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The occurrence of highly conserved amyloid-forming sequences in Candida albicans Als proteins (H. N. Otoo
et al., Eukaryot. Cell 7:776–782, 2008) led us to search for similar sequences in other adhesins from C. albicans
and Saccharomyces cerevisiae. The �-aggregation predictor TANGO found highly �-aggregation-prone se-
quences in almost all yeast adhesins. These sequences had an unusual amino acid composition: 77% of their
residues were �-branched aliphatic amino acids Ile, Thr, and Val, which is more than 4-fold greater than their
prevalence in the S. cerevisiae proteome. High �-aggregation potential peptides from S. cerevisiae Flo1p and C.
albicans Eap1p rapidly formed insoluble amyloids, as determined by Congo red absorbance, thioflavin T
fluorescence, and fiber morphology. As examples of the amyloid-forming ability of the native proteins, soluble
glycosylphosphatidylinositol (GPI)-less fragments of C. albicans Als5p and S. cerevisiae Muc1p also formed
amyloids within a few days under native conditions at nM concentrations. There was also evidence of amyloid
formation in vivo: the surfaces of cells expressing wall-bound Als1p, Als5p, Muc1p, or Flo1p were birefringent
and bound the fluorescent amyloid-reporting dye thioflavin T. Both of these properties increased upon
aggregation of the cells. In addition, amyloid binding dyes strongly inhibited aggregation and flocculation. The
results imply that amyloid formation is an intrinsic property of yeast cell adhesion proteins from many gene
families and that amyloid formation is an important component of cellular aggregation mediated by these
proteins.

Protein amyloids are characteristic of pathological condi-
tions, including neurodegenerative diseases (4, 11, 17, 38).
These protein aggregates can also occur naturally in adhesive
bacterial curli (3), melanosomes (14), condensed peptide hor-
mone arrays (24), as regulatory prions in yeast (2, 5), and
fungal hydrophobins, which are nonantigenic coats to some
fungi (1, 33, 39). Nevertheless, such natural occurrences are
relatively few, considering the negative free energy for amyloid
formation (28).

We have recently discovered that there are amyloid-forming
sequences in the cell surface Als adhesins of Candida albicans.

Cells that express these adhesins aggregate readily, and the
aggregation has amyloid-like properties, including protein con-
formational shifting, surface birefringence, and ability to bind
the amyloid-active dyes Congo red and amino-naphthalene
sulfonic acid (ANS) (29). A five- to seven-residue sequence in
Als1p, Als3p, and Als5p has extremely high potential for for-
mation of �-aggregates, according to the protein state predic-
tion program TANGO (13, 27, 31). Such �-aggregates include

amyloids, which are ordered structures with paracrystalline
regions of stacked parallel �-strands that are perpendicular to
the long axis of micrometer-long fibrils. The strands are stabi-
lized by interaction of identical sequences from many protein
molecules (31, 32). Where TANGO analyses have shown that
specific sequences have �-aggregate potentials greater than
20%, an insoluble �-aggregate state is likely to form. These
�-aggregates nucleate formation of amyloids if the proteins
can associate to form fibers (13, 27, 31). Sequences in the
conserved 127-residue T region of Als1p, Als3p, and Als5p
have �-aggregation potentials of �90% (27). An oligopeptide
with this sequence, as well as 412- and 645-residue fragments
of Als5p formed authentic amyloids, as determined by charac-
teristic dye binding and fiber morphology. The amyloid-form-
ing sequences were rich in the �-branched amino acids Thr,
Val, and Ile. This amino acid composition is unusual among
proteins in general, but is common in the Thr-rich mid-piece
domains of yeast adhesins.

Yeasts display many cell-wall-bound adhesins that mediate
colonial and biofilm interactions as well as host-pathogen bind-
ing (9, 21, 41). Such adhesins have a common mosaic structure.
In general, the adhesins have N-terminal globular binding do-
mains (often immunoglobulin-like or lectin-like), Thr-rich
mid-piece sequences including tandem repeats, and 300- to
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800-residue heavily glycosylated Ser and Thr-rich “stalk” do-
mains near the C-terminal domain that extend the active re-
gions from the surface of the wall. The adhesins are covalently
cross-linked to wall polysaccharides through modified glyco-
sylphosphatidylinositol (GPI) anchors and/or glycosyl esters of
glutamic acid (9, 18).

Because the yeast adhesins share this common modular do-
main structure, we searched among known and putative yeast
adhesins for sequences with high �-aggregation potential. We
have found that many of these proteins share amyloid-forming
sequences and amyloid-like behavior on activation.

