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Abstract In the yeast Saccharomyces cerevisiae several

nutrient transporters have been identified that possess an

additional function as nutrient receptor. These transporters

are induced when yeast cells are starved for their substrate,

which triggers entry into stationary phase and acquirement

of a low protein kinase A (PKA) phenotype. Re-addition of

the lacking nutrient triggers exit from stationary phase and

sudden activation of the PKA pathway, the latter being

mediated by the nutrient transceptors. At the same time, the

transceptors are ubiquitinated, endocytosed and sorted to

the vacuole for breakdown. Investigation of the signaling

function of the transceptors has provided a new read-out

and new tools for gaining insight into the functionality of

transporters. Identification of amino acid residues that bind

co-transported ions in symporters has been challenging

because the inactivation of transport by site-directed

mutagenesis is not conclusive with respect to the cause of

the inactivation. The discovery of nontransported agonists

of the signaling function in transceptors has shown that

transport is not required for signaling. Inactivation of

transport with maintenance of signaling in transceptors

supports that a true proton-binding residue was mutagen-

ised. Determining the relationship between transport and

induction of endocytosis has also been challenging, since

inactivation of transport by mutagenesis easily causes loss

of all affinity for the substrate. The use of analogues with

different combinations of transport and signaling capacities

has revealed that transport, ubiquitination and endocytosis

can be uncoupled in several unexpected ways. The results

obtained are consistent with transporters undergoing mul-

tiple substrate-induced conformational changes, which

allow interaction with different accessory proteins to trig-

ger specific downstream events.
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Introduction

Plasma membrane transporters are the entry gate for most

of the nutrients used by cells to generate energy and

building blocks for cellular maintenance, growth and

development. In this sense, they may exert important

control over all cellular activities, either as simple pro-

viders of the nutrient molecules into the cellular interior or

because they may signal the presence of the extracellular

nutrients to the cellular machinery. A striking example of

this sensing role of transporters has been discovered in
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yeast where multiple nutrient transporters appear to control

activation of the protein kinase A pathway at the onset of

fermentable growth induction. When yeast cells grow on a

fermentable sugar, like glucose, they display high activity

of the protein kinase A (PKA) pathway, causing low levels

of storage carbohydrates, low stress tolerance, and high

growth and fermentation rates. When such fermenting cells

are starved for a single essential nutrient, like nitrogen,

phosphate or sulfate, they will arrest growth, reduce their

fermentation rate, accumulate high levels of storage car-

bohydrates and develop high stress tolerance, indicating

that the activity of the PKA pathway is being downregu-

lated (Thevelein and de Winde 1999). Re-addition of the

lacking nutrient triggers rapid reversal to a high-PKA

phenotype and one of the earliest read-outs is activation of

the PKA phosphorylation target trehalase (Hirimburegama

et al. 1992; Schepers et al. 2012). Transporters have been

shown to play an essential role as receptors in this acti-

vation process: Gap1 for activation with amino acids

(Donaton et al. 2003; Van Zeebroeck et al. 2009; Rubio-

Texeira et al. 2012), Mep2 for ammonium (Van Nuland

et al. 2006), Pho84 for phosphate (Giots et al. 2003; Pop-

ova et al. 2010) and Sul1,2 for sulfate (Kankipati et al., in

preparation). Because of their double function as trans-

porter and receptor, we have called such proteins trans-

ceptors (Holsbeeks et al. 2004).

