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Abstract
First marketed as RoundUp, glyphosate is history’s most popular herbicide because of its low acute toxicity to metazoans 
and broad-spectrum effectiveness across plant species. The development of glyphosate-resistant crops has led to increased 
glyphosate use and consequences from the use of glyphosate-based herbicides (GBH). Glyphosate has entered the food sup-
ply, spurred glyphosate-resistant weeds, and exposed non-target organisms to glyphosate. Glyphosate targets EPSPS/AroA/
Aro1 (orthologs across plants, bacteria, and fungi), the rate-limiting step in the production of aromatic amino acids from the 
shikimate pathway. Metazoans lacking this pathway are spared from acute toxicity and acquire their aromatic amino acids 
from their diet. However, glyphosate resistance is increasing in non-target organisms. Mutations and natural genetic variation 
discovered in Saccharomyces cerevisiae illustrate similar types of glyphosate resistance mechanisms in fungi, plants, and 
bacteria, in addition to known resistance mechanisms such as mutations in Aro1 that block glyphosate binding (target-site 
resistance (TSR)) and mutations in efflux drug transporters non-target-site resistance (NTSR). Recently, genetic variation 
and mutations in an amino transporter affecting glyphosate resistance have uncovered potential off-target effects of glypho-
sate in fungi and bacteria. While glyphosate is a glycine analog, it is transported into cells using an aspartic/glutamic acid 
(D/E) transporter. The size, shape, and charge distribution of glyphosate closely resembles D/E, and, therefore, glyphosate 
is a D/E amino acid mimic. The mitochondria use D/E in several pathways and mRNA-encoding mitochondrial proteins 
are differentially expressed during glyphosate exposure. Mutants downstream of Aro1 are not only sensitive to glyphosate 
but also a broad range of other chemicals that cannot be rescued by exogenous supplementation of aromatic amino acids. 
Glyphosate also decreases the pH when unbuffered and many studies do not consider the differences in pH that affect toxic-
ity and resistance mechanisms.
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Glyphosate inhibits the production 
of aromatic compounds

Excess exposure to any chemical is toxic to cellular metab-
olism either directly or excluding essential nutrients. The 
outcomes of chemical exposures can change depending on 
concentration and length of exposure. How cells respond 
to these chemicals provides insights into the regulation of 
cellular metabolism. The transport of chemicals into cells 
depends on the chemical properties and structure of these 

chemicals. Environmental exposures to synthetic chemicals 
are increasing over time and while active ingredients in her-
bicides are tested for toxicity, the effects of chronic exposure 
on humans and non-target organisms are a growing issue 
and are challenging to address with current approaches. 
Glyphosate is a broad-spectrum herbicide that inhibits 
EPSP synthase, an enzyme that converts shikimate 3-phos-
phate to 5-enolpyruvylshikimate 3-phosphate (EPSP), a key 
step, in the shikimate pathway (also called the chorismate 
pathway) in plants, bacteria, and fungi. This leads to the 
depletion of chorismate, the precursor for all compounds 
containing aromatic rings, such as tryptophan, tyrosine, phe-
nylalanine, pABA, and ubiquinone (Marbois et al. 2010) as 
well as metabolites from the TCA cycle (Zulet-Gonzalez 
et al. 2023). At lower doses, glyphosate itself does not kill 
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plants but reduces their ability to grow and mount an effec-
tive immune response to infections, due to the aromatic pre-
cursors being building blocks for important molecules such 
as auxin, salicylic acid, and melatonin (Sauer et al. 2013; 
Pérez-Llorca et al. 2019), as well as structural compounds 
like lignin (Jalal et al. 2021). Both genetically modified 
crops and undesirable plants are sprayed with glyphosate-
based herbicides (GBH). RoundUp® Ready crops contain 
a bacterial ortholog of the glyphosate target (AroA), that 
does not bind glyphosate (Comai et al. 1983) and allows 
direct application to control undesirable plants. Metazoans, 
including humans, do not have the shikimate pathway, which 
reduces the acute toxicity of glyphosate exposure. Appli-
cation to other crops such as wheat accelerates the drying 
process required before harvest. With glyphosate being the 
most popular herbicide, 181 million ha of glyphosate-resist-
ant crops are grown (Duke 2018).

