
YAWN: A Semantically Annotated Wikipedia XML Corpus

Ralf Schenkel Fabian Suchanek Gjergji Kasneci

Max-Planck-Institut für Informatik, Saarbrücken, Germany

{schenkel,suchanek,kasneci} aO mpi-inf.mpg.de

Abstract: The paper presents YAWN, a system to convert the well-known and widely
used Wikipedia collection into an XML corpus with semantically rich, self-explaining
tags. We introduce algorithms to annotate pages and links with concepts from the
WordNet thesaurus. This annotation process exploits categorical information in Wiki-
pedia, which is a high-quality, manually assigned source of information, extracts addi-
tional information from lists, and utilizes the invocations of templates with named pa-
rameters. We give examples how such annotations can be exploited for high-precision
queries.

1 Introduction

1.1 Motivation

Much of the existing work on structure-aware XML retrieval [AY+02, S+05, Sc02] has

anticipated the existence of a huge number of heterogeneous XML documents with de-

scriptive (i.e., self-explaining and semantically rich) tags. This has always been predicted

as the natural consequence of the flexibility and variety of XML, where every author of

a Web page can invent a different schema for her data on the Web. Given a semantically

rich structural query like //person[about(//work,physics) and about(//
born,Germany)]1 (i.e., find people who work in physics and were born in Germany),

such search engines would either consider structural similarity metrics of the query and

documents [AY+02, Sc02] or semantic similarity of the tags used in the query and in the

documents, using an ontology as background knowledge [S+05].

However, this revolution still has to happen. XML, even though widely used nowadays,

usually is either generated from a structured database or used to store textual informa-

tion with some structure. In the latter case, documents are content-rich, but tags are

generic, while in the former case, there may be meaningful tag names, but there is often not

much textual content. Therefore, today’s typical XML search engines either ignore struc-

tural information completely, focussing on keyword queries alone, or deal with semanti-

cally weak structures as in //article[about(.,XML)]//section[about(./
/paragraph,retrieval)].

1This query is formulated in NEXI, the query language of the INEX benchmark (http://inex.is.

informatik.uni-duisburg.de/2006/), but could be expressed similarly in XPath with FullText extensions.

This paper brides the gap between semantics-aware XML search engines and real world

data by adding semantics to XML data, extending the ideas already used in Sphere-

Search [G+05] and, more recently, by Chu-Carroll et al. [CC+06]. Based on the well-

known and widely used Wikipedia collection, this paper presents YAWN2, showing how to

convert Wikipeia pages to XML that is annotated with concepts from WordNet, resulting

in a huge annotated XML corpus with semantically rich tags. We exploit three sources

of semantics: categorical information that has been added to most pages by the author

(like “Albert Einstein is a physicist”), lists of similar pages, which are a common concept

in Wikipedia (like lists of actors, songs, and companies), and invocations of predefined

templates with human-readable parameters that encode factual information.

1.2 Related Work

There are a number of database-oriented XML benchmarks such as XMark [S+02] and

XMach [BR01] that focus on performance aspects of XML databases. They usually pro-

vide no meaningful content and are therefore not suited for information retrieval. The

INEX community has produced two XML benchmark collections, namely the IEEE col-

lection and the Wikipedia collection [DG06], which combine huge corpora with queries,

lists of relevant results, and a methodology to evaluate the quality of search results. How-

ever, these corpora do not include heterogeneous and semantically rich tags. The INEX

Heterogeneous Track has started to collect different XML collections, but there are no

self-explaining tags yet. A first step towards richly annotated data was made in the INEX

Multimedia Track with the Lonely Planet collection3.

There have been several attemps to define a standard XML format for documents stored in

Wikis, the most recent ones being the Wikipedia DTD4 that proposes a set of tags similar

to HTML, and DookBook XML Export5 that defines XML tags for a subset of the Wiki

markup. However, to the best of our knowledge, none of these covers the complete feature

set of Wiki markup and is publicly available.

The Semantic Web community has recently launched a number of projects to add seman-

tics to Wikis [Au05, BG06, So05, V+06] which typically aim at adding semantic informa-

tion at design time. In contrast, our aproach exploits information that is already present in

Wikipedia pages, without the need for any user interaction.

