2)
�∧�)�∈R+)

(39)
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for (x, I, �, �(1), �(2)) ∈ Ω. Indeed, for all � ∈ R+, by de�ni-
tion, the �-algebraG� coincides with the �-algebra generated
by the sets

u1 × {I ∈ � (R+,R�) : I (�) ∈ u2}
× {� ∈ /(R+ × �) : � ([0, �] × $) ∈ u3}
× {�(1) ∈ � (R+,R�) : �(1) (�) ∈ u4}
× {�(2) ∈ � (R+,R�) : �(2) (�) ∈ u5}

(40)

for � ∈ [0, �], $ ∈ B(�), u1 ∈ B(R�), u2 ∈ B(R�), u3 ∈
B([0,∞]), and u4, u5 ∈ B(R�). Moreover, as in Problem2.4.2 in Karatzas and Shreve [21], the �-algebra Ĝ� coincides
with the �-algebra generated by the sets

u1 × {I ∈ � (R+,R�) : (I (�1,1 ∧ �) , . . . , I (�1,�1 ∧ �)) ∈ u2}
× {� ∈ /(R+ × �) : (� ([0, �2,1 ∧ �] × $1) , . . . ,

� ([0, �2,�2 ∧ �] × $�2)) ∈ u3}
× {�(1) ∈ � (R+,R�) : (�(1) (�3,1 ∧ �) , . . . ,

�(1) (�3,�3 ∧ �)) ∈ u4}
× {�(2) ∈ � (R+,R�) : (�(2) (�4,1 ∧ �) , . . . ,

�(2) (�4,�4 ∧ �)) ∈ u5}
(41)

for � ∈ [0, �], ��, ∈ R+, ! ∈ {1, 2, 3, 4}, v ∈ {1, . . . , B�},$1, . . . , $�2 ∈ B(�), u1 ∈ B(R�), u2 ∈ B(R��1), u3 ∈
B([0,∞]�2), u4 ∈ B(R��3), and u5 ∈ B(R��4). Since, for
any stochastic process (w�)�∈R+ ,
� (w� : � ∈ [0, �])
= � ((w�1 , . . . , w��) : �� ∈ [0, �] , ! ∈ {1, . . . , B} , B ∈ N) ,

� ∈ R+,
(42)

we get Ĝ� = G�, � ∈ R+.
	e�-coordinate process onΩ induces a point process'!

on�with characteristic measure� in a natural way, since, as
it was recalled, there is a bijection between the set of point
functions on � and the set of point measures � on R+ × �
with �({0} × �) = 0 and �({�} × �) ⩽ 1, � ∈ R++, and

P1,2 ({(x, I, �, �(1), �(2)) ∈ Ω :
� ({0} × �) = 0, � ({�} × �) ⩽ 1, � ∈ R++}) = 1,

(43)

which follows from (34) using that g�,� is the distribution on(/(R+×�),M(R+×�)) of a stationary Poisson point process
on � with characteristic measure� implying that

g�,� ({� ∈ /(R+ × �) :
� ({0} × �) = 0, � ({�} × �) ⩽ 1, � ∈ R++}) = 1.

(44)

Next we check that (Ω,F, (F�)�∈R+ ,P1,2, I, '!, (x +�(�)
� )�∈R+), ! ∈ {1, 2}, are weak solutions of the SDE (1) with

the same initial distribution B. Using the de�nitions of g�,! ∈ {1, 2}, P1,2, (R1) and (R3) we get

P1,2 [A = (x, I, �, �(1), �(2)) ∈ Ω : (x, I, �, �(�)) ∈ 8]
= P

(�) [(X(�)
0 ,W(�), '(�),Y(�)) ∈ 8] (45)

for all 8 ∈ B(Θ) and ! ∈ {1, 2}. Indeed, with ! = 1, l ∈
B(R�) ⊗ C(R+,R�) ⊗ M(R+ × �) and � ∈ D(R+,R�), by
Fubini theorem,

P1,2 [A = (x, I, �, �(1), �(2)) ∈ Ω : (x, I, �, �(1)) ∈ l × �]
= ∫

{�∈Ω:(x,#,!,$(1))∈�×�}
k1 (x, I, �, d�(1))k2 (x, I, �, d�(2))
B (dx) gW,� (dI)g�,� (d�)

= ∫
�
k1 (x, I, �, �)k2 (x, I, �,� (R+,R�))
B (dx) gW,� (dI)g�,� (d�)

= ∫
�
k1 (x, I, �, �) B (dx) gW,� (dI)g�,� (d�) = g1 (l × �)

= P
(1) [(X(1)

0 ,W(1), '(1),Y(1)) ∈ l × �] .
(46)

So the distribution of (x + �(�), I, '!) under P1,2 is the same

as the distribution of (X(�)
0 + Y(�),W(�), '(�)) = (X(�),W(�), '(�))

under P(�). Due to the de�nition of a weak solution, under
P

(�), W(�) is an �-dimensional standard (F(�)
� )�∈R+-Brownian

motion, and '(�) is a stationary (F(�)
� )�∈R+-Poisson point

process on � with characteristic measure �. Consequently,
by the de�nition of (G�)�∈R+ (which is nothing else but the
natural �ltration corresponding to the coordinate processes),
under P1,2, the I-coordinate process is an �-dimensional
standard (G�)�∈R+-Brownian motion, the process '! is a
stationary (G�)�∈R+-Poisson point process on � with char-

acteristic measure �, and (x + �(�)
� )�∈R+ is (G�)�∈R+-adapted,! ∈ {1, 2}. Further, the same is true if we replace the �ltration(G�)�∈R+ by (F�)�∈R+ ; see, Lemma A.5. Note also that the

�ltration (F�)�∈R+ satis�es the usual conditions. All in all,
for each ! ∈ {1, 2}, the tuple (Ω,F, (F�)�∈R+ ,P1,2, I, '!, (x +�(�)
� )�∈R+) satis�es (D1)–(D3).
Hence it remains to check that, for each ! ∈ {1, 2}, the

tuple (Ω,F, (F�)�∈R+ ,P1,2, I, '!, (x+�(�)
� )�∈R+) satis�es (D4).
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For each ! ∈ {1, 2}, let us apply Lemma A.4 with the following
choices:

(Ω(�),F(�), (F(�)
� )�∈R+ ,P(�),W(�), '(�),X(�)) , (47)

(Ω,F, (F�)�∈R+ ,P1,2, I, '!, (x + �(�)
� )�∈R+) . (48)

Since (Ω(�),F(�), (F(�)
� )�∈R+ ,P(�),W(�), '(�),X(�)) is a weak

solution of the SDE (1) with initial distribution B, the tuple(Ω(�),F(�), (F(�)
� )�∈R+ ,P(�),W(�), '(�),X(�)) satis�es (D1)–(D4).

Further, as it was explained before, the tuple (Ω,F, (F�)�∈R+ ,
P1,2, I, '!, (x + �(�)

� )�∈R+) satis�es (D1)–(D3), the process(x + �(�)
� )�∈R+ is adapted to the �ltration (F�)�∈R+ , and the

distribution of (X(�),W(�), '(�)) under P(�) is the same as the

distribution of (x + �(�), I, '!) under P1,2. 	en Lemma A.4

yields that the tuple (Ω,F, (F�)�∈R+ ,P1,2, I, '!, (x+�(�)
� )�∈R+)

satis�es (D4)(a)–(d) and the distribution of

(X(�)
� − X

(�)
0 − ∫�

0
� (�,X(�)

� ) d� − ∫�

0
� (�,X(�)

� ) dW(�)
�

− ∫�

0
∫
�0
� (�,X(�)

�−, �) �̃(�) (d�, d�)
−∫�

0
∫
�1
� (�,X(�)

�−, �)�(�) (d�, d�))
�∈R+

(49)

on (�(R+,R�),D(R+,R�)) under P(�) is the same as the dis-
tribution of

(�(�)
� − �(�)

0 − ∫�

0
� (�, x + �(�)

� ) d�
− ∫�

0
� (�, x + �(�)

� ) dI�

− ∫�

0
∫
�0
� (�, x + �(�)

�− , �) �̃! (d�, d�)
− ∫�

0
∫
�1
� (�, x + �(�)

�− , �)�! (d�, d�))
�∈R+

(50)

on (�(R+,R�),D(R+,R�)) under P1,2, where �!(d�, d�) is
the counting measure of '! on R+ × �, and �̃!(d�, d�) :=�!(d�, d�) − d��(d�). Using also that for each ! ∈ {1, 2}, the
�rst process and the identically 0 process are indistinguish-

able (since the SDE (1) holdsP(�)-a.s. for (X(�)
� )�∈R+), we obtain

that the tuple (Ω,F, (F�)�∈R+ ,P1,2, I, '!, (x + �(�)
� )�∈R+) sat-

is�es (D4), as desired. It is worth mentioning that this is the
place where we use that the �ltration (F�)�∈R+ satis�es the
usual conditions in order to ensure that the second process
above has a càdlàgmodi�cation; see Remark 4.	e �ltrations(G�)�∈R+ and (G̃�)�∈R+ do not necessarily satisfy the usual
conditions; this is the reason for introducing the �ltration(F�)�∈R+ .

We have P1,2(x + �(1)
0 = x + �(2)

0 ) = 1, because, by (45),
P1,2(�(�)

0 = 0) = P
(�)(Y(�)

0 = 0) = 1, ! ∈ {1, 2}. Since (Ω,
F, (F�)�∈R+ ,P1,2, I, '!, (x + �(�)

� )�∈R+), ! ∈ {1, 2}, are weak
solutions of the SDE (1) with the same initial distribution B,
andP1,2(x+�(1)

0 = x+�(2)
0 ) = 1, pathwise uniqueness implies

P1,2(x + �(1)
� = x + �(2)

� for all � ∈ R+) = 1, or equivalently,
P1,2 [A = (x, I, �, �(1), �(2)) ∈ Ω : �(1) = �(2)] = 1, (51)

hence, applying (45),

P
(1) [(X(1)

0 ,W(1), '(1),Y(1)) ∈ 8]
= P1,2 [A = (x, I, �, �(1), �(2)) ∈ Ω : (x, I, �, �(1)) ∈ 8]
= P1,2 [A = (x, I, �, �(1), �(2)) ∈ Ω : (x, I, �, �(2)) ∈ 8]
= P

(2) [(X(2)
0 ,W(2), '(2),Y(2)) ∈ 8]

(52)

for all 8 ∈ B(Θ). Since X(�) = X(�)
0 + Y(�), ! ∈ {1, 2}, and the

mapping R� × �(R+,R�) ∋ (x0, y) >→ x0 + y ∈ �(R+,R�)
is continuous (see, e.g., Jacod and Shiryaev [17, Proposition
VI .1.23]), we have

P
(1) [X(1) ∈ 8̃] = P

(2) [X(2) ∈ 8̃] , 8̃ ∈ D (R+,R�) ,
(53)

and thenwe obtain uniqueness in the sense of probability law.

5. Precise Formulation and
Proof of Theorem 2

Our �rst result is a counterpart of Lemma 1.1 in Chapter IV in
Ikeda andWatanabe [20] for stochastic di
erential equations
with jumps, compare also with Situ [11, page 106, Fact A].

