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1 Introduction

Maximally supersymmetric Yang-Mills theory exhibits many remarkable properties. It is

a superconformal quantum field theory which is widely believed to be equivalent to a su-

persymmetric string theory on the background AdS5 ×S5 [1–3]. Furthermore, in studying

its planar limit, many advances have been made which point towards the existence of an

underlying integrable structure which governs the behaviour of the various physical quan-

tities in the theory. Great progress has been made on the spectral problem of anomalous

dimensions of gauge-invariant operators (see e.g. [4, 5]) where various techniques from the

field of integrable systems have been applied, extending previous work in QCD [6, 7].

Scattering amplitudes in planar N = 4 super Yang-Mills theory are also constrained

by hidden symmetries. In particular one can consider a dual coordinate space, related to

the particle momenta via pi = xi − xi+1. In fact it turns out that amplitudes are related

to Wilson loops on the light-like polygonal contour with cusps located at the dual points

xi. This occurs both in the strong coupling regime [8] and, for MHV amplitudes, in the

perturbative regime [9–14]. The fact that amplitudes are related to Wilson loops in the dual

space implies that the conformal symmetry of the Wilson loops also acts on amplitudes.

This new dual conformal symmetry is distinct from the original conformal symmetry of the
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Lagrangian. As was shown in [15] it extends naturally to a dual superconformal symmetry

which partially overlaps with the original superconformal symmetry.

On tree-level amplitudes both the original and the dual superconformal symmetries

are unbroken (except on singular kinematical configurations [16–18]). The breaking of the

original superconformal symmetry by loop corrections is still not completely understood

(see recent discussions in [17, 18]), while the breaking of the dual conformal symmetry

is under control and it is identified with the breaking of the conformal symmetry of the

Wilson loop in the dual space (in recent papers [19, 20] a different regularisation has been

used in which the symmetry is unbroken).

It was shown in [21] that the combination of the original superconformal and dual su-

perconformal symmetries forms a Yangian structure in the bilocal representation described

in [22, 23]. The original superconformal symmetry can be thought of as the ‘level-zero’

superconformal subalgebra inside the Yangian while the non-trivial dual superconformal

generators provide part of the bilocal ‘level-one’ generators. The full Yangian can then be

generated by taking commutators of this set of generators. The Yangian can be thought of

as the quantisation of the loop algebra of the superconformal algebra which arises as the

full symmetry group of the classical AdS sigma model [24]. This integrable structure can

be thought to arise from the fact that the full supersymmetric background maps into itself

under a combination of bosonic and fermionic T-dualities [25–27].

Recently some remarkable formulas have been proposed which reproduce many differ-

ent contributions to amplitudes. The idea is to take an integral over a Grassmannian of

certain superconformally invariant delta functions [28]. In fact it was conjectured in [28]

that every object obtained by choosing some integration contour for the Grassmannian

integral is a leading singularity of an N = 4 super Yang-Mills amplitude. If this conjec-

ture is true then one can obtain different terms in the BCFW expansion of the tree-level

amplitudes, box-integral coefficients appearing in one-loop amplitudes or, more generally,

higher-loop leading singularities.

A very similar formula was proposed in [29] but where this time the delta functions are

written in terms of the momentum twistors introduced in [30]. This makes the dual super-

conformal properties of the formula manifest and again it turns out that the integrations

yield integral coefficients for amplitudes. In fact the equivalence of the two formulas was

demonstrated in [31] through a change of variables, therefore showing that both symme-

tries are present in the Grassmannian integral. The objects it produces are thus Yangian

invariants. For recent progress on identifying the various expressions produced in this way

see [32–34].

In this paper we will show that the interchange between the original and momentum

twistor formulations can be seen as an algebraic feature of the Yangian Y (psu(2, 2|4)).

Specifically we will show that there is an equivalent (T-dual) formulation of the Yangian

symmetry where the dual superconformal symmetry plays the role of the level-zero subal-

gebra and the original superconformal generators provide some of the level-one generators,

again in a bilocal representation. This fact is the algebraic expression of the T self-duality of

the AdS sigma model discussed in [25–27]. We will then show that the Yangian generators

can be used to provide a very direct proof of the invariance of the Grassmannian formulas.
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The paper is organised as follows. In section 2 we describe the on-shell superspace

description of scattering amplitudes in N = 4 super Yang-Mills theory. In section 3 we

describe the superconformal and dual superconformal symmetries exhibited by tree-level

amplitudes and recall the fact that these symmetries form a Yangian symmetry. In section 4

we describe the alternative (T-dual) representation of the symmetry. Then in section 5 we

recall the basic structure of the Grassmannian formulas of [28, 29] and finally in section 6

we show how the Yangian generators can be used to show the Yangian invariance of the

Grassmannian formulas directly.

2 On-shell scattering amplitudes

The on-shell supermultiplet of N = 4 super Yang-Mills theory is conveniently described

by a superfield Φ, dependent on Grassmann parameters ηA which transform in the funda-

mental representation of su(4). The on-shell superfield can be expanded as follows

Φ = G+ + ηAΓA +
1

2!
ηAηBSAB +

1

3!
ηAηBηCǫABCDΓ

D
+

1

4!
ηAηBηCηDǫABCDG−. (2.1)

Here G+,ΓA, SAB = 1
2ǫABCDS

CD
,Γ

A
, G− are the positive helicity gluon, gluino,

scalar, anti-gluino and negative helicity gluon states respectively. Each state φ ∈

{G+,ΓA, SAB,Γ
A
, G−} carries a definite on-shell momentum

pαα̇ = λαλ̃α̇, (2.2)

and a definite weight h (called helicity) under the rescaling

λ −→ αλ, λ̃ −→ α−1λ̃, φ(λ, λ̃) −→ α−2hφ(λ, λ̃). (2.3)

The helicities of the states appearing in (2.1) are {+1,+1
2 , 0,−1

2 ,−1} respectively. If, in

addition, we assign η to transform in the same way as λ̃,

ηA −→ α−1ηA, (2.4)

then the whole superfield Φ has helicity 1. In other words the helicity generator,

h = −
1

2
λα ∂

∂λα
+

1

2
λ̃α̇ ∂

∂λ̃α̇
+

1

2
ηA ∂

∂ηA
, (2.5)

acts on Φ in the following way,

hΦ = Φ. (2.6)

When we consider scattering amplitudes1 of the on-shell superfields then we have that the

helicity condition (or ‘homogeneity condition’) is satisfied for each particle, i.e.

hiA(Φ1, . . . ,Φn) = A(Φ1, . . . ,Φn), i = 1, . . . , n. (2.7)

1We refer throughout the paper to colour-ordered amplitudes.
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The tree-level amplitudes in N = 4 super Yang-Mills theory can be written as follows,

A(Φ1, . . . ,Φn) = An =
δ4(p)δ8(q)

〈12〉 . . . 〈n1〉
Pn(λi, λ̃i, ηi) = AMHV

n Pn. (2.8)

The MHV tree-level amplitude,

AMHV
n =

δ4(p)δ8(q)

〈12〉 . . . 〈n1〉
, (2.9)

contains the delta functions δ4(p)δ8(q) which are a consequence of translation invariance

and supersymmetry and it can be factored out leaving behind a function with no helicity,

hiPn = 0, i = 1, . . . , n. (2.10)

The explicit form of the function Pn which encodes all tree-level amplitudes was

found in [35] by solving a supersymmetrised version [36–38] of the BCFW recursion

relations [39, 40].

