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Abstract

Background: Yellow fever is a vector-borne disease affecting humans and non-human primates in tropical areas of Africa
and South America. While eradication is not feasible due to the wildlife reservoir, large scale vaccination activities in Africa
during the 1940s to 1960s reduced yellow fever incidence for several decades. However, after a period of low vaccination
coverage, yellow fever has resurged in the continent. Since 2006 there has been substantial funding for large preventive
mass vaccination campaigns in the most affected countries in Africa to curb the rising burden of disease and control future
outbreaks. Contemporary estimates of the yellow fever disease burden are lacking, and the present study aimed to update
the previous estimates on the basis of more recent yellow fever occurrence data and improved estimation methods.

Methods and Findings: Generalised linear regression models were fitted to a dataset of the locations of yellow fever
outbreaks within the last 25 years to estimate the probability of outbreak reports across the endemic zone. Environmental
variables and indicators for the surveillance quality in the affected countries were used as covariates. By comparing
probabilities of outbreak reports estimated in the regression with the force of infection estimated for a limited set of
locations for which serological surveys were available, the detection probability per case and the force of infection were
estimated across the endemic zone. The yellow fever burden in Africa was estimated for the year 2013 as 130,000 (95% CI
51,000–380,000) cases with fever and jaundice or haemorrhage including 78,000 (95% CI 19,000–180,000) deaths, taking
into account the current level of vaccination coverage. The impact of the recent mass vaccination campaigns was assessed
by evaluating the difference between the estimates obtained for the current vaccination coverage and for a hypothetical
scenario excluding these vaccination campaigns. Vaccination campaigns were estimated to have reduced the number of
cases and deaths by 27% (95% CI 22%–31%) across the region, achieving up to an 82% reduction in countries targeted by
these campaigns. A limitation of our study is the high level of uncertainty in our estimates arising from the sparseness of
data available from both surveillance and serological surveys.

Conclusions: With the estimation method presented here, spatial estimates of transmission intensity can be combined with
vaccination coverage levels to evaluate the impact of past or proposed vaccination campaigns, thereby helping to allocate
resources efficiently for yellow fever control. This method has been used by the Global Alliance for Vaccines and
Immunization (GAVI Alliance) to estimate the potential impact of future vaccination campaigns.
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Introduction

Yellow fever is a flavivirus infection that is transmitted primarily

by mosquitoes of the species Aedes ssp. and Haemagogus spp., with

humans and non-human primates being the main vertebrate hosts.

It is endemic in tropical areas of Africa and Central and South

America. The clinical course of infection in humans shows a wide

spectrum of severity including asymptomatic infection, mild illness

with flu-like symptoms, and severe disease including fever with

jaundice or haemorrhage and death.

Several different transmission cycles have been defined,

depending on which host and vector species are involved in

transmission: in the sylvatic cycle, tree-dwelling mosquitoes of

Aedes spp. (Africa) or Haemagogus spp. (Americas) transmit the virus

to non-human primates. In this cycle, spill-over infection of

humans occurs when they encroach on this jungle habitat.

Conversely, in the urban transmission cycle, humans are the

main hosts with transmission occurring via domestic mosquito

species. The typical urban vector is Aedes aegyptii, which also serves

as the main vector for dengue virus transmission. If yellow fever is

introduced into urban areas, large explosive outbreaks can occur,

which can be difficult to control. In Africa, there is also an

intermediate transmission cycle that occurs in rural areas typically

at the edges of forests with humans as well as non-human primates

affected, and transmission driven by domestic and semi-domestic

mosquito species [1,2].

While eradication of yellow fever is not feasible due to the

sylvatic reservoir, a high level of control is achievable owing to the

availability of an efficacious and safe vaccine that confers long-

lasting immunity from a single dose. Visas for many countries

worldwide require proof of previous vaccination against yellow

fever, particularly if travelers come from or have visited yellow

fever endemic areas, in order to prevent the importation of the

disease.

Quantifying the burden of disease caused by yellow fever is

made challenging by the wide spectrum of clinical severity, with

non-specific symptoms in the majority of infections making

diagnosis difficult. In addition, there are considerable limitations

in the surveillance and health care systems across much of the

affected regions. However, it is clear that yellow fever is

substantially underreported [3,4]. Previous estimates from the

early 1990s placed the burden of disease at 200,000 cases and

30,000 deaths annually [5,6]. These estimates relied heavily on

data from serological surveys performed in children in Nigeria

between 1945 and 1971 [7]. These data still form the basis of more

recent efforts to quantify disease burden or the cost-effectiveness of

vaccines [8,9]. More recent approaches to quantify yellow fever

circulation have focused on producing risk maps [10–12],

frequently employing regression techniques similar to the

approach we adopt [10,12], or relying on expert advice regarding

local yellow fever distribution [11,12]. However, there are no

recent estimates of the yellow fever burden that take into account

more recent surveillance and serological data and that account for

vaccination coverage.

In 2005, the Yellow Fever Initiative was launched as a

collaboration between WHO and the United Nations Children’s

Fund (UNICEF) with support from the Global Alliance for

Vaccines and Immunization (GAVI Alliance). The aim was to

secure the precarious yellow fever vaccine supply by creating a

vaccine stockpile to be used in outbreak response campaigns as

well as to increase the vaccination coverage in the most affected

areas by implementation of large preventive mass vaccination

campaigns in 12 of the most affected countries in West Africa.

Between 2006 and 2012, these campaigns have been implemented

in all of these countries apart from Nigeria because of larger than

anticipated vaccine needs and limited vaccine supplies. In the

same time frame, the Central African Republic, though not

covered under the Yellow Fever Initiative, also performed mass

vaccination campaigns with support from the GAVI Alliance.

During the October 2011 meeting of the advisory committee on

Quantitative Immunization and Vaccine Related Research

([QUIVER], currently named Immunization and Vaccines related

Implementation Research [IVIR]), the Advisory Committee

recommended that WHO establish a working group to generate

updated yellow fever disease burden estimates for Africa. This

paper reports the results of this activity, presenting new estimates

of the disease burden caused by yellow fever in Africa and the

impact of preventive vaccination campaigns carried out under the

Yellow Fever Initiative. The estimates are derived from a coherent

model framework that integrates all available data including

incidence, serology, and vaccination coverage.

Methods

Overview
We fitted a generalised linear model to the locations where

yellow fever was reported in the 25-year period between 1987 and

2011. This model estimated, for each location, the probability of at

least one yellow fever report over the observation period. The

number of infections required to give rise to these probabilities of

occurrence was then estimated by taking into account the

probability of detection of yellow fever cases in each country.

Estimated numbers of infections were converted to estimates of the

force of infection using data on the population size, age

distribution, and age-specific vaccination coverage in the obser-

vation period. Again using demographic and vaccination coverage

data, the burden in terms of the number of infections, severe cases

presenting with fever and jaundice or haemorrhage, or deaths can

then be obtained from the estimates of the force of infection for

each location for any year in the past or future, given assumptions

on population growth and size of future vaccination campaigns.

Datasets
The model was fitted at a spatial resolution of the first sub-

national administrative unit (which in many countries is called

‘‘province’’; this is the terminology adopted throughout this

manuscript), so all datasets were resolved or aggregated to this

level as appropriate.

Yellow fever occurrence. A database of the locations of

reported outbreaks between 1987 and 2011 was compiled from

various sources including the Weekly Epidemiological Record

(WER) [13], the WHO disease outbreak news (DON) [14], an

internal WHO database of outbreaks between 1980 and 2007, and

the published literature. Locations were resolved to the province

level, and data were recorded for each outbreak on the year of

occurrence, size, and control measures implemented. Outbreak

reports that could not be located at the province level were

excluded.

In 2005, the African Regional Office of WHO established a

yellow fever surveillance database (YFSD) of reports of suspected

yellow fever cases (based primarily on a case definition of fever

with jaundice) across 21 countries in West and central Africa. Data

fields recorded for each case included age, gender, location,

disease onset date, and the status of laboratory confirmation. The

locations of all lab-confirmed cases between 2005 and 2011,

resolved to the province level, were combined with the outbreaks
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dataset to generate an overall dataset of the areas of yellow fever

occurrence, recording for each province whether or not there had

been at least one yellow fever outbreak or case report in the period

from 1987 to 2011.