The shikimate pathway is a multi-step process that con-
verts phosphoenolpyruvate (PEP) and D-erythrose 4-phos-
phate (E4P) into chorismate (Fig. 1). Five of the seven enzy-
matic functions are present in the same yeast enzyme, Aro1, 
catalyzing steps 2 through 6. PEP can divert carbons away 
from the TCA cycle two different ways. It is a precursor 
of pyruvate and can be synthesized from malate, an inter-
mediate of the TCA cycle. Using bacterial nomenclature, 

Aro1 encodes AroB, D, E, L, and A enzymatic functions 
converting 3-deoxy-D-arabino-heptulosonate-7-phosphate 
(DAHP) to 5-enolpyruvylshikimate-3-phosphate (EPSP) 
(Rong-Mullins et al. 2017; Wu et al. 2022). Aro2 then con-
verts EPSP into chorismate. All phenolic compounds are 
derived from this pathway and are synthesized from coQ10, 
pABA, aromatic amino acids, or their precursors. Several 
other metabolites are made from shikimate pathway inter-
mediates, including antivirals, dopamine, and salicylate by 
yeast and other organisms. Metabolic engineering of yeast 
can increase the production of these metabolites. L-Tyr and 
L-Phe allosterically inhibit Aro3 and Aro4 and prevent con-
densation of E4P and PEP (Suzuki et al. 1982).

Genetic variation in aromatic amino acid 
biosynthesis generates large phenotypic 
diversity

In yeast synthetic media, nitrogen is provided as ammonium 
sulfate, but in the wild, any amino acid can serve as a nitro-
gen source. Natural genetic variation in Aro1 between a sake 
strain and a European wine strain links nitrogen consump-
tion with growth (Cubillos et al. 2017). ARO1 mutants are 
sensitive to many chemicals (Ayers et al. 2020). While fur-
ther down the tryptophan branch, trp1 mutants are sensitive 
to DNA damage (Brown et al. 2006), detergents (Schroeder 
and Ikui 2019), isobutanol (Liu et al. 2021), ethanol (Stanley 
et al. 2010), cold (Brachmann et al. 1998; Leng and Song 
2016), pH (González et al. 2008), rapamycin (González et al. 
2008), and MCHM (Ayers et al. 2020). These chemicals 
appear to generate oxidative stress, to which trp mutants 
are particularly sensitive. Within species, there is a wide 
range of genetic variation (Gallagher et al. 2014; Peter et al. 
2018) that contributes to phenotypic diversity. However, 
some genetic diversity has a greater impact on phenotypic 
diversity than others. In particular, little genetic variation in 
transcription factors can have a large impact on phenotypes 
by changing the expression of hundreds of genes (Yvert et al. 
2003; Gallagher et al. 2014). Low-diversity but high-impact 
genetic variation in these types of proteins are classified 
as master variators and are typically transcription factors 
(Gallagher et al. 2014). Genetic variation in three different 
yeast strains show several loci linked to glyphosate-based 
herbicides discussed below (Rong-Mullins et al. 2017; Rav-
ishankar et al. 2020a).

Glyphosate use and toxicity

Different countries have different acceptable glyphosate 
levels on foodstuffs, surface water, and blood sera levels. 
US and European guidelines for maximum exposures are 

Fig. 1   Shikimate pathway Phosphoenolpyruvate (PEP) and D-eryth-
rose 4-phosphate (E4P) are the precursors to produce chorismate. 
Yeast (purple) and bacterial proteins (blue or grey) are labeled. Rele-
vant compounds are in black. Glyphosate inhibits Aro1/AroA/EPSPS
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1.5 g mg/ kg/ day and 0.5 mg/kg/day, respectively. The low-
est observed adverse effect level has been proposed to be 
350 mg/kg/day, and the no observed adverse effect level 
is predicted to be 175 mg/kg/day in humans (Niemann 
et al. 2015). However, many studies expose animals to 0.5 
to 50 mg/kg/day and detect physiological and molecular 
changes. While questions have been raised about the ability 
to extrapolate animal models to humans, human exposure to 
glyphosate is increasing over time, and the effects on health 
need to be studied (Mills et al. 2017; Gillezeau et al. 2019; 
Soukup et al. 2020; Huch et al. 2021; Grau et al. 2022). 
Mammals do not have the shikimate pathway but their 
microbiome consisting of bacteria and fungi do. Glyphosate-
fed animals have significant changes to the gut microbiome 
population and metabolites (Mesnage et al. 2021). Mount-
ing epidemiological studies have linked glyphosate exposure 
to cancers, neurodegenerative diseases, and sensory disor-
ders (Myers et al. 2016). Therefore, the increasing levels of 
glyphosate exposure escalate the importance of determining 
how glyphosate resistance occurs, and what are the meta-
bolic effects once it is transported into cells.