Beyond tree-level, the function Pn is infrared divergent and so, as well as the kine-

matical dependence, necessarily has some dependence on the infrared regularisation. The

general structure of the function is a sum of transcendental integral functions FI (which

contain infrared divergences) multiplied by rational coefficients cI , where I labels the dif-

ferent integral topologies,

Pn =
∑

I

cIFI . (2.11)

At one loop a basis for the relevant integral functions comes from the scalar box inte-

grals [41]. The tree-level amplitude is necessarily a particular linear combination of the

one-loop box function coefficients due to consistency with the condition of infrared factori-

sation [42]. Other coefficients at one-loop, the four-mass box coefficients, do not appear at

tree-level as the corresponding integrals are infrared finite. The one-loop coefficients cI can

be determined by comparing the discontinuities of the amplitude with those of the scalar

box integrals [41, 43, 44]. Beyond one loop there are many more integral topologies which

can contribute to the amplitude. Nonetheless the coefficients can be determined again by

comparing the discontinuities of the amplitude and the integrals.

3 Symmetries

Maximally supersymmetric Yang-Mills is a superconformal field theory so we should ex-

pect that this is reflected in the structure of the scattering amplitudes. Indeed the space

of functions of the variables {λi, λ̃i, ηi} admits a representation of the superconformal al-

gebra [45], given in the appendix (A.4). From the algebraic relations (A.3) one finds that

the algebra is generically su(2, 2|4) with central charge c =
∑

i(1 − hi). Amplitudes are in

the space of functions with helicity 1 for each particle so we have that c = 0 after imposing

the helicity conditions (2.7) and the algebra acting on the space of homogeneous functions

becomes psu(2, 2|4).
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At tree-level there are no infrared divergences and amplitudes are annihilated by the

generators of the standard superconformal symmetry (up to contact terms which vanish

for generic configurations of the external momenta, see [16–18]),

jaAn = 0. (3.1)

Here we use the notation ja for any generator of the superconformal algebra psu(2, 2|4),

ja ∈ {pαα̇, qαA, q̄α̇
A,mαβ, m̄

α̇β̇
, rA

B , d, sα
A, s̄A

α̇ , kαα̇}. (3.2)

The explicit form of the generators acting on the on-shell superspace coordinates (λi, λ̃i, ηi)

is given in the appendix. In fact the superconformal symmetry holds term by term in the

BCFW expansion of the tree-level amplitudes. The invariance was shown directly by

applying the generators to the explicit form of the amplitudes in [45] for MHV amplitudes

and [46] for NMHV amplitudes.

In addition the amplitudes also obey dual superconformal symmetry [15]. This is best

revealed by defining dual variables,

xαα̇
i − xαα̇

i+1 = λα
i λ̃α̇

i , θαA
i − θαA

i+1 = λα
i ηA

i . (3.3)

Dual superconformal symmetry acts canonically on the dual superspace variables xi, θi. It

also acts on the on-shell superspace variables in order to be compatible with the defining

relations (3.3). The form of the dual superconformal generators is given in (A.7).

The amplitudes can be expressed in the dual variables by eliminating (λ̃i, ηi) in favour

of (xi, θi). Then we have

An =
δ4(x1 − xn+1)δ

8(θ1 − θn+1)

〈12〉 . . . 〈n1〉
Pn(xi, θi), (3.4)

and the amplitudes are covariant under certain generators of the dual superconformal

algebra defined in [15]. Explicitly, it was conjectured in [15] that

Kαα̇An = −
∑

i

xαα̇
i An

SαAAn = −
∑

i

θαA
i An

DAn = nAn, (3.5)

with remaining generators of the dual superconformal algebra annihilating the amplitudes.

This conjecture was shown to hold in [36], using the supersymmetric BCFW recursion

relations. In addition the dual superconformal algebra has a central charge C =
∑

i hi

which is equal to n on the space of homogeneous functions.2

In order to put the dual superconformal symmetry on the same footing as invariance

under the standard superconformal algebra (3.1), the covariance (3.5) can be rephrased as

2i.e. functions satisfying the homogeneity condition (2.7).
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an invariance of An by a simple redefinition of the generators [21],

K ′αα̇ = Kαα̇ +
∑

i

xαα̇
i , (3.6)

S′αA = SαA +
∑

i

θαA
i , (3.7)

D′ = D − n. (3.8)

The redefined generators still satisfy the commutation relations of the superconformal alge-

bra, but now with vanishing central charge, C ′ = 0. Then dual superconformal symmetry

is simply

J ′
aAn = 0. (3.9)

Here we use the notation J ′
a for any generator of the dual copy of psu(2, 2|4),

J ′
a ∈ {Pαα̇, QαA, Q̄A

α̇ ,Mαβ ,M
α̇β̇

, RA
B ,D′, S′A

α , S
α̇
A,K ′αα̇}. (3.10)

In order to have both symmetries acting on the same space it is useful to restrict

the dual superconformal generators to act only on the on-shell superspace variables

(λi, λ̃i, ηi). Then one finds that the generators Pαα̇, QαA become trivial while the generators

{Q̄,M, M̄ ,R,D′, S̄} coincide (up to signs) with generators of the standard superconformal

symmetry. The non-trivial generators which are not part of the ja are K ′ and S′. In [21]

it was shown that the generators ja and S′ (or K ′) together generate the Yangian of the

superconformal algebra, Y (psu(2, 2|4)). The generators ja form the level-zero psu(2, 2|4)

subalgebra,3

[ja, jb] = fab
cjc. (3.11)

In addition there are level-one generators j
(1)
a which transform in the adjoint under the

level-zero generators,

[ja, jb
(1)] = fab

cjc
(1). (3.12)

Higher commutators among the generators are constrained by the Serre relation,4

[j(1)
a , [j

(1)
b , jc]] + (−1)|a|(|b|+|c|)[j

(1)
b , [j(1)

c , ja]] + (−1)|c|(|a|+|b|)[j(1)
c , [j(1)

a , jb]]

= h2(−1)|r||m|+|t||n|{jl, jm, jn}far
lfbs

mfct
nf rst. (3.13)

The level-zero generators are represented by a sum over single particle generators,

ja =
n
∑

k=1

jka. (3.14)

The level-one generators are represented by the bilocal formula,

ja
(1) = fa

cb
∑

k<k′

jkbjk′c. (3.15)

3We use the symbol [O1, O2] to denote the bracket of the Lie superalgebra, [O2, O1] =

(−1)1+|O1||O2|[O1, O2].
4The symbol {·, ·, ·} denotes the graded symmetriser.
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Thus finally the full symmetry of the tree-level amplitudes can be rephrased as

yAn = 0, (3.16)

for any y ∈ Y (psu(2, 2|4)).