Information extraction from text and HTML data is an area with intensive work. Agichtein

[Ag05] gives a survey of information extraction techniques with a focus on scalability in

large collections with millions of documents. Approaches in the literature mostly either

follow a rule-based paradigm [AGM03, CMM02, G+04], or employ learning techniques

and/or linguistic methods [AFG03, CS04, Cu02]. Our algorithms, unsupervised and statis-

tical in their nature, fit in the second class. The list extraction method used in Section 3.3 is

similar to list extraction methods used in other information extraction systems like Know-

2Yet Another Wikipedia Annotation project
3http://inex.is.informatik.uni-duisburg.de/2005/tracks/media/index.html
4http://meta.wikimedia.org/wiki/Wikipedia_DTD (last change APR-09-06)
5http://meta.wikimedia.org/wiki/DocBook_XML_export (last change JUN-19-06)

ItAll [E+05] and SCRAP [FFT05]. Rule-based information Extraction from XML docu-

ments has been considered by Abolhassani et al. [AFG03]; in contrast, we follow a purely

automatic approach. Annotated XML collections and their use for information retrieval

were considered by Graupmann et al. [G+05] and Chu-Carroll et al. [CC+06]; the tech-

niques presented in this paper perfectly integrate with these works.

2 Converting Wiki Markup to XML

2.1 Wiki Markup

With more than 1,4 million articles as of October 2006, Wikipedia6 is the largest general

purpose encyclopedia that is freely available. The content of pages in Wikipedia, like in

other Wikis, is formulated in Wiki markup, a combination of standard HTML tagging with

specific constructs for structuring, tables, links etc. There is no formal specification of the

language and its semantics yet.Figure 1 shows a simple example for a document in this

language. Important building blocks of the Wiki markup language include structuring text

by defining several levels of sections, different levels of emphasis for text parts, bulleted

and numbered lists of different nesting depths, tables with rows, columns, headers and

captions, links within the Wikipedia collection and to the Web, and inlined images.

==Introduction==
’’Wiki markup’’ is used in [[Wikipedia]].

==Language Components==
* tables
* lists
* and a lot more

==See also==
[http://www.wikipedia.org]

Figure 1: An example Wiki Markup page

In addition, Wiki markup can be arbitrarily mixed with HTML tags (which is most often

used for layout purposes), and some Wiki markup symbols (like images and tables) may

contain additional layout hints. Wiki markup also provides a template language where

invocations of a template TEMP (in the form {TEMP}) are replaced with the definition

of this template. Template invocations may also include values for parameters that then

replace the parameter in the template’s definition. A Wiki2HTML converter (written in

PHP) generates HTML pages (that neither have semantically rich tags nor are guaranteed

to be well-formed XML) from the Wiki markup input.

The different components of Wiki markup can be combined almost arbitrarily. However,

this huge flexibility is at the same time a big problem, as authors often tend to overstrain the

features. As an example, many authors make frequent use of tables for layout, resulting in

6http://www.wikipedia.org/

a deep nesting of tables and (sub-)sections. Secondly, the fault-tolerant converter does not

encourage correct markup; while this is adequate to create HTML, this makes it difficult

to create well-formed XML.

2.2 Generating XML

This section shows how we generate XML from the Wiki markup of the Wikipedia pages.

We focus on the content of the pages, accepting that some layout information is lost in this

process. The complete textual content of Wikipedia is available as a huge XML file (as

of April 2006, this was about 6GB), which contains one element for each Wikipedia page

with some meta information and its content in Wiki markup.

Our Wiki2XML converter runs in two phases, where each phase corresponds to a SAX-

style scan of the input XML document. In the first phase, the existing pages are collected

and redirections (i.e., pages that are simply links to other pages) are resolved. In the second

phase, an XML document is generated for each page, which consists of three parts: (1) the

preamble that sets the character encoding and includes a pointer to an XSLT for presenting

the page, (2) the article element with its header child, which in turn has children that

specify meta data like the page title and id, the last revision, and the categories of this page,

and (3) the body child of the article element that contains the XML representation of

the page’s content. The conversion of the Wiki markup to XML is done as follows:

• Sections, subsections etc. are converted to section, subsection etc. elements,

each with an st child that contains the section title.

• Both numbered and bulleted lists are converted to list elements with entry
children corresponding to the different list entries. Nested lists are represented by

subentry, subsubentry etc. tags.

• Tables are represented by a table tag. Inside this tag, there is one row element for

each row of the table, which in turn has one col tag for each column. For header

rows, the tag header is used.

