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 Correlates of immune-mediated protection to most viral and cancer vaccines are still un-

known. This impedes the development of novel vaccines to incurable diseases such as HIV and 

cancer. In this study, we have used functional genomics and polychromatic � ow cytometry to 

de� ne the signature of the immune response to the yellow fever (YF) vaccine 17D (YF17D) in 

a cohort of 40 volunteers followed for up to 1 yr after vaccination. We show that immuniza-

tion with YF17D leads to an integrated immune response that includes several effector arms 

of innate immunity, including complement, the in� ammasome, and interferons, as well as 

adaptive immunity as shown by an early T cell response followed by a brisk and variable B cell 

response. Development of these responses is preceded, as demonstrated in three independent 

vaccination trials and in a novel in vitro system of primary immune responses (modular 

immune in vitro construct [MIMIC] system), by the coordinated up-regulation of transcripts 

for speci� c transcription factors, including STAT1, IRF7, and ETS2, which are upstream of the 

different effector arms of the immune response. These results clearly show that the immune 

response to a strong vaccine is preceded by coordinated induction of master transcription 

factors that lead to the development of a broad, polyfunctional, and persistent immune 

response that integrates all effector cells of the immune system. 

© 2008 Gaucher et al. This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the � rst six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons
.org/licenses/by-nc-sa/3.0/).
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immune in vitro construct [MIMIC] co-culture system), to 

identify the emerging protective immune response induced 

in humans by vaccination with YF17D, in an e� ort to un-

ravel the correlates of protection conferred by one of the 

most potent vaccines ever generated. 

  RESULTS  
 Vaccination with YF17D rapidly and transiently induces 
modulation of genes associated with multiple pathways 
 RNA samples obtained from whole blood of 15 YF17D-vac-

cinated individuals (from the Montreal cohort) on the day of 

vaccination (day 0) and at several time points after vaccina-

tion (day 3, 7, 10, 14, 28, and 60) were ampli� ed and hybrid-

ized onto Illumina chips and analyzed. Expression pro� les of 

594 genes (Supplemental document 1, available at http://

www.jem.org/cgi/content/full/jem.20082292/DC1) were 

found to change signi� cantly between day 0 and any time 

point after vaccination (with P  <  0.05 and fold change less 

than  � 1.3 or  > 1.3). The peak of modulation of gene expres-

sion, as shown by heat map representation ( Fig. 1 a ) and prin-

cipal component analysis ( Fig. 1 b ), primarily occurred at 

days 3 and 7 after vaccination, whereas a limited number of 

signi� cant genes were modulated in response to vaccination 

at day 10 after vaccination or beyond.  

 Independent component analysis (ICA), followed by 

gene set enrichment, identi� ed transcription factors with pre-

dicted ( 11 ) target genes showing a speci� c modulation after 

YF17D vaccination ( Fig. 2  and Fig. S1, available at http://

www.jem.org/cgi/content/full/jem.20082292/DC1).  With 

this approach, three major nodes of transcriptional regulation 

    Correlates of immune-mediated protection to most viral and 

cancer vaccines are still unknown. Moreover, there is a paucity 

of information regarding the qualitative and quantitative prop-

erties of emerging protective responses in vivo in humans, and 

this has been a major impediment to vaccine development ( 1 ). 

Although humoral immunity is clearly the dominant correlate 

of protection for vaccines against bacterial pathogens ( 2 ), vi-

ruses or tumors require a more complex immune response 

with contributions from both T and B cells ( 3 ). Innate immu-

nity, which is known to shape the development of adaptive 

immune responses, could also contribute to vaccine-mediated 

protection through mechanisms yet to be de� ned. 