Transporters are well known to function either as pas-

sive transport systems, carrying molecules down their

concentration gradient, or as active transport systems,

using energy to carry molecules uphill against their con-

centration gradient. Active transport is mediated by carriers

which couple transport directly to the use of energy derived

from hydrolysis of an ATP molecule or by carriers which

make use of a pre-established electrochemical ion gradient

to drive co-transport of the nutrient molecule and a co-

transported ion. The latter category comprises symporters

and antiporters, which carry the ion in the same or opposite

direction, respectively, as the transported substrate. In

recent years, much insight has been gained in the structure

and functioning of transporters, due to the successes in

crystallization of substrate–transporter complexes and

determination of their 3D-structures, for instance LacY,

GlpT, FucP and PipT. In spite of this, important questions

have remained difficult to answer. One of these is the

identity of the amino acid residues that are responsible for

binding the co-transported ion during its passage through

the transporter. Site-directed mutagenesis of candidate

residues, that can bind a co-transported ion and are located

in or close to a transmembrane domain, would normally be

the method of choice. However, replacement of such res-

idues can abolish ion coupling in transport but can also

affect the whole functionality of the transporter, because

the residue is in some way important for maintenance of

the proper structure, for insertion in the membrane or for

another feature of the transporter that is essential for

transport. This makes it difficult to draw a definite con-

clusion about the precise role of the residue. The discovery

of the yeast transceptors, in which the signaling function

was found to be independent from the transport function,

provides a novel approach to assess the general function-

ality of the transporter and may therefore help in providing

evidence that a certain amino acid residue is truly involved

in binding the co-transported ion.

Substrate-induced endocytic internalization and sorting

to the vacuole is a well-known mechanism by which cells

regulate the level of transporter in the plasma membrane as

a function of external substrate availability. The prevailing

idea in the literature is that transport of the substrate

through the transporter generates in some way a signal and/

or makes the transporter susceptible for ubiquitination

(Cain and Kaiser 2011; Seron et al. 1999; Gournas et al.

2010; Liu and Culotta 1999; Jensen et al. 2009; Felice et al.

2005). The latter is then thought to serve as the signal for

endocytosis, which is followed by sorting and breakdown

of the transporter in the vacuole (Dupre et al. 2004; Gitan

and Eide 2000; Liu et al. 2007; Hicke and Dunn 2003;

Nikko et al. 2008; Eguez et al. 2004; Lauwers et al. 2010;

Horak 2003; Shih et al. 2000; Barberon et al. 2011).

The compounds that we have developed to study the

relationship between transport and signaling in the Gap1

transceptor have now been used as novel tools to study the

connection between the different events happening in

substrate-induced internalization of the transceptors. This

has led to the unexpected finding that these events can be

uncoupled in several previously unanticipated ways.

Identification of amino acid residues involved in binding

co-transported ions

Proton-coupled transporters

Identification of proton-binding residues in a few model

transporters has been inferred mainly from site-directed

mutagenesis, crystal structure determinations and the sug-

gested modus operandi of the transporter. The modus

operandi of individual protons in a proton-driven uptake

system can be dissected in three related aspects: (1) cou-

pling between substrate binding/dissociation and confor-

mational changes in the transporter; (2) coupling between

the substrate binding/dissociation and protonation/depro-

tonation of residues; and (3) coupling between protonation/

deprotonation and conformational changes in the

transporter.