Lemma 12. If (Ω,F, (F�)�∈R+ ,P,W, ',X) is a weak solution
of the SDE (1) with initial distribution B on (R�,B(R�)), then
for every �xed � ∈ R+ and � ∈ D�(R+,R�), the mapping

R
� × � (R+,R�) × /(R+ × �) ∋ (x, I, �) >X→ k (x, I, �, �)

(54)

is B̂�/B([0, 1])-measurable, where B̂� denotes the completion

ofB(R�) ⊗ C�(R+,R�) ⊗M�(R+ × �) by the null sets of B ×gW,� × g�,� fromB(R�) ⊗C(R+,R�) ⊗M(R+ × �).
Proof. Consider the regular conditional probability

k�:R
� × � (R+,R�) × /(R+ × �)
×D� (R+,R�) X→ [0, 1] (55)

for D�(R+,R�) given (�, F�(I), y�(�)), where, for each � ∈
R+, the stopped mapping F� : �(R+,R�) → �(R+,R�) is
de�ned in (9), and y� : /(R+ × �) → /(R+ × �), y�(�) :=�|[0,�]×�, � ∈ /(R+×�); that is,y�(�) denotes the restriction
of � onto [0, �] × �. 	e mapping k� enjoy properties anal-
ogous to (R1)–(R3). Namely,
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(R̃1) for each x ∈ R
�,I ∈ �(R+,R�), and � ∈ /(R+ ×�),

the set functionD�(R+,R�) ∋ � >→ k�(x, I, �, �) is a
probability measure on (�(R+,R�),D�(R+,R�));

(R̃2) for each � ∈ D�(R+,R�), the mapping R
� × �(R+,

R
�) × /(R+ × �) ∋ (x, I, �) >→ k�(x, I, �, �) is

B(R�) ⊗C�(R+,R�) ⊗M�(R+ ×�)/B([0, 1])-meas-
urable;

(R̃3) for everyl ∈ B(R�)⊗C�(R+,R�)⊗M�(R+ ×�) and� ∈ D�(R+,R�),
g (l × �) = ∫

�
k� (x, I, �, �) B (dx) gW,� (dI)g�,� (d�) ,

(56)

where the probability measure g is de�ned in (28).

In order to prove the statement, it su�ces to check that

k (x, I, �, �) = k� (x, I, �, �)
for B × gW,� × g�,�-a.e. (x, I, �) . (57)

Indeed, then (B × gW,� × g�,�)(�) = 0 for
� := {(x, I, �) ∈ R

� × � (R+,R�) × /(R+ × �) :
k (x, I, �, �) ̸= k� (x, I, �, �)}

∈ B (R�) ⊗C (R+,R�) ⊗M (R+ × �) ,
(58)

and what is more,� ∈ B̂�, since

B̂� = � (B (R�) ⊗C� (R+,R�) ⊗M� (R+ × �) ∪N) ,
(59)

where

N := {8 ⊂ R
� × � (R+,R�) × /(R+ × �) :

∃$ ∈ B (R�) ⊗C (R+,R�) ⊗M (R+ × �)
with 8 ⊂ $, (B × gW,� × g�,�) ($) = 0} ,

(60)

and� ∈ N. Hence, for all u ∈ B([0, 1]),
{(x, I, �) ∈ R

� × � (R+,R�) × /(R+ × �) :
k (x, I, �, �) ∈ u} = 81 ∪ 82, (61)

where

81 := {(x, I, �) ∈ R
� × � (R+,R�) × /(R+ × �) :

k (x, I, �, �) ∈ u,
k (x, I, �, �) = k� (x, I, �, �)}

= {(x, I, �) ∈ R
� × � (R+,R�) × /(R+ × �) :

k� (x, I, �, �) ∈ u}

∩ {(x, I, �) ∈ R
� × � (R+,R�) × /(R+ × �) :

k (x, I, �, �) = k� (x, I, �, �)} ,
(62)

82 := {(x, I, �) ∈ R
� × � (R+,R�) × /(R+ × �) :

k (x, I, �, �) ∈ u, k (x, I, �, �) ̸= k� (x, I, �, �)} .
(63)

Here 81 ∈ B̂�, since, by (R̃2), the set
{(x, I, �) ∈ R

� × � (R+,R�) × /(R+ × �) :
k� (x, I, �, �) ∈ u} (64)

is inB(R�) ⊗C�(R+,R�) ⊗M�(R+ × �) ⊂ B̂�, and

{(x, I, �) ∈ R
� × � (R+,R�) × /(R+ × �) :

k (x, I, �, �) = k� (x, I, �, �)}
= R

� × � (R+,R�) × /(R+ × �) \ � ∈ B̂�.
(65)

Further, 82 ⊂ � ∈ B(R�) ⊗ C(R+,R�) ⊗M(R+ × �) and(B × gW,� × g�,�)(�) = 0 imply 82 ∈ N ⊂ B̂�.
Unfortunately, (57) does not follow from the comparison

of (R3) with (R̃3), since still we do not know whether the
function (x, I, �) >→ k(x, I, �, �) is B(R�) ⊗ C�(R+,R�) ⊗
M�(R+ × �)/B([0, 1])-measurable. In order to show (57), it

su�ces to check that (R̃3) is valid for every l ∈ B(R�) ⊗
C(R+,R�) ⊗M(R+ × �). Indeed, then, by (R3),

∫
�
k (x, I, �, �) B (dx) gW,� (dI)g�,� (d�)
= ∫

�
k� (x, I, �, �) B (dx) gW,� (dI)g�,� (d�)

(66)

for all l ∈ B(R�) ⊗ C(R+,R�) ⊗ M(R+ × �) and � ∈
D�(R+,R�), and hence, using also that the function (x, I,�) >→ k�(x, I, �, �) is B(R�) ⊗ C(R+,R�) ⊗ M(R+ ×�)/B([0, 1])-measurable, by the uniqueness part of the
Radon-Nikodým theorem, we have (57).

	e class G of sets l satisfying (R̃3) is a Dynkin system;
that is,

(i) R� × �(R+,R�) ×/(R+ × �) ∈ G, sinceR� × �(R+,
R

�)×/(R+×�) ∈ B(R�)⊗C�(R+,R�)⊗M�(R+×�)
and one can apply (R̃3).

(ii) If l1, l2 ∈ G and l1 ⊂ l2, then l2 \ l1 ∈ G. Indeed,

g ((l2 \ l1) × �)
= g (l2 × �) − g (l1 × �)
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= ∫
�2
k� (x, I, �, �) B (dx) gW,� (dI)g�,� (d�)

− ∫
�1
k� (x, I, �, �) B (dx) gW,� (dI)g�,� (d�)

= ∫
�2\�1

k� (x, I, �, �) B (dx) gW,� (dI)g�,� (d�) .
(67)

(iii) If (l�)�∈N ⊂ G and l1 ⊂ l2 ⊂ ⋅ ⋅ ⋅ , then⋃∞
�=1 l� ∈ G. Indeed, by the continuity of probability

and dominated convergence theorem,

g((∞⋃
�=1
l�) × �)

= lim�→∞g (l� × �)
= lim�→∞∫

��
k� (x, I, �, �) B (dx) gW,� (dI)g�,� (d�)

= lim�→∞∫
R
�×�(R+ ,R�)×�(R+×�)

k� (x, I, �, �) 1�� (x, I, �)
B (dx) gW,� (dI)g�,� (d�)

= ∫
⋃∞�=1 ��

k� (x, I, �, �) B (dx) gW,� (dI)g�,� (d�) .
(68)

Consider the collection of sets of the form

l = l1 × (F−1
� (l2) ∩ F̃−1

� (l3)) × (y−1
� (l4) ∩ ỹ−1

� (l5))
(69)

for l1 ∈ B(R�), l2, l3 ∈ C(R+,R�), and l4, l5 ∈ M(R+ ×�), where, for each � ∈ R+, F� and y� are de�ned earlier, F̃� :�(R+,R�) → �(R+,R�) denotes the increment mapping(F̃�(I))(�) := I(� + �) −I(�),I ∈ �(R+,R�), � ∈ R+, and ỹ� :/(R+ × �) → /(R+ × �) denotes the increment mapping
given by ỹ�(�)([0, �] × $) := �([0, � + �] × $) − �([0, �] × $),� ∈ R+, $ ∈ B(�). 	is collection of sets is closed under

pairwise intersection and generates the �-algebra B(R�) ⊗
C(R+,R�) ⊗ M(R+ × �), since the collection of sets of the

form (F−1
� (l2) ∩ F̃−1

� (l3)) with l2 = {I ∈ �(R+,R�) :(I(�1), . . . , I(��)) ∈ 8} for B ∈ N, � ∈ R+, �1, . . . , �� ∈ [0, �],8 ∈ B(R��), and l3 = �(R+,R�) generates C(R+,R�) by
(11), and the collection of sets of the form (y−1

� (l4)∩ỹ−1
� (l5))

with

l4 = {� ∈ /(R+ × �) : � ([0, �] × $) ∈ 8} (70)

for � ∈ R+, $ ∈ B(�), 8 ∈ B([0,∞]), and l5 = /(R+ × �)
generatesM(R+ ×�) by (15). By the Dynkin system theorem

(see, e.g., Karatzas and Shreve [21, 	eorem 2.1.3]),B(R�) ⊗
C(R+,R�)⊗M(R+×�) ⊂ G provided that we prove (R̃3) forl of the form (69). For such a l, by Fubini theorem, we have

∫
�
k� (x, I, �, �) B (dx) gW,� (dI)g�,� (d�)

= ∫
&−1� (�4)∩&̃−1� (�5)

(∫
*−1� (�2)∩*̃−1� (�3)

(∫
�1
k� (x, I, �, �) B (dx))
gW,� (dI))g�,� (d�)

= E-W,�×-�,	[∫�1 k� (x, I, �, �) B (dx) 1*−1� (�2)∩*̃−1� (�3) (I)
× 1&−1� (�4)∩&̃−1� (�5) (�)]

= E-W,�×-�,	[E-W,�×-�,	[∫�1 k� (x, I, �, �) B (dx)
× 1*−1� (�2) (I) 1*̃−1� (�3) (I)
× 1&−1� (�4) (�) 1&̃−1� (�5)(�) |
C� (R+,R�) ⊗M� (R+ × �)]]

= E-W,�×-�,	[∫�1 k� (x, I, �, �) B (dx)
× 1*−1� (�2) (I) 1&−1� (�4) (�)
× (gW,� × g�,�) (F̃−1

� (l3) × ỹ−1
� (l5) |

C� (R+,R�) ⊗M�(R+ × �))]
=E-W,�×-�,	[∫�1k� (x, I, �, �) B (dx) 1*−1� (�2) (I) 1&−1� (�4) (�)

× (gW,� × g�,�) (F̃−1
� (l3) × ỹ−1

� (l5))]
= ∫

�1×*−1� (�2)×&−1� (�4)
k� (x, I, �, �) B (dx) gW,� (dI)g�,� (d�)

× (gW,� × g�,�) (F̃−1
� (l3) × ỹ−1

� (l5))
= g [l1 × F−1

� (l2) × y−1
� (l4) × �]

× (gW,� × g�,�) (F̃−1
� (l3) × ỹ−1

� (l5)).
(71)

	e fourth equality above follows from the C�(R+,R�) ⊗
M�(R+ × �)/B([0, 1])-measurability of the function

� (R+,R�) × /(R+ × �) ∋ (I, �)
>X→ ∫

�1
k� (x, I, �, �) B (dx) , (72)
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which is a consequence of (R̃2) and Fubini theorem.	e ��h
equality above follows from the independence of F̃−1

� (l3) ×ỹ−1
� (l5) and C�(R+,R�) ⊗ M�(R+ × �) under the measuregW,� × g�,�; see, for example, Ikeda and Watanabe [20,

Chapter 2, 	eorems 6.4 and 6.5]. For the last equality above

we used (R̃3) and
l1 × F−1

� (l2) × y−1
� (l4) × �

∈ B (R�) ⊗C� (R+,R�) ⊗M� (R+ × �) ⊗D� (R+,R�) .
(73)

By (28),

(gW,� × g�,�) (F̃−1
� (l3) × ỹ−1

� (l5))
= g [(x, I, �, �) ∈ Θ : F̃� (I) ∈ l3, ỹ� (�) ∈ l5]
= P [F̃� (W) ∈ l3, ỹ� (') ∈ l5] ,

g [l1 × F−1
� (l2) × y−1

� (l4) × �]
= P [X0 ∈ l1, F� (W) ∈ l2, y� (') ∈ l4,Y ∈ �] .