Glyphosate can be degraded by soil microbes by two dif-
ferent pathways. Amino-methyl phosphonic acid (AMPA) 
is easily detected in samples and often used as an indicator 
of glyphosate degradation. While glyphosate can degrade 
into AMPA and glyoxylate, an alternative pathway degrades 
it into sarcosine and phosphate depending on if the C-N or 
C-P bond is first cleaved. These pathways are complex and 
have different preferences in bacteria and fungi (reviewed 
in (Chen et al. 2022)). In soil microorganisms, the metabo-
lism of glyphosate is affected by glyphosate’s ability to bind 
strongly to soil and metals (Sundaram and Sundaram 1997). 
The human microbiome presumably can also metabolize 
glyphosate. However, in humans, less than 1% of glypho-
sate is excreted as AMPA (Hori et al. 2003), and glypho-
sate is primarily excreted in the urine, but 30–40% of orally 
administered glyphosate crosses the intestinal wall (Brewster 
et al. 1991). Ingested glyphosate could be degrading through 
the C-P degradation pathway generating sarcosine which 
also is endogenously synthesized. It’s unknown if there is a 
natural source of AMPA and so it has become the metabo-
lite most tracked to demonstrate glyphosate metabolism. 
While glyphosate is a water-soluble molecule, surfactants, 
primarily polyoxyethylene tallow amine (POEA), are added 
to commercial preparations to increase tissue permeability 
in commercial preparations. These “inert” ingredients have 
not been studied on their own, because they are proprietary 
and differ in the hundreds of different commercial prepa-
rations. Numerous formulations also contain heavy metals 
not listed on the labels (Defarge et al. 2018). Glyphosate 
is also a chelator and will bind divalent cations that influ-
ence its toxicity (Lanzarin et al. 2022). In animal models, 
orally administered GBH formulations increase glyphosate 

urine levels compared to the same concentration of pure 
glyphosate (Panzacchi et al. 2018). Similarly, yeast exposed 
to the same concentration of glyphosate are more sensi-
tive to the commercial formulation than the pure chemi-
cal (Ravishankar et al. 2020b). The inactive ingredients in 
GBH increase the potency of glyphosate by increasing the 
penetration of glyphosate. By supplementing yeast with the 
downstream aromatic amino acids (WYF), the growth inhi-
bition by blocking the production of chorismate is amelio-
rated (Rong-Mullins et al. 2017). However, there was genetic 
variation in the WYF rescue, hinting at other glyphosate 
targets in the mitochondria that are independent of the shi-
kimate pathway (Ravishankar et al. 2020a). While some of 
the differences in gene expression were likely due to the 
surfactants, differences in internal concentrations of glypho-
sate could contribute to changes in gene expression or other 
unknown glyphosate targets (Ravishankar et al. 2020b).

Yeast as a model to understand glyphosate 
toxicity

Extensive application of glyphosate has provided an exam-
ple of evolution to anthropogenic effects on a wide range 
of organisms. S. cerevisiae is possibly the oldest domestic 
species and is closely associated with human fermentation 
activities, occupying a wide range of ecological niches. 
Yeast can be isolated from fruits, spontaneous fermenta-
tions of grain, and the human microbiome (Peter et al. 2018). 
Yeast are easily stored in freezer stocks and sampling histori-
cal collections provides insights into phenotypes. Like anti-
biotic resistance that existed in bacterial populations before 
the development of commercial antibiotics, the proportion of 
glyphosate resistance yeast is increasing over time (Barney 
et al. 2020). Yeast isolated from agricultural sources after 
the 1980s were the most resistant compared to forest or clini-
cal sources. Glyphosate resistance from areas with known 
glyphosate exposure also correlated with length of exposure 
rather than recent high levels of exposure time (Barney et al. 
2020). Areas from a state park with long-term glyphosate 
use to control invasive plants and maintain clearance for 
power lines had the highest glyphosate resistance (Barney 
et al. 2020). A former surface coal mine that was in the 
process of remediation was heavily sprayed with glypho-
sate the year before collection and had among the lowest 
measured glyphosate resistance in S. cerevisiae time (Barney 
et al. 2020). However, no S. cerevisiae were isolated along 
the Appalachian Trail, which is miles from human activ-
ity, highlighting its close association with human activities 
(Barney et al. 2020).