MATERIALS AND METHODS

Throughout, protein and gene names are preceded by their species abbrevia-

tion: “Ca” for C. albicans and “Sc” for Saccharomyces cerevisiae.

Approximately 110 sequences of fungal and bacterial adhesins, other yeast cell

wall proteins, and intracellular controls were screened in TANGO (http://tango

.crg.es/) (13) with default settings for pH, ionic strength, and temperature. Test

screenings at pH 5 and/or low ionic strength did not significantly alter the results.

Because TANGO can only accommodate sequences of 500 residues or less,

longer sequences were screened in segments of 500 residues with 50-residue

overlaps. Control sequences included non-adhesin cell wall proteins, represen-

tative intracellular enzymes, and randomized sequences with the same amino

acid composition as the test sequences. Regions with predicted �-aggregation

occupancies of �30% were listed and analyzed.

Expression of CaAls5p1–1351. We have not previously expressed a soluble

version of CaAls5p that included the Ser/Thr-rich C-terminal stalk region. A

version lacking the 68 C-terminal residues (with the GPI addition signal

deleted) was produced by PCR using a forward primer 5�ACAACTACCAA

CTGCTAACACCAGATG3� (the start codon is underlined) and reverse

primer 5�TCGACCTTCAATAGCACTGTCTCCATTCA3�. The product was

ligated into pYES2.1 TOPO-TA (Invitrogen), adding C-terminal V5 epitope

and His6 tags. The insert was fully sequenced and found to have the predicted

sequence. S. cerevisiae transformants were grown with galactose as the carbon

source, and the secreted protein was purified by concentration and His-Trap

chromatography in a procedure similar to that used for shorter versions (27).

SDS gel electrophoresis of the purified protein showed that the V5 epitope was

not reactive. Coomassie blue staining showed a positive band with an apparent

size of �150 kDa, as expected for this highly glycosylated protein (data not

shown). Precipitates spontaneously formed when the purified protein was stored

at 4°C. These precipitates were collected and sonicated before being assayed for

amyloid formation.

Expression of other proteins. Soluble ScMuc1p1–1331 was purified from super-

natants of cells expressing from plasmid pHis-PGK1-MUC1 in S. cerevisiae var.

diastaticus strain YIY 345 (8). The secreted protein was dialyzed into phosphate-

saline buffer, pH 7.4, and stored at 4°C. The Als1-expressing plasmid pADH-

ALS1 was a gift from F. Yu, UCLA, and was expressed in W303-1B (36).

ScFlo1p was expressed on the surface of strain BX24-2B, purchased from ATCC

(Manassas, VA).

Peptides. SNGIVIVATTRTV (CaAls1p positions 322 to 334 [CaAls1p322–334];

GenBank accession XM_712917.1; CaAls3p322–334, accession no. AAO72958.1;

and CaAls5p322–334, accession no. O13368), HTAVTTGVTIITVTND

(CaEap1p117–133, accession no. XP_71466.1), and TDETVIVIRTP (ScFlo1305–315

and other repeats, accession no. NP_009424), EVTTGVVVVTSEE

(CaHwp1p380–392, accession no. EU477610.1; and CaRbt1p432–443, accession no.

AF254142.1), and VTTVVSTTVVTT (ScMuc1p/Flo11p1031–1042, GenBank ac-

cession no. ABS87372.1) were synthesized by the Rockefeller University Pro-

teomics Facility. The CaHwp1p and ScMuc1p peptides were insoluble in all

tested solvents and were not purified or further studied. The purified CaAls,

CaEap1p, and ScFlo1p peptides were suspended in hexafluoro-isopropanol,

dried to a film, and then resuspended at 1.0 or 0.5 mg/ml in 10 mM Tris-EDTA

buffer, pH 7.0, or phosphate-saline and stirred for periods up to several weeks at

4°C before being assayed for presence of amyloid (26).

Amyloid assays. Congo red and thioflavin T binding assays for in vitro amy-

loids, as well as transmission electron microscopy (TEM) of negative-stained

fibers were carried out as previously described (10, 27). Far-UV circular dichro-

ism spectroscopy was carried out on a Chirascan spectrometer scanning from 180

to 260 nm. The amyloid-forming peptides and proteins were negative stained

with uranyl acetate and examined under transmission electron microscopy (27).