(74)

	erefore, if l is of the form (69), then

∫
�
k� (x, I, �, �) B (dx) gW,� (dI)g�,� (d�)
= P [X0 ∈ l1, F� (W) ∈ l2, y� (') ∈ l4,Y ∈ �]
× P [F̃� (W) ∈ l3, ỹ� (') ∈ l5]

= P [X0 ∈ l1, F� (W) ∈ l2, F̃� (W) ∈ l3,
y� (') ∈ l4, ỹ� (') ∈ l5,Y ∈ �]

= P [(X0,W, ') ∈ l,Y ∈ �]
= g [l × �] .

(75)

	e second equality above follows from the independence of{X0 ∈ l1, F�(W) ∈ l2, y�(') ∈ l4,Y ∈ �} and {F̃�(W) ∈ l3,ỹ�(') ∈ l5} under the probability measure P. 	is indepen-
dence holds because

{X0 ∈ l1, F� (W) ∈ l2, y� (') ∈ l4,Y ∈ �}
= {X0 ∈ l1, F� (F� (W)) ∈ l2, y� (y� (')) ∈ l4,Y ∈ �}
= {X0 ∈ l1, F� (W) ∈ F−1

� (l2) , y� (') ∈ y−1
� (l4) ,Y ∈ �}

∈ F�
(76)

and {F̃�(W) ∈ l3, ỹ�(') ∈ l5} is independent ofF� under the
probability measure P; see, for example, Ikeda andWatanabe
[20, Chapter II, 	eorems 6.4 and 6.5]. 	e relationship (76)
is valid since F−1

� (l2) ∈ C�(R+,R�), y−1
� (l4) ∈ M�(R+ × �),

and � ∈ D�(R+,R�), the mapping Ω ∋ A >→ F�(W(A))
is F�/C�(R+,R�)-measurable, and the mapping Ω ∋ A >→y�('(A)) is F�/M�(R+ × �)-measurable, because the pro-
cessesW and ' are (F�)�∈R+-adapted.

Remark 13. 	e�ltration (B̂�)�∈R+ de�ned in Lemma 12 is the
augmentated �ltration generated by the coordinate processes

on the canonical probability space (R�×�(R+,R�)×/(R+×�),B(R�) ⊗C(R+,R�) ⊗M(R+ × �), B × gW,� × g�,�). 	is

is the counterpart of the augmentated �ltration (F�,W,�
� )�∈R+ .

	e next lemma is a generalization of Corollary 1 in Yam-
ada andWatanabe [1] (see also Problem 5.3.22 inKaratzas and
Shreve [21]) for stochastic di
erential equations with jumps.

Lemma 14. Suppose that pathwise uniqueness holds for the

SDE (1). If (Ω(�),F(�), (F(�)
� )�∈R+ ,P(�),W(�), '(�),X(�)), ! ∈ {1,2}, are two weak solutions of the SDE (1) with the same initial

distribution B on (R�,B(R�)), then there exists a function� : R� × �(R+,R�) × /(R+ × �) → �(R+,R�) such that
k� (x, I, �, {� (x, I, �)}) = 1, ! ∈ {1, 2} (77)

holds for B × gW,� × g�,�-almost every (x, I, �) ∈ R
� × �(R+,

R
�) × /(R+ × �), where k�, ! ∈ {1, 2}, is given in (33). is

function � isB(R�) ⊗C(R+,R�) ⊗M(R+ × �)/D(R+,R�)-
measurable, B̂�/D�(R+,R�)-measurable for every �xed � ∈
R+, and

P
(�) (� (X(�)

0 ,W(�), '(�)) = Y
(�)) = 1, ! ∈ {1, 2} . (78)

Proof. Fix (x, I, �) ∈ R
� × �(R+,R�) × /(R+ × �) and

de�ne the measure k1,2(x, I, �, d�(1), d�(2)) := k1(x, I, �,
d�(1))k2(x, I, �, d�(2)) on the space � := �(R+,R�) ×�(R+,
R

�) equipped with the �-algebra S := D(R+,R�) ⊗ D(R+,
R

�). By (34) and Fubini theorem,

P1,2 [l × $] = ∫
�
k1,2 (x, I, �, $) B (dx) gW,� (dI)g�,� (d�)

(79)

for all l ∈ B(R�) ⊗ C(R+,R�) ⊗ M(R+ × �) and $ ∈ S.

With the choice l = R
� × �(R+,R�) × /(R+ × �) and $ ={(�(1), �(2)) ∈ � : �(1) = �(2)}, using that pathwise uniqueness

holds for the SDE (1), relation (51) yields P1,2[l × $] = 1.
Since k1,2(x, I, �, $) ⩽ 1 for all (x, I, �) ∈ R

� × �(R+,R�) ×/(R+ × �), (79) yields the existence of a set � ∈ B(R�) ⊗
C(R+,R�) ⊗M(R+ × �) with (B × gW,� × g�,�)(�) = 0 such
that

k1,2 (x, I, �, {(�(1), �(2)) ∈ � : �(1) = �(2)}) = 1,
(x, I, �) ∉ �. (80)

Again, by Fubini theorem,

1 = k1,2 (x, I, �, {(�(1), �(2)) ∈ � : �(1) = �(2)})
= ∫

�(R+ ,R�)
k1 (x, I, �, {�})k2 (x, I, �, d�) ,

(x, I, �) ∉ �,
(81)
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which can occur only if for some �0 ∈ �(R+,R�), call it�̃(x, I, �), we have
k� (x, I, �, {�̃ (x, I, �)}) = 1, ! ∈ {1, 2} , (x, I, �) ∉ �.

(82)

Indeed, since for all (x, I, �, �) ∈ R
� × �(R+,R�) × /(R+ ×�) × �(R+,R�), k1(x, I, �, {�}) ∈ [0, 1], we have

k2 (x, I, �, {� ∈ � (R+,R�) : k1 (x, I, �, {�}) = 1}) = 1,
(x, I, �) ∉ �.

(83)

Since for all (x, I, �) ∈ R
� × �(R+,R�) × /(R+ × �), by

(R1), the set function D(R+,R�) ∋ � >→ k�(x, I, �, �) is a
probability measure on (�(R+,R�),D(R+,R�)), ! ∈ {1, 2},
we get the unique existence of �̃(x, I, �) for all (x, I, �) ∉ �
satisfying (82). 	en we have (77) for �̃.

For (x, I, �) ∉ � and any $ ∈ D(R+,R�), we have�̃(x, I, �) ∈ $ if and only if k�(x, I, �, $) = 1, ! ∈ {1, 2}.
	e aim of the following discussion is to show the

B̂�/D�(R+,R�)-measurability of �̃ for all � ∈ R+. For all� ∈ R+ and $ ∈ D�(R+,R�), we have
�̃−1 ($) = {(x, I, �) ∈ R

� × � (R+,R�) × /(R+ × �) :
�̃ (x, I, �) ∈ $} =: 81 ∪ 82,

(84)

where

81 := {(x, I, �) ∈ R
� × � (R+,R�) × /(R+ × �) :

�̃ (x, I, �) ∈ $, (x, I, �) ∈ �} ,
82 := {(x, I, �) ∈ R

� × � (R+,R�) × /(R+ × �) :
�̃ (x, I, �) ∈ $, (x, I, �) ∉ �}

= {(x, I, �) ∈ R
� × � (R+,R�) × /(R+ × �) :

(x, I, �) ∉ �} ∩ k� (⋅, ⋅, ⋅, $)−1 ({1})
(85)

for ! ∈ {1, 2}. Lemma 12 implies k�(⋅, ⋅, ⋅, $)−1({1}) ∈ B̂�, ! ∈{1, 2}. Moreover, � ∈ B̂� (due to the de�nition of B̂�, for
more details, see the proof of Lemma 12); hence 82 ∈ B̂�.
Using that81 ⊂ �, (B×gW,�×g�,�)(�) = 0 and the de�nition
of the augmented �-algebra B̂� (see Lemma 12), we obtain81 ∈ B̂�. Hence �̃−1($) = 81 ∪ 82 ∈ B̂�, as desired.

	e aim of the following discussion is to show that �̃ is
(B (R�)⊗C (R+,R�) ⊗M (R+ × �)�×-W,�×-�,	 ,

D (R+,R�)) -measurable, (86)

where B(R�) ⊗C(R+,R�) ⊗M(R+ × �)�×-W,�×-�,	 denotes

the completion of B(R�) ⊗ C(R+,R�) ⊗ M(R+ × �) with
respect to the measure B×gW,�×g�,�. For all $ ∈ D(R+,R�),
we have �̃−1($) = 81 ∪ 82, where 81 and 82 are de�ned

in (85). Property (R2) implies k�(⋅, ⋅, ⋅, $)−1({1}) ∈ B(R�) ⊗
C(R+,R�)⊗M(R+×�), ! ∈ {1, 2}. Moreover, by de�nition of
completion (see, e.g., De�nition 2.7.2 in Karatzas and Shreve
[21]),

� ∈ B(R�) ⊗C(R+,R�) ⊗M(R+ × �)�×-W,�×-�,	 , (87)

hence

82 ∈ B(R�) ⊗C(R+,R�) ⊗M(R+ × �)�×-W,�×-�,	 . (88)

Using that81 ⊂ �, (B ×gW,� ×g�,�)(�) = 0, by de�nition of
completion, we obtain

81 ∈ B(R�) ⊗C(R+,R�) ⊗M(R+ × �)�×-W,�×-�,	 . (89)

Hence

�̃−1 ($) = 81 ∪ 82

∈ B (R�) ⊗C (R+,R�) ⊗M (R+ × �)�×-W,�×-�,	 ,
(90)

as desired.
Next we check (78) for �̃. For ! ∈ {1, 2}, by (45), (34), (R1),

and (82),

P
(�) (�̃ (X(�)

0 ,W(�), '(�)) = Y
(�))

= P1,2 (A = (x, I, �, �(1), �(2)) ∈ Ω : �̃ (x, I, �) = �(�))
= ∫

R
�×�(R+ ,R�)×�(R+×�)

k� (x, I, �, {�̃ (x, I, �)})
B (dx) gW,� (dI)g�,� (d�) = 1,

(91)

as desired.
It remains to check that one can choose a version of �̃

which is B(R�) ⊗ C(R+,R�) ⊗ M(R+ × �)/D(R+,R�)-
measurable, B̂�/D�(R+,R�)-measurable for every �xed � ∈
R+, and (77) and (78) remain hold for �. Since �̃ is