Glyphosate resistance can either be attributed to target-
site resistance (TSR), namely mutations in the EPSPS gene 
leading to reduced glyphosate efficacy, or to non-target-site 
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resistance (NTSR), which encapsulates all other genetic var-
iations excluding EPSPS. Even though commercially avail-
able glyphosate-resistant crops possess a modified EPSPS 
and constitute an example of TSR, NTSR is reportedly the 
most widespread type of resistance to glyphosate (Powles 
and Yu 2010). In plants, glyphosate NTSRs remain largely 
understudied and mainly consist of mechanisms related 
to herbicide penetration, degradation, or mitigation of the 
collateral damage caused by the herbicide target inhibition 
(Délye 2013).

Glyphosate formulations and toxicity

The effectiveness of glyphosate-based herbicides has made 
them the most heavily used weedkillers worldwide (Ben-
brook 2016). RoundUp, the most widely known and used 
GBH, has dominated the market since its inception in 1974. 
Two decades later, the introduction of genetically engineered 
RoundUp-resistant crops (better known as RoundUp ready) 
has led to a 15-fold increase in RoundUp use (Benbrook 
2016). Since then, numerous other commercial formula-
tions have been introduced, such as Compare-N-Save, Credit 
41, WeedPro, Ranger Pro, and many more. In addition to 
glyphosate, GBH formulations contain solvents and adju-
vants to enhance cell wall penetration (Brand and Mueller 
2002). The additives are allegedly neutral, but studies have 
shown that when combined with glyphosate, such as in com-
mercial formulations, they can induce undesirable effects 
in organisms (de Brito et  al. 2019). The most common 
adjuvant in glyphosate-based herbicides is the surfactant 
POEA. According to the USDA, POEA makes up 15.4% of 
RoundUp. It has been shown that POEA-containing GBHs 
are about 100-fold more toxic to human cell lines than pure 
glyphosate and GBHs that lack POEA. Furthermore, there is 
a strong correlation between cytotoxicity and the concentra-
tion of POEA, but not glyphosate. Even formulations con-
taining the same combination of glyphosate and POEA can 
have different levels of cytotoxicity, indicating the presence 
of other toxic formulants that vary across different GBHs 
(Mesnage et al. 2013).

One of the causes of GBH-induced cytotoxicity can 
be damage to the cell wall, because adjuvants such as 
POEA function by disrupting cell barriers. Sed1, the 
stress-induced cell wall protein-coding gene in yeast, is 
downregulated in GBH (one commercial formulation, 
Credit41)-sensitive cells but was found to have under-
gone gene duplication in GBH-resistant yeasts. This, along 
with the increased sensitivity of sed1 mutants to GBHs, is 
indicative of a major role played by cell wall proteins in 
blocking the import of GBHs (Ravishankar et al. 2020b). 
Moreover, genotoxicity is also increased in cells exposed 
to GBH compared to pure glyphosate (Nagy et al. 2019). 

A study comparing DNA damage in human mononuclear 
white blood cells (HMWB) treated with pure glyphosate 
and three different GBHs (RoundUp Mega, Fozat 480, and 
Glyfos) found a significant increase in DNA breaks in the 
GBH group (Nagy et al. 2019). However, there is no con-
clusive evidence to affirm that the DNA damage is caused 
directly by the treatment and not a consequence of the 
cytotoxicity-induced cell death.