• Links to other pages in Wikipedia are converted to link elements that correspond

to an XLink to the target page’s XML version. Links to web pages are converted to

weblink tags with an XLink to the link target.

• Links to images are converted to image elements that correspond to an XLink to

the image file located in a directory derived from the image name’s MD5 hash.

• Markup for emphasis is converted to b and it elements.

Figure 2 shows the XML generated for the example Wiki markup from Figure 1. The exact

conversion of Wiki markup to well-formed XML is more complex (and in fact sometimes

impossible without human interaction) if the markup is mixed with arbitrary HTML tags.

This is especially a problem with some tables that are defined in a mixture of HTML and

Wiki markup, but also simple tags like
 render a generated document malformed. To

solve this problem, we eliminate all HTML tags from the Wiki markup in a preprocess-

ing step. As those tags are typically used only for layout purposes, we do not lose any

semantics, but can generate much better XML. Additionally, as the original Wiki2HTML

converter is quite tolerant to syntax errors, there is a substantial number of Wikipedia

pages with syntactic problems7. Each document is tested for well-formedness after it was

generated, making sure that the collection contains only syntactically correct documents.

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="application/xml" href="../../wikipedia.xslt"?>
<article xmlns:xlink="http://www.w3.org/1999/xlink/">
<header>

<title>Wiki markup</title>
<id>42</id>
<revision>
<timestamp>2006-10-05 14:22</timestamp>

</revision>
<categories>
<category>Markup languages</category>

</categories>
</header>
<body>

<section>
<st>Introduction</st>
<p>Wiki markup is used in
<link xlink:href="../Wi/Wikipedia.xml" xlink:type="simple">

Wikipedia
</link>.</p>

</section>
<section>
<st>Language Components</st>
<list>

<entry>tables</entry>
<entry>lists</entry>
<entry>and a lot more</entry>
</list>

</section>
<section>
<st>See also</st>
<weblink xlink:href="http://www.wikipedia.org" xlink:type="simple">

http://www.wikipedia.org
</weblink>

</section>
</body>

</article>

Figure 2: Generated XML for the Wiki Markup from Figure 1

The XML dialect we use is similar to the one used by the INEX Wikipedia collection.

However, we have better support for some details, including nesting of sections (in INEX,

all nesting levels of sections are mapped to sec elements). Additionally, as the INEX

7The Wiki Syntax Project (http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Wiki_

Syntax) lists 8,400 for the April 21, 2005 dump, including 50 defective section headings, 80 HTML tags, 250

tables, 600 double quotes, 950 triple quotes, and 3400 square brackets.

Wikipedia collection has kept the HTML tags, it contains a noticable amount of malformed

or otherwise abnormal XML pages.

3 Semantic Annotation of Wikipedia Pages

We aim at finding high-quality semantic annotations for Wikipedia pages by a combination

of exploiting manually created, high-quality information from categories that are assigned

to most pages, and deriving additional information from highly structured documents such

as lists (of persons, locations, etc.). To make the results applicable for a large suite of

applications, we find annotations within the scope of a predefined ontology; we use Word-

Net [Fe98], the currently most extensive and widely used general-purpose thesaurus for

the English language, but the results are transferable to any hierarchical ontology. The

ontology provides us with a standard vocabulary for the annotations than can also be ex-

ploited for querying the annotated documents. Additionally, as our annotation algorithms

are heuristic, we explicitly maintain an estimated confidence in the annotations.

3.1 Overview of WordNet

WordNet [Fe98] is a fairly comprehensive common-sense thesaurus carefully handcrafted

by cognitive scientists. WordNet distinguishes between words as literally appearing in

texts and the actual word senses, the concepts behind words. As of the current version

2.1, WordNet contains 81,426 synsets for 117,097 unique nouns. Often a single word has

multiple senses, each of which comes with an estimation of its commonality and a brief

description and is also characterized by a set of synonyms, words with the same sense,

called synsets in WordNet. In this paper, we use the term concept for word senses, hence

each concept corresponds to exactly one synset. WordNet provides relationships between

concepts like hypernyms (i.e., broader senses), hyponyms (i.e., more narrow senses), and

holonym (i.e., part of) relationships; for this paper, we focus on hypernym relationships.