(B (R�)⊗C (R+,R�)⊗M (R+ × �)�×-W,�×-�,	 ,
D (R+,R�)) -measurable, (92)

there exists a function � : R� × �(R+,R�) × /(R+ × �) →�(R+,R�)which isB(R�)⊗C(R+,R�)⊗M(R+×�)/D(R+,
R

�)-measurable and

(B × gW,� × g�,�) ({(x, I, �) ∈ R
� × � (R+,R�)

× /(R+ × �) :
�̃ (x, I, �) ̸= � (x, I, �)}) = 0;

(93)
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see, for example, Cohn [22, Proposition 2.2.5]. First we check
that � is B̂�/D�(R+,R�)-measurable for every �xed � ∈ R+.
For all � ∈ R+ and $ ∈ D�(R+,R�), we have
�−1 ($) = (�−1 ($) ∩ {�̃ = �}) ∪ (�−1 ($) ∩ {�̃ ̸= �})

= (�̃−1 ($) ∩ {�̃ = �}) ∪ (�−1 ($) ∩ {�̃ ̸= �}) , (94)

where �̃−1($) ∈ B̂� (since �̃ is B̂�/D�(R+,R�)-measurable),{�̃ ̸= �} ∈ B̂� (due to the de�nition of completion, since (B ×gW,� × g�,�)(�̃ ̸= �) = 0), {�̃ = �} ∈ B̂� (since B̂� is a �-
algebra), and �−1($) ∩ {�̃ ̸= �} ∈ B̂� (due to the de�nition of

completion, since �−1($)∩{�̃ ̸= �} ⊂ {�̃ ̸= �}). Hence �−1($) ∈
B̂�.

Next we check (77) for �. Using that (77) holds for �̃ and(B × gW,� × g�,�)(�̃ ̸= �) = 0, we have
(B × gW,� × g�,�) (�1 ∪ �2)
= (B × gW,� × g�,�) ((�1 ∪ �2) ∩ {� = �̃})
+ (B × gW,� × g�,�) ((�1 ∪ �2) ∩ {� ̸= �̃})

⩽ (B × gW,� × g�,�) (�̃1 ∪ �̃2)
+ (B × gW,� × g�,�) (� ̸= �̃) = 0 + 0 = 0,

(95)

where

�̃� := {(x, I, �) ∈ R
� × � (R+,R�) × /(R+ × �) :

k� (x, I, �, {�̃ (x, I, �)}) ̸= 1} ,
�� := {(x, I, �) ∈ R

� × � (R+,R�) × /(R+ × �) :
k� (x, I, �, {� (x, I, �)}) ̸= 1}

(96)

for ! ∈ {1, 2}. 	is implies (77) for �.
Finally, we check (78) for �. First observe that P1,2(�̃ =�) = 1, since, by (79),
P1,2 (�̃ = �)

= 1 − P1,2 (�̃ ̸= �)
= 1 − ∫

{/̃ ̸=/}
k1,2 (x, I, �,� (R+,R�) , � (R+,R�))
B (dx) gW,� (dI)g�,� (d�)

= 1 − ∫
{/̃ ̸=/}

k1 (x, I, �,� (R+,R�))
× k2 (x, I, �,� (R+,R�))
B (dx) gW,� (dI)g�,� (d�)

= 1 − (B × gW,� × g�,�) (�̃ ̸= �) = 1 − 0 = 1,
(97)

where we used (R1) as well. 	en, by (45) and (34), for ! ∈{1, 2}, we obtain
P

(�) (� (X(�)
0 ,W(�), '(�)) = Y

(�))
= P1,2 (A = (x, I, �, �(1), �(2)) ∈ Ω : � (x, I, �) = �(�))
= P1,2 ({A = (x, I, �, �(1), �(2)) ∈ Ω :

� (x, I, �) = �(�)} ∩ {�̃ = �})
= P1,2 ({A = (x, I, �, �(1), �(2)) ∈ Ω :

�̃ (x, I, �) = �(�)} ∩ {�̃ = �})
= P1,2 (A = (x, I, �, �(1), �(2)) ∈ Ω : �̃ (x, I, �) = �(�))
= P

(�) (�̃ (X(�)
0 ,W(�), '(�)) = Y

(�)) = 1,
(98)

where, for the last equality, we applied that (78) holds for �̃.
Remark 15. Note that the function � in Lemma 14 and the B×gW,� × g�,�-null set on which (77) does not hold depend on
the two weak solutions in question.

Applying Lemma 14 for weak solutions (Ω(�),F(�),(F(�)
� )�∈R+ ,P(�),W(�), '(�),X(�)) = (Ω,F, (F�)�∈R+ ,P,W, ',X),! ∈ {1, 2}, of the SDE (1) with the same initial distribution B

on (R�,B(R�)), we obtain the following corollary.

Corollary 16. If pathwise uniqueness holds for the SDE (1) and(Ω,F, (F�)�∈R+ ,P,W, ',X) is a weak solution of the SDE (1)

with initial distribution B on (R�,B(R�)), then there exists a
function � : R�×�(R+,R�)×/(R+×�) → �(R+,R�) such
thatk(x, I, �, {�(x, I, �)}) = 1 holds for B×gW,�×g�,�-almost

every (x, I, �) ∈ R
� × �(R+,R�) × /(R+ × �), where k is

given in (29).is function � isB(R�)⊗C(R+,R�)⊗M(R+×�)/D(R+,R�)-measurable, B̂�/D�(R+,R�)-measurable for
every �xed � ∈ R+, and P(�(X0,W, ') = Y) = 1.

Next we give the precise formulation of 	eorem 2.

�eorem 17. Suppose that pathwise uniqueness holds for the
SDE (1) and there exists a weak solution (Ω7,F7, (F7

�)�∈R+ ,P7,
W7, '7,X7) of the SDE (1) with initial distribution B7. en

there exists a function ℎ7 : R
� × �(R+,R�) × /(R+ ×�) → �(R+,R�) which is B(R�) ⊗ C(R+,R�) ⊗ M(R+ ×�)/D(R+,R�)-measurable, B̂�/D�(R+,R�)-measurable for

every �xed � ∈ R+, and

X
7 = ℎ7 (X7

0,W7, '7) P
7-������ ������. (99)

Moreover, if objects (E1)–(E4) are given such that the distribu-
tion of � is B7, then the process

X := ℎ7 (�,W, ') (100)

is a strong solution of the SDE (1) with initial value �.
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Proof. Let ℎ7(x, I, �) := x + �7(x, I, �) for x ∈ R
�, I ∈�(R+,R�), � ∈ /(R+ × �), where �7 is as in Corollary 16.

By Corollary 16, for the function ℎ7, the desiredmeasurability
properties hold. Using Corollary 16 andX7 = X7

0+Y7, we have

P
7 (X7 = ℎ7 (X7

0,W7, '7))
= P

7 (X7
0 + Y

7 = X
7
0 + �7 (X7

0,W7, '7))
= P

7 (Y7 = �7 (X7
0,W7, '7)) = 1,

(101)

implying (99).
Note that, for �, W, and ' as described in (E1)–(E4), the

triplets (X7
0,W7, '7) and (�,W, ') induce the same probability

measure B7 × gW,� × g�,� on the measurable space

(R� × � (R+,R�) × /(R+ × �) ,
B (R�) ⊗C (R+,R�) ⊗M (R+ × �)) (102)

with respect to the probabilitymeasureP7 andP, respectively,
where P denotes the probability measure appears in (E1),
since X7

0,W
7, and '7 are P7-independent and �,W, and ' are

P-independent; see Remarks 6 and 10.
Observe also that the mappings

Ω7 ∋ A7 >X→ (X7
0 (A7) , (W7

� (A7))�∈R+ , ��
(�
))
∈ R

� × � (R+,R�) × /(R+ × �) , (103)

Ω ∋ A >X→ (� (A) , (W� (A))�∈R+ , ��(�))
∈ R

� × � (R+,R�) × /(R+ × �) (104)

areF7/B(R�) ⊗C(R+,R�) ⊗M(R+ × �)-measurable and

(� (�,W�, � ∈ R+, ' (�) , � ∈ R++ ∩ � (')) ,
B (R�) ⊗C (R+,R�) ⊗M (R+ × �)) -measurable,

(105)

respectively. Further, they are F
7
�/B(R�) ⊗ C�(R+,R�) ⊗

M�(R+ × �)-measurable and

(� (�,W�, � ∈ [0, �] , ' (�) , � ∈ (0, �] ∩ � (')) ,
B (R�) ⊗C� (R+,R�) ⊗M� (R+ × �)) -measurable

(106)

for all � ∈ R+, respectively. Indeed, since X
7
0 and � are F7/

B(R�)-measurable and �(�)/B(R�)-measurable, respec-
tively, by (11) and (15), it is enough to check that for all � ∈ R+,B ∈ N, 81 ∈ B(R��), �1, . . . , �� ∈ [0, �], � ∈ [0, �], $ ∈ B(�),82 ∈ B([0,∞]),

{A7 ∈ Ω7 : (W7
�1 (A7) , . . . ,W7

�� (A7)) ∈ 81} ∈ F
7,

{A ∈ Ω : (W�1 (A) , . . . ,W�� (A)) ∈ 81} ∈ � (W�, � ∈ R+) ,

{A7 ∈ Ω7 : ��
(�
) ([0, �] × $) ∈ 82} ∈ F
7,

{A ∈ Ω : ��(�) ([0, �] × $) ∈ 82}
∈ � (' (�) , � ∈ R++ ∩ � (')) .