Due to the very low proportion of suspected cases actually being

attributed to yellow fever in the YFSD, the majority of cases

reported likely had other causes (for instance viral hepatitis).

Hence the national incidence of suspected cases is best interpreted

as a measure of the effort put into yellow fever surveillance rather

than a measure of yellow fever incidence itself. The incidence of

suspected cases was aggregated at the country level and divided by

the national population to be used as a covariate in the regression

models fitted throughout.

Disease severity. The proportion of infections presenting as

severe cases and the proportion of severe cases resulting in death

varies substantially between settings, depending on previous

exposure to other flaviviruses, but also factors such as clinical

care and importantly detection bias due to surveillance coverage

or case definitions used [1,15–20]. Recent work by Johansson and

colleagues [21] has estimated the proportion of infections that are

asymptomatic, cause mild symptoms (excluding jaundice and

haemorrhage), or severe symptoms (including jaundice, haemor-

rhage, or death), as well as the proportion of severe cases leading

to death. We use these estimates of 13% (95% CI 5%–28%) of

infections presenting as severe cases, and 46% (95% CI 31%–

60%) of severe cases resulting in death to estimate the number of

severe cases and deaths from the number of infections estimated

by our model.

Vaccination coverage. No comprehensive dataset of yellow

fever vaccination coverage in the endemic area in Africa was

available, so vaccination coverage was estimated using data on (i)

large-scale mass vaccination activities in French West Africa

during the 1940s to 1960s [22]; (ii) outbreak response campaigns

since 1970, as reported in outbreak reports in the WER or DONs

[13,14]; (iii) routine infant yellow fever vaccination occurring as

part of the Enhanced Programme for Immunization (EPI) [23];

and (iv) mass vaccination campaigns in 11 West African countries

under the Yellow Fever Initiative and the Central African

Republic from 2006 to 2012 [24,25].

Information on yellow fever vaccination was compiled into a

dataset of age-specific vaccination coverage at the second sub-

national administrative level (district), taking into account the

location and extent of each campaign as well as the demographics

of the targeted populations. This dataset allowed the achieved

coverage to be tracked through time for each birth cohort in each

district.

The available information on vaccination activities varied

greatly from country to country, sometimes specifying the

coverage achieved in a certain area, sometimes the number of

doses administered during a vaccination campaign, and some-

times both. If the area targeted by a campaign was well defined

geographically we used information on the vaccination coverage

achieved by that campaign in preference to the number of doses

administered in order to avoid uncertainty in population size

affecting our estimates. If no information on the coverage

achieved was available or the target population was not

sufficiently well defined, we calculated vaccination coverage as

the number of doses administered divided by the population size,

assuming that individuals from all targeted age groups had an

equal chance of receiving the vaccine, and that vaccination was

performed irrespective of previous vaccination or disease history.

From the vaccination coverage achieved in individual vaccina-

tion campaigns the coverage at the population level over time was

obtained by tracking vaccination coverage in each birth cohort. In

compiling the vaccination coverage dataset, population move-

ments were ignored, and 100% vaccine efficacy was assumed, with

lifelong protection. The last two assumptions are supported by

data showing that 99% of individuals seroconvert within 30 days

of vaccination [1,26], and neutralising antibodies have been

measured 35 years post vaccination [26–28].

In estimating the impact of potential future vaccination

campaigns we assumed that no further outbreak response

vaccination campaigns would be undertaken and that the

country-specific coverage in the infant immunization campaigns

would be held constant at the levels estimated for 2011 (see Table

S1) [23].

Serological surveys. Serological surveys have been used

historically to assess overall levels of transmission. All literature on

yellow fever serologic surveys conducted in Africa and published

since 1980 were reviewed and the results collated [21]. For the

analysis of transmission intensity, only surveys that had samples

tested for yellow fever virus specific neutralising antibodies and

were not part of an outbreak investigation were considered [29–

34], as surveys conducted in outbreak situations are typically not

representative. Even if random population samples are obtained

in an outbreak-associated survey, serology would be expected to

yield information on the attack rate for that specific outbreak

rather than the average force of infection over a longer time

period.

Demographic data. Demographic data on population size

and age distribution at a sub-national level were used to interpret

the data on vaccination campaigns as well as for estimating the

burden. We used UN World population prospects (WPPs) [35]

estimates of the population size by country in 5-year age bands for

each year between 1950 and 2100. In order to achieve a higher

spatial resolution of the population distribution, these estimates

were combined with the LandScan 2007 dataset [36,37], which

gave estimates for the year 2007 of the total population on a grid

of resolution of 1/120 degree latitude and longitude, which is

approximately 1 km at the equator. By allocating each grid point

to the second sub-national administrative unit (which in many

countries is the district), the proportion of each country’s

population living in any particular district was estimated. In the

absence of more detailed datasets, it was assumed that the age

distributions were homogeneous within each country, neglecting

local differences, for instance between rural and urban areas. We

furthermore assumed that population growth was homogeneous

within a country, and that the population proportions for each

district obtained from the LandScan 2007 dataset were applicable

to all other years. Thus we did not capture trends in urbanisation

or other shifts in the relative population sizes of different districts

over time.

We disaggregated the 5-year age bands of the UN WPP dataset

into annual birth cohorts using the method described in Text S1.

Population based variables for the regression model included

the total population for each province, the logarithm of the

population size and the proportion of the population living in

urban areas (defined as LandScan 2007 dataset pixels with a

population density of $386 people per sq km [38]).

Environmental data. Environmental datasets on rainfall

[39], day- and night-time air temperatures [40], land cover

classifications [41,42], the enhanced vegetation index (EVI), the

middle infrared reflectance (MIR) [43], longitude, latitude, and

altitude [44,45] were used as potential covariates in the generalised

linear model. These data were available as gridded datasets of

various spatial resolutions between about 1 km and 10 km, and

were aggregated to province level by calculating the mean value

for each variable, weighted by the population size attributed to

Yellow Fever Burden in Africa
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each grid cell in order to obtain values representative of the

conditions where human populations are concentrated.

For the land cover classification, the proportion of pixels

(weighted by population size) for each category was aggregated for

each province to obtain scalar variables. In the endemic zone,

some of the 17 defined land cover classes occurred very scarcely or

not at all, so we only considered those that accounted to over 5%

of the area in at least one province as potential covariates. This

resulted in the four categories of evergreen needleleaf forest,

deciduous needleleaf forest, mixed forests, and snow and ice being

excluded.

For each time-varying variable, the annual mean and the

average annual minimum and maximum levels were considered,

on the basis of 4-year time series obtained for the period from

2003 to 2006. To evaluate the average annual minimum and

maximum, time series were smoothed using Fourier transforms as

described by Garske and colleagues [40]. The minimum and

maximum of these smoothed curves determined the typical annual

minimum and maximum used here. The variable that varied with

time were the night- and day-time air temperatures [40], EVI,

MIR [43], and rainfall [39].

Prior to fitting, all variables were scaled to unit variance in order

to improve model convergence and make the fitted slope

parameters comparable.

Model Structure and Fitting
The overall model consisted of several components that were

fitted jointly using standard Markov Chain Monte Carlo (MCMC)

techniques [46,47].

Generalised linear model for the presence/absence of

yellow fever reports. A generalised linear model was fitted to

the dataset describing the presence or absence of reported yellow

fever over the past 25 years for each province in the countries

considered endemic for yellow fever. Because of the binary nature

of the data, the model used a binomial distribution with a

complementary log-log link function, such that the model

predictions q~ qið Þ for each province i were given by

q~1{exp {eXb
� �

, ð1Þ

where X~ Xij

� �

was the matrix of covariates used in the model

with i indexing provinces and j indexing the covariates, and

b~ bj
� �

was the parameter vector to be fitted. The log-likelihood

for this model component was given by

lnLglm~
X

i

yi ln qið Þz 1{yið Þln 1{qið Þ½ �, ð2Þ

where the dependent variable yi determined the presence or

absence of yellow fever in province i and the model predictions

were considered a function of the parameter vector b, q~q(b).