Conceptually, the hypernym relationship in WordNet spans a directed acyclic graph with

a single virtual source node ’ROOT’ (that we introduced to get a connected graph) and

seven first-level basic synsets (entity, state, abstraction, event, act, group,

possession) that are children of the source node. Figure 3 shows an excerpt of that

graph. For each concept in WordNet, there exists at least one, but usually several distinct

root-to-concept paths (like for the concept ‘singer’ in the excerpt).

3.2 Exploiting Categories

The majority of Wikipedia pages is assigned to one or multiple categories. The page about

Albert Einstein, for example, is in the categories German language philosophers,

Swiss physicists, and 34 more. Not all categories, however, imply that the entity

ROOT

act abstraction group entity possession state event

substance object thing locationcausal_agent

living_thing whole

singer

person

organism

entertainer

performer

musician actor

scientist

physicist

animal

Figure 3: Excerpt of the WordNet DAG

described on the Wikipedia page is an instance of some concept. Some categories serve ad-

ministrative purposes (like Articles with unsourced statements), others yield

non-conceptual information (like 1879 births) and again others indicate merely the-

matic vicinity (like Physics). The administrative and non-conceptual categories are

very few (less than a dozen) and can be excluded by hand. To distinguish the conceptual

categories from the thematic ones, we employ a shallow linguistic parsing of the category

name. For example, a name like Naturalized citizens of the United States
is broken into a pre-modifier (Naturalized), a head (citizens) and a post-modifier

(of the United States). Heuristically, we found that if the head of the category

name is a plural word, the category is most likely a conceptual category. We used the

Pling-Stemmer [S+06] to reliably identify and stem plural words. This gives us a (possi-

bly empty) set of conceptual categories for each Wikipedia page.

As we want to use WordNet as foundation for our annotations, every conceptual Wikipedia

category has to be linked to a corresponding WordNet concept. We experimented with dif-

ferent heuristics, including context-aware [S+05] and compactness-based [M+05] meth-

ods, and discovered that the simplest heuristics yields the correct link in the overwhelming

majority of cases: We determine the WordNet concepts that the head of the category name

refers to and link the category to the most common concept among them.

3.3 Exploiting Lists

Wikipedia contains many lists, which are an extensive, manually created and therefore

high-quality source of information. In the Wikipedia Snapshot from April 2006 that we

used for our experiments, there are 18,436 different lists. We consider the XML versions of

the Wikipedia lists, i.e., the output of the XML generation process described in Section 2;

this allows a better handling of structure in the lists. As an example, Figure 4 shows

an excerpt of the list of Germans from Wikipedia. To uniquely identify the elements of

such a list, we assign a unique XPath expression to each element that consists only of

name tests, child axes and position predicates. In the example, the link element that is

a child of the second entry element in Figure 4; it is identified by the XPath expression

/article[1]/body[1]/section[1]/list[1]/entry[2]/link[1]. Note

that Wikipedia lists are not always designed as nested Wiki markup lists; there are many

lists that are in fact tables. Our algorithm is not limited to Wiki markup lists and supports

any type of regular structure.

It is evident that the example list is well structured, and it would be easy for a human to

find out that all links point to pages about actors or, more generally, persons. A manual

appraoch to exploit lists would require that a user identifies patterns in a list (either explic-

itly by an XPath expression or by highlighting them in an interface) and assigns them to a

WordNet concept like ’actor’. However, while such a manual approach could be useful for

small subsets of all lists, this tedious task does not scale to the whole Wikipedia collection.

<article>
...
<body>

<section>
<st>Actors</st>
<list>

<entry>
<link xlink:href="../Ma/Mario+A$dorf.xml">
Mario Adorf</link>, (born 1930), actor

</entry>
<entry>
<link xlink:href="../Ha/Hans+A$lbers.xml">
Hans Albers</link>, (1891-1960), actor

</entry>
<entry>
<link xlink:href="../Mo/Moritz+B$leibtreu.xml">
Moritz Bleibtreu</link>, (born 1971), actor

</entry>
...

Figure 4: Excerpt from the XMLified Wikipedia list of Germans

3.3.1 Automatic Grouping of XPath Expressions

We propose an automated algorithm that exploits the fact that many pages have already

been annotated with concepts derived from their categories, and only some pages are left

to annotate. The algorithm, a variant of previously proposed algorithms for list extraction

like [FFT05], proceeds in three steps: (1) it identifies parts of the list that are structurally

similar (so-called group candidates), (2) it selects those group candidates where a large

fraction of links points to pages with coherent annotations (so-called groups), and (3) it

finds annotions that are common among them, and heuristically assigns these annotations

to all pages in the group. In the example, if all but the third link point to pages that are

labeled as ’actor’, the algorithm would assign that concept to the page of ’Moritz Bleibtreu’

as well.