(107)

	ese relations hold sinceW7
�� , ! ∈ {1, . . . , B}, andW�� , ! ∈ {1,. . . , B}, areF7/B(R�)-measurable and�(W�, � ∈ R+)/B(R�)-

measurable, and'7 and' areF7/M(R+×�)-measurable and�('(�), � ∈ R++∩�('))/M(R+×�)-measurable, respectively.
Similarly, one can argue that the functions in question are

F
7
�/B(R�) ⊗ C�(R+,R�) ⊗ M�(R+ × �)-measurable and�(�,W�, � ∈ [0, �], '(�), � ∈ (0, �] ∩ �('))/B(R�) ⊗ C�(R+,

R
�) ⊗M�(R+ × �)-measurable for all � ∈ R+, respectively.
Next, we check that the process X is adapted to the

augmented �ltration (F�,W,�
� )�∈R+ . First, note that the pro-

cess X is adapted to (F�,W,�
� )�∈R+ if and only if F�(X) is

F
�,W,�
� /D�(R+,R�)-measurable for all � ∈ R+, where F� is

given in (9). Indeed,

(X�)�∈R+ is (F�,W,�
� )

�∈R+
-adapted

⇐⇒ �(X�) ⊂ F
�,W,�
� ∀� ∈ R+

⇐⇒ �(X� : � ∈ [0, �]) ⊂ F
�,W,�
� ∀� ∈ R+

⇐⇒ F� (X) is (F�,W,�
� ,D� (R+,R�)) -measurable

∀� ∈ R+,
(108)

where the last equivalence can be checked as follows. Since

D�(R+,R�) coincides with the smallest �-algebra containing
the �nite-dimensional cylinder sets of the form

{� ∈ � (R+,R�) : (� (�1) , . . . , � (��)) ∈ 8} ,
B ∈ N, 8 ∈ B (R��) , �1, . . . , �� ∈ [0, �] , (109)

it is enough to check that �(X� : � ∈ [0, �]) ⊂ F
�,W,�
� for all� ∈ R+ is equivalent with

{A ∈ Ω : ((F� (X))�1 (A) , . . . , (F� (X))�� (A)) ∈ 8} ∈ F
�,W,�
�
(110)

for all B ∈ N, 8 ∈ B(R��), �1, . . . , �� ∈ [0, �], � ∈ R+, which
readily follows from

{A ∈ Ω : ((F� (X))�1 (A) , . . . , (F� (X))�� (A)) ∈ 8}
= {A ∈ Ω : (X�1 (A) , . . . ,X�� (A)) ∈ 8} . (111)

Since F�(X) = F� ∘ ℎ7 ∘ (�,W, '), � ∈ R+, the mapping F� is
D�(R+,R�)/D�(R+,R�)-measurable for all � ∈ R+, ℎ7 is B̂�/
D�(R+,R�)-measurable for all � ∈ R+, it remains to check
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that the mapping (104) is F
�,W,�
� /B̂�-measurable for all � ∈

R+. Recall that

B̂� = � (B (R�) ⊗C� (R+,R�) ⊗M� (R+ × �) ∪N) ,
� ∈ R+,

F
�,W,�
� = � (� (�,W�, � ∈ [0, �] , ' (�) , � ∈ (0, �] ∩ � ('))

∪N�,W,�) , � ∈ R+,
(112)

where

N = {8 ⊂ R
� × � (R+,R�) × /(R+ × �) :

∃$ ∈ B (R�) ⊗C (R+,R�) ⊗M (R+ × �)
with 8 ⊂ $, (B7 × gW,� × g�,�) ($) = 0} ,

N
�,W,� := {8 ⊂ Ω :

∃$ ∈ � (�,W�, � ∈ R+, ' (�) , � ∈ R++ ∩ � ('))
with 8 ⊂ $, P ($) = 0} .

(113)

Since a generator systemofB(R�)⊗C�(R+,R�)⊗M�(R+×�)
together with N is a generator system of B̂�, and we have
already checked that the mapping (104) is

(� (�,W�, � ∈ R+, ' (�) , � ∈ R++ ∩ � (')) ,
B (R�) ⊗C (R+,R�) ⊗M (R+ × �)) -measurable,

(114)

it remains to verify that (�,W, ')−1(8) ∈ F
�,W,�
� for all 8 ∈

N and � ∈ R+. We show that (�,W, ')−1(8) ∈ N
�,W,� for all8 ∈ N, implying (�,W, ')−1(8) ∈ F

�,W,�
� for all � ∈ R+, as

desired. If8 ∈ N, then there exists $ ∈ B(R�)⊗C(R+,R�)⊗
M(R+ × �) such that 8 ⊂ $ and (B7 × gW,� × g�,�)($) = 0.
Hence(�,W, ')−1 (8)

⊆ (�,W, ')−1 ($)
∈ � (�,W�, � ∈ R+, ' (�) , � ∈ R++ ∩ � (')) ,

(115)

P ((�,W, ')−1 ($)) = P ((�,W, ') ∈ $)
= (B7 × gW,� × g�,�) ($) = 0, (116)

where, for the last but one equality, we used that the distribu-
tion of (�,W, ') underP is B7×gW,�×g�,� (as it was explained
at the beginning of the proof). By de�nition, this means that(�,W, ')−1(8) ∈ N

�,W,�.

Nextwe check that (X�)�∈R+ satis�es the SDE (1) P-almost

surely. Since ℎ7 isB(R�) ⊗C(R+,R�) ⊗M(R+ × �)/D(R+,
R

�)-measurable, and the triplets (X7
0,W7, '7) and (�,W, ')

induce the same probability measure B7 × gW,� × g�,� on the
measurable space

(R� × � (R+,R�) × /(R+ × �) ,
B (R�) ⊗C (R+,R�) ⊗M (R+ × �)) (117)

with respect to the probabilitymeasureP7 andP, respectively,
the triplets (X7,W7, '7) and (X,W, ') induce the same prob-
ability measure on the measurable space

(� (R+,R�) × � (R+,R�) × /(R+ × �) ,
D (R+,R�) ⊗C (R+,R�) ⊗M (R+ × �)) (118)

with respect to the probabilitymeasureP7 andP, respectively.
Let us apply Lemma A.4 with the following choices:

(Ω(1),F(1), (F(1)
� )�∈R+ ,P(1),W(1), '(1),X(1))

:= (Ω7,F7, (F7
�)�∈R+ ,P7,W7, '7,X7) ,

(Ω(2),F(2), (F(2)
� )�∈R+ ,P(2),W(2), '(2),X(2))

:= (Ω,F, (F�,W,�
� )

�∈R+
,P,W, ',X) .

(119)

Since (Ω7,F7, (F7
�)�∈R+ ,P7,W7, '7,X7) is a weak solution of

the SDE (1) with initial distribution B7, the tuple (Ω(1),F(1),(F(1)
� )�∈R+ ,P(1),W(1), '(1),X(1)) satis�es (D1), (D2), (D3), and

(D4)(b)–(e). Further, as it was explained before De�nition 11,

the tuple (Ω(2),F(2), (F(2)
� )�∈R+ ,P(2),W(2), '(2),X(2)) satis�es

(D1), (D2), and (D3), and we have already checked that X

is adapted to the augmented �ltration (F�,W,�
� )�∈R+ . 	en

Lemma A.4 yields that the tuple (Ω(2),F(2), (F(2)
� )�∈R+ ,

P
(2),W(2), '(2),X(2)) satis�es (D4)(b)–(d) and the distribu-

tion of

(X7
� − X

7
0 − ∫�

0
� (�,X7

�) d� − ∫�

0
� (�,X7

�) dW7
�

− ∫�

0
∫
�0
� (�,X7

�−, �) �̃7 (d�, d�)
−∫�

0
∫
�1
� (�,X7

�−, �)�7 (d�, d�))
�∈R+

(120)
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on (�(R+,R�),D(R+,R�)) under P7 is the same as the dis-
tribution of

(X� − X0 − ∫�

0
� (�,X�) d� − ∫�

0
� (�,X�) dW�

− ∫�

0
∫
�0
� (�,X�−, �) �̃ (d�, d�)

−∫�

0
∫
�1
� (�,X�−, �)� (d�, d�))

�∈R+

(121)

on (�(R+,R�),D(R+,R�)) under P, where �7(d�, d�) and�(d�, d�) is the counting measure of '7 and ' on R+ × �,
respectively, and �̃7(d�, d�) := �7(d�, d�) − d��(d�) and�̃(d�, d�) := �(d�, d�)−d��(d�). Using that the �rst process
and the identically 0 process are indistinguishable (since the
SDE (1) holdsP7-a.s. for (X7

�)�∈R+), we obtain that the SDE (1)
holds P-a.s. for (X�)�∈R+ as well, that is, (D4)(e) holds.

Finally, we show that P(X0 = �) = 1. Since, as it was
checked that the distribution ofX



andX coincide, especially,

the distribution of X7
0 and X0 coincide, and consequently,

the distribution of X0 and � coincide (both are equal toB7). Using Corollary 16 for (Ω,F, (F�,W,�
� )�∈R+ ,P,W, ',X)

(which is especially a weak solution of the SDE (1) with initial
distribution B7) we get

P (X0 = �) = P (� + �7 (�,W, ')0 = �)
= P (�7 (�,W, ')0 = 0)
= P (�7 (�,W, ')0 = Y0) = 1,

(122)

as desired.
Summarizing, (X�)�∈R+ is a strong solution of the SDE (1)

with initial value �.

Appendix

Let (Ω,F, (F�)�∈R+ ,P) be a �ltered probability space. First
we recall the notion of (F�)�∈R+-predictability; see, for exam-
ple, Ikeda andWatanabe [20, Chapter II, De�nition 3.3]. 	e
predictable �-algebraP on R+ × Ω × � is given by

P := � (ℎ : R+ × Ω × � X→ R |
ℎ (�, ⋅, ⋅) is (F� ⊗B (�) ,B (R)) -measurable

∀� ∈ R++,
ℎ (⋅, A, �) is le� continuous ∀ (A, �) ∈ Ω × �) .

(A.1)

A function � : R+ × Ω × � → R
� is called (F�)�∈R+-

predictable if it isP/B(R�)-measurable.

Lemma A.1. Let (Ω,F, (F�)�∈R+ ,P) be a �ltered probability
space. Let (X�)�∈R+ be an (F�)�∈R+-adapted càdlàg process with
values in R

�.

(i) If I : R� → R is a continuous function, then for
each � ∈ R+ and $ ∈ B(�), the function ℎ(�, A, �) :=I(X�−(A))1[0,8](�)1�(�), (�, A, �) ∈ R+ × Ω × �, is(F�)�∈R+-predictable.

(ii) If � ∈ R+, 8 ∈ B(R�) is an open set and $ ∈ B(�),
then{(�, A, �) ∈ R+ × Ω × � :

� ∈ [0, �] , X�− (A) ∈ 8, � ∈ $} ∈ P. (A.2)

(iii) If � : R+×R�×� → R
� isB(R+)⊗B(R�)⊗B(�)/

B(R�)-measurable, then the function �(�, A, �) :=�(�,X�−(A), �), (�, A, �) ∈ R+ × Ω × �, is (F�)�∈R+-
predictable.

Proof. (i) 	e function ℎ is (F�)�∈R+-predictable, since it
belongs to the generator system of P. Indeed, for each� ∈ R+, the mapping Ω × � ∋ (A, �) >→ ℎ(�, A, �) is
F� ⊗ B(�)/B(R)-measurable, because X� is F�/B(R�)-
measurable and F� ⊂ F� for all � < �, and hence X�− :=
lim�↑�X� is F�/B(R�)-measurable, and I is B(R�)/B(R)-
measurable. Moreover, for each (A, �) ∈ Ω × �, the function
R+ ∋ � >→ ℎ(�, A, �) is le� continuous, because the functions
R+ ∋ � >→ 1[0,8](�) and R+ ∋ � >→ X�−(A) are le� continuous
and I is continuous.

(ii) Consider the function I� : R
� → R+ given byI�(x) := �(x,R� \8), x ∈ R

�, where � denotes the Euclidean
distance of x and R

� \ 8. 	en I� is continuous and 8 =I−1
� (R++). Put ℎ�(�, A, �) := I�(X�−(A))1[0,8](�)1�(�), (�, A,�) ∈ R+ × Ω × �. 	en, by (i), we obtain{(�, A, �) ∈ R+ × Ω × � : � ∈ [0, �] , X�− (A) ∈ 8, � ∈ $}

= {(�, A, �) ∈ R+ × Ω × � :
� ∈ [0, �] , I� (X�− (A)) ∈ R++, � ∈ $}

= {(�, A, �) ∈ R+ × Ω × � : ℎ� (�, A, �) ∈ R++} ∈ P.
(A.3)

(iii) We have � = � ∘ l, where l(�, A, �) := (�,X�−(A), �),(�, A, �) ∈ R+ × Ω × �; thus it su�ces to show that l
is P/B(R+) ⊗ B(R�) ⊗ B(�)-measurable. 	e �-algebra
B(R+)⊗B(R�)⊗B(�) is generated by the sets [0, �]×8×$
with � ∈ R+, open sets 8 ∈ B(R�) and $ ∈ B(�); hence it
su�ces to show that{(�, A, �) ∈ R+ × Ω × � :

� ∈ [0, �] ,X�− (A) ∈ 8, � ∈ $} ∈ P. (A.4)

	is holds by (ii).