 Developed empirically in the 1930s, the live attenuated 

yellow fever (YF) vaccine 17D (YF17D) is considered one of 

the most successful vaccines ever made ( 4 ); a single dose can 

confer protective immunity for up to 35 yr, in almost all vac-

cinated individuals. The humoral immune response to 17D is 

generally considered the main mediator of protection against a 

challenge infection with wild-type YF virus. Passive immuni-

zation in monkeys ( 5 ) and mice ( 6 ) has mediated protection 

against YF infection. Although the humoral response inargu-

ably plays a central role, we cannot rule out the contribution 

of the other arms of the immune system, cellular and innate 

immunity, as help from CD4 +  T cells is needed to generate a 

strong B cell response. With the disease being caused by a vi-

rus, and the vaccine itself being an attenuated virus, one could 

expect cytotoxic T cells to play a crucial role in destroying vi-

rally infected cells, and thus preventing viral replication and 

spreading. Surprisingly, there is very little published data on 

the cellular response to the YF17D vaccine in humans. The 

kinetics of the levels of total CD4 +  and CD8 +  T cells ( 7 ) and 

nonspeci� c memory CD4 +  and CD8 +  T cells ( 8 ) after vacci-

nation were initially studied, and the � rst study of YF17D 

antigen-speci� c T cells came from Co et al., who mapped a 

series of HLA-B35 – restricted CD8 +  epitopes to the envelope, 

NS1, NS2b, and NS3 proteins ( 9 ). Miller et al. recently de-

scribed the kinetics and properties of the antigen-speci� c 

CD8 +  T cell memory response after YF17D vaccination ( 10 ). 

 The identi� cation of correlates of protection to YF, how-

ever useful it will be, is destined to be di�  cult. Classical stud-

ies where vaccinated subjects are challenged with a virulent, 

wild-type strain can obviously not be performed on humans. 

Therefore, we have to rely on data derived from vaccination 

campaigns performed in populations living in endemic areas 

or among high-risk people. Furthermore, the vaccine ’ s high 

e�  cacy makes it nearly impossible to identify individuals 

who did not acquire protective immunity from it, and it is 

virtually impossible to study such subjects. For these reasons, 

we have to develop and rely on other parameters that can in-

dicate the strength of the immune response induced in the 

vaccinated individuals, such as the level of viremia, the neu-

tralizing antibody titers, or the breadth of the cellular im-

mune response. 

 Herein, we have used a systems biology approach com-

bined with multiparametric � ow cytometry and a novel in vi-

tro system of primary immune responses (VaxDesign ’ s modular 

  Figure 1.     Vaccination with YF17D induces early gene modulation.  
Global view of gene modulation in total blood cells after YF17D vaccina-

tion, as analyzed by gene array on the Montreal cohort ( n  = 9 – 15, 

depending on the time point). Heat map representation (a) and PCA 

(b) using the signi� cantly modulated genes, in at least one comparison 

versus day 0.   
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Genes associated with B cell activation (BANK1, CD19, IGJ, 

TNFRSF13B, and TNFRSF17l;  Fig. 3 e ) were also modu-

lated. Other genes also involved in the induction of an 

immune response, such as TAP1 and TAP2, which encode pro-

teins involved in antigen processing and presentation ( 12, 13 ), 

and SOCS1, which encodes a protein involved in a negative 

feedback loop meant to attenuate cytokine signaling ( 14 ), were 

up-regulated as well (Supplemental document 1). Strikingly, 

we observed that 43 genes encoding ribosomal proteins were 

down-regulated in PBMCs early after vaccination with YF17D 

(Supplemental document 1), con� rming the � ndings of a previ-

ous study ( 15 ). Collectively, these results reveal that vaccina-

tion with YF17D stimulated a rapid and transient modulation 

of several genes of immunological importance, which al-

lowed us to infer a signature of gene modulation by ICA. 

 Two levels of validation were performed to con� rm the 

results observed in this initial trial; the � rst validation was 

achieved by performing quantitative real-time PCR (qPCR) 

on RNA from 7 volunteers from the Montreal cohort for 

43 genes selected to represent 8 of the identi� ed transcrip-

tion nodes and some of their target genes. As shown in 

Fig. S2 (available at http://www.jem.org/cgi/content/full/

jem.20082292/DC1), we could observe a highly signi� cant 

correlation between the results obtained by qPCR and those 

of downstream target genes were found as early as day 3 (IRF7 

and STAT1) and day 7 (ETS2). Other nodes of transcription 

factors (IRF1, IRF8, GATA6, GATA1, TAL1, FOXO3a, 

E2F4, E2F1, LMO2, SRF, and CEBPB) also controlled the 

expression of several of the genes and pathways that were 

modulated in the � rst week after immunization. 