In a preprocessing step, we first temporarily extend the annotations of all pages that are

linked in the list. For each concept annotated to a page, we add all concepts on the root-to-

concept paths of this concept in WordNet to the annotations of a page. This allows us to

identify different annotations that are similar at a higher level of abstraction in WordNet,

like ’actor’ and ’singer’, which are both subconcepts of ’performer’.

Group candidates are identified by grouping elements with similar XPaths together. We

say that two elements have a similar XPath if both paths have the same tag sequence and

differ only in a single position. We label each group candidate with an XPath pattern that

has the same tag sequence and the same positions as the elements in the group candidate,

but a wildcard ’*’ at the position where the elements differ. As we maintain annota-

tions only for pages (which are identified by link elements in the lists), it is sufficient

to consider only group candidates where the last tag is link. We identify each XPath

in a group candidate with the page its link element points to. In the example, the group

candidate including the three link elements has the label /article[1]/body[1]
/section[1]/list[1]/entry[*]/link[1]. We eliminate group candidates that

are too small, i.e., consist of less than 5 elements.

To determine if a group candidate with n elements is a proper group, we count, for each

concept c, the number fc of times where c occurs as an annotation in the group. We accept

the group if there is at least one concept where fc

n
≥ δ, i.e., where the concept occurs in

the annotations of at least a (configurable) fraction of all pages. Note that n includes pages

without any annotations. Setting δ close to 1.0 gives a higher annotation quality, but may

reduce recall, whereas setting δ close to 0 incurs a high danger of wrong annotations. In

our experiments, δ = 0.75 yielded good results. Each such concept c is then assigned to all

pages in the group that are not already annotated with c; the confidence of the annotation

is set to fc

n
.

3.3.2 Outlier Detection

Even though most lists have a regular structure, sometimes outliers occur, i.e., small

glitches in an otherwise perfectly regular structure. As an example, consider the excerpt

of a list of songs shown in Figure 5. While, for most entries, the first link points to the

singer’s page and the second to the song’s, this regularity is broken for one song that has

two singers (shown in boldface). If we apply our algorithm in this setting, ’David Bowie’

would be accidentally annotated as ’song’. Similar outliers can be caused by omitting links

to pages that do not yet exist in Wikipedia (like some unknown singer) or by mistakes of

the page editor. We apply a simple heuristics to detect such outliers that works as follows.

First, we manually define the compatibility of a carefully selected set of base concepts

towards the top of the WordNet DAG; these concepts are shown in grey in Figure 3. Com-

patible sets of base concepts are {living thing,causal agent,group} and {whole,thing}, all

other combinations of base concepts are incompatible. Whenever a page p should be an-

notated with a new concept c, all base concepts B(c) on paths from c toward the root

node are computed and compared with the base concepts that have been assigned to p ear-

lier in the process. The new concept is assigned to p if and only if each base concept in

B(c) is compatible with each already assigned base concept of p. This heuristic cleaning

eliminates most erroneous annotations.

<list>
<entry>

<link xlink:href="../Jo/John+L$ennon.xml" xlink:type="simple">
John Lennon</link> :

<link xlink:href="../Im/Imagine+(song).xml" xlink:type="simple">
Imagine</link>
</entry>
<entry>

<link xlink:href="../Ne/Nena.xml" xlink:type="simple">
Nena</link> :

<link xlink:href="../99/99+L$uftballons.xml" xlink:type="simple">
99 Red Balloons</link>
</entry>
...
<entry>

<link xlink:href="../Qu/Queen+(band).xml" xlink:type="simple">

Queen</link> &

<link xlink:href="../Da/David+B$owie.xml" xlink:type="simple">

David Bowie</link> :

<link xlink:href="../Un/Under+P$ressure.xml" xlink:type="simple">

Under Pressure</link>

</entry>
</list>

Figure 5: Example for an outlier in a list of songs

3.4 Adding Semantic Tags to Pages

Annotations characterize a Wikipedia page and therefore should be stored with the page,

enabling queries of the form “find pages of singers that...”. We therefore add tags that

correspond to the annotations for a page right after the article element (see Figure 6).