Note that using Lemma A.1, one can relax Assumption6.2.8 in Applebaum [23].
	e next lemma plays a similar role as Lemma 139 in Situ

[11].

Lemma A.2. Let (Ω(�),F(�), (F(�)
� )�∈R+ ,P(�),W(�), '(�),X(�)),! ∈ {1, 2}, be tuples satisfying (D1), (D2), (D3), and (D4)(b)–

(d). Suppose that (W(1), '(1),X(1)) and (W(2), '(2),X(2)) have
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the same distribution on�(R+,R�)×/(R+×�)×�(R+,R�).
en

(X(1)
� , ∫�

0
� (�,X(1)

� ) d�, ∫�

0
� (�,X(1)

� ) dW(1)
� ,

∫�

0
∫
�0
� (�,X(1)

�− , �) �̃(1) (d�, d�) ,
∫�

0
∫
�1
� (�,X(1)

�− , �)�(1) (d�, d�))
�∈R+

,
(A.5)

(X(2)
� , ∫�

0
� (�,X(2)

� ) d�, ∫�

0
� (�,X(2)

� ) dW(2)
� ,

∫�

0
∫
�0
� (�,X(2)

�− , �) �̃(2) (d�, d�) ,
∫�

0
∫
�1
� (�,X(2)

�− , �)�(2) (d�, d�))
�∈R+

(A.6)

have the same distribution on (�(R+,R�))5, where, for each ! ∈{1, 2},�(�)(d�, d�) is the counting measure of '(�) onR++ ×�,
and �̃(�)(d�, d�) := �(�)(d�, d�) − d��(d�).
Proof. By Remark 4, the above processes have càdlàg modi�-
cations. According to Lemma VI.3.19 in Jacod and Shiryaev
[17], it su�ces to show that the �nite-dimensional distribu-
tions of the above processes coincide.

By Proposition I.4.44 in Jacod and Shiryaev [17], for each

! ∈ {1, 2} and � ∈ R+, �(�)1,�(�) P
(�)XX→ ∫�

0 �(�,X(�)
� )d� and �(�)2,�(�) P

(�)XX→∫�
0 �(�,X(�)

� )dW(�)
� as B → ∞, where

�(�)1,� (�) := 1B
⌊��⌋∑
/=1
� (� − 1B ,X(�)

(/−1)/�) ,

�(�)2,� (�) := ⌊��⌋∑
/=1
�(� − 1B ,X(�)

(/−1)/�) (W(�)
//� −W

(�)
(/−1)/�) .

(A.7)

Let �1, ∈ B(�), v ∈ N, be such that they are disjoint,�(�1, ) < ∞, v ∈ N, and �1 = ⋃∞
 =1�1, (such a sequence

exists since � is �-�nite; see, e.g., Cohn [22, page 9]). 	en

for each ! ∈ {1, 2} and � ∈ R+, �(�)3,�(�) → ∫�
0 ∫�1 �(�,X(�)

�−,�)�(�)(d�, d�) as B → ∞ P
(�)-almost surely, where

�(�)3,� (�) := �∑
 =1

∫�

0
∫
�1,�

� (�,X(�)
�−, �)�(�) (d�, d�)

= �∑
 =1

∑
�∈(0,�]∩�(�(�)1,�)

� (�,X(�)
�−, '(�)

1, (�)) ,
(A.8)

where '(�)
1, denotes the thinning of '(�) onto �1, ; see, for

example, Ikeda and Watanabe [20, page 62]. Since �(�1, ) <∞, by Remark 5, the set (0, �] ∩ �('(�)
1, ) is �nite P(�)-almost

surely for all � ∈ R+ and ! ∈ {1, 2}, v ∈ N, and hence one can

order the set �('(�)
1, ) according to magnitude, say 0 < �(�)1, ,1 <�(�)1, ,2 < ⋅ ⋅ ⋅ , v ∈ N, ! ∈ {1, 2}. Namely,

�(�)1, ,ℓ = inf {� ∈ R+ : �(�) ((0, �] × �1, ) ⩾ ℓ} ,
ℓ ∈ N, v ∈ N, ! ∈ {1, 2} (A.9)

on the event

Ω(�)
1, := ∞⋂

/=1
{A ∈ Ω(�) : ��(�)1,�(�) ((0, �] × �1, ) < ∞} ,

v ∈ N, ! ∈ {1, 2} ,
(A.10)

having P
(�)-probability 1, where we used that the point

measure corresponding to the point function '(�)
1, (A) is its

counting measure ��(�)1,�(�); see Section 2. 	en we can write

�(�)3,�(�) in the form

�(�)3,� (�) = �∑
 =1

∞∑
ℓ=1
�(�(�)1, ,ℓ,X(�)

B(�)1,�,ℓ−
, '(�)

1, (�(�)1, ,ℓ)) 1(0,�] (�(�)1, ,ℓ) ,
� ∈ R+, B ∈ N, ! ∈ {1, 2} ,

(A.11)

where ∑∞
ℓ=1 �(�(�)1, ,ℓ,X(�)

B(�)1,�,ℓ−
, '(�)

1, (�(�)1, ,ℓ))1(0,�](�(�)1, ,ℓ) is a �nite

sum P
(�)-almost surely. Furthermore, by Remark 4, for ! ∈{1, 2} and � ∈ R+, �(�)4,�(�) → ∫�

0 ∫�0 �(�,X(�)
�−, �)�̃(�)(d�, d�)

as B → ∞ P
(�)-almost surely, where

�(�)4,� (�) := ∫�

0
∫
�0
1[0,�(�)� ] (�) � (�,X(�)

�−, �) �̃(�) (d�, d�) (A.12)

with

P(�)�

:= inf {� ∈ R+ : ∫�

0
∫
�0

SSSSS� (�,X(�)
� , �)SSSSS2 d�� (d�) ⩾ B} ∧ B,

(A.13)

for all B ∈ N, ! ∈ {1, 2}, satisfying P(�)� ↑ ∞ P
(�)-almost surely

as B → ∞. Let �0, ∈ B(�), v ∈ N, be such that they are

disjoint, �(�0, ) < ∞, v ∈ N, and �0 = ⋃∞
 =1�0, (such a

sequence exists since � is �-�nite; see, e.g., Cohn [22, page
9]).	en, by pages 47 and 63 in Ikeda andWatanabe [20], for

all � ∈ R+, ! ∈ {1, 2} and B ∈ N, �(�)4,�, (�) P
(�)XX→ �(�)4,�(�) as v → ∞,

where

�(�)4,�, (�) := ∫�

0
∫
�0
1(− , ) (1[0,�(�)� ] (�) � (�,X(�)

�−, �))
× 1�0,� (�) 1[0,�(�)� ] (�) � (�,X(�)

�−, �)
�̃(�) (d�, d�)
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= ∫�

0
∫
�0,�

1(− , ) (� (�,X(�)
�−, �))

× 1[0,�(�)� ] (�) � (�,X(�)
�−, �) �̃(�) (d�, d�) .

(A.14)

By page 62 in Ikeda and Watanabe [20], for all � ∈ R+, ! ∈{1, 2}, B ∈ N, and v ∈ N, �(�)4,�, (�) = �(�),	4,�, (�) − �(�),�4,�, (�), where
�(�),	4,�, (�) := ∫�

0
∫
�0,�

1(− , ) (� (�,X(�)
�−, �))

× 1[0,�(�)� ] (�) � (�,X(�)
�−, �)�(�) (d�, d�) ,

�(�),�4,�, (�) := ∫�

0
(∫

�0,�
1(− , ) (� (�,X(�)

�−, �)) 1[0,�(�)� ] (�)
× � (�,X(�)

�−, �)� (d�)) d�.
(A.15)

Similarly as for the integrals ∫�
0 ∫�1 �(�,X(�)

�−, �)�(�)(d�, d�)
and ∫�

0 �(�,X(�)
� )d�, there exist sequences of random variables

(�(�),	4,�, ,ℓ(�))ℓ∈N and (�(�),�4,�, ,ℓ(�))ℓ∈N such that �(�),	4,�, ,ℓ(�) P
(�)XX→

�(�),	4,�, (�) and �(�),�4,�, ,ℓ(�) P
(�)XX→ �(�),�4,�, (�) as ℓ → ∞, respectively.

	en, for all � ∈ R+ and ! ∈ {1, 2}, �(�),	4,�, ,ℓ(�) − �(�),�4,�, ,ℓ(�) P
(�)XX→∫�

0 ∫�0 �(�,X(�)
�−, �)�̃(�)(d�, d�) as ℓ → ∞; then v → ∞, and,

�nally, B → ∞. Using part (vi) of 	eorem 2.7 in van der
Vaart [24], we get for alld ∈ N, �1, . . . , �C ∈ R+ and ! ∈ {1, 2},
(X(�)

� , �(�)1,�(�/), �(�)2,�(�/), �(�)3,�(�/), �(�),	4,�, ,ℓ(�/) − �(�),�4,�, ,ℓ(�/))/∈{1,...,C}

P
(�)X→ (X(�)

� , ∫�

0
� (�,X(�)

� ) d�, ∫�

0
� (�,X(�)

� ) dW(�)
� ,

∫�

0
∫
�1
� (�,X(�)

�−, �)�(�) (d�, d�) ,
∫�

0
∫
�0
� (�,X(�)

�−, �) �̃(�) (d�, d�))
/∈{1,...,C}

(A.16)

as ℓ, v, B → ∞. Since (W(1), '(1),X(1)) and (W(2), '(2),X(2))
have the same distribution, the random vectors

(X(1)
� , �(1)1,�(�/), �(1)2,�(�/), �(1)3,�(�/), �(1),	4,�, ,ℓ (�/)−�(1),�4,�, ,ℓ(�/))/∈{1,...,C},

(A.17)

(X(2)
� , �(2)1,�(�/), �(2)2,�(�/), �(2)3,�(�/), �(2),	4,�, ,ℓ(�/) − �(2),�4,�, ,ℓ(�/))/∈{1,...,C}

(A.18)

have the same distribution for all ℓ, v, B ∈ N, as well.
Indeed, the random vectors above can be considered as
some appropriate measurable function of (W(1), '(1),X(1))
and (W(2), '(2),X(2)), respectively. For this, it is enough to
verify that each coordinate of the above random vectors can
be considered as some appropriate measurable function of(W(1), '(1),X(1)) and (W(2), '(2),X(2)), respectively, hence we
�x � ∈ {1, . . . , d}.

(i) First observe that X(�)
� is a D(R+,R�)/B(R�)-meas-

urable function ofX(�); namely,X(�)
� = Ψ0(X(�)), whereΨ0 : �(R+,R�) → R

� is given byΨ0(�) := �(�/), � ∈�(R+,R�).
(ii) Next, �(�)1,�(�/) is a D(R+,R�)/B(R�)-measurable

function of X(�) as well; namely, �(�)1,�(�/) = Ψ1(X(�)),
whereΨ1 : �(R+,R�) → R

� is given byΨ1(�) := (1/B)∑⌊��⌋
/=1 �((� − 1)/B, �((� − 1)/B)), � ∈ �(R+,R�).