 Many of the genes that were modulated by YF17D vac-

cination could be classi� ed under di� erent functional catego-

ries, based on published literature ( Fig. 3  and Supplemental 

document 2, available at http://www.jem.org/cgi/content/

full/jem.20082292/DC1).  Some Toll-like receptor (TLR) –

 associated genes (TLR7, MYD88, and IRF7) were also up-

regulated, leading to the activation of the IFN pathway, as 

monitored by the induction of several IFN-induced genes 

(IFI27, IFI30, G1P2, G1P3, and OAS1-3;  Fig. 3 a  and Sup-

plemental document 1). Components of the complement 

system (C1QA, C1QB, C3AR1, and SERPING1) were 

found to be up-regulated in blood cells early after vaccination 

( Fig. 3 b ). A few macrophage/DC-associated genes were in-

duced signi� cantly by the vaccine, including CD86 (a marker 

of DC maturation), CSF1R, MARCO, and IFI16, which are 

expressed by cells of the monocyte-macrophage lineage 

( Fig. 3 c ). NK cell – associated genes (KIR2DL3, KIR2DL4, 

PRF1, GNLY, and GZMB) were also up-regulated ( Fig. 3 d ). 

  Figure 2.     Transcriptional network of differentially expressed genes after YF17D vaccination, as inferred by gene set enrichment.  Network 

representation of inferred transcription factors ( 11 ) and predicted target genes that are signi� cantly modulated. Node colors indicate fold change of gene 

expression between day 0 and 7 in  n  = 11 volunteers. Rectangular nodes indicate transcription factors identi� ed by gene enrichment; the different shapes 

indicate genes in the different functional categories of  Fig. 3 (a – e) . Genes that were subsequently evaluated by RT-PCR are identi� ed by an asterisk. IRF1, 

IRF8, and genes targeted by IRF1 or IRF8, but no other transcription factors in the � gure were removed to increase readability (see Fig. S1 for a complete 

map). Fig. S1 is available at http://www.jem.org/cgi/content/full/jem.20082292/DC1.   



3122 IMMUNE RESPONSE TO THE YELLOW FEVER VACCINE 17D  | Gaucher et al. 

vation of the in� ammasome by the vaccine, we quanti� ed 

the secretion of IL-1 � , which has been shown to be processed 

and produced by an active in� ammasome assembly ( 16 ). The 

results show that DCs incubated with live or UV-inactivated 

YF17D showed a marked increased IL-1 �  secretion (up to 

ninefold, compared with DCs incubated in medium alone), 

whereas heat-inactivated YF17D only triggered a modest 

secretion of the proin� ammatory cytokine ( Fig. 5 b  and 

Fig. S4, available at http://www.jem.org/cgi/content/full/

jem.20082292/DC1). These functional results con� rm the 

gene array data, suggesting that YF17D activates components 

of the in� ammasome complex, and that viral replication is not 

required for this e� ect. 

 YF17D vaccination leads to the proliferation and expansion 
of several leukocyte subtypes 
 Given that immunization with YF17D gives rise to the up-

regulation of genes associated with di� erent leukocyte popu-

lations, we were interested in determining whether the vaccine 

also induces the proliferation of these cells. To do so, PBMCs 

from 6 volunteers, sampled at day 0, 3, 7, 10, 14, and 28 after 

vaccination, were stained with anti-Ki67and other speci� c 

antibodies to identify, by � ow cytometry, di� erent cell sub-

sets that are actively proliferating. The staining/gating strate-

gies and the results are shown in Fig. S5 (a and b, available at 

http://www.jem.org/cgi/content/full/jem.20082292/DC1), 

respectively. An increase in frequencies of Ki67 +  cells in the 

CD4 + CD8  �   (2.3-fold increase; P = 0.0049) and the CD4  �  

CD8 +  (4.7-fold increase; P = 0.0157) populations occurred 

within the � rst 14 d after YF17D vaccination, and then de-

creased to insigni� cant levels. The Ki67 +  NK cell population 

obtained by gene microarray, with coe�  cients of correlation 

ranging between 0.78 and 0.96. A detailed analysis of the 

entire set of genes is represented in Table S1. The second 

validation was achieved by comparing the aforementioned 

qPCR dataset for the Montreal cohort to datasets from two 

other, independent YF17D vaccination trials: the Lausanne 

cohort (13 volunteers) and the Emory cohort (10 volunteers). 