Birefringence and fluorescence microscopy of cellular aggregates were per-

formed as previously described (29). Cells and cellular aggregates were treated

with thioflavin T at 30 �M in Tris-EDTA buffer (10 mM each, pH 7.0), washed

twice in the same buffer, and observed at 480 to 540 nm, with excitation at 425

to 440 nm.

Aggregation assays. Aggregation assays for Als adhesins were carried out as

previously described (15). Briefly, 108 S. cerevisiae cells expressing CaAls1p or

CaAls5p were mixed with 106 magnetic beads covalently derivatized with heat-

denatured bovine serum albumin (BSA) in 0.1 M sodium acetate buffer, pH 5.5

(15). The suspension was agitated gently for 45 min before microscopic obser-

vation.

Assays for flocculation mediated by ScFlo1p or ScMuc1p/Flo11p were carried

out as described by Lo and Dranginis, using 3 � 107 cells/ml prewashed with

EDTA to inhibit flocculation before assay. Flocculation was initiated by addition

of 0.67 mM CaCl2; unless otherwise stated, the suspension was vortexed for 5 s,

and the optical density at 600 nm (OD600) was monitored at 5-s intervals in a

Spectronic 20 D� spectophotometer.

RESULTS

Adhesin sequences. We screened 70 extracellular proteins
from fungi and bacteria for sequences with high �-aggregation
potential in TANGO (13). Adhesins from seven tested C. al-

bicans and S. cerevisiae adhesin gene families contained one,
two, or three internal sequences that TANGO predicted to
have very high frequency of �-aggregate states (Table 1). The
frequency of adhesins with predicted amyloid-forming se-
quences increased to 19 of 20 when all paralogous loci were
included, although not all paralogs are listed in Table 1 (27).
Thus, the results in Table 1 represent several unrelated adhe-
sin gene families: CaHWP/RBT, CaEAP1, and CaEPE1, as well
as ScFLO1, ScMUC1 (alternately designated ScFLO11), and
ScAGA1/FIG2, as well as CaALS. The exceptional adhesin was
ScSag1p. In several cases, the sequence and position of the
�-aggregation-prone sequences were conserved among paral-
ogs (CaALS, CaHWP/RBT, and ScFLO1 gene families) (Table
1) (27).

Conserved, highly �-aggregation-prone sequences were also
present in Als homologs from Candida dubliniensis and C. tropi-

calis, as well as in some orthologs from Debaryomyces hanseni.

There was also a similar �-aggregation-prone sequence in a pre-
dicted GPI-anchored protein from Aspergillus niger (data not
shown). Several bacterial adhesins also had �-aggregation-prone
sequences similarly rich in these aliphatic �-branched residues:
Borrelia burgdorferi OspC, Streptococcus gordonii CshA, and Strep-

tococcus mutans AtlA (data not shown). CaSap3, a GPI-anchored
protease with a similar sequence, is also included in Table 1.

These adhesin �-aggregation-prone sequences had an unusual
composition: they were highly enriched for the �-branched ali-
phatic amino acids Ile, Thr, and Val (Table 1). The widespread
occurrence of these potentially amyloid-forming sequences, their
unusual composition, and their conservation across paralogs led
us to test whether they could in fact form amyloids.

Soluble Als5p forms amyloids. We have demonstrated that
13-, 414-, and 647-residue fragments of CaAls5p adhesins form
amyloid fibers under physiological conditions (27). We re-
peated these experiments with a soluble version derived from
construct expressing CaAls5p1–1351, which lacks only the nu-
cleotides encoding the C-terminal 68 amino acid residues. Like
the smaller fragments, the purified protein rapidly precipitated
from neutral buffer at submicromolar concentrations. Like
other amyloids, the precipitate enhanced and red-shifted the
absorbance spectrum of Congo red and enhanced the fluores-
cence of thioflavin (Fig. 1A) (10, 26, 27). Negative-stain trans-
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mission electron microscopy showed uniform fibers 14 nm in
diameter (Fig. 2A). The fibers were smooth, with uniform
diameter, and appeared to be composed of smaller fibrils of a
few nm in diameter. There were also amorphous and discoidal
aggregates throughout the field (arrowhead). These are similar
to structures seen with shorter fragments of CaAls5p (27).

ScMuc1p1–1331 forms amyloids. Soluble ScMuc1p was col-
lected from supernatants of cells expressing the protein from
plasmid pHis-PGK1-MUC1 (8). The secreted protein was di-
alyzed into phosphate-saline buffer, pH 7.4, and stored at 4°C.
Within a few days, precipitates formed as previously observed
(8). These protein suspensions increased fluorescence of thio-
flavin T and increased absorbance and red-shifted Congo red

solutions (Fig. 1B). Electron microscopy showed short fibers of
5 nm in diameter and a 15-nm diameter fiber with the appear-
ance of a braided rope (Fig. 2B).