(iii) In a similar way, �(�)2,�(�/) is aD(R+,R�) ×C(R+,R�)/
B(R�)-measurable function of (X(�),W(�)); namely,�(�)2,�(�/) = Ψ2(X(�),W(�)), where Ψ2 : �(R+,R�) ×�(R+,R�) → R

� is given byΨ2(�, I) := ∑⌊��⌋
/=1 �((�−1)/B, �((�−1)/B))(I(�/B)−I((�−1)/B)), � ∈ �(R+,

R
�), I ∈ �(R+,R�).

(iv) Now we show that �(�)3,�(�/) is aD(R+,R�) ⊗M(R+ ×�)/B(R�)-measurable function of (X(�), '(�)). As a
�rst step, we show that for each v, ℓ ∈ N there exist
functionsΦ ,ℓ : /(R+×�) → R+ andΞ ,ℓ : /(R+×�) → � such that Φ ,ℓ is M(R+ × �)/B(R+)-
measurable, Ξ ,ℓ is M(R+ × �)/B(�)-measurable,

and (�(�)1, ,ℓ, '(�)
1, (�(�)1, ,ℓ)) = (Φ ,ℓ(��(�)1,�), Ξ ,ℓ(��(�)1,�))holds

P
(�)-almost surely. 	en it will follow that �(�)3,�(�/) =Ψ3(X(�), '(�)), where Ψ3 : �(R+,R�) ×/(R+ × �) →

R
� given by

Ψ3 (�, �)
:= �∑

 =1

∞∑
ℓ=1
� (Φ ,ℓ (�) , � (Φ ,ℓ (�) −) , Ξ ,ℓ (�)) 1(0,�] (Φ ,ℓ (�))

(A.19)

for (�, �) ∈ �(R+,R�) × /(R+ × �) is D(R+,R�)⊗
M(R+ × �)/B(R�)-measurable. To prove the exis-

tence of Φ ,ℓ and Ξ ,ℓ, �rst we verify that (�(�)1, ,ℓ,'(�)
1, (�(�)1, ,ℓ)) ismeasurable with respect to the�-algebra�(��(�)1,�) ∩ Ω(�)

1, having the form

�({A ∈ Ω(�)
1, : ��(�)1,�(�) ((0, �] × $) = �}�������

� ∈ R+, $ ∈ B (�1, ) , � ∈ N) . (A.20)
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We have{A ∈ Ω(�)
1, : (�(�)1, ,ℓ (A) , '(�)

1, (A) (�(�)1, ,ℓ (A))) ∈ (0, �] × $}
= ∞⋂

�=1

�⋃
/=1

{A ∈ Ω(�)
1, :

��(�)1,�(�) ((0, (� − 1) �B ] × �1, ) ⩽ ℓ − 1,
��(�)1,�(�) (((� − 1) �B , ��B ] × $) ⩾ 1,
��(�)1,�(�) ((0, ��B ] × �1, ) ⩾ ℓ}

(A.21)

for � ∈ R++, v, ℓ ∈ N, $ ∈ B(�1, ), ! ∈ {1, 2}. Indeed,
on the one hand, if A ∈ Ω(�)

1, is such that �(�)1, ,ℓ(A) ∈(0, �] and '(�)
1, (A)(�(�)1, ,ℓ(A)) ∈ $, then for each B ∈ N,

there exists a unique � ∈ {1, . . . , B} with �(�)1, ,ℓ(A) ∈((� − 1)�/B, ��/B], and hence��(�)1,�(�)((0, (� − 1)�/B] ×�1, ) ⩽ ℓ − 1,��(�)1,�(�)(((� − 1)�/B, ��/B] × $) ⩾ 1 and��(�)1,�(�)((0, ��/B] × �1, ) ⩾ ℓ. On the other hand,

{A ∈ Ω(�)
1, : �(�)1, ,ℓ (A) ∉ (0, �]}

= {A ∈ Ω(�)
1, : ��(�)1,�(�) ((0, �] × �1, ) ⩽ ℓ − 1}

⊂ ∞⋃
�=1

�⋂
/=1

{A ∈ Ω(�)
1, : ��(�)1,�(�) ((0, ��B ] × �1, ) ⩽ ℓ − 1} ,

(A.22)

{A ∈ Ω(�)
1, : �(�)1, ,ℓ (A) ∈ (0, �] , '(�)

1, (A) (�(�)1, ,ℓ (A)) ∉ $}
⊂ ∞⋃

�=1

�⋂
/=1

({A ∈ Ω(�)
1, : ��(�)1,�(�) ((0, (� − 1) �B ] × �1, ) ⩾ ℓ}

∪ {A ∈ Ω(�)
1, : ��(�)1,�(�) (((� − 1) �B , ��B ]×$)=0}

∪ {A ∈ Ω(�)
1, :

��(�)1,�(�) ((0, ��B ] × �1, ) ⩽ ℓ − 1}) .
(A.23)

For the second inclusion, for each A ∈ Ω(�)
1, , let us

choose B(A) ∈ N such thatB (A)
> max( 1�(�)1, ,ℓ (A) − �(�)1, ,ℓ−1 (A) ,

1�(�)1, ,ℓ+1 (A) − �(�)1, ,ℓ (A)) .
(A.24)

If A ∈ Ω(�)
1, is such that �(�)1, ,ℓ(A) ∈ (0, �] and'(�)

1, (A)(�(�)1, ,ℓ(A)) ∉ $, then there exists a unique �∗ ∈{1, . . . , B} with �(�)1, ,ℓ(A) ∈ ((�∗ − 1)�/B, �∗�/B], and
hence we have��(�)1,�(�)((0, ��/B] ×�1, ) ⩽ ℓ − 1 for � ∈{1, . . . , �∗−1},��(�)1,�(�)(((�∗−1)�/B, �∗�/B]×$) = 0, and��(�)1,�(�)((0, (�−1)�/B]×�1, ) ⩾ ℓ for � ∈ {�∗+1, . . . , B}.
Since the set on right hand side of (A.21) is in the �-
algebra given in (A.20) and {(0, �] × $ : � ∈ R+, $ ∈
B(�1, )} is a generator systemofB(R+)⊗B(�1, ), we
readily get that the random variable (�(�)1, ,ℓ, '(�)

1, (�(�)1, ,ℓ))
is measurable with respect to the �-algebra given in
(A.20). Let us apply	eorem 4.2.8 in Dudley [2] with
the following choices:

(a) ^ := Ω(�)
1, , � := /(R+ × �),

(b) � : Ω(�)
1, → /(R+ × �), �(A) := ��(�)1,�(�), A ∈

Ω(�)
1, ,

(c) � : Ω(�)
1, → R+ × �, �(A) := (�(�)1, ,ℓ(A),'(�)

1, (A)(�(�)1, ,ℓ(A))), A ∈ Ω(�)
1, .

	en there exist functions Φ ,ℓ : /(R+ × �) → R+
and Ξ ,ℓ : /(R+ ×�) → � such thatΦ ,ℓ isM(R+×�)/B(R+)-measurable, Ξ ,ℓ is M(R+ × �)/B(�)-
measurable, and (�(�)1, ,ℓ, '(�)

1, (�(�)1, ,ℓ)) = (Φ ,ℓ(��(�)1,�),Ξ ,ℓ(��(�)1,�)) holds on Ω(�)
1, . Since P

(�)(Ω(�)
1, ) = 1, we

have (�(�)1, ,ℓ, '(�)
1, (�(�)1, ,ℓ)) = (Φ ,ℓ(��(�)1,�), Ξ ,ℓ(��(�)1,�)) P(�)-

almost surely, as desired.

In what follows we provide an alternative argument

for verifying that �(�)1, ,ℓ is an M(R+ × �)/B(R)-
measurable function of '(�) with the advantage that
the measurable function in question shows up explic-

itly. We have �(�)1, ,1 = inf{� ∈ R++ : |Δ��, (�)| > 1/2},
where ��, (�) := �(�)((0, �] × �1, ) and Δ��, (�) :=��, (�)−��, (�−) = �(�)({�}×�1, ) for � ∈ R++. Further,�(�)1, ,ℓ+1 = inf{� ∈ (�(�)1, ,ℓ,∞) : |Δ��, (�)| > 1/2} for allℓ ∈ N. Consider the mappings Ψ3,ℓ : �(R+,R) →
R+, ℓ ∈ N, de�ned by Ψ3,1(�) := inf{� ∈ R++ :|Δ�(�)| > 1/2} and Ψ3,ℓ+1(�) := inf{� ∈ (Ψ3,ℓ(�),∞) :|Δ�(�)| > 1/2}, � ∈ �(R+,R), ℓ ∈ N. By Proposition
VI.2.7 in Jacod and Shiryaev [17], the mappings Ψ3,ℓ,ℓ ∈ N, are continuous at each point � ∈ �(R+,R)
such that |Δ�(�)| ̸= 1/2 for all � ∈ R+. Moreover,

we have �(�)1, ,ℓ = Ψ3,ℓ(Ψ4, ('(�))), where the mappingsΨ4, : /(R+ × �) → �(R+,R), v ∈ N, are given byΨ4, (�) := (�((0, �] × �1, ))�∈R+ , � ∈ /(R+ × �).
Observe that, for each � ∈ /(R+ × �), we have|ΔΨ4, (�)(�)| ̸= 1/2 for all � ∈ R+ (since |ΔΨ4, (�)(�)| ∈
Z+ for all � ∈ R+); hence, it remains to check that
the mappings Ψ4, , v ∈ N, areM(R+ × �)/D(R+,R)-
measurable. 	is follows from {� ∈ /(R+ × �) :(�((0, �] × �1, ))�∈{�1,...,��} ∈ $} ∈ M(R+ × �) for
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all   ∈ N, �1, . . . , �E ∈ R+ and $ ∈ R
E, which is a

consequence of the de�nition ofM(R+ × �).
(v) Finally, we verify that �(�),	4,�, ,ℓ(�/) − �(�),�4,�, ,ℓ(�/) is a

D(R+,R�)⊗M(R+×�)/B(R�)-measurable function

of (X(�), '(�)). Based on the �ndings for �(�)1,�(�/) and�(�)3,�(�/), it is enough to check that

� (�(�)0, ,ℓ, '(�)
0, (�(�)0, ℓ) , P(�)� ) ∩ Ω(�)

0, 

⊂ � (X(�), '(�)
0, ) ∩ Ω(�)

0, ⊂ � (X(�), '(�)) ∩ Ω(�)
0, , (A.25)

where �(�)0, ,ℓ and Ω(�)
0, can be de�ned similarly as �(�)1, ,ℓ

and Ω(�)
0, for all ! ∈ {1, 2} and v, ℓ ∈ N, respectively

(replacing in the de�nitions �1, and '(�)
1, by �0, and'(�)

0, , resp.). Note that

{A ∈ Ω(�)
0, : �(�)0, ,ℓ (A) ∈ (0, �] , '(�)

0, (A) (�(�)0, ,ℓ (A)) ∈ $,
P(�)� (A) ∈ [0, �]}

= ∞⋂
�=1

�⋃
/=1

{A ∈ Ω(�)
0, :

��(�)0,�(�) ((0, (� − 1) �B ] × �0, ) ⩽ ℓ − 1,
��(�)0,�(�) (((� − 1) �B , ��B ] × $) ⩾ 1,
��(�)0,�(�) ((0, ��B ] × �0, ) ⩾ ℓ}

⋂{A ∈ Ω(�)
0, : ∫8

0
∫
�0

SSSSS� (�,X(�)
� (A) , �)SSSSS2 d�� (d�) ≥ B}

(A.26)

for � ∈ R++, � ∈ R+, v, ℓ ∈ N, $ ∈ B(�0, ), ! ∈{1, 2}. Similarly, as it was explained in case of �(�)�,1(�),
one can approximate ∫8

0 ∫�0 ‖�(�,X(�)
� , �)‖2d��(d�)

by D(R+,R�)/B(R+)-measurable functions of X(�),
which yields (A.25).