The results illustrated in  Fig. 4  and in Fig. S3 indicate that 

most genes that were up-regulated in the Montreal cohort 

also showed increased expression in the two other indepen-

dent trials.  Conversely, most down-regulated genes in the 

Montreal cohort also showed decreased levels of expression 

in the samples obtained from the two other trials. These re-

sults demonstrate the proper validation of our gene array data 

by two di� erent strategies: the use of qPCR and an increase 

in sample size. 

 The YF17D vaccine up-regulates IL-1 �  production 
 Our gene array results showed that two components of the 

in� ammasome, caspase-1 and -5, were up-regulated at the 

mRNA level in the Montreal cohort, 3 d after vaccination 

with YF17D ( Fig. 5 a ).  Two other genes related to IL-1 �  

production and signaling that were modulated by the vaccine 

are IL-1R2 and -1RN. All of these genes, except for caspase-5, 

were also similarly modulated in the Lausanne cohort. To 

functionally validate the microarray data suggesting the acti-

  Figure 3.     YF17D vaccination stimulates multiple arms of the in-
nate and adaptive immunity.  (a – e) Heat map representation of signi� -

cantly modulated genes, P values listed with each gene indicate the 

largest (least signi� cant) P value among the signi� cant fold changes.  n  = 

9 – 15, depending on the time point. The listed genes fall under different 

functional categories: IFN-induced and TLR-associated genes (a); comple-

ment-associated genes (b); macrophage-associated genes (c); NK cell –

 associated genes (d); and B cell – associated genes (e). Supplemental 

document 2 includes a justi� cation for the attribution of each gene into 

its respective group. Supplemental document 2 is available at http://www

.jem.org/cgi/content/full/jem.20082292/DC1.   

  Figure 4.     Heat map of fold change gene expression between day 0 
and 7, as measured by qPCR.  For a complete heat map of all mea sured 

fold changes see Fig. S3. Fig. S3 is available at http://www.jem.org/cgi/

content/full/jem.20082292/DC1.   
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most, if not all, of the peptide pools ( > 20), whereas weak re-

sponders (YF005, 011, and 017) recognized only a few ( < 5). 

The CD8 +  responses were generally much weaker than those 

observed in CD4 +  T cells, and although only 2 responders 

recognized 19 of the pools (YF001 and 020), 10 of them rec-

ognized  < 5. Notably, some peptide pools were recognized by 

more volunteers than others (pools 1, 3, and 17 were recog-

nized by CD4 +  T cells of at least 12 volunteers), whereas others 

were recognized by just a few volunteers (pools 5 and 7 were 

recognized by CD4 +  cells of at most 7 volunteers). Both CD4 +  

and CD8 +  T cell peptide-speci� c responses were persistent, as 

memory proliferative responses to the most immunodominant 

peptide pools were detected as long as 1 yr after immunization 

(unpublished data). These results show that the breadth of the 

T cell responses to the YF17D vaccine is highly variable from 

one vaccinated individual to another, but that those responses 

are persistent. 

 The YF17D vaccine induces a mixed Th1/Th2 response 
that appears early and is persistent 
 Next, we sought to determine at the protein level the cy-

tokine pro� les produced by PBMCs after stimulation with 

YF17D-derived peptide pools. We used cytometric bead 

assay (CBA) to assess the levels of the Th1 cytokines IL-2, 

IFN- � , and TNF, and the Th2 cytokines IL-4 and -10 se-

creted by these cells.  Fig. 6  shows the results for six selected 

volunteers (heat maps); a summary of the CBA results for all 

volunteers and pools tested can be found in Fig. S6 e. In our 

system, high levels of TNF were detected in several superna-

tants, whereas the other cytokines were either found in low 

amounts or not detected. Hence, the qualitative and quanti-

tative features of cytokine production were highly variable; 

pool 3 stimulated a mixed Th1/Th2 response in volunteer 

YF001, but triggered only a Th1 response in subjects YF002, 

3, 9, and 20, whereas no detectable response to this pool 

could be seen in YF019. In most volunteers (12 out of 15), 

both Th1 and Th2 cytokine secretion pro� les were induced 

by YF17D peptide pools. Three volunteers (YF0014, 15, and 

16), who were weak responders to the vaccine as measured 

by T cell proliferation, did not show a mixed Th1/Th2 pro-

� le; however, these individuals were still able to mount very 

good antibody responses (Table S2, available at http://www

.jem.org/cgi/content/full/jem.20082292/DC1). 