Synthetic peptides of the high �-aggregate potential se-

quence form amyloids. Peptides were synthesized correspond-
ing to the high �-aggregate potential sequences of C. albicans

Eap1p and S. cerevisiae ScFlo1p, each sequence flanked with
non-amyloid-forming natural sequence residues at each end
(see Materials and Methods). The peptides were suspended in
neutral buffer and assayed for amyloid formation.

The peptide from ScFlo1p also formed amyloids. Stirred
suspensions showed circular dichroism (CD) spectra charac-
teristic of �-aggregation. Congo red absorbance was slightly
increased and red-shifted (Fig. 1C). In all trials, the absor-
bance increased and shifted with stirring and incubation at 4°C.
Thioflavin T fluorescence increased over 48 h of stirring and
showed 2-fold enhancement after several months. The fiber
morphology was ribbon-like, with typical fibers of 2.7 nm in
diameter clearly braided into larger ropes and aggregates (Fig.
2C). A dense mat of these small “proto-fibrils” is clearly visible
in the right-hand micrograph.

CD spectra of the CaEap1p peptide showed no secondary
structure in fresh suspensions, but developed minima charac-
teristic of �-sheets (215 nm) and �-aggregation (235 nm)
within 48 h and persisted over 2 months of incubation (data not
shown). Within 48 h of suspending the peptide, Congo red
absorbance spectra showed increased absorbance and red-
shifting characteristic of amyloid formation (Fig. 1D). Simi-
larly, thioflavin T fluorescence emission increased three- to
4-fold, also characteristic of amyloids (Fig. 1). Electron micros-
copy showed 3.5- to 7-nm-diameter fibers in braided structures
characteristic of amyloids (Fig. 2D) (42).

Cell adhesion amyloids in vivo. To obtain evidence as to
whether or not amyloid formation is present in vivo, we looked
for amyloids in intact cells. S. cerevisiae cells expressing
CaAls5p are markedly birefringent in polarization microscopy
during aggregation (i.e., they show light and dark regions when
examined between crossed Polaroid filters), whereas nonex-
pressing cells or nonaggregated cells are not as birefringent
(29). Similarly, aggregated C. albicans cells are birefringent
under conditions that maximize expression of CaAls1p, but
show less birefringence when unaggregated (29) or when
CaAls protein expression is minimal (unpublished data).

When we examined cells expressing ScMuc1p or ScFlo1p
flocculins, we also saw birefringence, a characteristic of or-
dered structures like amyloids (Fig. 3A and C). Cells express-
ing ScFlo1p were slightly more birefringent than W303-1B
(Fig. 3A and E) and became more birefringent upon initiation
of flocculation by addition of Ca2� (Fig. 3B and F). For cells
expressing ScMuc1p, the birefringence was minimal in the ab-
sence of Ca2� and increased when flocculation was induced
with Ca2� (Fig. 3C and D). Thus, like the CaAls adhesins, the
ScFlo1p and ScMuc1p flocculins showed increased birefrin-
gence upon cell aggregation.

Amyloids bind thioflavin T and greatly enhance its fluores-
cence, but the dye does not inhibit amyloid formation at low
concentrations (Fig. 1) (10). Therefore, we stained intact yeast
cells with thioflavin T and inspected them by fluorescence
microscopy. Figure 4 shows that few cells of S. cerevisiae strain
W303-1B bound to the beads (panel A). When CaAls5p or

TABLE 1. �-Aggregation-prone sequences in yeast adhesins

Proteina �-Aggregation
sequenceb

% �-
Aggregation

Ile, Val, and Thr
content (%)