4 T-dual representation of the symmetries

In this section we want to show that there is an alternative (T-dual) representation of

the symmetry where it is the dual superconformal generators which play the role of the

level-zero generators and the additional non-trivial generators of the standard supercon-

formal symmetry which generate the rest. We recall that in the representation of the

Yangian (3.14), (3.15) there was no room for the generators of dual translations Pαα̇ and

dual supertranslations QαA. These generators were trivialised by restricting to the on-shell

superspace (where they do not act at all). The analogous step in the dual representation of

the Yangian will be to trivialise the corresponding generators of the standard superconfor-

mal algebra pαα̇, qαA. We will achieve this by working on the support of the delta functions

in (2.8) where these generators become zero. In fact we will factor out the full MHV tree-

level amplitude so that we are looking at functions with zero helicity in all particles. We

are thus looking at symmetries of the function Pn rather than the amplitude An. Then

dual superconformal symmetry becomes

JaPn = 0. (4.1)

To work out the consequences of the ordinary superconformal symmetry for the function

Pn we need to use the following [45],

0 = kαα̇An = kαα̇
δ4(p)δ8(q)

〈12〉 . . . 〈n1〉
Pn(λi, λ̃i, ηi) =

n
∑

i=1

∂2

∂λα
i ∂λ̃α̇

i

δ4(p)δ8(q)

〈12〉 . . . 〈n1〉
Pn(λi, λ̃i, ηi) (4.2)

= δ4(p)δ8(q)
n
∑

i=1

∂2

∂λα
i ∂λ̃α̇

i

Pn(λi, λ̃i, ηi)

〈12〉 . . . 〈n1〉
(4.3)

= δ4(p)δ8(q)
n−1
∑

i=1

∂2

∂λα
i ∂λ̃α̇

i

Pn(λi, λ̃i, ηi)

〈12〉 . . . 〈n1〉
. (4.4)

To obtain the second equality (4.3) one needs to use the fact that we have

JaPn = 0, (4.5)

in particular for the generators Ja ∈ {Mαβ ,M
α̇β̇

,D, Q̄A
α̇}. The third equality (4.4) follows

from the fact that (super) amplitudes have a definite helicity (hi = 1) for each external

particle and hence we can write the function Pn so that it does not depend on pn (or

similarly qn),

An =
δ4(p)δ8(q)

〈12〉 . . . 〈n1〉
Pn(λi, λ̃i, ηi) =

δ4(p)δ8(q)

〈12〉 . . . 〈n1〉
Pn(p1, . . . , pn−1, q1, . . . , qn−1). (4.6)

– 7 –
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From (4.4) we deduce5

n−1
∑

i=1

[

∂

∂λα
i

1

〈12〉 . . . 〈n1〉

∂

∂λ̃α̇
i

+
1

〈12〉 . . . 〈n1〉

∂2

∂λα
i ∂λ̃α̇

i

]

Pn(λi, λ̃i, ηi) = 0, (4.7)

and hence we have that

k′
αα̇Pn = 0, (4.8)

where

k′
αα̇ =

n−1
∑

i=1

[(

λi−1 α

〈i − 1 i〉
−

λi+1 α

〈i i + 1〉

)

∂

∂λ̃α̇
i

+
∂2

∂λα
i ∂λ̃α̇

i

]

. (4.9)

Thus we find a second order operator k′ which annihilates Pn. We could now express

this in terms of the variables xi and θi however it turns out that it is very convenient to

make a further change of variables and express this operator, as well as the dual supercon-

formal generators Ja, in terms of momentum (super)twistors. These variables parametrise

the twistor space associated with the dual space with coordinates (xi, θi). They were re-

cently introduced in [30] to give a geometrical interpretation of the cancellation of spurious

singularities in tree-level amplitudes.

Momentum twistors WA
i = (λα

i , µα̇
i , χA

i ) are defined in terms of the dual variables xi

and θi by the following relations,

µα̇
i = xαα̇

i λiα, χA
i = θαA

i λiα. (4.10)

When expressed in terms of the momentum twistors the dual superconformal generators

Ja are almost identical in form to the original superconformal generators ja expressed in

terms of the ordinary twistors. For example we have

Pαα̇ =
∑

i

λiα
∂

∂µα̇
i

, QαA =
∑

i

λiα
∂

∂χA
i

Q
A
α̇ =

∑

i

χA
i

∂

∂µα̇
i

, D = −
∑

i

[

3

2
µα̇

i

∂

∂µα̇
i

+ χA
i

∂

∂χA
i

+
1

2
λα

i

∂

∂λα
i

]

Mαβ =
∑

i

λi(α
∂

∂λ
β)
i

, M
α̇β̇

=
∑

i

µi(α̇
∂

∂µ
β̇)
i

. (4.11)

The full set of generators can be written in terms of the momentum supertwistors as6

JA
B =

∑

i

[

WA
i

∂

∂WB
i

−
1

8
(−1)A+CδABW

C
i

∂

∂WC
i

]

. (4.12)

We will usually write this formula without the second term, with the removal of the super-

trace to be understood. Also we note that the helicity conditions (2.10) become
[

λα
i

∂

∂λα
i

+ µα̇
i

∂

∂µα̇
i

+ χA
i

∂

∂χA
i

]

Pn = WA
i

∂

∂WA
i

Pn = 0 (4.13)

5Here and throughout the paper we assume generic values for the kinematical variables and so are

ignoring any contact terms which appear in the action of ∂

∂λ̃
on 1

〈ii+1〉
.

6When we write e.g. (−1)A+C then A and C are shorthand for the gradings of the indices A and C,

namely 0 for a bosonic index and 1 for a fermionic one, and addition is always understood to be mod 2.
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in terms of the momentum twistor variables.

We would now like to show that invariance given by the operator k′ is equivalent to

level-one generators given by the same bilocal formula (3.15) but now in terms of the dual

superconformal densities Jia. In other words we would like to show that the operators

J (1)
a = fa

cb
∑

i<j

JibJjc (4.14)

annihilate Pn. To do so we will follow a similar analysis to that in [21] and identify k′ with

P (1) up to terms which themselves annihilate Pn.

For the generator P (1), the bilocal formula (4.14) in the dual representation of the

Yangian symmetry reads

P
(1)
αα̇ =

∑

i<j

[

M
γ
iαPjγα̇ + M

β̇
iα̇Pjαβ̇ − DiPjαα̇ + Q

C
α̇iQjαC − (i ↔ j)

]

. (4.15)

To show the equivalence of this generator to k′ when acting on Pn, we take the expression

(4.8) and use the chain rule to pass to the momentum supertwistor variables,

∂

∂λα
i

−→
∂

∂λα
i

+
∑

k

∂µα̇
k

∂λα
i

∂

∂µα̇
k

+
∑

k

∂χA
k

∂λα
i

∂

∂χA
k

, (4.16)

∂

∂λ̃α̇
i

−→
∑

k

∂µ
β̇
k

∂λ̃α̇
i

∂

∂µ
β̇
k

. (4.17)

To see that these are the correct relations one must remember that the momentum twistor

variables (4.10) depend on the on-shell variables λi, λ̃i both explicitly and implicitly through

the dual superspace coordinates xi, θi. Specifically we have

µα̇
k = xαα̇

1 λkα −
k−1
∑

j=1

〈jk〉 λ̃α̇
j ,

χA
k = θαA

1 λkα −
k−1
∑

j=1

〈jk〉 ηA
j . (4.18)

The coefficients of the µ and χ derivatives in (4.17) then follow from these relations.