Translocation of protons involves protonation/deproto-

nation of certain amino acid residues. Most frequently

198 Curr Genet (2013) 59:197–206

123



these are Glu/Asp/His residues, and to a lesser extent Lys/

Arg/Tyr. The lactose permease of Escherichia coli, LacY,

serves as a paradigm when assessing proton-driven trans-

port (Abramson et al. 2004). A tightly interconnected

hydrogen bond and salt bridge cluster composed of

Glu325, Lys319 and His322 (TM10), Arg302 (TM9),

Glu269 (TM8), and Tyr236 and Asp240 (TM7), can be

found in the crystal structure. Glu325, His322 and Arg302

are thought to be directly involved in proton translocation

(Kaback et al. 2001). Due to the lack of a potential

hydrogen bond donor in the immediate vicinity, Glu325 is

believed to be protonated, and thus prevents H? escape

from the cluster, maintaining coupling with the sugar-

binding site (Smirnova et al. 2009). The involvement and

importance of protons can be seen in a brief description of

what is believed to be the main transport mechanics: (1) the

Co-apo conformation is immediately protonated. The H? is

shared by Glu269 and His322; (2) the substrate is initially

recognized by Trp151, Arg144 and Glu126. This will lead

to a disruption of the salt bridge between Arg144 and

Glu126, bringing His322 in contact with Glu325. This may

induce proton transfer from His322 to Glu325, leading to a

rapid conformational change and to the cytoplasm facing

conformation, Ci; (3) the substrate is released into the

cytoplasm; (4) the salt bridge between Arg144 and Glu126

is re-established. H? is released from Glu325. It has been

suggested that Arg302 could interact with Glu325 to drive

proton release from Glu325 because mutants in either

residue exhibit the same specific defect in proton-coupled

lactose translocation reactions, with no effect on sugar

binding, exchange or counterflow (Sahin-Toth and Kaback

2001).

A similar protonation/deprotonation mechanism has

been proposed to play an important role in proton-depen-

dent oligopeptide transporter (POT) family members. The

crystal structures of oligopeptide transporters from the

bacteria Shewanella oneidensis (PepTSo) (Newstead et al.

2011), Streptococcus thermophilus (PepTSt) (Solcan et al.

2012) and Geobacillus kaustophilus (GkPOT) (Doki et al.

2013) have been reported. They have suggested mecha-

nisms involved in proton-coupled peptide transport. In case

of the GkPOT, the positive charge of Arg43 may facilitate

the deprotonation of Glu310 during the transition to the

occluded, apo state, which allows the formation of a salt

bridge between Arg43 and Glu310. Following the proton-

ation of Glu310, the substrate will bind to Arg43 and

Glu310. Mutagenesis of Glu310 to Gln resulted in an

inactive transporter, suggesting that Glu310 is involved in

H? binding/translocation, by blocking the transition of the

transporter between the inward- and outward-open states

(Doki et al. 2013). Furthermore, Glu32 has been proposed

to be of importance (based on molecular dynamics simu-

lations) in the transition mechanism between outward-

facing and occluded states. It has been proposed that Glu32

is another protonation site, and the H? translocation occurs

between Glu32 and Glu310 (similar to the H? translocation

from His322-Glu269 to Glu325 in LacY). For the human

POT members PepT1 and PepT2, His57 and His87,

respectively, have been suggested as primary protonation

sites based on results of site-directed mutagenesis (Fei

et al. 1997; Uchiyama et al. 2003), whereas in case of the

PepTSo His61 was suggested to be the primary protonation

site based on the crystal structure determination (Newstead

et al. 2011).

The proposed mechanism for fucose:H? transport is also

believed to involve residues that undergo a protonation/

deprotonation cycle. Along the transport pathway residues

Asp46 and Glu135 (3rd helical turn of TM1 and TM4,

respectively) are thought to be involved in this protonation/

deprotonation cycle. Transport studies, involving site-

directed mutagenesis, have confirmed that these residues

play an important role. Asp46 is believed to be essential for

proton-dependent active transport, whereas Glu135 might

be involved in substrate recognition (Dang et al. 2010).

Moreover, the proposed mechanism and involvement of

these two residues is as follows: (1) in the Co-apo con-

formation, L-fucose can only bind following protonation of

Asp46. This protonation step will neutralize the negative

charge and thus lower the energy barrier for the L-fucose

entry/transport; (2) proton translocation from Asp46 to

Glu135 will result in abolishment of the hydrogen bond

between Glu135 and Tyr365 enabling binding of the sub-

strate with the protonated Glu135; (3) the protonation and

binding of the substrate to Glu135 will trigger rigid body

rotation of the N- and C-domains, resulting in the Ci

conformation of the transporter. The transport cycle is

completed with the deprotonation of Glu135 and the

release of the substrate into the cytoplasm.

In the case of the P. indica phosphate transporter, (PiPT),

the crystal structure was resolved with inorganic phosphate

bound (Pedersen et al. 2013). Here, Asp324 is proposed to

be protonated, which gives preference to phosphate binding.