C. albicans
Als1c IVIVA 90 80

Als5c IVIVA 93 80

Eap1 AYTTT
VITV

70 78

VTTGVTI
ITVT

90 91

TVITV 36 100

Ece1 IIGIIMGIL 65 56
VIQIIMSIV 66 60

Hwp1 VTTGVIVIT 82 89
TGVVVVT 98 86

Hwp2 AIVVT 42 80

Rbt1 GVVVV 58 80
VTTGV
VVVT

75 89

Sap3 LTVVI 50 80

S. cerevisiae
Aga1 TILVTIT 86 88

ILLF 39 25

Fig2 TWVVI 68 80
LVLSTVT 38 57

Flo1d TVIVI 42 100
TVIVI 43 100
TLVTVT 34 100

Muc1 VVSTTV 75 83
VTTAVT
TTVV

52 90

Sag1 None

a Accession numbers: CaAls1, XM_712917.1; CaAls5p, O13368; CaEap1,
XP_71466.1; CaEce1p, DQ465883.1; CaHwp1, EU477610.1; CaHwp2, XP_711600;
CaRbt1, AF254142.1; CaSap3, L22358.1; ScAga1, P32323; ScFig2, P25653; ScFlo1,
NP_009424; ScMuc1/Flo11, ABS87372; ScSag1p, NP_012537.

b Sequence of amino acids with �-aggregation potential of �30%, as predicted
by TANGO.

c Sequences are also present in other CaAls proteins (27).
d Similar sequences are also present in ScLG-Flo, ScFlo5p, and ScFlo9p (9).
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FIG. 1. Congo red absorbance (left column) and thioflavin T fluorescence (right column) of suspended adhesion proteins and peptides. Control
spectra are solid lines, and spectra taken in the presence of aggregates are dashed. Congo red spectra show aggregate-dependent enhancement
and red-shifting. Thioflavin T fluorescence in increased 2- to 30-fold in the presence of the aggregates: CaAls5p1–1351 (A), ScMuc1p1–1331 (B),
ScFlo1p305–315 (C), and Eap1p117–133 (D).
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CaAls1p was expressed in these cells, they aggregated well in
the presence of beads, but with no increase in background
fluorescence (Fig. 4B and C). When the aggregated cells were
stained with thioflavin T, the aggregated cells fluoresced
brightly (Fig. 4D to F). Cells concentrated by centrifugation
were less bright than aggregated cells (Fig. 4G to I). Under
these conditions, thioflavin T did not inhibit CaAls-mediated
binding to BSA-coated beads or cell-to-cell aggregation (Fig. 4,
compare panels B versus E and C versus F). Thus, thioflavin T
specifically stained cells expressing CaAls proteins, and fluo-
rescence was brighter in aggregated cells.

There were similar results for cells expressing the flocculins
ScFlo1p or ScMuc1p (Fig. 5). Thioflavin T stained the cells,
and the staining was brighter after Ca�2-induced flocculation

than in nonflocculating samples. Therefore, thioflavin T fluo-
rescence was seen in S. cerevisiae cells expressing any of the
tested amyloid-forming proteins, and the fluorescence was
greater in the aggregates than in nonaggregated cells.

Effects of amyloid-binding dyes on cellular aggregation. The
ability of yeast adhesins to form amyloids raised the question
of whether amyloid formation has functional consequences. In
the case of CaAls5p, the amyloid-binding dyes Congo red or
ANS decreased yeast cell aggregation (29). Therefore, we de-
termined whether such dyes would have similar effects on ag-
gregation mediated by the highly expressed adhesin CaAls1p.
In aggregation assays with magnetic beads coated with heat-
denatured BSA, the dyes Congo red (1 mM), thioflavin S (1.5
mM), and thioflavin T (1.5 mM) attenuated cell-to-cell aggre-
gation of cells expressing CaAls5p or CaAls1p (Fig. 6) (29). At
these dye concentrations, cells expressing CaAls1p retained
their ability to bind to the beads (Fig. 6F, I, and L). At higher
concentrations, all binding was abolished (not shown). For the
cells expressing CaAls5p, Congo red and thioflavin S abolished
all binding, but cell-to-bead binding persisted in 1.5 mM thio-
flavin T (Fig. 6I). Therefore, amyloid-binding dyes attenuated
aggregation caused by CaAls1p as well as CaAls5p, and the
effective concentrations were in the low-mM range.

We also tested the effect of amyloid-binding dyes on floccu-
lation of S. cerevisiae cells expressing the flocculins ScFlo1p or
ScMuc1p. Such cells flocculate, or form large aggregates, in the
presence of Ca2� ions (9, 23). Congo red, which binds to and
disrupts amyloids (12), inhibited flocculation caused by either
flocculin at concentrations as low as 30 �M, with half-maximal
inhibition at 0.5 mM (Table 2). Thioflavin S was similarly
potent, and completely inhibited the flocculation reaction for
both proteins (Table 2 and Fig. 7A to D). The dyes reduced
both the rate at which the cells flocculated (the initial slope)
and the amount of flocculation (final decrease in OD) (Table
2 and Fig. 7A). The half-maximal inhibitory concentrations of
thioflavin S were 45 �M for ScMuc1p-mediated flocculation
and 100–200 �M for the ScFlo1-mediated reaction (Fig. 7B
and Table 2). Congo red showed half-maximal inhibition at
about 500 �M. ANS had little effect on flocculation, and high
concentrations of thioflavin T mediated a more rapid and
extensive aggregation (Table 2). These dyes do not inhibit
amyloid formation in many cases (12).