Numerous studies have concluded that GBHs harm non-
target organisms over pure glyphosate. Spraying GBH on 
plants affects the organisms in the nearby ecosystem, such 
as animals near the field, fish in the water, and microbes in 
the soil (Wagner et al. 2013). POEA is widespread in and 
around agricultural farms that grow glyphosate-resistant 
crops (Tush and Meyer 2016). This is highly suggestive 
of POEA being incorporated into the food chain. GBH-
resistant wild yeasts were found in several geographically 
diverse locations, including an organic farm that used to be 
a conventional farm before 1989 (Barney et al. 2020). This 
shows that the impact of GBH use on the surroundings lin-
gers for decades after its degradation in the soil. A study on 
different laboratory yeast strains showed that a large number 
of mutations accumulated in cells that developed resistance 
upon treatment with the GBH, Credit41 (Ravishankar et al. 
2020b). Transcriptomics from the same study comparing 
gene expression of Credit41-resistant strain (RM11) vs. 
sensitive strain (S288c) showed that the sensitive strain has 
differential gene expression in over 18 times as many genes 
as the resistant strain in minimal media, and over eight times 
as many genes in minimal media supplemented with the aro-
matic amino acids (Ravishankar et al. 2020b). When these 
cells were treated with Credit41 in the same growth condi-
tions, the sensitive strain had gene expression variation in 
ten times more genes than the resistant strain (Ravishankar 
et al. 2020b). Among these differentially expressed genes, 
those that function in the synthesis of amino acids and sec-
ondary metabolites were downregulated, whereas genes 
involved in MAPK signaling, DNA replication, and the cell 
cycle were upregulated. Some of the upregulated cell cycle 
regulators, such as Nrm1 and Swi4, function specifically in 
the late G1 phase. This suggested that a block in G1 phase 
exit may be causing the cell cycle to arrest in Credit41-
exposed cells. Indeed, 70% of the Credit-41-treated cell 
population underwent a G1 phase arrest, as demonstrated 
by flow cytometry. However, no such cell cycle arrest occurs 
in pure glyphosate-treated cells (Ravishankar et al. 2020b) 
but this may reflect the amount of glyphosate that enters 
the cells. Without detergents from GBH, pure glyphosate 
likely is imported less efficiently than glyphosate from GBH, 
reducing the intracellular levels of glyphosate with an equiv-
alent level of glyphosate added. This further confirms that 
studies conducted with pure glyphosate do not mimic the 
effects caused by its commercially available forms.
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Mechanisms of glyphosate resistance

Increased glyphosate efflux confers resistance

The flowering plant morning glory, Ipomoea purpurea, 
includes populations resistant to glyphosate intermixed 
with sensitive populations (Debban et al. 2015), making it 
a good candidate in uncovering mechanisms of resistance. 
The pattern of intermixed resistance and sensitivity lack-
ing a geographical gradient suggests cases of independent 
evolution of resistance, as opposed to a derived trait from 
a common ancestor (Kuester et al. 2015). Genetic screens 
in the resistant populations found no nucleotide changes in 
the EPSPS sequence, indicating NTSR in I. purpurea (van 
Etten et al. 2020). Instead, they identified loci belonging 
to five genomic regions which included genes associated 
with glyphosate detoxification, including glycosyltrans-
ferases, responsible for conjugation, and ATP-binding 
cassette (ABC) transporters, responsible for transporting 
glyphosate into the vacuole. Evidence strongly supports 
genetic parallelism as a possibility for some of the more 
divergent genomic regions, as well as potential gene flow 
for the shared resistance-associated genomic region. Even 
though the genetic mechanisms of NTSR evolution are yet 
to be clarified, genomic regions associated with detoxifica-
tion appear to bear particular significance, either through 
direct detoxification of the herbicide or through enabling 
oxidative stress management in I. purpurea (van Etten 
et al. 2020). Glyphosate-resistant plants produced fewer 
seeds and in the absence of glyphosate, had a fitness cost 
(Baucom and Mauricio 2004, 2008).

To uncover gene expression changes in herbicide-
resistant I. purpurea transcriptomic comparisons between 
susceptible and resistant plants significantly downregulate 
12 genes, 9 of which resembled kinases involved with cel-
lular signaling (Leslie and Baucom 2014). The remaining 
genes were associated with cell growth arrest, cell wall 
biosynthesis, and saccharide catabolism. The upregulation 
of nine genes was also identified, among which was a tran-
script of the cytochrome P450 family, kinase transcripts 
linked to signaling, and microbial defense-associated fac-
tors. There was no difference in EPSP, differentiating I. 
purpurea from other glyphosate-resistant species (Leslie 
and Baucom 2014).

In a glyphosate-resistant Echinochloa colona (awn-
less barnyardgrass) population, RNA sequencing analy-
sis linked resistance to two ABC transporter gene contigs 
(Pan et al. 2021). No amino acid substitutions were pre-
sent in the resistant ABC genes, but the expression levels 
were significantly higher. Furthermore, overexpression of 
ABC-type C (ABCC) transporter orthologs in rice con-
ferred resistance to glyphosate (Pan et al. 2021). This 

ABCC transporter is likely localized in the plasma mem-
brane and functions as a glyphosate exporter, exporting 
glyphosate to the apoplast, the intercellular space, thus 
lowering intracellular glyphosate concentration. This pro-
posed mechanism reduces intracellular toxicity; however, 
because it increases apoplast sequestration of glyphosate, 
it possibly results in higher glyphosate concentrations 
moved upwards through transpiration and accumulation 
in leaf tips and edges, which is consistent with observed 
leaf tip damage in rice seedlings exposed to glyphosate. 
Therefore, it is likely that in other plants as well, plasma-
membrane-bound ABC-type transporters catalyze the 
export of glyphosate, contributing to genetic variation 
behind glyphosate resistance (Pan et al. 2021).