In case of the Saccharomyces cerevisiae high-affinity

inorganic phosphate transporter, Pho84, site-directed

mutagenesis studies have shown that Asp358 may play a

role in proton-coupled phosphate transport activity (Samyn

et al. 2012) (Fig. 1). Pho84 has been shown to be a trans-

ceptor for activation of the PKA pathway and previous work

has shown that transport of substrate is not required for the

induction of signaling by the receptor function of Pho84

(Popova et al. 2010). Interestingly, mutagenesis of Asp358

in Pho84 abolished transport but left signaling largely

unaffected (Samyn et al. 2012). This shows that mutagen-

esis of Asp358 does not significantly compromise proper

membrane insertion and general functionality of Pho84,

reinforcing the suggestion from the site-directed
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mutagenesis that Asp358 is specifically required for proton

binding. In addition, it confirmed that substrate transport is

not required for signaling by the Pho84 transceptor. A

similar result has been obtained, recently, for the Sul1 and

Sul2 sulfate transporters. Site-directed mutagenesis of a

putative proton-binding residue abolished transport without

affecting signaling. This supports a role for this residue in

proton binding, shows that also in this case substrate

transport is not required for signaling and provides a strong

argument that Sul1,2 function as sulfate transceptors

(Kankipati et al., in preparation). Mutagenesis of Asp178 in

Pho84 also allowed partial uncoupling of transport and

signaling (Samyn et al. 2012) (Fig. 1). This has also been

achieved for the Gap1 transceptor by deletion of Nhx1 or

Pmp3, two Gap1-interacting proteins. Deletion of Nhx1 or

Pmp3 strongly reduced amino acid uptake by Gap1, but did

not affect signaling at all (Van Zeebroeck et al. 2011). All

these data support that the transport and signaling functions

of the transceptors are not dependent on each other. Hence,

site-directed mutagenesis of putative residues involved in

binding the co-transported ion can be a very efficient

approach to separate the signaling from the transport func-

tion and in this way establish the capacity of a transporter to

function as a transceptor.

Amino acid residues with a negatively charged side

chain also play a role in the transport mechanism of yeast

mitochondrial carriers (Kunji and Robinson 2010). Again,

the most common residues found in the substrate-binding

site are E, and also D. These residues are D130 in the yeast

phosphate carrier (Phelps and Wohlrab 1991), E600 in the

yeast aspartate/glutamate carrier (Cavero et al. 2003), E91

in the yeast oxodicarboxylate carrier (Palmieri et al. 2000)

and E24 in the yeast GTP/GDP carrier (Vozza et al. 2004).

Despite belonging to the class of sodium-dependent sec-

ondary transport proteins, the plasma membrane glutamate

transporters are somewhat odd class members. These

transporters utilize the downhill movement of Na? and K?

ions to transport glutamate (Kanner and Bendahan 1982),

but in addition, it has been suggested that protons are co-

transported together with glutamate (Zerangue and Kava-

naugh 1996). In case of the excitatory amino acid carrier

(EAAC1), glutamate can only bind to the protonated form

of the transporter, and upon translocation the released

glutamate and H? will cause relocation of its binding sites

to the basic, unprotonated state (Watzke et al. 2000). Site-

directed mutagenesis and kinetic measurements support the

conclusion that E373 serves as a proton acceptor (Grewer

et al. 2003). Furthermore, initially H295 was thought to be

involved also in proton co-transport. This notion has been

refuted since the replacement of H295 with glutamine, an

amino acid residue that cannot be protonated, generates a

fully functional transporter with transport kinetics that are

close to those of the wild-type EAAC1. H295 is now

deemed to play a rather secondary role as protonation-

dependent modulator, where the protonated H295 dramat-

ically decreases the affinity of the transporter for glutamate

(Tao and Grewer 2005).