Performing the change of variables in (4.17) we find that the first order term

in (4.9) becomes

−
∑

i<j

(

λi−1α

〈i − 1 i〉
−

λi+1α

〈i i + 1〉

)

λ
γ
i λjγ

∂

∂µα̇
j

(4.19)

which can be rewritten as

−
∑

i<j

(

λi−1αλ
γ
i

〈i − 1 i〉
−

λ
γ
i+1λiα

〈i i + 1〉
− δγ

α

)

λjγ
∂

∂µα̇
j

. (4.20)

Since the first two terms under the sum differ by one step in i, they cancel pairwise leaving

the first with i = 1 and the second with i = j−1. The latter term is zero, being proportional
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to 〈jj〉 while the former can be written as

−
n
∑

j=1

λnαλ
γ
1

〈n1〉
λjγ

∂

∂µα̇
j

= −
λnαλ

γ
1

〈n1〉
Pγα̇, (4.21)

and so can be dropped as it annihilates Pn on its own. The only non-trivial contribution

from the first order term in (4.9) is therefore the third term from (4.20),

∑

i<j

λjα
∂

∂µα̇
j

. (4.22)

The second order term in (4.9) acting on momentum twistor space, after using the

chain rule (4.17), becomes

−
∑

i<k

〈ik〉
∂2

∂λα
i ∂µα̇

k

−
∑

i<k

λkα
∂

∂µα̇
k

(4.23)

+
∑

i<k

x
β̇

iα 〈ik〉
∂2

∂µ
β̇
i ∂µα̇

k

+
∑

i<k

θA
iα〈ik〉

∂2

∂χA
i ∂µα̇

k

(4.24)

+
∑

i

∑

k,m>i

λ̃
β̇
i λkα〈im〉

∂2

∂µ
β̇
k∂µα̇

m

+
∑

i

∑

k,m>i

ηA
i λkα〈im〉

∂2

∂χA
k ∂µα̇

m

. (4.25)

The second term cancels the contribution (4.22). The first term in the third line (4.25)

contains λiλ̃i = xi,i+1. It can be divided into three parts, depending on values of m and k

with respect to each other. The first term of (4.25) then becomes

(

∑

i<m<k

+
∑

i<k<m

)

x
β̇ρ
i,i+1λkαλmρ

∂2

∂µ
β̇
k∂µα̇

m

+
∑

i<k=m

x
β̇ρ
i,i+1λkαλkρ

∂2

∂µ
β̇
k∂µα̇

k

. (4.26)

The sums over i can now be performed; for instance

∑

i<m<k

x
β̇ρ
i,i+1 =

∑

m<k

(x1 − xm)β̇ρ. (4.27)

The terms proportional to x1 in (4.26) sum up together to give

∑

k,m

x
ρρ̇
1 Pkρα̇Pmαρ̇ = x

ρρ̇
1 Pρα̇Pαρ̇, (4.28)

which can be neglected as Pαα̇Pn = 0. The same procedure applies for the second term

in (4.25) which yields a terms of the form θ
ρA
1 QαAPρα̇. The remaining terms which depend

on xi, θi combine to give terms which can be written purely in terms of λi, µi and χi,

k′
αα̇

∼= −
∑

i<k

[

〈ik〉
∂2

∂λα
i ∂µα̇

k

+ λkαµ
β̇
i

∂2

∂µ
β̇
i ∂µα̇

k

+ λkαµ
β̇
i

∂2

∂µ
β̇
k∂µα̇

i

]

−
∑

k

λkαµ
β̇
k

∂2

∂µ
β̇
k∂µα̇

k

−
∑

i<k

[

χA
i λkα

∂2

∂χA
i ∂µα̇

k

− χA
i λkα

∂2

∂χA
k ∂µα̇

i

]

−
∑

k

χA
k λkα

∂2

∂χA
k ∂µα̇

k

. (4.29)
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Using the helicity condition,
[

λα
i

∂

∂λα
i

+ µα̇
i

∂

∂µα̇
i

+ χA
i

∂

∂χA
i

]

= 0 (4.30)

the generator k′
αα̇ can be expressed as the sum of diagonal terms and bilocal terms:

k′
αα̇ =

∑

k

λ
ρ
k

∂

∂λ
ρ
k

λkα
∂

∂µα̇
k

(4.31)

+
∑

i<k

{

−λ
ρ
i

∂

∂λα
i

λkρ
∂

∂µα̇
k

+ λ
ρ
i

∂

∂λ
ρ
i

λkα
∂

∂µα̇
k

− µ
ρ̇
i

∂

∂µα̇
i

λkα
∂

∂µ
ρ̇
k

− χA
i

∂

∂µα̇
i

λkα
∂

∂χA
k

}

.

This actually is the same result, up to an overall normalisation, as the one obtained by

inserting the generators (4.11) in momentum twistor space into the bilocal formula (4.15).

This calculation follows the same lines as above, using the helicity condition, spinor prop-

erties and neglecting terms proportional to level-zero generators.

What we have shown is that there are two equivalent ways of looking at the full

symmetry algebra of the scattering amplitudes. The first is as the Yangian of the ordi-

nary superconformal algebra, which if we write it in the twistor representation,7 takes the

form [21],

jAB =
∑

i

ZA
i

∂

∂ZB
i

, (4.32)

j(1)A
B =

∑

i<j

(−1)C
[

ZA
i

∂

∂ZC
i

ZC
j

∂

∂ZB
j

− (i, j)

]

, (4.33)

where both operators are understood to have the supertraces removed. These operators

annihilate the amplitude An,

jAn = j(1)An = 0. (4.34)

The second way of writing the symmetry is as the Yangian of the dual superconformal

algebra, which, written in the momentum twistor representation, takes an identical form

up to the change from twistors to momentum twistors,

JA
B =

∑

i

WA
i

∂

∂WB
i

, (4.35)

J (1)A
B =

∑

i<j

(−1)C
[

WA
i

∂

∂WC
i

WC
j

∂

∂WB
j

− (i, j)

]

. (4.36)

These operators annihilate the amplitude with the MHV amplitude factored out,

An = AMHV
n Pn, JPn = J (1)Pn = 0. (4.37)

The picture we find is very natural from the point of view of T-duality in the AdS sigma

model. In [25–27] it was shown that the supersymmetric AdS5 ×S5 background maps into

itself as does the infinite tower of conserved charges associated with the integrability of the

sigma model [24].

7Here the supertwistor variable is ZA = (µ̃α, λ̃α̇, ηA) where µ̃ is Fourier conjugate variable of λ.
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j(1) J (1)

p, q P,Q

K,S k, s

T-duality

Figure 1. The tower of symmetries acting on scattering amplitudes in N = 4 super Yang-Mills

theory. The original superconformal charges are denoted by j and the dual ones by J . Each can be

thought of as the level-zero part of the Yangian Y (psu(2, 2|4)). The dual superconformal charges

K and S form part of the level-one j(1) while the original superconformal charges k and s form

part of the level one charges J (1). In each representation the ‘negative’ level (P and Q or p and q)

is trivialised. T-duality maps j to J and j(1) to J (1).

5 Grassmannian formulas

The feature that we have just seen is also natural from another perspective. Recently some

remarkable formulas have been proposed as a way of computing all the leading singularities

of N = 4 super Yang-Mills amplitudes. These formulas take the form of an integral over

the Grassmannian G(k, n) of certain superconformally invariant delta functions. In the

original proposal of [28], the integral takes the following form,

LACCK =

∫

∏

a,i dcai

(1 . . . k)(2 . . . k + 1) . . . (n . . . n + k − 1)

k
∏

a=1

δ4|4

( n
∑

i=1

caiZi

)

. (5.1)

Here one considers a (k × n) matrix of complex parameters cai which are integrated over

certain contours which have to be specified.8 The delta functions are manifestly invariant

under ordinary superconformal symmetry (in its twistor representation (4.32)).

The denominator consists of the cyclic product of determinants of (k× k) submatrices

(or minors) of the large (k × n) matrix of the cai. For example the notation (1 . . . k)

8Note that here and in the next section we use the indices a, b = 1, . . . , k to denote the rows of the k×n

matrix, rather than adjoint indices of psu(2, 2|4) as in the previous sections. We hope that the context will

be sufficient to avoid confusion.
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means the minor made from the first k columns of the full matrix of cai. As described

in [28], the integral measure should be carefully defined in (5.1), taking into account the

fact that the integral possesses a GL(k) gauge symmetry. One can do this by fixing a

gauge such that k columns of the matrix of the cai become the (k × k) identity matrix.