S. cerevisiae, a species with tremendous genetic diversity, 
occupies a wide range of niches, making it well suited for 
investigations of adaptation to new environmental stressors. 
Different yeast strains have different tolerances to glypho-
sate with agricultural isolates having the highest resistance 
(Barney et al. 2020). Exploiting the natural genetic varia-
tion found genes responsible for glyphosate tolerance. To 
address the genetic variation in glyphosate tolerance, Quan-
titative Trait Loci (QTL) analysis was carried out between 
two strains that demonstrated the greatest divergence in phe-
notypic response to glyphosate (Rong-Mullins et al. 2017). 
QTL was carried out in three different conditions between 
S288c, a laboratory strain, and YJM789, a clinical isolate. 
Yeast grown in minimal media (YM) would require activ-
ity from the shikimate pathway, because no aromatic amino 
acids are added. Yeast grown in YM + WYF would permit 
the identification of NTSR, because supplementation with 
WYF would bypass the inhibition of the shikimate path-
way. In rich media (YPD), we predicted that NTSR would 
also be identified because WYF is present in the media and 
fourfold more GBH was needed to reduce growth compara-
ble to YM (Rong-Mullins et al. 2017). Interestingly, there 
was no evidence of genetic variation within the ARO1 gene 
in S. cerevisiae, the ortholog of EPSPS, suggesting non-
target-site resistance. In YPD, one of the loci of interest was 
PDR5, encoding an ABC transporter, a family protein that 
has been well associated with highly variable drug resist-
ance (Guan et al. 2010). The allele from S288c conferred 
resistance to GBH compared to YJM789, a human micro-
biome isolate. However, strains expressing PDR5S288c were 
primarily resistant in rich media when aromatic amino acids 
are present but there was a slight effect on minimal media 
(Rong-Mullins et al. 2017) Another QTL between S288c 
and RM11, a GBH-resistant agricultural isolate, did not 
identify the PDR5 locus contributing to genetic variation 
in glyphosate growth but identified other loci (Ravishankar 
et al. 2020a). The highly polymorphic sequence of the Pdr5 
transporter on the nucleotide and amino acid level enables 
a wide range of chemicals to be transported (Guan et al. 
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2010). Between strains YJM789 and S288c, there is a 5% 
amino acid sequence difference in Pdr5 (Guan et al. 2010), 
but no particular polymorphism was associated with glypho-
sate sensitivity (Rong-Mullins et al. 2017). Overexpression 
of the yhhS gene E. coli confers resistance to glyphosate 
through reduced accumulation inside the cell. The yhhS 
gene is a member of the MFS transporter family, which also 
includes ABC transporters, suggesting that overexpression 
leads to an increase in glyphosate export in both E. coli and 
Pseudomonas (Staub et al. 2012). Deletion of PDR5 leads 
to increased sensitivity to glyphosate and in accordance with 
its known role in drug transport, it is suggested that it con-
tributes to the export of glyphosate across different species.

Glyphosate influx inhibition as a mechanism 
to glyphosate resistance

In YM, the variation in glyphosate resistance mapped to 
an amino acid permease, Dip5 (Rong-Mullins et al. 2017). 
While DIP5 deletion increased glyphosate resistance, 
expression of the resistant allele further improved the 
growth of yeast on glyphosate (Rong-Mullins et al. 2017). 
Dip5 localization to the cell membrane is decreased by the 
addition of aspartate or glutamate (Hatakeyama et al. 2010; 
O’Donnell et al. 2013), and excess glutamate or aspartate 
relieved growth inhibition of all yeast tested in response to 
glyphosate (Rong-Mullins et al. 2017). Even though glypho-
sate is an analog of glycine, the phosphonate group changes 
the size and charge distribution to resemble glutamate and 
aspartate (Fig. 2). Glyphosate acting as an amino acid mimic 
provides a mechanism of transport into the cell using D/E 

transporters. During the search for the mechanism of glypho-
sate, others research groups had proposed that glyphosate 
affected glutamate in plants (Killmer et al. 1981; Nafziger 
et al. 1983) but were overshadowed by the discovery of 
EPSPS as the TSR (Steinrücken and Amrhein 1980; Comai 
et al. 1983). Given that glyphosate is transported as a D/E 
mimic, it is likely that other D/E-requiring enzymes also are 
negatively affected by glyphosate.