Hence we obtain the statement.

Remark A.3. In case of � = 0 and � = 0, the statement of
Lemma A.2 basically follows by Exercise (5.16) in Chapter
IV in Revuz and Yor [25]; see also Lemma 12.4.5 in von
Weizsäcker and Winkler [26].

Next we formulate a corollary of Lemma A.2.

Lemma A.4. Let (Ω(1),F(1), (F(1)
� )�∈R+ ,P(1),W(1), '(1),X(1))

be a tuple satisfying (D1), (D2), (D3), and (D4)(b)–(d) and let(Ω(2),F(2), (F(2)
� )�∈R+ ,P(2),W(2), '(2),X(2)) be another tuple

satisfying (D1), (D2), and (D3) such that (X(2)
� )�∈R+ is an R

�-

valued (F(2)
� )�∈R+-adapted càdlàg process. Suppose that (W(1),'(1),X(1)) and (W(2), '(2),X(2)) have the same distribution on�(R+,R�)×/(R+×�)×�(R+,R�).en (D4)(b)–(d) hold for

the tuple (Ω(2),F(2), (F(2)
� )�∈R+ ,P(2),W(2), '(2),X(2)) as well,

and the processes (A.5) and (A.6) have the same distribution

on (�(R+,R�))5.
Proof. First we check that P(2)(∫�

0 ‖�(�,X(2)
� )‖d� < ∞) = 1

for all � ∈ R+. Since � is B(R+) ⊗ B(R�) ⊗ B(�)/B(R�)-
measurable andX(1) andX(2) have the same law, the processes(�(�,X(1)

� ))�∈R+ and (�(�,X(2)
� ))�∈R+ have the same law as well.

Since the mapping �(R+,R�) ∋ � >→ (∫�
0 �(�)d�)�∈R+ ∈�(R+,R�) is continuous (see, e.g., Ethier and Kurtz [27,

Chapter III, Section 11, Exercise 26], or Barczy et al. [28, Proof

of Lemma B.3]), and consequently D(R+,R�)/D(R+,R�)-
measurable, the processes (∫�

0 ‖�(�,X(1)
� )‖d�)�∈R+ and (∫�

0 ‖�(�,
X(2)

� )‖d�)�∈R+ have the same distribution with respect to P
(1)

and P
(2), respectively. Since P(1)(∫�

0 ‖�(�,X(1)
� )‖d� < ∞) = 1

for all � ∈ R+, this yields P
(2)(∫�

0 ‖�(�,X(2)
� )‖d� < ∞) = 1 for

all � ∈ R+, as desired.
Similarly, one can check that P(2)(∫�

0 ‖�(�,X(2)
� )‖2d� <∞) = 1 for all � ∈ R+, and

P
(2) (∫�

0
∫
�0

SSSSS� (�,X(2)
� , �)SSSSS2 d�� (d�) < ∞) = 1, � ∈ R+.

(A.27)

It remains to check that

P
(2) (∫�

0
∫
�1

SSSSS� (�,X(2)
�− , �)SSSSS�(2) (d�, d�) < ∞) = 1,

(A.28)

for � ∈ R+, where �(2)(d�, d�) is the counting measure of'(2) on R++ × �. Recall that, in the proof of Lemma A.2,�1, ∈ B(�), v ∈ N, have been chosen such that they are

disjoint,�(�1, ) < ∞, v ∈ N, and�1 = ⋃∞
 =1�1, . Further, the

set �('(�)
1, ) is ordered according to magnitude as 0 < �(�)1, ,1 <�(�)1, ,2 < ⋅ ⋅ ⋅ , v ∈ N, ! ∈ {1, 2}; see (A.9).	en, for each ! ∈ {1, 2}

and � ∈ R+, d(�)
� (�) → ∫�

0 ∫�1 ‖ �(�,X(�)
�−, �) ‖ �(�)(d�, d�) asB → ∞ P

(�)-almost surely, where

d(�)
� (�) := �∑

 =1
∫�

0
∫
�1,�

SSSSS� (�,X(�)
�−, �)SSSSS�(�) (d�, d�)

= �∑
 =1

∑
�∈(0,�]∩�(�(�)1,�)

SSSSS� (�,X(�)
�−, '(�)

1, (�))SSSSS ,
(A.29)

where '(�)
1, denotes the thinning of '(�) onto �1, . Since ('(1),

X(1)) and ('(2),X(2)) have the same distribution with respect

toP(1) andP(2), respectively,d(1)
� (�) andd(2)

� (�)have the same
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distribution with respect to P(1) and P
(2), respectively, for allB ∈ N and � ∈ R+ (which can be checked in the same way as

in the proof of Lemma A.2 by replacing � with ‖�‖). Conse-
quently, ∫�

0 ∫�1 ‖�(�,X(1)
�− , �)‖�(1)(d�, d�) and ∫�

0 ∫�1 ‖�(�,X(2)
�− ,�)‖�(2)(d�, d�) have the same distribution with respect to

P
(1) and P

(2), respectively, for all � ∈ R+. Since

P
(1) (∫�

0
∫
�1

SSSSS� (�,X(1)
�− , �)SSSSS�(1) (d�, d�) < ∞) = 1,

(A.30)

for � ∈ R+, we have (A.28). All in all, the tuple (Ω(2),F(2),(F(2)
� )�∈R+ ,P(2),W(2), '(2),X(2)) satis�es (D4)(b)–(d), and

then Lemma A.2 yields that the processes (A.5) and (A.6)

have the same distribution on (�(R+,R�))5.
	e next lemma corresponds to Fact B on page 107 in Situ

[11].

Lemma A.5. Let us consider the �ltered probability space(Ω,F, (F�)�∈R+ ,P1,2) given in the proof of eorem 1. e

process Ω ∋ (x, I, �, �(1), �(2)) >→ I� ∈ R
�, � ∈ R+, is an�-dimensional standard (F�)�∈R+-Brownian motion, and the

process Ω ∋ (x, I, �, �(1), �(2)) >→ ��� |(0,�]×� ∈ /(R+ × �),� ∈ R+, is a stationary (F�)�∈R+-Poisson point process on �
with characteristic measure� under the measure P1,2.

Proof. Using that the I-coordinate process is an �-dimen-
sional standard (G�)�∈R+-Brownian motion under P1,2, for
the �rst statement, it is enough to prove the independence
of I� − I� andF� for every �, � ∈ R+ with � < �. For this, it is
su�cient to show

EP1,2
(ei⟨y,#�−#�⟩1�) = e−(�−�)‖y‖

2/2
P1,2 (l) ,

y ∈ R
�, l ∈ G�, 0 ⩽ � < �. (A.31)

Indeed, if 8 ∈ G̃�, then there exists some l ∈ G� such that8Δl = (8\l)∪(l\8) ∈ N, and consequentlyP1,2(8Δl) =0. 	en,

EP1,2
(ei⟨y,#�−#�⟩1�) = EP1,2

(ei⟨y,#�−#�⟩1�∩�)
= EP1,2

(ei⟨y,#�−#�⟩1�)
= e−(�−�)‖y‖

2/2
P1,2 (l)

= e−(�−�)‖y‖
2/2
P1,2 (8) ,

8 ∈ G̃�, 0 ⩽ � < �.

(A.32)

Moreover, if 8 ∈ F�, then 8 ∈ G̃�+� for all ¢ > 0, and hence

EP1,2
(ei⟨y,#�−#�+�⟩1�) = e−(�−�−�)‖y‖

2/2
P1,2 (8) ,

8 ∈ F�, 0 ⩽ � < �, ¢ > 0. (A.33)

By dominated convergence theorem, using thatI has contin-
uous sample paths P1,2-almost surely, we get

EP1,2
(ei⟨y,#�−#�⟩1�) = e−(�−�)‖y‖

2/2
P1,2 (8) ,

8 ∈ F�, 0 ⩽ � < �; (A.34)

that is,

EP1,2
[ei⟨y,#�−#�⟩ | F�] = e−(�−�)‖y‖

2/2, 0 ⩽ � < �. (A.35)

	us, in the light of Lemma 2.6.13 ofKaratzas and Shreve [21],
we get the independence ofI�−I� andF� for every �, � ∈ R+
with � < �.

Using that I� − I� is independent of G� under P1,2, we
obtain

EP1,2
[ei⟨y,#�−#�⟩1�] = EP1,2

[EP1,2
[ei⟨y,#�−#�⟩1� | G�]]

= EP1,2
[1�EP1,2

[ei⟨y,#�−#�⟩ | G�]]
= EP1,2

[1�EP1,2
[ei⟨y,#�−#�⟩]]

= EP1,2
[1�e

−(�−�)‖y‖2/2]
= e−(�−�)‖y‖

2/2
P1,2 (l)

(A.36)

for all y ∈ R
� andl ∈ G�; hence we conclude (A.31) and then

the �rst statement.
Using that the process '! is a stationary (G�)�∈R+-Poisson

point process on � with characteristic measure �, as it was
explained in the proof of the �rst statement, for the second
statement, it is enough to show that for every �, � ∈ R+ with� < �, every B ∈ N, every disjoint subsets $1, . . . , $� ∈ B(�)
and ¥1, . . . , ¥� ∈ R+,

EP1,2
[e−∑��=1 J�K�� ((�,�]×��)1�]

= e(�−�)∑
�
�=1(e−��−1)�(��)P1,2 (l) , l ∈ G�.

(A.37)

Using that���((�, �] × $ ), v ∈ {1, . . . , B}, are independent of
each other and fromG� under P1,2, we get

EP1,2
[e−∑��=1 J�K�� ((�,�]×��)1�]

= EP1,2
[EP1,2

[e−∑��=1 J�K�� ((�,�]×��)1� | G�]]
= EP1,2

[1�EP1,2
[e−∑��=1 J�K�� ((�,�]×��) | G�]]

= EP1,2
[1�EP1,2

[e−∑��=1 J�K�� ((�,�]×��)]]
= EP1,2

[1�e
(�−�)∑��=1(e−��−1)�(��)]

= e(�−�)∑
�
�=1(e−��−1)�(��)P1,2 (l)

(A.38)

for all l ∈ G�. 	e last but one equality above is a conse-
quence that ���((�, �] × $ ) is a Poisson distributed random
variable with parameter (� − �)�($ ), v ∈ {1, . . . , B}, under
P1,2. Hence we conclude the second statement as well.



International Journal of Stochastic Analysis 23

Conflict of Interests

	e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgments
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