Then one integrates over the unfixed cai in two steps. First one uses the delta functions

of the bosonic variables to determine as many of the cai as possible and reconstruct the

momentum conserving delta function. Then one chooses a specific contour of integration for

the remaining cai. Different choices of contour lead to different expressions but remarkably

each expression so obtained seems to have a role to play in the amplitude An as an integral

coefficient in the expansion (2.11). One can obtain coefficients which appear in the tree-

level amplitude as well as one-loop and even higher-loop integral coefficients in this way.

There are 4k Grassmann delta functions in the original integral and so these expressions

appear in Nk−2MHV amplitudes.

A very similar formula to (5.1) was proposed in [29]. The difference is that it is

written in terms of momentum twistors, instead of twistors and therefore it is the dual

superconformal symmetry which is manifest,

LMS =

∫

∏

a,i dtai

(1 . . . k)(2 . . . k + 1) . . . (n . . . n + k − 1)

k
∏

a=1

δ4|4

( n
∑

i=1

taiWi

)

. (5.2)

The structure of the formula is identical to (5.1), with the integration variables called tai

forming a (k × n) matrix. This time the formula generates contributions to Pn (instead

of An), in other words it produces the same quantities (but written in different variables)

as (5.1) but with the MHV tree-level amplitude factored out. Thus the 4k Grassmann

delta functions mean that this formula generates contributions to NkMHV amplitudes.

In fact it has been shown that the two formulas are related by change of variables from

one to the other [31]. This shows indirectly that both formulas actually possess the non-

manifest superconformal symmetries, the dual superconformal symmetry for (5.1) and the

ordinary superconformal for (5.2). This suggests that the Grassmannian integral formula

should be interpreted as the general form of an invariant under the full Yangian symmetry

(in either version as they are simply related by a change of variables). Here we recall that

the leading singularities are obtained from products of tree-level amplitudes. Hence we

expect them to be invariant under the action of the Yangian generators (4.32), (4.33) or

equivalently (4.35), (4.36) for generic kinematical configurations. There will be contact-

type anomalies for singular kinematical configurations [16–18]. As we are considering the

generic case, we do not deform the free representations (4.32), (4.33) and (4.35), (4.36), as

is done in [16, 18].

6 Yangian invariance of the Grassmannian formulas

We would like to show that the Yangian generators (4.32), (4.33) and (4.35), (4.36) provide

a natural and direct way to show the non-manifest invariance of each of the Grassman-

nian formulas. One reason for wanting to show invariance directly is to develop a method
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which will might allow a proof that the Grassmannian integral is in fact the most gen-

eral form of an invariant under the Yangian symmetry. As we have seen the Yangian

symmetry looks the same in either twistor or momentum twistor versions so it will not

matter (at least formally) which version we consider here. To be concrete we will take

the momentum twistor representations of the Yangian symmetry (4.35), (4.36) and the

Grassmannian formula (5.2). This will permit us to use a manifestly psu(2, 2|4) invariant

language without having to worry about taking a Fourier transform which is justified only

in (2,2) signature. The calculation we will perform is equivalent to directly showing the

original superconformal invariance of (5.2).

We will first work with the formal integral in which no gauge-fixing has been performed

and keep the full (though ill-defined) set of integrations over all of the tai parameters. This

will reveal some general features that will allow us to perform a more honest calculation

where the integral is gauge-fixed and well-defined.

So we will consider the formal expression

Ln,k =

∫

∏

a,i dtai

M1 . . .Mn

k
∏

a=1

δa. (6.1)

Here Mp stands for the consecutive k × k minor made from the columns p, . . . , p + k − 1

of the k × n matrix of the tai,

Mp ≡ (p p + 1 p + 2 . . . p + k − 1) (6.2)

and we have introduced the shorthand notation for the delta functions from (5.2),

δa = δ4|4

( n
∑

i=1

taiWi

)

. (6.3)

The expression (6.1) is manifestly invariant under the level-zero generators (4.35) being

made of the dual superconformally invariant delta functions (6.3). To show the Yangian

symmetry we need to act on it with the level-one generator (4.36). In fact we can drop

the antisymmetrisation on the indices i and j and consider instead the operator (as usual

understood to be supertraceless),

∑

i<j

(−1)C
[

WA
i

∂

∂WC
i

WC
j

∂

∂WB
j

]

. (6.4)

This is because we can write the operator in (4.36) as

J (1)A
B =

(

∑

i<j

−
∑

j<i

)

(−1)CWA
i

∂

∂WC
i

WC
j

∂

∂WB
j

=

(

2
∑

i<j

−
∑

i,j

+
∑

i=j

)

(−1)CWA
i

∂

∂WC
i

WC
j

∂

∂WB
j

. (6.5)

The second and third summations annihilate the delta functions on their own as they

can be shown to be proportional to level-zero generators. The first summation gives the

operator (6.4) up to a factor of two.
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We can rewrite each term in the operator (6.4) in the following way (recall i 6= j),

(−1)CWA
i

∂

∂WC
i

WC
j

∂

∂WB
j

= WA
i WC

j

∂

∂WC
i

∂

∂WB
j

(6.6)

= (−1)BCWA
i WC

j

∂

∂WB
j

∂

∂WC
i

(6.7)

= WA
i

(

∂

∂WB
j

WC
j − δCB

)

∂

∂WC
i

(6.8)

= WA
i

∂

∂WB
j

WC
j

∂

∂WC
i

−WA
i

∂

∂WB
i

. (6.9)

Now the first term of (6.9) contains the operator

WC
j

∂

∂WC
i

(6.10)

which acts as a gl(n) transformation on the Wi. The delta functions are gl(n) invariant if

we transform the tai in the opposite way. Hence on the delta functions we can replace the

operator (6.10) with

Oij =
k
∑

a=1

tai
∂

∂taj
. (6.11)

In other words the action of the Yangian generator induces a particular compensating gl(n)

transformation of the tai variables.

To summarise, we have found that the action of the level-one operator J (1)A
B on the

Grassmannian formula Ln,k (6.1) can be written as

1

2
J (1)A

BLn,k =

∫

∏

a,m dtam

M1M2 . . .Mn

∑

i<j

[

OijW
A
i

∂

∂WB
j

−WA
i

∂

∂WB
i

] k
∏

a=1

δa , (6.12)

The W-derivatives in (6.12) act on each δ-function in turn, giving a sum of

similar contributions,

∂

∂WB
i

k
∏

a=1

δa =

k
∑

b=1

tbi
(

∂Bδb

)

∏

a6=b

δa. (6.13)

Using this on both terms in the square brackets in (6.12), the level-one variation becomes

∑

b

∫

∏

a,m dtam

M1M2 . . .Mn
[OA

b − VA
b ]
(

∂Bδb

)

∏

a6=b

δa , (6.14)

where the first-order operator OA
b (which generates a particular triangular gl(n) transfor-

mation by commutation) is given by

OA
b =

∑

i<j

WA
i Oijtbj (6.15)
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and VA
b is simply given by

VA
b =

∑

i<j

WA
i tbi. (6.16)

The idea now is to commute the operator OA
b back past the minors in the denominator.