 We further demonstrated the emergence of a mixed Th1/

Th2 response to the vaccine at the single-cell level using 

polychromatic � ow cytometry. First, we con� rmed the Th1 

phenotype of antigen-speci� c CD4 +  T cells by stimulating 

PBMCs from vaccinated volunteers (28 d after vaccination) 

with immunostimulatory peptide pools, and identifying anti-

gen-speci� c T cells by the expression of the activation marker 

CD154 ( 17, 18 ) and the production of IL-2 and IFN- � . As 

illustrated in  Fig. 7 a , 35.2% of CD4 + CD154 +  cells expressed 

IL-2 alone, 8.6% expressed IFN- �  alone, and 29.5% ex-

pressed both IL-2 and IFN- � .  

 To determine if this mixed Th1/Th2 response was per-

sistent, we detected YF17D-speci� c Th1 and Th2 cells in 

(CD3  �  CD8 Dim ; 1.6-fold; P = 0.0474) and non – T cell PBMCs 

containing monocytes and B cells (CD3  �  CD4  �  CD8  �  ; 1.9-fold; 

P = 0.009) also increased in frequency within the � rst 7 d and 

reached insigni� cant levels thereafter. Altogether, our data 

clearly illustrate that all major cellular subsets of innate and 

adaptive immunity are mobilized during the immune response 

to YF17D. 

 Vaccination with YF17D induces a broad and persistent 
YF-speci� c T cell response 
 We next assessed the amplitude, breadth, and persistence of 

the YF17D-speci� c T cell response. PBMCs sampled at day 

60 after vaccination were incubated in the presence of each 

of 22 YF17D-derived peptide pools (Fig. S6 a, available at 

http://www.jem.org/cgi/content/full/jem.20082292/DC1), 

and their proliferation was measured by CFSE labeling. Fig. S6 b 

describes the cytometry gating strategy used, and the results 

are shown in  Fig. 6  (bar graphs) and Fig. S6 (c and d).  Both 

the CD4 +  and CD8 +  T cell proliferative responses were highly 

variable among the vaccinated volunteers. Strong CD4 +  re-

sponders (notably YF001, 002, 009, 018, and 020) recognized 

  Figure 5.     YF17D induces expression of genes associated with 
IL-1 �  and activates the in� ammasome.  (a) Heat maps showing 

the up-regulation of genes encoding in� ammasome components 

and the modulation of other, IL-1 �  – associated genes. For IL-1R2 and 

-1RN only probes targeting all transcripts were considered. (b) IL-1 �  

production by monocyte-derived DCs incubated with live (YF), UV-

inactivated (UV), or heat-inactivated (HI) YF17D, as determined by 

ELISA. NI, noninfected cells. This represents the results from one repre-

sentative of three separate experiments. The results for the two other 

ex periments are shown in Fig. S4. Fig. S4 is available at http://www.jem

.org/cgi/content/full/jem.20082292/DC1.   
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tral memory T cells could be detected in all four volunteers 

tested. Together, these results con� rm the polyfunctionality 

of the immune response induced by YF17D, as we observe 

not only a strong innate immune response but also a mixed 

Th1/Th2 response that is persistent. 

 The transcription factors identi� ed during in vivo YF17D 
vaccination were also central in an in vitro model of YF17D 
primary immune response 
 The MIMIC system is a powerful tool for the in vitro study of 

the early events taking place in a primary immune response. 