The tag names are derived from the WordNet synset that correspond to the annotated

concept. The tags are augmented with the confidence, the ID of the WordNet concept, and

the source of the annotation. In a NEXI-style query language, the example query fragment

would be posed as //singer[about(.,...)], exploiting the new annotation.

<article>
<group confidence="1.0" wordnetid="26729" source="categories">

<artist confidence="0.75" wordnetid="9187509" source="3 lists">
<header>

<title>Queen (band)</title>
<id>42010</id>
...

Figure 6: Excerpt from the semantically annotated ’Queen’ page

At the same time, the annotations of a page are also an important source of information in

other pages that link to the page; this can be exploited for queries like “find concerts where

the band Queen played”. To support this, we add the same tags also to links to the page in

other pages (see Figure 7). Once we have such an annotation of links, the example query

fragment could be formulated as //concert[about(//band,‘‘Queen’’)], ex-

ploiting the fact that any link to the Queen page will be annotated as band (as opposed to

links to the Queen Mary ship or Queen Elizabeth II. of England).

<group confidence="1.0" wordnetid="26729" source="categories">
<artist confidence="0.75" wordnetid="9187509" source="3 lists">

<link xlink:href="../Qu/Queen+(band).xml" xlink:type="simple">
Queen</link>
</artist>

</group>

Figure 7: Semantically annotated version of a link to the ’Queen’ page

4 Exploiting Implicit Semantics of Template Invocations

A rich source of semantics that is already included in Wikipedia are template invocations.

However, unlike in the approaches presented in the previous sections, we exploit template

invocations not for annotating a Wikipedia page as a whole, but for annotating pieces

of information on that page. Templates are often used to generate a standard layout for

structured information that is common to many pages. As an example, Figure 8 shows

the invocation of the Infobox band template that generates a table with some standard

information on a musical band; this information is provided as parameters to the template.

Similar templates exist for persons, countries, companies, rivers, software, and many more.

{{Infobox_band |
band_name = Queen |
image = [[Image:Queen.png|250px|right]] |
years_active = 1971 - Present |
status = Active |
country = [[United Kingdom]]
}}

Figure 8: Example call of the Infobox band template

For most templates, the name of a parameter is a clear indication of its semantics. We

therefore exploit template invocations in a Wikipedia page to enrich the generated XML

document with semantic annotations based on the template parameters. To do so, we

try to map each parameter name to a WordNet concept, using the heuristics explained

in Section 3.2. We then generate an element with the same name as the template. For

each parameter, this element has a child element with the parameter name as name and

the current parameter value as value. Figure 9 shows the XML that is generated for the

example template invocation from Figure 8.

In contrast to the INEX Wikipedia collection that simply represents the template invoca-

tions and their parameters with a generic tag <template>, we believe that our approach

is much more in the spirit of XML, allowing more natural XPath- and NEXI-style queries

<Infobox band>
<band name>Queen</band name>
<image confidence="1.0" wordnetid="3782824" source="template">

<imagelink xlink:type="simple"
xlink:href="../../images/3/32/Queen.png"/>
</image>
<years active>1971 - Present</years active>
<status confidence="1.0" wordnetid="13131686" source="template">

Active
</status>
<country confidence="1.0" wordnetid="8023668" source="template">

<link xlink:href="../Un/United+K$ingdom.xml" xlink:type="simple">
United Kingdom

</link>
</country>

</Infobox band>

Figure 9: XML representation of the template call from Figure 8

such as //article[about(.,’band’) and contains(//country,’USA’)
and contains(//status,’active’). Note that such queries can also be posed

and answered if a user does not exactly know the schema, by relaxing tag names and other

structural query conditions [AY+02, S+05, Sc02], or possibly by support of a DTD-aware

graphical interface [vZ+06].

5 Applications

5.1 Concept-Based Information retrieval

An important application of annotations is concept-based retrieval. Graupmann et al. [G+05]

have shown that annotating important classes of information like persons, locations, and

dates can help to improve result quality, especially precision of results. As YAWN anno-

tates with a huge set of diverse concepts from WordNet, it seems likely that these annota-

tions can lead to further enhancements for the retrieval.