When the operator reaches the measure
∏

dtam, it will be a total derivative (recall i 6= j

in the sum) and (at least formally) can be neglected. In commuting the operator OA
b past

the minors we will pick up a sum of terms as they are not invariant,

[

1

M1 . . .Mn
,OA

b

]

6= 0. (6.17)

In fact this variation will precisely cancel the VA
b term in (6.14). The essential reason

that the commutator is non-vanishing is that the minors are not invariant under gl(n)

transformations. Indeed the action of the gl(n) generator Oij on a general minor of the

form Mp is simply to replace the entry j in Mp by i if j is present,

OijMp =

k
∑

a=1

tai
∂

∂taj
Mp = Mj→i

p ≡ (p . . . j − 1 i j + 1 . . . p + k − 1). (6.18)

and is vanishing if the entry j is not present. Obviously the result (6.18) vanishes if i is

already present as another entry in Mp due to antisymmetry.

Using (6.18) a short calculation (which we present in appendix C) shows that under

the triangular gl(n) transformation generated by OA
b we have

[OA
b ,Mp] =

(p−1
∑

i=1

WA
i tbi

)

Mp. (6.19)

In other words, the consecutive minor Mp transforms into itself up to a factor. Note the

privileged role of the consecutive minors as opposed to general minors (i1 . . . ik) which do

not transform covariantly. It is now simple to compute the commutator we need from (6.17)

and we find

[

1

M1 . . .Mn
,OA

b

]

=
1

M1 . . .Mn

n
∑

p=1

[OA
b ,Mp]

Mp
=

1

M1 . . .Mn

∑

i<p

WA
i tbi =

VA
b

M1 . . .Mn
.

(6.20)

As anticipated this is precisely what is needed to cancel the VA
b term from (6.14).

Thus we have shown that the only contribution to the level-one variation (6.12) is the

total derivative term where the gl(n) operator Oij reaches the integration measure,

∑

b

∑

i<j

∫

∏

a,m

dtamOij

[

WA
i tbj

1

M1M2 . . .Mn

(

∂Bδb

)

∏

a6=b

δa

]

. (6.21)

Formally this term can be neglected as it is an integral of a total derivative. Therefore, Ln,k

is formally invariant under the Yangian symmetry for generic n and k if the integration is
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performed over any closed contour. To state what we have shown in a coordinate invariant

way, the form being integrated varies up to a total derivative

J (1)A
BK = dΩA

B. (6.22)

Therefore, for any closed contour the variation will integrate to zero. Of course if the

integration region has boundaries then the total derivatives can contribute boundary terms

and hence imply a breaking of the symmetry. The reason that what we have shown is only

formally a proof of invariance is that the integration over all of the tai is not well-defined.

We would now like to work with a well-defined finite integral and show Yangian in-

variance. The problem with the formal integral (6.1) is the gl(k) gauge redundancy. There

are two options for rendering this well-defined. We could work gauge-invariantly and use

the (n− k)× k-dimensional gauge-invariant measure given by Mason and Skinner [29] and

show that it is invariant under the effective transformation of the tai generated by OA
b .

Alternatively we could fix this measure to a convenient gauge and show invariance directly

on the gauge-fixed integral. Since the initial integral is gauge-invariant this is sufficient to

show invariance in any gauge. The second option proves to be remarkably simple so we

will pursue this approach. The gauge we will choose is the one where we fix the first k

columns of the matrix tai to be the identity matrix,







t1k+1 . . . t1n

1k×k

...
...

tkk+1 . . . tkn






. (6.23)

The integration is now over the remaining (n − k) × k variables,

∏

a,m

dtam =

k
∏

a=1

n
∏

m=k+1

dtam. (6.24)

Since some of the tai are now 0 or 1 the integrand is simplified. In particular the delta

functions become

δa = δ4|4

(

Wa +
n
∑

l=k+1

talWl

)

. (6.25)

The only difference in calculating the level-one variation of this gauge-fixed integral

from what we did before is the step from (6.10) to (6.11) where we replaced the operator

WC
j

∂

∂WC
i

−→ Oij =
∑

a

tai
∂

∂taj
. (6.26)

This is still fine if j > k but if j ≤ k then we run into the gauge-fixed parts of the delta

functions and we must treat the operator differently. In fact we can rewrite it in the

following way (recalling that i < j ≤ k),

WC
j

∂

∂WC
i

∏

a

δa = WC
j

[

∂

∂WC
i

δi

]

∏

a6=i

δa, (6.27)
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where we used the fact that i < j ≤ k and therefore the variable Wi is present only in one

specific delta function. This result can be rewritten as a function of Wr, with r > k, by

means of the constraint in the delta function:

[

−
n
∑

r=k+1

tjrW
C
r

][

∂

∂WC
i

δi

]

∏

a6=i

δa . (6.28)

For each term in the sum over r we can exchange the Wi derivative for a Wr derivative

as follows,

[

−
n
∑

r=k+1

tjrW
C
r

1

tir

∂

∂WC
r

δi

]

∏

a6=i

δa . (6.29)

Since the resulting operator generates a scaling of Wr, on δi we can replace it with a scaling

of tir instead,

WC
r

∂

∂WC
r

δi = tir
∂

∂tir
δi (6.30)

and we arrive finally at

WC
j

∂

∂WC
i

∏

a

δa = −Uij

∏

a

δa (6.31)

where we have defined

Uij =
n
∑

r=k+1

tjr
∂

∂tir
, 1 ≤ i < j ≤ k. (6.32)

Note that in Uij , the labels i and j denote the row indices of the matrix of t’s, in

contrast to the labels of Oij where they are column indices. Indeed the operator Uij acts

as a gl(k) rotation on the rows of the non-gauge-fixed part of this matrix. Thus it acts on

minors by replacing the i-th row by the j-th one on the non-gauge-fixed part of the matrix

of t’s (recall that r > k in the sum). Therefore

UijMp = 0 if k < p ≤ (n − k) (6.33)

as UijMp is the determinant of a matrix with two equal rows. For (n − k) < p ≤ n the

result is also vanishing. The only non-vanishing contribution is given when Uij acts on a

minor Mp with 1 < p ≤ k. As we explain in appendix D, after a careful study one can

convince oneself that its action is equivalent, up to a sign, to replacing the j-th column by

the i-th one. Therefore

UijMp = −Mj→i
p if 1 < p ≤ k , i < j ≤ k (6.34)

which is exactly the same result for Oij (6.18), apart from a sign. We can therefore unify

the two operators into a single operator Nij valid for all values of j,

Nij = (−Uij,Oij) , (6.35)
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and then define

NA
b =

∑

i<j

WA
i Nijtbj . (6.36)

The operator NA
b is the gauge-fixed version of OA

b from (6.15). Following the same steps

as in the gauge-invariant case, the level-one variation becomes

∑

b

∫

∏

a,m dtam

M1M2 . . .Mn
[NA

b − VA
b ]
(

∂Bδb

)

∏

a6=b

δa. (6.37)

As before, one can commute the operator NA
b back past the minors in the denominator.

The steps are identical to the gauge-invariant case we discussed previously. In particular,

due to (6.34), the minors transform as before

[NA
b ,Mp] =

(p−1
∑

i=1

WA
i tbi

)

Mp. (6.38)

The remaining term is then a true total derivative,

∑

b

∑

i<j

∫ (

∏

a,m

dtam

)

Nij

[

WA
i tbj

1

M1M2 . . .Mn

(

∂Bδb

)

∏

a6=b

δa

]

, (6.39)

i.e. we have shown that (6.22) holds. This completes the direct proof of the Yangian

invariance of the Grassmannian formulas.