Na-coupled transport

The melibiose permease of E. coli accomplishes uphill

transport by utilizing Na?, Li? or H? as cosolute (Tsuchiya

et al. 1985; Pourcher et al. 1995). Several mutagenesis

studies have shown that residues D19, D55, D59 and D124

are important for Na?-dependent affinity and transport of

melibiose (Pourcher et al. 1991, 1993; Zani et al. 1993;

Wilson and Wilson 1992). More recently, substrate-

induced IRdiff spectroscopy was applied to reevaluate the

importance of these four residues (Granell et al. 2010) and

their involvement in Na?-binding/interaction. The results

suggested that only D55 and D59 are essential ligands for

Na?, since only the D55C and D59C mutants do not

exhibit any structural variation upon incubation with Na?.

Several transporters, which were originally not assigned

to sequence-related families, have in common the LeuT-

like fold. To date, from the eight transporters having the

LeuT-like fold (Perez and Ziegler 2013), a detailed

description of the alternating-access mechanism and the

Na?-binding sites for the LeuT from the neurotransmit-

ter:sodium symporter (NSS) family (Weyand et al. 2008),

Mhp1 from the nucleobase:cation symporter-1 (NCS1)

family (Krishnamurthy and Gouaux 2012; Krishnamurthy

et al. 2009) and BetP from the betaine/carnitine/choline

transporter (BCCT) family (Perez et al. 2012) has been

made possible by combining structural, computational and

biophysical approaches. Based on the crystal structure and

molecular dynamics analysis, the LeuT from Aquifex ae-

olicus reveals two sodium-binding sites, namely Na1 and

Na2. The Na? in Na1 is coordinated by five residues,

namely A22 (TM1), T254 (TM6), N27 (TM1), N286

(TM7) and T254 (TM6). The coordination of the Na? in

Na2 is executed by G20 (TM1), V23 (TM1), A351 (TM8),

T354 (TM8) and S355 (TM8).

In conclusion, putative amino acid residues responsible

for the binding of co-transported ions have generally been

suggested on the basis of site-directed mutagenesis studies

of candidate residues located in or close to transmembrane

domains. However, this is not sufficient to make a definite

conclusion since replacement of an amino acid residue can

affect transport activity also because it disturbs the general

structure or functioning of the transporter. Advanced bio-

physical techniques are generally required to gain addi-

tional evidence for a role of a specific residue in binding

the co-transported ion.
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Relationship between signaling, transport,

ubiquitination and endocytosis

A major breakthrough in transceptor analysis was the

identification of nontransported substrate analogues that

were able to trigger the signaling function of the trans-

ceptor: L-Leu-Gly for Gap1 (Van Zeebroeck et al. 2009),

glycerol-3-phosphate and other organic phosphate esters

for Pho84 (Popova et al. 2010) and D-glucosamine 2-sulfate

for Sul1,2 (Kankipati et al., in preparation). These mole-

cules provided first of all a major new argument for the

receptor function of the transporters. With these non-

transported signaling agonists, the transceptors function as

pure receptors. In addition, the compounds turned out to be

interesting new tools for studying the signaling function of

the transceptors independently of their transport function,

but have also turned out to be powerful tools to investigate

other outstanding questions with respect to transporter

functionality and regulation.

The molecular mechanisms underlying substrate-

induced endocytosis of nutrient transporters have been

studied in great detail in yeast, with Gap1 serving as the

main model system (Jauniaux and Grenson 1990; Lauwers

et al. 2010; Magasanik and Kaiser 2002; Chen and Kaiser

2002) (Fig. 2a). The first well-established change in the

Gap1 permease following addition of amino acid is its

ubiquitination, which is followed by sorting to the mul-

tivesicular body (MVB) and degradation in the vacuole/

lysosome. Ubiquitination is accomplished by the E3 ubiq-

uitin ligase Rsp5 (Soetens et al. 2001). Prevention of

ubiquitination by mutagenesis of the N-terminal Lys 9 and

Lys 16 residues, abolishes endocytosis, which has been

taken as evidence that ubiquitination serves as a signal for

endocytosis. This reasoning has been extended to many

other transporters and ubiquitination is generally conceived

as the main signal triggering endocytosis (Barberon et al.