The complementary log-log link function was chosen as this could

be mechanistically interpreted in terms of the surveillance quality

and the actual number of infections occurring, as explained below.

As the occurrence of yellow fever certainly depends on

environmental factors such as climate, land cover, but also the

human population size, several environmental variables were

considered as potential covariates. However, the number of such

potential covariates was large, so the first step in variable selection

was to fit univariate models to the dataset including each of the

potential covariates in turn. Any variables that were not

significantly associated with the data at the 10% confidence limit

were excluded from further consideration. Some of the remaining

variables were highly correlated, and inclusion of highly correlated

variables in regression models can lead to instabilities in the

parameter estimates. In order to avoid these problems, covariates

were clustered into highly correlated groups, where the absolute

pairwise correlation between any two variables within a group was

above 0.75. A single variable from each group was then selected as

a potential covariate in the regression modeling.

Given that the model was fitted to the presence or absence of

yellow fever reports, we would also expect the quality of

surveillance to have a major impact. Therefore, for all of the

models considered, an indicator of the surveillance quality at the

country level was also included. The parameter vector could then

be expressed as b~ bj ,bc
� �

, where j now only indexes the

environmental variables included in the model (including the

intercept), but not the surveillance quality, and c indexes the

countries. From the YFSD, data on the surveillance quality for 20

countries in West and central Africa were available, defined as the

per capita rate of reporting of suspect cases based on fever with

jaundice as the main feature of the case definition. For these

countries, the country factor was given by bc~Xc,SQbSQ, where

bSQ was the parameter fitted to the logarithm of the surveillance

quality indicator Xc,SQ, whereas for countries not covered by the

YFSD, the country factor bc was freely fitted.

For some of the countries not covered by the YFSD, all

provinces reported either presence or absence of yellow fever

reports, a feature commonly found in small datasets called variable

separation. Using pure maximum likelihood, this would lead to a

singular estimate of the country factor [48]. To avoid any such

infinite parameter estimates, for the full model framework using

MCMC, Gaussian prior distributions with mean zero and

standard deviation s~2 were used for all country factors. The

log prior probability was given by

lnLprior~{Nc ln s
ffiffiffiffiffiffi

2p
p� �

{
X

c

b2c
2s2

, ð3Þ

where Nc was the number of countries for which a country factor

was fitted, s the standard deviation of the prior distributions, and

bc the estimate of the country factor for country c.

Multivariate models were fitted using the function glm in R

version 2.14.2. These models included an intercept, the log

surveillance quality indicator at the country level obtained from

the YFSD and a factor for each country not included in that

database as well as any possible combination of up to 12 additional

environmental covariates. The model fit was evaluated using the

Bayesian Information Criterion (BIC) [49], and the 15 best models

were further investigated in the full model framework.

Frommodel predictions to transmission intensity. From

the model predictions, qi, of the probability of at least one yellow

fever report in province i over the time period considered, the

number of infections necessary to generate this probability, ninf,i
was calculated assuming a simple Poisson process for the detection

of infection:

qi~1{ 1{hið Þninf,i~1{exp ninf,i ln 1{hið Þ½ �: ð4Þ

Here hi~hc is the probability of detection of an infection, which

was assumed to vary between but not within countries. Combining

this with equation (1) yielded

ninf,i ln 1{hcð Þ~{eXb
: ð5Þ
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By repeated taking of logarithms, this can be split into

ln ninf,ið Þ~Xb{bc{b and ln {ln 1{hcð Þð Þ~bczb, ð6Þ

where the parameter b anchors the overall level of the surveillance

quality relative to the transmission intensity. From the regression

model alone there is not enough data to fit this parameter;

additional information for estimating b was obtained by indepen-

dently fitting a force of infection to the serological survey data as

described below.

The number of infections ninf,i expected to accrue within

province i over the 25-year period covered by the incidence

dataset is determined by the force of infection li (the annual risk of

infection to a susceptible person living in province i), the age-

specific population size, piat, and the age-dependent vaccination

coverage viat, both of which varied over time t:

ninf,i~li
X

a,t

e{liapiat 1{viatð Þ, ð7Þ

which was solved numerically to estimate the force of infection li
for each province i (assumed constant over time and age for

simplicity).

Serological surveys and detection probability. Suitable

serological surveys were only available for a few locations and

therefore could not be used to estimate the transmission intensity

across the whole endemic region. However, for the locations

where serological data were available, these data were analysed to

provide an estimate of the force of infection that was independent

of the quality of disease surveillance [21], and could therefore be

used to anchor the case detection probability to the force of

infection in the regression modeling. We assumed homogeneous

mixing and exposure within the survey populations and that the

force of infection was independent of age but could vary between

surveys. As the serological tests available cannot distinguish

between natural infection and vaccination, for surveys that did

not explicitly exclude vaccinated individuals, we accounted for the

vaccination coverage by age at the time and location of the study.

For a given force of infection l, the expected seroprevalence s l,uð Þ
in age group u stemming from both natural infection and

vaccination is given as

s l,uð Þ~1{ 1{

X

a[u

1{e{la
� �

pa

X

a[u

pa

2

6

4

3

7

5
1{

X

a[u

vapa

X

a[u

pa

2

6

4

3

7

5
, ð8Þ

where a indexes the annual age groups, pa is the population age

distribution, and va the age-dependent vaccination coverage. The

log-likelihood of a given force of infection l, given the total

number of samples tested ntot,u and the number of positives

detected npos,u in all age groups u covered by the survey is then

given by a binomial likelihood,

lnLsero~
X

u

ln
ntot,u

npos,u

	 


s(l,u)npos,u 1{s(l,u)ð Þntot,u
� �

: ð9Þ

For the purposes of fitting the overall model, the force of infection

for each serological survey was updated in each MCMC iteration,

and the log-likelihoods from all serological surveys available were

summed.

The parameter b anchoring the overall level of transmission

intensity was estimated using the left part of equation (6), where

the parameter estimates b from the regression model were inserted

and the expected number of infections was calculated from

equation (7) using the force of infection li estimated from the

serological surveys. This calculation yielded a different estimate of

the parameter bi for each province covered by serological surveys,

and we used the overall mean of these individual estimates as the

final estimate of b. Inserting this estimate of b back into the right

part of equation (6) then allowed the calculation of the detection

probability per infection hc for country c as

hc~1{exp {ebczb
� �

: ð10Þ

The forces of infection li across the whole of the endemic region

were then obtained by solving equation (5) for the expected

number of infections ninf,i, and inserting these into equation (7),

which was solved numerically for each li.

Estimating the burden from transmission intensity. The

annual number of infections expected in any province for any year

t were estimated using the estimate for the force of infection li in

equation (7), in conjunction with the vaccination coverage and

population size at time t. The burden for alternative vaccination

coverage scenarios was obtained by refitting the model to obtain

alternative estimates of the force of infection, whereas the impact

of hypothetical vaccination campaigns was assessed by using the

force of infection estimates from the baseline model together with

vaccination coverage levels for the scenario being considered to

estimate the burden under that scenario. We then assessed the

impact of the vaccination scenario as the difference between

baseline burden estimates and those estimated for the hypothetical

scenario.

While the number of infections is the most relevant quantity for

assessing the degree of transmission of yellow fever, morbidity and

mortality estimates are required to assess the impact on

populations and health care systems. In order to calculate the

number of severe cases and deaths from the infections, we fitted

beta distributions to the point estimates and 95% credibility

intervals of the proportion of cases among infections and the case

fatality ratio estimated by Johansson and colleagues [21] and

generated samples from both distributions that we then multiplied

by the number of infections estimated during each MCMC

iteration. This approach allowed us to include the uncertainty of

the severity spectrum in our burden estimates.