Growth of yeast in the presence of Congo red results in
inhibition of wall assembly, because the dye interferes with
formation of polysaccharide fibrils (20, 30). It was unlikely that
this effect was inhibiting flocculation, because the effective
inhibitory concentrations were low and the dyes were present
only during the flocculation assay itself, and not during wall
biogenesis. Nevertheless, we tested whether the inhibitory
dyes inhibited growth of S. cerevisiae. Congo red (30 �M)
and thioflavin T (5 mM) inhibited growth of the flocculating
strains in cell dilution growth assays (data not shown). In
contrast, 190 �M thioflavin S was not growth inhibitory (Fig.
7E). Therefore, thioflavin S did not affect growth, but had
potent antiaggregation effects for interactions mediated by
CaAls1p, CaAls5p, ScFlo1p, and ScMuc1p. In general, there
was no correlation between their growth inhibition and their
effects in aggregation assays: some dyes were cytotoxic but did
not inhibit aggregation, and others inhibited aggregation but
were not cytotoxic.

FIG. 2. Negative-stain transmission electron microscopy of fibers.
Bars are 100 nm in length. (A) CaAls5p1–1351. The arrowhead shows a
less-structured aggregate, and apparent protofibrils are seen in the
lower region of the long fiber. (B) ScMuc1p1–1331. Individual fibrils are
visible in the upper part of the fiber. (C) ScFlo1p305–315. Note many
smaller wavy fibrils in the background. (D) Eap1p117–133. There are
both fibers (arrow) and ribbons (arrowhead) visible.
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DISCUSSION

Amyloid sequences in yeast adhesins. We conclude that
many families of adhesins of ascomycetous yeasts have se-
quences that can and do form amyloids under physiological
conditions involving concentration and pH (13, 27). Support-
ing evidence showed that several of these adhesins formed
amyloids in vivo and that amyloid formation was an integral
part of cellular aggregation reactions.

Peptide or protein sequences from four different adhesin
families formed insoluble amyloids at low concentrations and
neutral pH (Fig. 1 and 2). These results validated the TANGO
predictions for these sequences. For each, amyloid formation
was rapid and voluminous: the large proteins precipitated rap-
idly, making spectroscopy of purified proteins difficult within a
few days of isolation (data not shown). These adhesin se-
quences thus appeared to have a uniform ability to rapidly
form amyloid when soluble, at neutral pH or native acidic pH,

and at low (nM to �M) concentrations. These concentrations
are lower than those typically found on cell surfaces (9, 35).

The exceptional adhesin without a high �-aggregation po-
tential sequence was S. cerevisiae mating adhesin �-agglutinin,
Sag1p. Nevertheless, mating requires the Sag1 ligand a-agglu-
tinin, including the anchorage subunit ScAga1p, which has two
strong �-aggregation potential sequences and spontaneously
aggregates when purified (35). Therefore, even though
ScSag1p does not have a strong �-aggregation sequence, mat-
ing requires a protein that has these sequences (9, 16).

Amyloid sequences in nonadhesin cell wall proteins. TANGO
also identified high �-aggregation potential sequences in non-
adhesin surface proteins. These included some proteases:
Yapsins from S. cerevisiae and Saps from C. albicans (Table 1)
(data not shown). Other yeast cell wall proteins also had po-
tential amyloid sequences, including the alkaline phosphatases
ScPho8p, ScPho10p, and ScPho13p, the invertase ScSuc2p,