The remarkable bacterial biodiversity underlies varying 
levels of sensitivity and adaptation to glyphosate. Firmi-
cutes appear to be more resistant to glyphosate compared to 
proteobacteria, with actinobacteria demonstrating the most 
sensitivity. A pattern of bacterial habitats also indicates that 
free-living prokaryotes appear more resistant, as opposed to 
facultative host-associated or intracellular bacteria. Similar 
to yeast, the addition of D/E to B. subtilis rescues growth 
inhibition from glyphosate exposure (Wicke et al. 2019) 
and point mutants and deletions of GltT, a high-affinity 
D/E transporter, confer glyphosate resistance. GltT has no 
structural homology to Dip5 but is a bacterial D/E trans-
porter. Across two different kingdoms of life, glyphosate is 
transported into cells using the D/E transporter, and dele-
tion of the transporter or addition of excess D/E rescues 
glyphosate-induced growth arrest (Rong-Mullins et al. 2017; 
Wicke et al. 2019). The same phenomenon likely occurs in 
humans. While humans do not have the shikimate pathway, 
other metabolic pathways use D/E, particularly in the mito-
chondria, such as the synthesis of nearly all amino acids 
(directly and indirectly), heme, nucleotides, glutathione, and 
GABA biosynthesis, as well as the TCA and urea cycle. 
Inhibition of yeast growth is partially rescued when the 
aromatic amino acids are added but not to the same extent 
as adding D/E, suggesting other glyphosate targets (Rong-
Mullins et al. 2017). Therefore, it seems that members of 
this protein family are involved in glyphosate efflux both in 
plants, bacteria, and yeast. Recent work has also shown that 
AimA encodes for a high specificity glutamate transporter 
in B. subtilis (Krüger et al. 2021). However, this was not 
identified in the screening by Wicke (Wicke et al. 2019) 
which poses the question of whether AimA has a higher 
specificity for glutamate with GltT mediating the transport 
of glyphosate, as well as glufosinate, another herbicide that 
inhibits glutamine synthetase (Hertel et al. 2021).

Glyphosate is likely imported by D/E transporters using 
amino acid mimicry. Therefore, other proteins that use D/E 
could be affected by glyphosate and alter metabolism. The 
malate-aspartic acid shuttle generates cytoplasmic gluta-
mate while moving protons from NAD+ into the mitochon-
dria effectively importing NADH [reviewed (Broeks et al. 
2021)]. Malate is an intermediate in the citric acid cycle. 
While high levels of N-acetylglutamate in the mitochon-
dria inhibit ammonia metabolism through the urea cycle. 
Additionally, cycling between alpha-ketoglutarate and 

Fig. 2   Chemical structures of amino acids and glyphosate Glypho-
sate is glycine analog that is likely transported through the same per-
mease as aspartate and glutamate. Glyphosate has similar size, shape 
and charge distribution as aspartate and glutamate, suggesting that 
glyphosate is an amino acid mimic
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glutamate moves an amino group through multiple meta-
bolic pathways. A side effect of glyphosate inhibiting shiki-
mate is increased levels of PEP, one of the necessary com-
ponents to build shikimate. Citric acid cycle intermediates 
increase in glyphosate-resistant Amaranthus palmeri in a 
dose-dependent manner while increased levels were detected 
in sublethal exposed glyphosate-resistant varieties (Zulet-
Gonzalez et al. 2023). The glyphosate-resistant A. palmeri 
have amplified the EPSP loci; however, the entire genome 
was not sequence so it is unknown what other compensa-
tory mutations occurred (Fernández-Escalada et al. 2016). 
The glyphosate’s effect on mitochondria could be two-fold: 
glyphosate could directly block carbon flow through the shi-
kimate which would then increase PEP levels, a pyruvate 
precursor which would increase intermediates of the citric 
acid cycle while glyphosate as a D/E mimic in the mitochon-
dria could overwhelm aspartate mitochondria export or act 
as a competitor for aspartic acid import.