Model fitting. In order to obtain estimates that take into

account uncertainties from all the different estimation steps, all

parameters including the generalised linear regression coefficients

and the force of infection estimates from the serological surveys

were fitted jointly using MCMC simulations. The overall log-

likelihood was the sum of the log-likelihoods from the different

model components, given in equations (2), (3), and (9) as

lnL~lnLglmzlnLpriorzlnLsero: ð11Þ

To ensure a support from {? to ? for all variables, a log

transform was used for the forces of infection, which were defined

on ½0,?½, and a logit transform for any probabilities, defined on

[0,1]. Proposals for the parameters on the transformed scale were

then generated from a multivariate normal distribution with mean

0. To ensure optimal mixing of the chain, the standard deviations

of the multivariate normal distributions were scaled proportional

to the standard deviations of the posterior distribution for each

parameter, as determined in some exploratory runs; these

standard deviations were then scaled to yield an acceptance

fraction of around 0.2 to 0.3.
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For each model and value of the prior distribution standard

deviation s considered five chains were run for 400,000 iterations

each (after burn-in), starting from different points and the results

were combined. Convergence was checked visually. Prior to

further analysis of the MCMC output, posterior samples were

thinned by a factor of 800.

The model fit of the full model was evaluated via BIC, as this

takes into account both fit quality (measured by the log likelihood)

while penalizing models with a large number of parameters. In

addition, we calculated receiver operator characteristic (ROC)

curves comparing the regression model predictions with the yellow

fever presence/absence data to which the regression models were

fitted, and the area under the ROC curve (AUC), which quantifies

how well the regression model predictions matched the data [50].

A lower value of the BIC indicates a better model fit, whereas a

value of the AUC of 0.5 indicates that model predictions are no

better than chance, and a value of 1 corresponds to a perfect fit to

the data.

Sensitivity analyses. While the model inference framework

adopted gives parameter estimates and credible intervals around

these, there were however other sources of uncertainty that were

more difficult to quantify, some of which were assessed in

sensitivity analyses.

The impact of the choice of covariates included in the regression

model was assessed by comparing the final burden estimates

obtained for a number of the best fitting regression models. The

model that ranked best in the initial fits of the linear regression

model was used as the baseline model and is presented in the main

paper, whereas results from the remaining models are shown in

Text S2.

Sensitivity to the magnitude of the standard deviation of the

Gaussian prior distribution on the country factors was explored

(see Text S3).

The vaccination coverage dataset compiled for this study suffers

from a number of uncertainties in the input datasets that are

difficult to quantify, including uncertain population sizes that

impact directly the vaccination coverage achieved with a given

number of doses, uncertainties about the completeness and

accuracy of the records of past vaccination activities, and the

influence of population movements on vaccination coverage. In

order to explore the potential impact of these sources of

uncertainty on the burden estimates, we generated five alternative

vaccination coverage scenarios: assuming only 90% vaccine

efficacy, alternative lower or higher population sizes, non-random

vaccine allocation, and an alternative scenario of the historic mass

vaccination campaigns based on different records [51]. We used

these to assess the impact of uncertainty of coverage estimates on

the overall estimates of disease burden (see Text S4 for further

details).

Last, we also considered two refined model structures that

relaxed the assumption that the probability of case detection via

routine surveillance was constant through time (see Text S5).

Results

Yellow Fever Occurrence
Between 1980 and 2012, 150 yellow fever outbreaks in 26

countries in Africa were reported to WHO (Figure S1). A high

number of large outbreaks occurred in the late 1980s and early

1990s, particularly in Nigeria, as well as a large number of

relatively smaller outbreaks in West and later central Africa since

the turn of the century.

The YFSD contained records of 29,237 suspected cases of

yellow fever from 21 countries reported between 2005 and 2011,

302 of which were lab-confirmed, 231 classified as epidemiolog-

ically linked to a lab-confirmed case, and 416 as compatible with

yellow fever based on symptoms and epidemiology, with the

remaining cases considered not due to yellow fever after

investigation. The locations of the lab-confirmed, linked, and

compatible cases resolved to the province level are shown in Figure

S2A, whereas the combined dataset of the presence or absence of

yellow fever reports by province is shown in Figure 1A.

The country-specific surveillance quality (defined as the mean

annual number of reported suspected cases divided by the national

population) is shown in Figure S2B. While there were suspect cases

reported from 21 countries, the YFSD included only five suspect

cases reported from Angola, none of which were confirmed. It was

therefore assumed that this country did not participate effectively

in the YFSD, reducing the number of countries included to 20.

Vaccination Coverage
The estimated vaccination coverage over time clearly shows the

success of the mass vaccination campaigns in French West Africa

between 1940 and 1960, and declining levels of immunity in the

following decades caused by low vaccination levels, the birth of

new unvaccinated cohorts, and the gradual depletion of the older

protected cohorts through mortality. Between 1960 and 2000

there was limited vaccination activity across Africa resulting from

disjointed reactive vaccination campaigns. Mass vaccination

campaigns implemented since 2006 in the framework of the

GAVI investment have achieved much higher coverage levels in

West Africa (Figure S3). The impact of infant immunization on

coverage at the population level will take time to develop, but if

this is pursued in the future and high coverage of new birth cohorts

is achieved, it will eventually lead to a high coverage even in

countries with currently low population-wide coverage. In

countries that currently have high population-level coverage,

infant immunization will prevent a repetition of the decline in

vaccination coverage observed from the 1960s onwards.

Regression Model Fitting and Variable Selection
All models included log[surveillance quality] and country

factors for those countries for which surveillance quality data

were not available (due to non-participation in YFSD). In addition

a total of 34 potential covariates were evaluated, nine of which

were not significantly associated with the data at the threshold of

p=0.1 (see Table S2). The remaining 25 variables were clustered

into 18 groups (see Figure S4 for the correlations between

variables and Figure S5 for maps of the 18 covariates considered in

the multivariate regression models), leading to a total of 249,527

models fitted with standard regression software. The 15 best

models further investigated in the full model framework included

three to five additional covariates (Table 1). These models were

investigated further by MCMC, fitting simultaneously the

regression parameters and the force of infection from the

serological surveys. For identification, these models were indexed

with their BIC rank from the initial model fit. Time series and

autocorrelation plots of the model parameters for the baseline

model (model 1) are shown in Figures S6 and S7, respectively.

One would expect the number of cases to be proportional to the

population size, leading to a dependence of the model predictions

(probability of detecting yellow fever) on the log[population size],

and this covariate was indeed included in all of the 15 best fitting

models with a regression parameter value around 1, indicating

linear dependence of the number of cases on population size. Most

models included longitude, mimicking the strong gradient in risk

that is observed in yellow fever epidemiology. Latitude, mean EVI,

mean MIR, and the land cover category indicating a mosaic of
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cropland and natural vegetation were included in about half of the

models, with typically each model including either mean EVI or

mean MIR. The land cover categories of deciduous broadleaf

forest, open shrubland, and barren areas were only included in few

models, and no further of the 18 potential covariates considered

were included in the 15 best fitting models.

The differences in goodness of fit between the models were

small compared with the uncertainty inherent in the BIC and

AUC estimates (Figure 2), although the BIC indicated a

slightly better fit for the models with a smaller index in Table 1

compared with those with a larger index, mirroring the BIC

rank in the pure regression models. AUC values were high,

averaging just below 0.9, showing a good match between data

and regression model predictions. The AUC indicated a better

match between regression model predictions and data for

models 1, 4, 13, and 15 than the other models, but again, the

differences were small.

As the model fit and burden estimates obtained with the

different models were similar, for the remainder of this manuscript

only results from model 1 are presented, with a standard deviation

of the prior distributions of s~2. For results from the other

models and extensive sensitivity analyses see Texts S2, S3, S4, S5.

Outputs from the Baseline Model
The high values for the AUC seen for the model predictions

testified to a good model fit, so it is unsurprising that the spatial

distribution of the model predictions matched the dataset of

presence or absence of yellow fever reports very well (Figure 1A

and 1B). The model successfully captures the gradient of

transmission intensity from west to east as well as the focus of

Figure 1. Geographical distribution of yellow fever occurrence and transmission. (A) Presence/absence of yellow fever over a 25-year
period, by province. White, absence; red, presence of yellow fever reports. (B) Model predictions giving the estimated probability of at least one
yellow fever report. (C) Estimates of the annual force of infection at the province level in the 32 countries considered endemic for yellow fever. (D)
Estimates of the country-specific detection probability per infection. Countries not considered endemic for yellow fever are shown in navy (A, B, and
D) or white (C).
doi:10.1371/journal.pmed.1001638.g001
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transmission being in sub-Sahel and tropical latitudes, which is

reflected in both the model predictions (Figure 1B) and the force of

infection estimates (Figure 1C).