FIG. 3. Birefringence of cells expressing flocculins. S. cerevisiae cells were analyzed between polarizing filters with a 20� objective under
bright-field conditions. The paired micrographs show identical fields between parallel (outer images) and crossed polarizing filters (central images)
in the absence (left) or presence (right) of 0.67 mM Ca2�. The strains were BX24-2B (A and B), YIY345/pHis-PGK1-MUC1 (C and D), and
W303-1B (E and F).
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FIG. 4. Thioflavin T (ThT) staining of cells expressing CaAls proteins. Shown are paired bright-field and fluorescence micrographs of S.
cerevisiae W303-1B transformed with the empty vector (EV; no insert) or vectors encoding CaAls5p or CaAls1p. (A to C) Designated cells were
aggregated with BSA-coated beads. Bright-field micrographs in the top row show dark spherical 2.8-�m beads interspersed with gray-colored yeast
cells, which are spheroidal and larger. The bottom row shows fluorescence of the same field. (D to F) The indicated cells were aggregated with
beads and then stained with thioflavin T. Bright-field micrographs are in the top row, and fluorescence of the corresponding field is shown below.
(G to I) The indicated cells were concentrated by centrifugation and stained with thioflavin T. The fluorescence micrographs are on top, with the
corresponding bright-field images shown below.
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and the transglycosylase ScGas1p, although as a class, the
amino acid compositions were not enriched for the �-branched
aliphatic amino acids. Remarkably, there were no predicted
amyloid-forming sequences in structural cell wall proteins, in-
cluding ScCwp1p, ScCwp2p, and ScPir1p, ScTir1p, ScDan1p,
or ScDan4p. Thus, the potential amyloid-forming sequences
were found primarily in proteins with adhesin or enzyme ac-
tivity, and the unusual composition was present mostly in the
adhesins.

Amino acid composition. The adhesins have a high fre-
quency of the �-aggregation-prone sequences, and the amino
acid composition of these sequences was highly biased in a way
uncommon for amyloid-forming sequences in general (13, 22,
32). The amino acids Ile, Thr, and Val constituted 77% of the
adhesin TANGO high �-aggregation regions (Table 1). In con-
trast, these three residues constitute 18% of the S. cerevisiae

proteome and are enriched to 31% in wall proteins (7). These
�-branched aliphatic amino acids were much less frequent in

FIG. 5. Thioflavin T staining of S. cerevisiae cells expressing ScFlo1p or ScMuc1p. Indicated strains were stained and visualized under
bright-field (top and bottom rows), with matched fields for thioflavin T fluorescence in the middle two rows. Flocculation was induced with added
Ca2� for the images in the bottom two rows: left column, W303-1B; middle column, strain BX24-2B; right column, strain YIY345.
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high �-aggregation-potential sequences from intracellular pro-
teins and random sequences. High TANGO �-aggregation po-
tential sequences from yeast cell surface proteins that are not
adhesins had 36% Ile, Thr, and Val residues, and in 62 se-
quences with high �-aggregation potential from intracellular
proteins, these residues were only 26%. Thus, the enrichment
of Ile, Thr, and Val was a unique property of the yeast adhesin
sequences and may contribute to their unusual ability to rap-
idly form amyloids under physiological conditions.

Ile, Thr, and Val residues have aliphatic �-branched side
chains that greatly restrict backbone conformation and have
high �-strand potential (6). These residues are very hydropho-

bic, bulky, and have side-chain interactions that stabilize the
�-sheets in amyloids. These properties are what we might ex-
pect in sequences whose primary purpose is to form amyloids.
In contrast, the adhesin sequences had very few aromatic res-
idues, which are the major category of �-aggregation- and
amyloid-prone sequences in other proteins. Thus, the �-aggre-
gation-prone sequences in the adhesins are also biased against
aromatic residues. We suggest that the unusual composition of
the adhesin amyloid sequences leads to the unusually facile
amyloid formation that these peptides and proteins display.

These sequences are strongly conserved in the CaAls, ScFlo,
and CaHwp/Rbt gene families (Table 1) (27). Such sequence

FIG. 6. Aggregation assays with S. cerevisiae cells expressing CaAls proteins. Strain W303-1B cells carrying an empty vector or expressing the
designated protein were aggregated with heat-denatured BSA-coated magnetic beads, and the beads and adherent cells were separated and
examined by light microscopy (�40 magnification). Dark spherical 2.8-�m beads are interspersed with the gray-colored cells, which are spheroidal
and slightly larger. Assays were carried out in the presence of amyloid-binding dyes as indicated: CR, Congo red; ThT, thioflavin T; and ThS,
thioflavin S.

VOL. 9, 2010 AMYLOID-FORMING SEQUENCES IN YEAST ADHESINS 401

http://ec.asm.org/


conservation among paralogs is unusual in evolution, because
paralogs generally diversify in function and therefore diverge
faster than orthologs (25). Therefore, the result supports our
previous observation of positive selection for amyloid se-
quences in the CaALS gene family (27).