We have not yet done a throrough evaluation of the quality of annotations in general and

their impact on result quality. However, to give a first impression of the use and effective-

ness of annotations, we made some preliminary experiments with our XML search engine

TopX [TSW05] on a small, annotated Wikipedia fragment, with NEXI-style [TS04] struc-

tured queries. We converted the first 10,000 Wikipedia documents (excluding redirections

that contain only a pointer to another document) from the April 2, 2006 dump file into

our XML format with semantic annotations, using the techniques presented in the sections

before. The conversion failed for 49 documents, usually due to syntax problems in the

input Wiki markup or unusual combinations of tables and sections. In our preliminary

implementation, this took less than one hour on a standard notebook (the whole collection

was converted in about 36 hours on a dual Xeon server machine).

We consider three types of queries: (1) queries that exploit only the annotation of complete

pages, optionally with content constraints, (2) queries that exploit the annotation of pages

and links, optionally with content constraints, and (3) queries that additionally exploit

annotations derived from template invocations. We collected 5 to 10 queries of each type

and compared the performance of TopX with annotation-aware queries to plain keyword

queries. Table 1 summarizes the results for the average precision@10 of the three query

classes with and without annotation awareness. Note that we did not measure recall; we

expect that some results will not be found due to errors in the annotation process. We now

discuss some anecdotical results for the three query types.

Query type Precision@10[annotations] Precision@10[keywords]

1 (pages) 0.85 0.24

2 (pages+links) 0.96 0.14

3 (pages+links+templates) 1.0 0.0

Table 1: Experimental results with TopX

A simple example for the first query type are list-style queries like ’find scientists that

won the Nobel prize’ that would be formulated as keyword query scientist nobel
prize without annotation awareness. If we exploit annotations, we can reformulate the

query as //scientist[about(.,Nobel prize)], yielding a lot less nonrelevant

results. For the example collection, TopX achieves a precision@10 of 0.2 for the keyword

query, compared to 0.8 for the annotation-aware query. Here, the additional annotation

serves as a prefilter for pages that simply mention the Nobel prize, but are not about sci-

entists (like the page about Jimmy Carter who won the peace Nobel prize).

A typical example that shows the usefulness of the second query type is the query for

musicians who have performed a song where ’space’ occurs in the title, which could be

formulated as //musician[about(//song,space)]. Without the annotation of

the link, a search engine would find any occurrence of the term within the page, not only

in the context of a song. As a result, the precision of the annotation query is perfect (1.0),

whereas the corresponding keyword query finds no relevant results within the top 10.

The last query type is most powerful as it can exploit all three types of annotations. As an

example, consider the query ’find mayors of towns in the (German state) Hesse’. While a

keyword-based query has no chance to retrieve relevant results, the annotation-aware query

//town[about(//state,Hesse)]//mayor that exploits tags introduced by the

template Infobox Town DE yields only relevant results in the test collection. However,

as not all city pages may use such a template, the recall is probably not perfect. To increase

recall (at the cost of precision), using ontological tag expansion and structural similarity

measures in the engine could help; this is subject of future work.

5.2 Other Applications

There are many more applications for an annotated XML corpus beyond the obvious in-

formation retrieval case sketched in the previous subsection, for example to help with

clustering and classification of Wikipedia pages. The annotations can further be exploited

for query formulation, by letting a user pick concepts from WordNet and combine them to

form a structured query, similar to the DTD-aware query formulation presented in [vZ+06].

The diverse structure introduced by the annotations will most certainly be a rich source for

structural feedback [ST06] that exploits the structure of relevant results to generate more

precise queries. And, finally, being the first real-life heterogeneous XML collection with

both rich tags and content, we think that our new collection can serve as a large-scale

benchmark for systems that exploit semantic annotation for retrieval, classification, clus-

tering, etc, extending existing benchmarks with structural diversity.

6 Conclusions and Outlook

This paper presented YAWN, a project to create an XML version of Wikipedia with seman-

tic information. We showed how to extract semantics from categories, lists, and template

invocations, yielding a huge XML corpus annotated with semantically rich tags.

For future work, we plan to extensively evaluate the quality of the annotations and their ef-

fect for information retrieval, possibly within the INEX benchmark, and to consider some

of the applications sketched in the previous section. Besides that, we will examine how

we can integrate the collected information into our ontology and exploit it for other data

sources, too. Finally, we plan to offer the annotated XML collection for public download.

References

[AFG03] Abolhassani, M., Fuhr, N., und Gövert, N.: Information extraction and automatic markup
for XML documents. In: Blanken u. a. [B+03]. S. 159–174.

[Ag05] Agichtein, E.: Scaling information extraction to large document collections. IEEE Data
Eng. Bull. 28(4):3–10. 2005.