There was substantial uncertainty in the force of infection

estimates, with the highest values of the coefficient of variation

being in areas with the lowest force of infection estimates:

Rwanda, Burundi, and western parts of Tanzania (Figure S8). Due

to the very low force of infection estimates in these areas, this

uncertainty has little impact on the burden estimates.

The estimated country-specific detection probability per infec-

tion varied over nearly two orders of magnitude between

countries. Countries with a higher estimated force of infection

also had higher estimates of the case detection probability, with the

highest values found in the Central African Republic and Togo

and the lowest in Guinea-Bissau, Ethiopia, and Tanzania

(Figure 1D), Notably the detection probability was estimated to

be very low in Nigeria, which has a substantial impact on the

burden estimates due to its large population.

The annual number of yellow fever infections, severe clinical

cases, and deaths expected from the estimated force of infection

were estimated for selected years (Table 2). Between 1995 and

2005, the overall vaccination coverage remained roughly similar

across the continent. The moderate increase in estimated burden

between these years therefore reflects overall population growth.

However, the large preventive mass vaccination campaigns

performed between 2006 and 2012 increased the vaccination

coverage in the participating countries, substantially outweighing

population growth effects and resulting in a 2013 burden estimate

of 180,000 (95% CI 51,000–380,000) severe cases presenting with

fever and jaundice or haemorrhage including 78,000 (95% CI

19,000–180,000) deaths. We estimate that the recent preventive

mass vaccination campaigns between 2006 and 2012 reduced the

annual burden evaluated for 2013 by 27% (95% CI 22%–31%),

which equates to an overall reduction of 57% (95% CI 54%–

59%) in the 12 targeted countries. In these campaigns, the

number of targeted provinces and districts and therefore the

impact achieved varied by country, with the highest reductions

achieved in Benin, Togo, and Cote d’Ivoire, where an estimated

82%, 77%, and 73%, respectively, of the burden was prevented

in 2013. The reduction at the national level of participating

countries reflects both vaccinated and non-vaccinated regions

within each country.

Disease burden was estimated to be distributed very unevenly

between countries, with by far the largest burden estimated for

Nigeria, owing to the moderately high force of infection, low

vaccination coverage, and a large population size (Figure 3). The

country contributing the next largest number of cases and deaths

was the Democratic Republic of the Congo, followed by countries

in West Africa with a high force of infection, some of which have

recently benefited from the GAVI-funded mass vaccination

campaigns (Table 3).

Mass vaccination campaigns can be extremely effective at

reducing the burden in populations with low immunity, with the

effect being immediate and long lasting (Figure 4). The impact

wanes over the course of decades only as new birth cohorts join the

populations (Figure 4A and 4D). In this context, routine infant

immunization as performed in the EPI in many African countries

since the 1980s (Table S1) serves an important purpose by

ensuring good vaccination coverage in new birth cohorts and thus

preventing any long term decrease in population immunity. As the

sole tool to increase population immunity infant immunization is

less effective, as it takes decades for such a program to substantially

increase the immunity of the whole population. Figure 4B and 4E

shows the burden in Ghana and Liberia assuming no infant

immunization ever in these two countries. The results illustrate

how a high infant immunization coverage is crucial to sustaining

low levels of burden (as in Ghana with 91% coverage), whereas

low coverage levels (as in Liberia with 39% coverage) will reduce

the burden a little but are too low to sustain a low level of burden

in the future. A combination of mass vaccination campaigns and

infant immunization at good coverage level is therefore likely to

reduce the burden quickly and sustain it at low levels.

Some countries achieve high coverage in their routine infant

immunization but the coverage in other countries is low.

Conversely, the mass vaccination campaigns achieved high

coverage levels in most countries targeted. If it is difficult to reach

a substantial proportion of infants with routine immunization, one

could instead consider repeated mass vaccination campaigns.

Figure 4C and 4F shows the effect of repeating mass vaccination

campaigns targeting children under 5 every 5 years is similar to

what is achieved using routine infant immunization reaching a

high proportion of infants. Such age-targeted campaigns would

cost less than repeated mass vaccination campaigns targeting all

age groups while being similarly effective.

Figure 2. Goodness of fit measures. (A) BIC and (B) AUC values for the 15 models investigated with MCMC, with a prior standard deviation on the
country factors of 2. Circles show posterior means, lines the 95% posterior range.
doi:10.1371/journal.pmed.1001638.g002
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We compared our estimates of mortality due to yellow fever to

all-cause crude mortality estimates obtained from the UN WPP

[35] for all endemic countries. For the period from 2005 to 2010,

the estimates varied between eight and 18 deaths per year per

1,000 population, equating to 9.4 million deaths annually from

any cause in the endemic region (calculated using 2010 population

estimates). Our estimate of 78,000 deaths from yellow fever for

2013 therefore corresponds to 0.8% of all-cause mortality, but the

proportion of the all-cause mortality that would be attributed to

yellow fever based on our burden estimates varied substantially

between countries (Figure 5), ranging from close to zero in many

east African countries to values typically between 1% and 3% in

West Africa, with the highest values just under 6% in Mauritania

and Guinea-Bissau.

Discussion

In this study, we estimated the burden of yellow fever in terms of

the number of infections, severe cases, and deaths across Africa by

fitting generalised linear regression models to datasets of yellow

fever reports between 1987 and 2011. We evaluated the impact of

recent large-scale preventive mass vaccination campaigns under-

Table 2. Estimated burden in terms of the number of infections, severe cases, and deaths (95% CIs) due to yellow fever in Africa
for three selected years, and the estimated burden averted for 2013 (95% CIs) due to preventive mass vaccination campaigns in
Africa from 2006 to 2012.

Year Number of Infections Number of Severe Cases Number of Deaths

1995 1,500,000 (1,100,000–2,200,000) 220,000 (63,000–470,000) 95,000 (24,000–220,000)

2005 1,800,000 (1,200,000–2,500,000) 250,000 (73,000–530,000) 110,000 (27,000–250,000)

2013 1,300,000 (850,000–1,800,000) 180,000 (51,000–380,000) 78,000 (19,000–180,000)

Averted in 2013 by preventive campaigns 450,000 (340,000–560,000) 63,000 (19,000–130,000) 28,000 (7,200–62,000)

doi:10.1371/journal.pmed.1001638.t002

Figure 3. Impact of preventive mass vaccination campaigns between 2006 and 2012 on the estimated number of deaths due to
yellow fever in 2013 by country. Red bars show the number of deaths estimated assuming implementation of no mass vaccination campaigns
between 2006 and 2012, orange bars show the number of deaths estimated for the actual vaccination. Lines show the 95% credibility intervals of the
estimated number of deaths. Countries are ordered west to east.
doi:10.1371/journal.pmed.1001638.g003
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Table 3. Number of yellow fever vaccine doses procured for use in preventive vaccination campaigns from 2006 to 2012,
percentage of the national population targeted and burden reduction achieved in 2013, by country.

Countrya Vaccine Doses (Millions) Percent Population Targeted Percent Burden Reduction (95% CI)

Senegal 3.1 28 26 (22–30)

Sierra Leone 4 71 68 (67–71)

Guinea 6 61 47 (45–50)

Liberia 2.9 78 60 (58–62)

Côte d’Ivoire 18.8 98 73 (69–77)

Mali 5.9 42 53 (48–57)

Burkina Faso 7.6 50 69 (66–71)

Ghana 7.6 32 38 (36–40)

Togo 3.6 65 77 (74–79)

Benin 8.2 98 82 (81–83)

Cameroon 7.5 40 38 (37–40)

Central African Republic 2.6 61 64 (64–65)

aCountries are ordered west to east.
doi:10.1371/journal.pmed.1001638.t003

Figure 4. Deaths over time under various vaccination coverage scenarios for Ghana (top: A–C) and Liberia (bottom: D–F). Thick lines
show the point estimate, hashed areas the 95% credibility intervals. Baseline scenario (black) in (A–F) includes past mass vaccination and infant
immunization, plus continuing infant immunization at 2011 coverage levels. Alternative scenario (red): (A and D): as baseline, but excluding the mass
vaccination campaigns; (B and E): as baseline, but assuming no infant immunization at any time; (C and F): as baseline, but including mass vaccination
campaigns targeting children under 5 every 5 years at a coverage of 90% instead of future infant immunization.
doi:10.1371/journal.pmed.1001638.g004
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taken between 2006 and 2012 under the Yellow Fever Initiative by

estimating the burden expected had these vaccination campaigns

not taken place.