A role for amyloid formation in cell adhesion. Our results
strongly support a functional role for amyloid formation in
yeast cell adhesion. We have demonstrated that diverse yeast
adhesins can form amyloids under native conditions of pH and
at concentrations that are lower than those found in vivo. Yeast
cells themselves showed surface birefringence and binding of
thioflavin T (39), both characteristics of amyloids, and in at
least the cases of CaAls- and ScMuc1-mediated aggregation,
these characteristics increased in aggregates relative to nonag-
gregated cells.

The aggregation reactions were inhibited or potentiated by
dyes that bind to amyloids. Notably, thioflavin S inhibited each
aggregation reaction at �M concentrations and was not toxic

TABLE 2. Effect of amyloid-binding dyes on flocculation

Dye and flocculin
expressed

Rate of flocculation
(% of control)

Extent of flocculation
(% of control)

ANS (1.0 mM)
Flo1p 109 107
Muc1p 205 122

Congo red (0.50 mM)
Flo1p 49 59
Muc1p 60 60

Thioflavin S (0.19 mM)
Flo1p 49 45
Muc1p 0 6

Thioflavin T (5 mM)
Flo1p 384 239
Muc1p 227 191

FIG. 7. Effects of thioflavin S on flocculent strains of S. cerevisiae. (A) Flocculation assays in the presence of increasing concentrations of
thioflavin S. (A) Strain BX24-2B expressing ScFlo1p flocculating in the presence of CaCl2 (667 �M); (B) strain YIY345 expressing ScMuc1p
flocculating in the presence of CaCl2 (667 �M); (C) dose-response analysis of effect of thioflavin S on rates of ScMuc1p-mediated flocculation;
(D) dose-response analysis of effect of thioflavin S on rates of ScFlo1p-mediated flocculation; (E) growth inhibition assay. Serial dilutions of the
indicated strains were grown on the indicated media.
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or growth inhibitory to the cells. In the flocculation reactions,
all the inhibitory compounds were active at concentrations that
were well below those reported for most haptenic oligosaccha-
rides, which bind to the lectin-like domains in ScFlo1p and
ScMuc1p (9, 19, 34). Moreover, thioflavin T, which is used to
monitor amyloid formation because it often does not inhibit
amyloid formation (10, 12), actually potentiated flocculation.
Therefore, for each type of adhesion assayed here, amyloid-
binding compounds affected the aggregation reactions at low
concentrations.

Some sequelae of amyloid formation are predictable from
thermodynamic considerations. Formation of a multimeric ag-
gregate of adhesins at the cell surface will increase the avidity
of the adhesins by increasing local adhesin concentration (Fig.
8). Such “bundling” increases the probability that a ligand that
dissociates from one adhesin molecule will rapidly bind to
another adhesion molecule in the same cluster. The measured
result is a marked decrease in the macroscopic dissociation
rate, koff, and a correspondingly smaller dissociation constant,
KD (9, 35). A commonly cited example of this phenomenon is
the distinction between antibody affinity (the measured disso-
ciation constant KD for a monomeric Fab), and its avidity (the
measured KD for the intact multimeric IgG or IgM molecule).
Therefore, amyloid formation like that illustrated in Fig. 8 can
greatly increase the intercellular binding strength by increasing
avidity. The apparent increase in the amyloid state on aggre-
gation (Fig. 3 to 5) and the inhibition of aggregation by amy-
loid inhibitory dyes (Fig. 6 and 7) imply that amyloids form
between adhesion molecules on contacting cells (Fig. 3 to 7)
(29). Such intercellular amyloids would be covalently anchored
to the walls of apposed cells, and so would strengthen inter-
cellular adhesive bonds.

Conclusions. We have demonstrated that many adhesins
from budding yeasts contain amyloid-forming sequences that

have unusual composition and are conserved in paralogous
gene families. The sequences form amyloids under native con-
ditions at low concentrations. In the case of several adhesins,
these amyloids are functional: amyloid inhibitors attenuate
CaAls-, ScFlo1p-, and ScMuc1p-mediated cellular aggregation
(29). (Note that the ScFlo1 amyloid sequence appears five
times in the referenced sequence [NP_009424], including once
in each 90-residue repeat. Adhesive activity increases with the
number of these repeats, so there is a correlation between
the number of amyloid-forming sequences and the adhesive
strength of the intercellular bonds [37, 40].) Thus, amyloid
formation may be more widespread than previously thought as
a mechanism for cell-to-cell interactions, as well as their well-
characterized role in Gram-negative bacteria (3).
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