2011; Shih et al. 2000; Horak 2003; Lauwers et al. 2010;

Eguez et al. 2004; Nikko et al. 2008; Hicke and Dunn 2003;

Liu et al. 2007; Gitan and Eide 2000; Dupre et al. 2004).

The initial trigger for recruitment of the Rsp5 ubiquitin

ligase is not well understood, but is generally thought to be

caused in some way by the transport of the substrate

through the carrier. This has been concluded from the

behavior of mutant forms of the transporters that displayed

strongly reduced uptake capacity and were no longer en-

docytosed. Such results have been obtained for the Smf1

metal transporter (Liu and Culotta 1999; Jensen et al.

2009), the Fur4 uracil permease (Seron et al. 1999), the

Pho84 phosphate transporter (Petersson et al. 1999; Lundh

et al. 2009), the Ftr1 iron transporter (Felice et al. 2005),

Gap1 (Cain and Kaiser 2011) and the sulfate transporter

Sul2 (Jennings and Cui 2012) in S. cerevisiae and for the

uric acid/xanthine transporter, AnUapA, in Aspergillus

nidulans (Gournas et al. 2010). For the latter transporter,

3-methylxanthine, was identified as a competitive inhibitor

of transport, unable to induce endocytosis. This was taken

as evidence that interaction of the substrate with the

AnUapA transporter was not enough to trigger endocytosis

and that transport was required. The possibility that a

substrate could be transported through a nutrient permease

without triggering endocytosis has apparently never been

considered.

Fig. 1 Model of the Pho84 phosphate transceptor with two putative

proton-binding residues allowing uncoupling of transport and signal-

ing. The protein has 12 predicted transmembrane domains and

functions as a phosphate/proton symporter. D178 and D358 are two

conserved putative proton-binding residues, predicted to be located

adjacent to the phosphate translocation pathway. Mutagenesis of

D178 to E or N reduces Vmax with about 50 %, but does not lower

signaling as measured by phosphate-induced activation of the PKA

target trehalase. Mutagenesis of D358 to N strongly reduces transport

to B20 % but does not affect signaling. Mutagenesis of D358 to E

completely abolishes transport but only causes a 50 % drop in

signaling
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The discovery of the nontransported signaling agonist L-

Leu-Gly indicated that this compound physically interacted

with Gap1, which raised the question whether it would also

be able to trigger endocytosis. Interestingly, L-Leu-Gly

triggered ubiquitination and endocytosis in a similar way as

regular amino acids (Van Zeebroeck et al., in preparation)

(Fig. 2b). This indicates for the first time that a full

transport cycle is not required to trigger endocytosis.

Classical receptors are well known to undergo ligand-

induced endocytosis (Sorkin and Von Zastrow 2002) and

transceptors thus behave for substrate-induced endocytosis

in a similar way as classical receptors, as was also observed

for signaling. This emphasizes again the apparent similarity

between the behavior of transceptors and classical recep-

tors (Kriel et al. 2011). Also in mammalian cells, the sur-

prising similarity between the mechanisms involved in

substrate-induced transporter endocytosis and ligand-

induced receptor endocytosis has been pointed out (Mir-

anda and Sorkin 2007).

The dipeptide L-Leu-Gly is a competitive inhibitor of

Gap1 transport. The same is true for L-Asp-c-Phe, but this

dipeptide is unable to trigger signaling. It was also unable to

trigger endocytosis, but unexpectedly induced oligo-ubiq-

uitination (Van Zeebroeck et al., in preparation) (Fig. 2c).

This provides the first indication that oligo-ubiquitination of

a transporter may not be enough to trigger its endocytosis

and that therefore an additional event is required.