7 Conclusions

In this paper we have considered the Yangian symmetry of scattering amplitudes in N = 4

SYM theory. In [21] it was shown that the ordinary superconformal symmetry forms

the level-zero subalgebra of a Yangian algebra with the dual superconformal symmetry

providing part of the level-one generators. The remaining generators are obtained from

these by commutation. Here we have shown that there is a ‘T-dual’ version, where the

roles of the original and dual superconformal symmetries are interchanged. In this case,

the Yangian generators annihilate the amplitude with the MHV part factored out, rather

than the whole amplitude. The momentum twistors of [30] played an important role in this

analysis, indeed the representation of the T-dual version of the Yangian in terms of the

momentum twistors is identical to that of the original version in terms of the usual twistors.

The T-duality structure is reflected in recently proposed Grassmannian formulas which

reproduce leading singularities of scattering amplitudes. The first proposal [28], formulated

in twistor space, is manifestly invariant under ordinary superconformal symmetry, while

the formulation in momentum twistor space [29] is invariant under dual superconformal

symmetry. The two formulas are related by a change of variables [31] which shows indirectly

that they both have the ordinary and dual superconformal symmetries, and that the objects

they produce are Yangian invariants. It is tempting to regard the Grassmannian formula

as the most general form of an invariant under the Yangian symmetry. Then the fact
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that the two versions have precisely the same structure (one simply exchanges twistors

for momentum twistors) is a natural expression of the T-duality structure of the Yangian

itself. In this paper, we have directly proved the Yangian invariance of these Grassmannian

formulas by using the explicit expression of the level-one generators. In our calculation, to

be concrete, we used the momentum twistor version but we could equally well have used the

twistor version as the two formulas are identical in structure. In the proof we saw explicitly

the role of the gl(n) invariance of the delta functions and the gl(k) gauge symmetry.

We think that one of the main issues to address is to demonstrate that the most general

invariant under the Yangian symmetry takes exactly the form of the Grassmannian integral.

The methods we have developed in this paper may turn out to be very useful in this respect.

Further interesting questions remain open in this context. For instance, the contribution

of the holomorphic anomaly to these formulas on singular kinematical configurations and

the extension of the Yangian symmetry to loop level.

Acknowledgments

We would like to thank Emery Sokatchev for many interesting discussions. This research

was supported in part by the French Agence Nationale de la Recherche under grant ANR-

06-BLAN-0142.

A Formulae for both superconformal algebras

We begin by listing the commutation relations of the algebra u(2, 2|4). The Lorentz gener-

ators Mαβ , Mα̇β̇ and the su(4) generators RA
B act canonically on the remaining generators

carrying Lorentz or su(4) indices. The dilatation D and hypercharge B act via

[D, J] = dim(J) J, [B, J] = hyp(J) J. (A.1)

The non-zero dimensions and hypercharges of the various generators are

dim(P) = 1, dim(Q) = dim(Q) =
1

2
, dim(S) = dim(S) = −

1

2

dim(K) = −1, hyp(Q) = hyp(S) =
1

2
, hyp(Q) = hyp(S) = −

1

2
. (A.2)

The remaining non-trivial commutation relations are,

{QαA, Q
B
α̇ } = δB

APαα̇, {SA
α , Sα̇B} = δA

BKαα̇,

[Pαα̇, SβA] = δβ
αQ

A
α̇ , [Kαα̇, Q

β
A] = δβ

αSα̇A,

[Pαα̇, S
β̇
A] = δ

β̇
α̇QαA, [Kαα̇, Q

β̇A
] = δ

β̇
α̇SA

α ,

[Kαα̇, Pββ̇ ] = δβ
αδ

β̇
α̇D + Mα

βδ
β̇
α̇ + Mα̇

β̇δβ
α,

{Qα
A, SB

β } = Mα
βδB

A + δα
β RB

A +
1

2
δα
β δB

A (D + C),

{Q
α̇A

, S
β̇B

} = M
α̇

β̇
δA
B − δα̇

β̇
RA

B +
1

2
δα̇
β̇
δA
B(D − C). (A.3)
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Note that in writing the algebra relations we are obliged to choose the su(4) chirality of

the odd generators. The relations above are valid directly for the dual superconformal

generators. For the conventional realisation of the algebra, one should simply swap all

su(4) chiralities appearing in the commutation relations. We now give the generators in

both the conventional and dual representations of the superconformal algebra. We will use

the following shorthand notation:

∂iαα̇ =
∂

∂xαα̇
i

, ∂iαA =
∂

∂θαA
i

, ∂iα =
∂

∂λα
i

, ∂iα̇ =
∂

∂λ̃α̇
i

, ∂iA =
∂

∂ηA
i

. (A.4)

We first give the generators of the conventional superconformal symmetry, using lower case

characters to distinguish these generators from the dual superconformal generators which

follow afterwards.

pα̇α =
∑

i

λ̃α̇
i λα

i , kαα̇ =
∑

i

∂iα∂iα̇ ,

mα̇β̇ =
∑

i

λ̃i(α̇∂iβ̇), mαβ =
∑

i

λi(α∂iβ) ,

d =
∑

i

[

1

2
λα

i ∂iα +
1

2
λ̃α̇

i ∂iα̇ + 1

]

, rA
B =

∑

i

[

− ηA
i ∂iB +

1

4
δA
BηC

i ∂iC

]

,

qαA =
∑

i

λα
i ηA

i , q̄α̇
A =

∑

i

λ̃α̇
i ∂iA ,

sαA =
∑

i

∂iα∂iA, s̄A
α̇ =

∑

i

ηA
i ∂iα̇ ,

c =
∑

i

[

1 +
1

2
λα

i ∂iα −
1

2
λ̃α̇

i ∂iα̇ −
1

2
ηA

i ∂iA

]

. (A.5)

We can construct the generators of dual superconformal transformations by starting with

the standard chiral representation and extending the generators so that they commute with

the constraints,

(xi − xi+1)αα̇ − λi α λ̃i α̇ = 0 , (θi − θi+1)
A
α − λiαηA

i = 0 . (A.6)

By construction they preserve the surface defined by these constraints, which is where the

amplitude has support. The generators are

Pαα̇ =
∑

i

∂iαα̇ , QαA =
∑

i

∂iαA , Q
A
α̇ =

∑

i

[

θαA
i ∂iαα̇ + ηA

i ∂iα̇

]

,

Mαβ =
∑

i

[

xi(α
α̇∂iβ)α̇ + θA

i(α∂iβ)A + λi(α∂iβ)

]

, M
α̇β̇

=
∑

i

[

xi(α̇
α∂

iβ̇)α + λ̃i(α̇∂
iβ̇)

]

,

RA
B =

∑

i

[

θαA
i ∂iαB + ηA

i ∂iB −
1

4
δA
BθαC

i ∂iαC −
1

4
δA
BηC

i ∂iC

]

,

D =
∑

i

[

− xα̇α
i ∂iαα̇ −

1

2
θαA
i ∂iαA −

1

2
λα

i ∂iα −
1

2
λ̃α̇

i ∂iα̇

]

,
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C =
∑

i

[

−
1

2
λα

i ∂iα +
1

2
λ̃α̇

i ∂iα̇ +
1

2
ηA

i ∂iA

]

,

SA
α =

∑

i

[

− θB
iαθ

βA
i ∂iβB + xiα

β̇θ
βA
i ∂

iββ̇
+ λiαθ

γA
i ∂iγ + xi+1 α

β̇ηA
i ∂

iβ̇
− θB

i+1 αηA
i ∂iB

]

,

Sα̇A =
∑

i

[

xiα̇
β∂iβA + λ̃iα̇∂iA

]

,

Kαα̇ =
∑

i

[

xiα
β̇xiα̇

β∂
iββ̇

+ xiα̇
βθB

iα∂iβB + xiα̇
βλiα∂iβ + xi+1α

β̇λ̃iα̇∂
iβ̇

+ λ̃iα̇θB
i+1α∂iB

]

.