We estimate that currently there are between 51,000–380,000

severe cases of yellow fever annually in Africa, resulting in an

estimated 19,000–180,000 deaths. These figures are to be

compared with previous global estimates of 200,000 cases and

30,000 deaths annually for the early 1990s, around 90% of which

occur in Africa [5,6,52]. It is encouraging that both sets of

estimates are broadly similar, particularly since the new estimates

take into account all existing data on yellow fever that are

currently available. The analysis provided here also gives a better

understanding of the spatial and temporal distribution of yellow

fever across Africa. The model framework developed takes into

account a variety of different data sources, including information

on population vaccination coverage over time, which can be used

to evaluate the impact of past and potential future vaccination

campaigns.

The average annual number of yellow fever cases officially

reported to WHO by countries in the endemic zone [53] was

1,165 for the period from 1987 to 2011 considered in this analysis,

and 656 for the period between 2005 and 2011 covered by the

YFSD (note that this is a different dataset than the YFSD,

containing only aggregate numbers). This was in contrast to the

estimated annual burden of around 180,000 severe cases (which

were defined as presenting with fever and jaundice or haemor-

rhage), meaning that for each officially reported case there might

actually be as many as 50 to 500 severe cases. This is consistent

with the 10–1,000-fold under-ascertainment of yellow fever

morbidity and mortality recognized in past work [3,4]. Such

levels of under-ascertainment highlight the difficulties inherent in

yellow fever surveillance, which relies on clinical case definitions.

Syndromic surveillance is challenging due to the variety of clinical

manifestations seen in severe disease that do not include jaundice

and therefore might be mistaken for other infections (notably

malaria) [26]. In addition, not all jaundice is caused by yellow

fever, with other causes including malaria, liver pathogens, and

other conditions.

The detection probabilities fitted in our model are of the order

of 1025, but these describe the probability that an infection would

be reported into either the YFSD or as an outbreak. In the YFSD,

there were on average around 135 cases reported annually.

Comparing this to our burden estimates of around 1.5 million

infections annually in the time period covered by the YFSD, this

would lead to an empirical detection probability of the order of

1024 across Africa, an order of magnitude larger than the values

fitted in our model. However, the detection probabilities fitted in

our model represent an average over 25 years, and detection was

considerably poorer prior to the introduction of the YFSD.

The proportion of the all-cause mortality that would be

attributed to yellow fever based on our burden estimates varied

between countries with plausible estimates of less than 3% for most

countries, with the exception of Mauritania and Guinea Bissau

where nearly 6% of the all-cause mortality would be attributed to

yellow fever on the basis of our estimates. The estimates for these

two countries may appear unrealistically large, but it should be

kept in mind that the uncertainty in the force of infection and

consequently in the burden estimate is relatively high in

Mauritania (Figures 3 and S7), whereas for Guinea-Bissau, the

estimated detection probability is the lowest estimated for any

country (Figure 1D) due to its low rate of reporting suspected cases

to the YFSD. If the overall surveillance quality in this country was

not well represented by the participation in the YFSD, the burden

estimate here would be over-inflated.

The datasets of yellow fever incidence used to fit the models rely

on surveillance recognizing yellow fever cases. Typically the case

definition is based on fever with jaundice and/or haemorrhaging

symptoms, but of course the sensitivity and specificity of this case

definition might vary between settings. In our analysis, we have

allowed for the sensitivity to vary between countries by estimating

the country-specific surveillance quality. The specificity of the case

definition in our datasets should be high across the board, as only

laboratory confirmed cases or cases closely linked epidemiologi-

cally were included in our analysis. There might however be

substantial differences in the severity spectrum of yellow fever

between settings, depending on factors such as previous exposure

to other flaviviruses, the general immune status of the populations,

or the access to health care facilities, although there is no

treatment for yellow fever apart from general life support. While

we were not able to include any of these effects, we used estimates

of the severity with measures of uncertainty by Johansson and

colleagues based on the limited available data [21], capturing the

variability seen across different settings. Our model estimates first

the number of infections and infers the disease burden in terms of

the number of severe cases and deaths from this, so the uncertainty

of our burden estimates is inflated by the uncertainty of the

severity spectrum. Nevertheless we have chosen to report mainly

the number of deaths as cases and deaths are more relevant in

terms of disease burden and health care needs than the number of

infections, the majority of which are likely to be very mild or

asymptomatic.

The credible intervals around the burden estimates presented

here also reflect the fact that a range of values for the force of

infection estimates yield a similarly good model fit. However, while

the credible intervals represent the uncertainty in model param-

eter estimates, there are further potential sources of uncertainty

that are not captured by credible intervals. Firstly, the choice of

covariates included in the model could have an effect. However,

the 15 models investigated here showed a similarly good fit to the

dataset, and the burden estimates from all models were very

similar (see Text S2).

Second, in order to prevent the country factors (which

determine the detection probabilities in countries not participating

in the YFSD) from taking infinite values, we assumed a Gaussian

Figure 5. Percentage of the all-cause mortality attributable to
yellow fever by country. Grey bars indicate the point estimates,
black lines the range spanned by the 95% CIs of the burden estimates.
Countries are ordered west to east.
doi:10.1371/journal.pmed.1001638.g005
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prior distribution for these within the Bayesian framework used for

model fitting. The standard deviation of this prior distribution was

chosen relatively arbitrarily; however, in the sensitivity analyses we

have shown that the burden estimates again are fairly independent

of the particular value chosen (see Text S3).

The dataset of vaccination coverage compiled from various

sources reporting on vaccination activities in the last century

contains a number of potential sources of uncertainty that are very

difficult to quantify. Uncertainty in historical population sizes by

age generates uncertainty in vaccination coverage estimates if

those estimates are generated from records of the number of

vaccine doses used. There are also concerns about the complete-

ness and accuracy of the reports on vaccination activity.

Furthermore, the effect of population movements on vaccination

coverage could not be taken into account owing to lack of data.

Our simplifying assumptions of a 100% vaccine efficacy and

lifelong immunity conferred by the vaccine can also be questioned.

To evaluate the impact of these uncertainties we undertook

sensitivity analyses that carried vaccine effectiveness and the

coverage achieved in historical campaigns, but found the effects on

burden estimates to be slight (see Text S4). While we omitted

reactive vaccination campaigns before 1970 in the generation of

all vaccination coverage scenarios as these data were not routinely

reported prior to this time, this is likely to have little impact on

vaccination coverage levels due to the low yellow fever activity and

resulting low number and extent of vaccination campaigns in this

period.

Uncertainty in demographic data across Africa has a very direct

impact on the burden estimates, as such estimates are directly

proportional to the population size. This uncertainty is not

captured in the confidence intervals given in this paper, as it was

not possible to quantify the level of uncertainty.

There are substantial uncertainties regarding the spatial

distribution of yellow fever occurrence, which were taken into

account in our model by allowing infection risk and detection

probabilities to vary between countries. However, the baseline

model presented above did not allow for detection probabilities to

vary over time, while activities such as the introduction of the

YFSD in 2005 were clearly intended to improve surveillance. We

therefore investigated two alternative model structures that both

allow for a change in the detection probabilities at the time of

introduction of the YFSD, both of which estimated an increased

probability of case detection in the countries participating in the

YFSD following its introduction. The overall burden estimates

from these models were very similar to those obtained from the

baseline model though there were subtle differences in the spatial

distribution of the transmission intensity, with one of the

alternative models showing a slightly less pronounced gradient in

transmission strength from west to east (see Text S5).