Further genetic variation contributing 
to glyphosate resistance

With genetic variation being a powerful tool in understand-
ing glyphosate modes of action, In Lab Evolution (ILE) was 
employed to induce selection and resistance to glyphosate. 
Two sensitive and two resistant yeast strains were grown in 
the presence of a commercial glyphosate-based herbicide 
in minimal or rich media, with herbicide only or herbicide 
and aromatic amino acids. Samples were then passaged six 
times by transferring 1% to fresh media to induce adapta-
tion. Resistant populations were isolated and sequenced. 
A total of 148 genes were identified to have accumulated 
at least 1 non-synonymous polymorphism in the coding 
region (Ravishankar et  al. 2020b). Copy number varia-
tion was also assessed and indicated a variety of pathways 
affected through duplications, some specific to the condition 
of growth and the strain. Genomic loci that were amplified 
contained ARO1, TMS1 which encodes a Pdr5-interacting 
vacuolar protein, and VMA2, which encodes a subunit of the 
vacuolar H + ATPase that maintains intracellular pH (Ravis-
hankar et al. 2020b). Plants in the lab and wild often amplify 
EPSP in the genome which correlates with glyphosate resist-
ance (Shah et al. 1986; Widholm et al. 2001; Gaines et al. 
2010; Fernández-Escalada et al. 2016). Yeast are tolerant to 
low pH and actively pumps protons into the media to drive 
the secondary transport of nutrients across the cell mem-
brane (Eskes et al. 2018). While acidification of the vacuolar 
is critical for stress response (Milgrom et al. 2007; Ayers 
et al. 2020) and amino acid homeostasis (Shimazu et al. 
2012). Glyphosate’s pKa is acidic (Borggaard and Gimsing 
2008) and glyphosate reduces the pH yeast minimal media 
from 4.5 to 2.8 pH when 8 mM glyphosate (Fig. 3). Whereas 

GBHs are buffered, and the pH does not decrease. Glypho-
sate also drops the pH below 3 in zebrafish media when at 
similar concentrations to the yeast system (Schweizer et al. 
2019). The effects on zebrafish embryos were more pro-
nounced when the system was not buffered (Schweizer et al. 
2019). Metal chelation is also affected by pH (Glass 1984). 
From transcriptomic data, CTR1 and FET4 are downregu-
lated when exposed to GBH. (Ravishankar et al. 2020b). 
Of the hundreds of commercial formulations, one GBH, 
Credit41, also contains magnesium, calcium, and potassium 
in addition to the surfactants (Ravishankar et al. 2020a). 
Glyphosate chelates divalent cations such as copper, zinc, 
manganese, magnesium, and calcium as the pH increase 
with copper binding at the lowest pH and 100% complexed 
with glyphosate at pH 4 Madsen et al. 1978). Glyphosate’s 
predicted Fe+2 binding is 6.87 which is between zinc at 8.74 
and manganese at 5.47 but Fe+3 binding is 16.09 which is 
higher than copper at 11.93 (Madsen et al. 1978; Duke et al. 
2012). Fe + 3 converts to Fe + 2 as pH increases with equal 
concentration at pH 2.5. The metal binding is correlated with 
pH and pKa of the first hydrolysis of the metal (Duke et al. 
2012). Many studies in numerous models do not account for 
the drastic drop in pH induced by the addition of glyphosate 
to the media. Aquatic organisms are particularly sensitive 
to low pH.

Perspective

Future studies should take into account how glyphosate 
changes pH, glyphosate complexed with different metals, 
the impact of buffering by GBH, and the likely effects of 
glyphosate on NSTR through amino acid mimicry because 
of structural similarities with D/E. Through In-Lab evolu-
tions, natural genetic variation and transcriptomics have 
found functions associated with the copy number variants 
including mitochondrial maintenance, biosynthesis, DNA 
damage repair, spindle formation, metal transport, cell wall, 
and cell membrane (Ravishankar et al. 2020b). This is yet 
another example of mutations occurring outside the target 

Fig. 3   pH of yeast minimal media with pure glyphosate added at 
different concentrations 
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EPSPS gene but in this case, resistance was not localized 
within a single gene or a single pathway, but rather a collec-
tion of loci that potentially contributes to NTSR. The prob-
lem of glyphosate resistance in fungi extends past environ-
mental exposure but also into development of new antifungal 
targets. Fungal infections are notoriously difficult to treat. 
Fungi retained additional amino acid biosynthetic pathways 
including branch chain amino acids that are not in humans 
and are potential targets but potential resistance would need 
to be studied (Kuplińska 2021).
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