(A.7)

Note that if we restrict the dual generators Q̄, S̄ to the on-shell superspace they become

identical to the conventional generators s̄, q̄.

B Some generalities on gl(n|n) and its Yangian

We will begin with the defining representation of gl(m|n). We define EA
B to be an (m|n)×

(m|n) matrix with a 1 in the entry in row A and column B and 0 everywhere else. The

matrix satisfies the product

EA
BEC

D = δCBEA
D, (B.1)

from which follows the commutation relations of gl(m|n),

[EA
B, EC

D] = δCBEA
D − (−1)(A+B)(C+D)δADEC

B = fA
B
C
DE

FEE
F , (B.2)

where the structure constants f are given by

fA
B
C
DE

FEE
F = δCBδAE δFD − (−1)(A+B)(C+D)δADδCEδFB . (B.3)

If we remove the supertrace from the generators EA
B then we have the algebra sl(m|n).

In the case where m = n we can also remove the trace, leading to psl(n|n).

One can define a metric on gl(m|n) by taking the supertrace of the product of two

generators in the fundamental representation,

gAB
C
D = str[EA

BEC
D] = (−1)AδCBδAD . (B.4)

The inverse metric is then

(g−1)A
B
C
D = (−1)BδDAδBC . (B.5)

We can define ‘raised’ structure constants as

fA
BG

H
E
F = fA

B
C
DE

F (g−1)C
D
G
H = (−1)G(δHB δAE δFG − (−1)(A+B)(A+E)δAG δHE δFB ). (B.6)

The representation of most interest to us is the twistor (or oscillator) representation,

JA
B = WA ∂

∂WB
. (B.7)

It is simple to see that this satisfies the right commutation relations,

[JA
B, JC

D] = δCBjAD − (−1)(A+B)(C+D)δADJC
B. (B.8)
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For multi-particle invariants we take the sum over single particle representations,

JA
B =

∑

i

jAi B =
∑

i

WA
i

∂

∂WB
i

. (B.9)

The Yangian generators are given by the bilocal sum,

J (1)A
B =

∑

i<j

(−1)C [JA
i CJ

C
j B − JA

j CJ
C
i B]. (B.10)

They are consistent with cyclicity (i.e. invariant up to terms which are proportional to a

generator of the original superalgebra) for those algebras with vanishing Killing form [21].

The simple Lie superalgebras which satisfy this condition were classified by Kac [50] and

include psl(n|n). It also holds for the central extension sl(n|n) but not for gl(n|n). This can

be seen by considering the difference of the definition (B.10) with that which one obtains

by cyclically rotating by one step. Explicitly, the only term which is not proportional to

an algebra generator is the level-one hypercharge (the supertrace of (B.10)).

C Induced transformation of the minors

In this appendix we derive the induced transformation of the minors Mp which we quoted

in equation (6.19). For the convenience of the reader we repeat the result here,

[OA
b ,Mp] =

p−1
∑

i=1

WA
i tbi Mp, (C.1)

where OA
b =

∑

i<j W
A
i Oijtbj. Note that because we are calculating a commutator the

gl(n) operator Oij never acts on the explicit factor of tbj inside OA
b itself.

We should consider the cases p ≤ n − k + 1 and p > n − k + 1 separately. In the

case p ≤ n − k + 1 the minor Mp does not ‘wrap’ (i.e. does not involve columns from the

beginning and the end of the matrix). In this case we have

[OA
b ,Mp] =

∑

i<j

WA
i tbjOijMp =

p−1
∑

i=1

WA
i

p+k−1
∑

j=p

tbjM
j→i
p , (C.2)

where we have used the form of the gl(n) variation of the minors from (6.18). Using the

‘cyclic’ identity which follows from the vanishing of a totally antisymmetric object with

(k + 1) gl(k) indices,

tai1(i2 i3 . . . ik+1)+(−1)ktai2(i3 . . . ik+1i1)+ tai3(i4 . . . i1 i2)+ . . .+(−1)ktaik+1
(i1 . . . ik) = 0,

(C.3)

we find that the sum on the r.h.s. of (C.2) can be written

p+k−1
∑

j=p

tbjM
j→i
p = tbiMp (C.4)
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and so the result (C.1) holds.

In the case where p > n − k + 1 then the minor Mp wraps around the end of the

matrix, Mp = (p . . . n 1 . . . p + k − n − 1). In this case we write instead

[OA
b ,Mp] =

∑

i<j

WA
i tbjOijMp =

n
∑

s=p

s−1
∑

i=1

WA
i tbsM

s→i
p . (C.5)

Now we recall that the variation we are calculating actually sits inside the integral (6.14).

For each term in the sum over s we can therefore use the constraints
∑n

1 tblW
A
l = 0 which

are imposed by the delta functions in (6.14).9 Only one term arises every time we do this

due to the antisymmetry of the minor and we obtain

[OA
b ,Mp] = −

n
∑

s=p

WA
s tbsMp. (C.6)

Finally we can use the delta function constraint again and find that the commutator is

again of the form (C.1).

D Details of invariance of the gauge-fixed integral

In this appendix we want to give some more technical detail about the action of the operator

Uij =

n
∑

l=k+1

tjl
∂

∂til
, i < j ≤ k (D.1)

on the minor Mp, when 1 < p ≤ k. The explicit expression of the n×k gauge-fixed matrix

of tai’s is
































1
. . .

1

1

0

































t1k+1 · · · t1(p+k−1)

0
... A

...

1
... B

...
. . .

1 tkk+1 · · · tk(p+k−1)

































. . .

































(D.2)

where we have indicated the minor Mp with square brackets. Its particular structure is

such that only the A-part contributes to the determinant. As already mentioned in the

main text, Uij copies the j-th row into the i-th one on the non-gauge-fixed part. Therefore,

if either i, j ∈ A or i, j ∈ B, the result vanishes due to the antisymmetry of the minor or

9The reader may worry that one of the delta functions comes with a derivative ∂B on it. However this

does not matter as the only contribution which can arise by commuting a WA through such a derivative is

proportional to the supertrace (−1)AδAB and this can be dropped when we recall that the operator J(1)A
B

should have the supertrace removed.
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to its blindness to the B-part, respectively. The only non-vanishing contribution is given

when i ∈ A and j ∈ B:

UijMp = Uij



















0 0 0 i−th row

1

0 0 1 j−th row



















=



















0 0 0 j−th row

1

0 0 1 j−th row



















≡



















0 0 0 j−th row

1

0 0 1 i−th row



















(D.3)

where it is possible to write the last step as the B-part does not contribute to Mp. This

result is equivalent, up to a sign, to the minor Mp where the j-th column of the full matrix

has been substituted by the i-th one:



















0 0 0 j−th row

1

0 0 1 i−th row



















= −



















0 0 1 i−th row

1

0 0 0 j−th row



















= −Mj→i
p (D.4)

as the gauge-fixed tai’s matrix has the form



















0

0 1ii 0

0

0

0

0 0 0



















0

0 0 0 i−th row

0

0

0

0 0 1jj j−th row



















. . .



















(D.5)

Therefore, the action of operator Uij on a minor with 1 < p ≤ k is

UijMp = −Mj→i
p . (D.6)
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