Similarly, while we allowed the force of infection for yellow

fever to vary in space, we assumed it was constant throughout the

25-year observation period, as well as homogeneous by gender and

age. While clearly there will be differences in exposure between

age groups and genders, particularly in areas where non-human

primates play an important role in transmission, the relatively

crude nature of the yellow fever occurrence data did not support a

model that would be able to estimate these differences. Our

estimates are therefore representative of the overall population but

do not reflect the age- and sex-specific exposure likely to be found

in many places. The assumption of constant force of infection

throughout time means we have not taken into account changes in

transmission due to factors such as changed land use or climate

change, which might influence the transmission intensity. Clearly

yellow fever activity is not constant, but epidemic amplifications

and reductions of transmission intensity happen over the timescale

of decades. Epidemics are driven, at least in part, by the rapid

removal and slow replenishment of susceptible hosts in both

humans and wildlife, as illustrated by the widespread epidemics in

much of western Africa, and particularly Nigeria, in the 1990s,

and a reduction in epidemic activity since then. Furthermore, a

serological survey in Central African Republic testing samples

collected in 2006 and in 2009 found evidence of an increase in

yellow fever exposure over this period [29], mirroring the

increasing number of cases reported from that region in recent

years. Therefore our results should be seen as representative of the

past 25 years, averaging over the large fluctuations that occur in

reality, although the burden estimates for specific years do reflect

the population size, age structure, and vaccination coverage

pertaining to the time.

Burden estimates were strongly determined by the force of

infection estimated from serological surveys [29–34]. However, the

only surveys available were conducted in central Africa and

Nigeria, with these results extrapolated to the remainder of the

endemic zone in West and East Africa using the spatial

distribution of transmission intensity estimated from the regression

model. While all model structures reproduced the gradient in

transmission intensity from west to east that is seen in yellow fever

epidemiology, this gradient was more pronounced in the baseline

model presented in the main paper than in the alternative model

that was fitted to an annual dataset of yellow fever reports (see

Text S5). In the absence of further reliable serological data outside

central Africa it is presently not possible to distinguish which

model better reflects reality. There are several serological surveys

under way or close to completed in east African countries

including Sudan, Rwanda, Uganda, Kenya, South Sudan, and

Ethiopia. These data, once available, will substantially reduce

model uncertainty, allowing us to discriminate between different

model assumptions and resulting in more reliable estimates.

Cohort studies collecting data on case incidence and the

severity spectrum of disease could also reduce the level of

uncertainty. The relatively low incidence of yellow fever implies

the need for large cohorts, which would be prohibitively

expensive if performed for yellow fever alone. However, including

yellow fever diagnostics into ongoing cohort studies (e.g., focused

on HIV or malaria) might be a cost-effective way to improve

basic understanding of yellow fever epidemiology. A further

advantage of studies focusing on multiple diseases would be to

understand interactions between infections (most notably cross-

immunity between flaviviruses).

Our analysis does not take into account the epidemic

character of yellow fever transmission, but rather assumes

cases are distributed evenly over time according to a force of

infection that is independent of the incidence of cases in the

population. Consequently, the impact of vaccination cam-

paigns will be underestimated, as lower transmission in a

population due to vaccination also provides indirect protection

to unvaccinated individuals (herd immunity). While the impact

of herd immunity can be easily quantified in situations where

there is only one type of host, this is currently impossible with

yellow fever as it is unknown what proportion of cases arise

through inter-human transmission via mosquito vectors, and

what proportion through the sylvatic cycle. While this question

cannot be answered with the methodology employed in the

present study, it is an important topic for future work.

Keeping this limitation in mind, we conservatively estimate that

the recent mass vaccination campaigns have reduced the yellow

fever burden in the 12 participating countries for 2013 by 57%

(95% CI 54%–59%) relative to a counterfactual scenario in which
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these campaigns were not conducted, by vaccinating 78 million

people, who make up around 55% of the population of these

countries. Across Africa, this amounts to a reduction of the total

burden of yellow fever by 27% (95% CI 22%–31%), by

vaccinating around 10% of the population in the endemic zone.

Partly as a result of the estimates presented here, in late 2013

the GAVI Alliance Board decided to make available support for

additional yellow fever vaccination campaigns, targeting 144

million people across the endemic region in Africa [54,55].

Furthermore, the GAVI Alliance is now using our estimates for

evaluating the past and future impact of their yellow fever

vaccination activities.

The impact of both past and future mass vaccination

campaigns will prevent a substantial proportion of yellow fever

disease burden for years to come, with a gradual decrease in

impact over the next decades as new birth cohorts that have not

benefitted from these campaigns enter the population. This effect

of slowly declining vaccination coverage following the abandon-

ment of mass vaccination campaigns was seen since the 1960s,

and was the cause of the gradual resurgence of yellow fever over

the following decades. However, the achievements of the current

mass vaccination campaigns could be sustained if a high level of

immunization is achieved through a strong EPI program and

preventive vaccination of populations that remain at-risk, such as

migrants or populations from as yet unvaccinated districts. While

the coverage achieved in the routine infant immunization is

variable between countries, the coverage achieved in recent mass

vaccination campaigns has generally been high. An alternative

for countries struggling to reach high EPI coverage levels might

therefore be to repeat mass vaccination campaigns targeted at

children every few years, although the organizational and

financial costs would probably be substantially higher than the

existing EPI.

Yellow fever is a disease that is difficult to diagnose and

confirm, whose symptoms can be mild and mistaken for other

infections, and that occurs in some of the most resource-poor

settings globally. Consequently surveillance data reflect patterns

of endemicity and emergence of infection in new zones and

provide sentinel data on imminent or ongoing outbreaks, but do

not reflect the actual disease burden. The most recent estimates

of the disease burden stemmed from the early 1990s and

therefore an update taking into account the changes in

demography, ecology, and vaccination coverage, such as the

estimates provided in the present study, was long overdue. The

framework for burden estimation developed here is also a useful

tool for the evaluation and planning of effective vaccination

campaigns. As such, it is being used by the partners of the Yellow

Fever Initiative for planning their yellow fever vaccination

strategy for the next decade.

Supporting Information

Figure S1 Map of the outbreaks recorded in Africa

between 1980 and 2012. Outbreak size indicated by the symbol

size, outbreak year coded by the colour.

(PNG)

Figure S2 (A) map of the number lab-confirmed, epi-

linked, and compatible yellow fever cases reported in

the YFSD by province. (B) Annual reporting rate of suspected

cases per 100,000 population by country.

(PNG)

Figure S3 Estimated vaccination coverage at the first

administrative level in the countries endemic for yellow

fever on the African continent throughout the decades.
Non-endemic countries are shown in grey. The estimate for 2015

is a projection that assumes infant immunization continues at the

same levels as in 2011, and no other vaccination campaigns are

implemented.

(PNG)

Figure S4 Absolute values of the pairwise correlations
between the 25 potential covariates significant at the
p=0.1 level from 0 (red) to 1 (white). Clusters are

highlighted by a lack of separating lines, and variables not

considered for the multivariate models printed in grey.

(PNG)

Figure S5 Maps of the 18 variables considered in the

multivariate modeling as potential covariates. Colour

scale from navy (low) to red (high). A, longitude; B, latitude; C,

altitude; D LC, deciduous broadleaf forest; E LC, closed

shrubland; F LC, open shrubland; G LC, woody savannas; H

LC, urban and built-up; I LC, cropland/natural vegetation

mosaic; J LC, barren or sparsely vegetated; K, mean day

temperature; L, min day temperature; M, min night temperature;

N, max night temperature; O, max EVI; P, min MIR; Q, min

rainfall; R, max rainfall.

(PNG)

Figure S6 MCMC posterior trace plots of model
parameter estimates for the baseline model, thinned
by a factor 800.

(PNG)

Figure S7 Auto-correlation in posterior estimates of the
model parameters for the baseline model. Posterior

MCMC samples were thinned by a factor 800.

(PNG)

Figure S8 Coefficient of variation of the force of
infection estimates. Countries not considered endemic for

yellow fever are shown in white.

(PNG)

Table S1 Coverage and year of introduction of the

yellow fever vaccine into the routine Enhanced Pro-
gramme of Immunization by country.

(PDF)

Table S2 Covariates considered in the regression
modeling, significance level in univariate models and
cluster association.

(PDF)

Text S1 Demographic data analysis.

(PDF)

Text S2 Sensitivity analysis: impact of the covariates
included.