[AGM03] Arasu, A. und Garcia-Molina, H.: Extracting structured data from Web pages. In:
SIGMOD 2003. S. 337–348. 2003.

[Au05] Aumüller, D.: Semantic authoring and retrieval in a wiki. In: European Semantic Web
Conference ESWC2005. 2005.

[AY+02] Amer-Yahia, S. u. a.: Tree pattern relaxation. In: EDBT 2002. S. 496–513. 2002.

[B+03] Blanken, H. M. u. a. (Hrsg.): Intelligent Search on XML Data. volume 2818 of Lecture
Notes in Computer Science. Springer. 2003.

[BG06] Buffa, M. und Gandon, F.: SweetWiki: Semantic Web enabled technologies in Wiki. In:
ACM 2006 International Symposium on Wikis. S. 69–78. 2006.

[BR01] Böhme, T. und Rahm, E.: XMach-1: A Benchmark for XML Data Management. In:
BTW 2001. S. 264–273. 2001.

[CC+06] Chu-Carroll, J. u. a.: Semantic search via xml fragments: a high-precision approach to
ir. In: SIGIR 2006. S. 445–452. 2006.

[CMM02] Crescenzi, V., Mecca, G., und Merialdo, P.: RoadRunner: Automatic data extraction
from data-intensive Web sites. In: SIGMOD 2002. S. 624. 2002.

[CS04] Cohen, W. W. und Sarawagi, S.: Exploiting dictionaries in named entity extraction:
combining semi-markov extraction processes and data integration methods. In: KDD
2004. S. 89–98. 2004.

[Cu02] Cunningham, H.: GATE, a general architecture for text engineering. Comput. Humanit.
36:223–254. 2002.

[DG06] Denoyer, L. und Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum. 40(1):64–69.
June 2006.

[E+05] Etzioni, O. u. a.: Unsupervised named-entity extraction from the web: An experimental
study. Artif. Intell. 165(1):91–134. 2005.

[Fe98] Fellbaum, C. (Hrsg.): WordNet: An Electronic Lexical Database. MIT Press. 1998.

[FFT05] Fazzinga, B., Flesca, S., und Tagarelli, A.: Learning robust web wrappers. In: DEXA
2005. S. 736–745. 2005.

[G+04] Gottlob, G. u. a.: The Lixto data extraction project – back and forth between theory and
practice. In: PODS 2004. S. 1–12. 2004.

[G+05] Graupmann, J. u. a.: The spheresearch engine for unified ranked retrieval of heteroge-
neous xml and web documents. In: VLDB 2005. S. 529–540. 2005.

[M+05] Mavroeidis, D. u. a.: Word sense disambiguation for exploiting hierarchical thesauri in
text classification. In: PKDD 2005. S. 181–192. 2005.

[S+02] Schmidt, A. u. a.: XMark: A Benchmark for XML Data Management. In: VLDB 2002.
S. 974–985. 2002.

[S+05] Schenkel, R. u. a.: Semantic similarity search on semistructured data with the XXL
search engine. Information Retrieval. 8(4):521–545. December 2005.

[S+06] Suchanek, F. M. u. a.: Leila: Learning to extract information by linguistic analysis. In:
2nd Workshop on Ontology Population (OLP2) at ACL/COLING. 2006.

[Sc02] Schlieder, T.: Schema-driven evaluation of approximate tree-pattern queries. In: EDBT
2002. S. 514–532. 2002.

[So05] Souzis, A.: Building a semantic wiki. IEEE Intelligent Systems. 20:87–91. 2005.

[ST06] Schenkel, R. und Theobald, M.: Structural feedback for keyword-based xml retrieval.
In: ECIR 2006. S. 326–337. 2006.

[TS04] Trotman, A. und Sigurbjörnsson, B.: Narrowed Extended XPath I (NEXI). In: INEX
Workshop 2004. S. 16–40. 2004.

[TSW05] Theobald, M., Schenkel, R., und Weikum, G.: An efficient and versatile query engine
for topx search. In: VLDB 2005. S. 625–636. 2005.

[V+06] Völkel, M. u. a.: Semantic wikipedia. In: WWW. S. 585–594. 2006.

[vZ+06] van Zwol, R. u. a.: Bricks: The building blocks to tackle query formulation in structured
document retrieval. In: ECIR 2006. S. 314–325. 2006.