An unexpected discovery was also that some amino

acids, L-lysine, L-histidine and L-tryptophan, are very well

transported by Gap1 but they are not able to trigger sig-

naling (Van Zeebroeck et al. 2009). Examination of ubiq-

uitination and endocytosis with these amino acids

unexpectedly revealed that L-lysine transport leads to

ubiquitination but not endocytosis (Fig. 2d). L-lysine even

counteracts endocytosis triggered by a regular amino acid,

like L-citrulline. L-histidine, on the other hand, triggered

efficient ubiquitination and endocytosis (Van Zeebroeck

et al., in preparation) (Fig. 2e). These results demonstrated

that signaling, ubiquitination and endocytosis can be

uncoupled in different ways. There is no evidence that

endocytosis can happen without ubiquitination, since Gap1

mutated in the N-terminal lysines 9 and 16, that function as

ubiquitin attachment sites, is completely deficient in

endocytosis (Soetens et al. 2001). Hence, ubiquitination is

essential but apparently not sufficient for endocytosis.

These new results on substrate-induced signaling,

ubiquitination and endocytosis of transceptors may also

indicate that different substrates follow a somewhat dif-

ferent passageway when carried through the transporter,

and/or that they trigger different conformational changes

during their passage. Alternatively, the different substrates

may trigger the same series of conformational changes but

with different kinetics. To trigger a downstream event, a

specific conformation would have to persist long enough to

allow proper interaction with a signal transmission protein

or a protein that in some way supports initiation of ubiq-

uitination or endocytosis.

Transceptors and substrate-induced internalization

of transporters in other organisms

Several examples have been reported where transporters

appeared to carry out an additional regulatory function

triggered by sensing of the nutrient (Gojon et al. 2011;

Hundal and Taylor 2009; Rogato et al. 2010; Stolarczyk

et al. 2010; Hyde et al. 2007; Goberdhan et al. 2005).

However, as opposed to the situation with the yeast

transceptors controlling activation of the PKA pathway, no

common principles, either for mechanisms involved or

targets affected, have been identified. In spite of this, the

use of substrate analogues may turn out to be a very useful

approach to gain first of all strong evidence for the pre-

sence of an additional receptor function in the transporter

and second to learn about the mechanisms involved in the

signaling function.

Substrate-induced internalization of nutrient transporters

has also been documented in other organisms. As men-

tioned previously, detailed studies have been made on the

uric acid/xanthine transporter, AnUapA, in A. nidulans

(Gournas et al. 2010; Diallinas 2013). Also in this case,

substrate analogues have been used to gain insight in the

underlying mechanisms. In mammalian cells, evidence has

also been obtained for ubiquitination as a signal for the

initiation of substrate-induced endocytosis in several types

of nutrient transporters (Melikian 2004; Zahniser and Sor-

kin 2009; Vina-Vilaseca et al. 2011; Miranda et al. 2007).

Conclusions

The discovery of a nutrient receptor function in a set of

yeast plasma membrane transporters that are induced by

starvation for their substrate is providing unexpected

Fig. 2 Specific compounds allow uncoupling of transport, ubiquiti-

nation, endocytosis and signaling in the Gap1 transceptor. a The

uptake of an amino acid triggers a (series of) conformational changes,

of which one allows the ubiquitination of Gap1. Ubiquitination and an

additional conformational change are required to trigger endocytosis

of Gap1. Signaling to PKA is triggered by an independent confor-

mational event. b The dipeptide L-Leu-Gly is not transported but is

able to trigger all subsequent events like a regular amino acid. c The

dipeptide L-Asp-c-Phe is also not transported but is only able to

trigger the conformation that allows ubiquitination. d L-Lysine is

transported but is not able to trigger signaling nor endocytosis.

However, it can also induce the conformation that elicits ubiquitina-

tion. e L-histidine cannot trigger signaling but can induce the whole

endocytic internalization process just like a regular amino acid

c
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insight and new approaches and tools to study the mech-

anisms involved in transport and regulation of the trans-

porter protein level in the membrane. It can be expected

that further elucidation of the mechanisms involved in

signaling by these transceptors and their connection with

transceptor downregulation will provide further unantici-

pated findings that would have been overlooked if the

proteins would just have been studied as transporters.
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