(PDF)

Text S3 Sensitivity analysis: impact of the standard
deviation of the prior distribution on the country
factors.

(PDF)

Text S4 Sensitivity analysis: impact of alternative
vaccination coverage scenarios.

(PDF)

Text S5 Sensitivity Analysis: alternative model struc-
tures.

(PDF)
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38. Kleinschmidt I, Omumbo J, Briët O, Van De Giesen N, Sogoba N, et al. (2001)
An empirical malaria distribution map for West Africa. Trop Med Int Health 6:
779–786.

39. Xie P, Arkin PA (1996) Analyses of global monthly precipitation using gauge
observations, satellite estimates, and numerical model predictions. J Climate 9:
840–858.

40. Garske T, Ferguson NM, Ghani AC (2013) Estimating air temperature and its
influence on malaria transmission across Africa. PLoS ONE 8: e56487.

41. Loveland TR, Belward AS (1997) The IGBP-DIS global 1 km land cover data
set, DISCover: first results. Int J Remote Sens 18: 3289–3295.

42. NASA Land Processes Distributed Active Archive Center (LP DAAC) Land
Cover Type Yearly L3 Global 1 km SIN Grid (12Q1). USGS/Earth Resources
Observation and Science (EROS) Center, Sioux Falls, South Dakota. Available:
http://lpdaac.usgs.gov/get_data. Accessed 13 July 2012.

43. NASA Land Processes Distributed Active Archive Center (LP DAAC)
Vegetation Indices 16-Day L3 Global 1 km (13A2). USGS/Earth Resources
Observation and Science (EROS) Center, Sioux Falls, South Dakota. Available:
http://lpdaac.usgs.gov/get_data. Accessed 13 July 2012.

44. Hijmans RJ, Cameron SE, Parra JL. WorldClim. Available: http://www.
worldclim.org/. Accessed 12 January 2012.

45. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high
resolution interpolated climate surfaces for global land areas. Int J Climatol 25:
1965–1978.

46. Brooks S, Gelman A, Jones GL, Meng X-L, editors (2011) Handbook of Markov
chain Monte Carlo. Boca Raton (Florida): Chapman & Hall/CRC.

47. Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in
practice. Boca Raton (Florida): Chapman & Hall/CRC.

48. Heinze G, Schemper M (2002) A solution to the problem of separation in logistic
regression. Stat in Med 21: 2409–2419.

Yellow Fever Burden in Africa

PLOS Medicine | www.plosmedicine.org 15 May 2014 | Volume 11 | Issue 5 | e1001638

http://lpdaac.usgs.gov/get_data
http://lpdaac.usgs.gov/get_data
http://www.icmje.org/
http://www.who.int/mediacentre/factsheets/fs100/en/
http://www.who.int/mediacentre/factsheets/fs100/en/
http://www.who.int/wer/en/
http://www.who.int/wer/en/
http://www.who.int/csr/don/en/
http://www.who.int/csr/don/en/
http://www.who.int/immunization_monitoring/data/data_subject/en/index.html
http://www.who.int/immunization_monitoring/data/data_subject/en/index.html
http://esa.un.org/wpp/Excel-Data/population.htm
http://esa.un.org/wpp/Excel-Data/population.htm
http://www.ornl.gov/landscan/
http://lpdaac.usgs.gov/get_data
http://lpdaac.usgs.gov/get_data
http://www.worldclim.org/
http://www.worldclim.org/


49. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6: 461–464.

50. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas

under two or more correlated receiver operating characteristic curves: a

nonparametric approach. Biometrics 44: 837–845.

51. Moreau JP, Girault G, Dram I, Perraut R (1999) [Reemergence of yellow fever

in West Africa: lessons from the past, advocacy for a control program]. Bulletin
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Editors’ Summary

Background. Yellow fever is a flavivirus infection that is
transmitted to people and to non-human primates through
the bites of infected mosquitoes. This serious viral disease
affects people living in and visiting tropical regions of Africa
and Central and South America. In rural areas next to forests,
the virus typically causes sporadic cases or even small-scale
epidemics (outbreaks) but, if it is introduced into urban
areas, it can cause large explosive epidemics that are hard to
control. Although many people who contract yellow fever do
not develop any symptoms, some have mild flu-like
symptoms, and others develop a high fever with jaundice
(yellowing of the skin and eyes) or hemorrhaging (bleeding)
from the mouth, nose, eyes, or stomach. Half of patients who
develop these severe symptoms die. Because of this wide
spectrum of symptoms, which overlap with those of other
tropical diseases, it is hard to diagnose yellow fever from
symptoms alone. However, serological tests that detect
antibodies to the virus in the blood can help in diagnosis.
There is no specific antiviral treatment for yellow fever but its
symptoms can be treated.

Why Was This Study Done? Eradication of yellow fever is
not feasible because of the wildlife reservoir for the virus but
there is a safe, affordable, and highly effective vaccine
against the disease. Large-scale vaccination efforts during
the 1940s, 1950s, and 1960s reduced the yellow fever burden
for several decades but, after a period of low vaccination
coverage, the number of cases rebounded. In 2005, the
Yellow Fever Initiative—a collaboration between the World
Health Organization (WHO) and the United Nations Children
Fund supported by the Global Alliance for Vaccines and
Immunization (GAVI Alliance)—was launched to create a
vaccine stockpile for use in epidemics and to implement
preventive mass vaccination campaigns in the 12 most
affected countries in West Africa. Campaigns have now
been implemented in all these countries except Nigeria.
However, without an estimate of the current yellow fever
burden, it is hard to determine the impact of these
campaigns. Here, the researchers use recent yellow fever
occurrence data, serological survey data, and improved
estimation methods to update estimates of the yellow fever
burden and to determine the impact of mass vaccination on
this burden.

What Did the Researchers Do and Find? The researchers
developed a generalized linear statistical model and used
data on the locations where yellow fever was reported
between 1987 and 2011 in Africa, force of infection estimates
for a limited set of locations where serological surveys were
available (the force of infection is the rate at which
susceptible individuals acquire a disease), data on vaccina-
tion coverage, and demographic and environmental data for
their calculations. They estimate that about 130,000 yellow
fever cases with fever and jaundice or hemorrhage occurred

in Africa in 2013 and that about 78,000 people died from the
disease. By evaluating the difference between this estimate,
which takes into account the current vaccination coverage,
and a hypothetical scenario that excluded the mass
vaccination campaigns, the researchers estimate that these
campaigns have reduced the burden of disease by 27%
across Africa and by up to 82% in the countries targeted by
the campaigns (an overall reduction of 57% in the 12
targeted countries).

What Do These Findings Mean? These findings provide a
contemporary estimate of the burden of yellow fever in
Africa. This estimate is broadly similar to the historic estimate
of 200,000 cases and 30,000 deaths annually, which was
based on serological survey data obtained from children in
Nigeria between 1945 and 1971. Notably, both disease
burden estimates are several hundred-fold higher than the
average number of yellow fever cases reported annually to
WHO, which reflects the difficulties associated with the
diagnosis of yellow fever. Importantly, these findings also
provide an estimate of the impact of recent mass vaccination
campaigns. All these findings have a high level of
uncertainty, however, because of the lack of data from both
surveillance and serological surveys. Other assumptions
incorporated in the researchers’ model may also affect the
accuracy of these findings. Nevertheless, the framework for
burden estimation developed here provides essential new
information about the yellow fever burden and the impact of
vaccination campaigns and should help the partners of the
Yellow Fever Initiative estimate the potential impact of
future vaccination campaigns and ensure the efficient
allocation of resources for yellow fever control.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001638.

N The World Health Organization provides detailed informa-
tion about yellow fever (in several languages), including
photo stories about vaccination campaigns in the Sudan
and Mali; it also provides information about the Yellow
Fever Initiative (in English and French)

N The GAVI Alliance website includes detailed of its support
for yellow fever vaccination

N The US Centers for Disease Control and Prevention
provides information about yellow fever for the public,
travelers, and health care providers

N The UK National Health Service Choices website also has
information about yellow fever

N Wikipedia has a page on yellow fever that includes
information about the history of the disease (note that
Wikipedia is a free online encyclopedia that anyone can
edit; available in several languages)
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