We used this novel approach to validate the multilineage re-

sponse to YF17D, particularly the expression of transcription 

nodes and the secretion of mixed Th1/Th2 cytokines. Blood 

PBMCs sampled at day 365 after vaccination. The cells were 

stimulated for 6 d with YF17D-derived immunostimu-

latory peptide pools to increase the frequency of antigen-

speci� c cells, and then restimulated with the same pools for 

18 h. The cells were then stained for the activation marker 

CD154, as well as for surface markers, allowing the dis-

crimination between the Th1 (CXCR3 + CCR4  �  ) and Th2 

(CXCR3  �  CCR4 + CCR6  �  ) phenotypes in central memory 

T helper cells ( 19 ). See Fig. S7 (available at http://www.jem

.org/cgi/content/full/jem.20082292/DC1) for the full stain-

ing and gating strategies and  Fig. 7 b  for the results. Although 

some peptide pools stimulated a mixed Th1/Th2 response 

in a given volunteer, others either stimulated a Th1, a Th2, 

or no particular pro� le. However, both Th1 and Th2 cen-

  Figure 6.     YF17D induces a mixed Th1/Th2 response.  (a) Day 60 PBMCs were stimulated with the 22 peptide pools and assayed by CFSE labeling for 

their proliferative response. Bar graphs show data for six selected volunteers, and the dataset for all the volunteers can be found in Fig. S6 (c and d). At 24 h 

of culture, supernatants were analyzed by CBA to determine the Th1/Th2 cytokine secretion pro� le in response to each pool. The heat maps represent the 

data for the same six volunteers. The Th1/Th2 pro� les determined this way for all the volunteers and pools are shown in Fig. S6 e. Fig. S6 is available at 

http://www.jem.org/cgi/content/full/jem.20082292/DC1.   
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tants were harvested for cytokine quanti� cation, and the cells 

stained for polychromatic � ow cytometry analysis. As shown 

in  Fig. 8 a , DCs pulsed with YF17D virus (live or UV-inacti-

vated) primed a strong antigen-speci� c response of naive T 

cells, with up to 4% cells expressing CD154 and IFN- �  in 

monocyte-derived DCs from YF-naive individuals were pulsed 

with YF17D virus for 24 h, and then co-cultured for 14 d 

with autologous CD4 +  T cells. The resulting culture superna-

  Figure 7.     YF17D vaccination induces speci� c CD4+ T cells of 
mixed T helper phenotype.  (a) PBMCs from YF17D-vaccinated volun-

teers (day 28 after vaccination) were stimulated with a group of three 

immunostimulatory YF17D-derived peptides pools, and then stained with 

antibodies against CD4 (surface) and CD154, IL-2, and IFN-g (intracel-

lular). The numbers indicate the percentages of cells within the parent 

population. (b) FACS analysis of PBMCs from day 365 after vaccination. 

Cells from four volunteers were stimulated (S) for with immunostimula-

tory YF17D peptide pools, and then restimulated (RS) or not with the 

same peptide pools before staining. The data were analyzed according to 

the gating strategy shown in Fig. S7, and are expressed as the percentage 

of central memory CD4+ T cells (CD45RA2CCR7+) that express the marker 

for recent activation CD154, and that are either Th1 or Th2 in the RS 

samples, over background (S). Fig. S7 is available at http://www.jem

.org/cgi/content/full/jem.20082292/DC1.   

  Figure 8.     YF17D elicits robust and diverse primary T helper cell 
responses in DC/T cell co-cultures.  (a and b) Puri� ed T helper cells were 

mixed with DCs that had been incubated with live or UV-inactivated 

YF17D. After 14 d, the cells were harvested and evaluated by � ow cytom-

etry for cytokine and CD154 expression after a short restimulation with 

autologous DCs targets that had been left untouched, pulsed with killed 

YF17D, or infected with live YF17D. All data plots show live CD4 + -gated 

events. These are representative data of experiments done on cells from at 

least 10 volunteers. (c) Alternatively, the culture supernatants were har-

vested and evaluated by a multiplex cytokine analysis. Data representative 

of experiments done on cells from two volunteers.   
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cal processes that are initiated by one of the most potent 

vaccines ever generated, the YF vaccine YF17D, and which 

culminate into persistent immunological memory and long-

term protection against a challenge infection ( 20 ). The vac-

cine induced a signi� cant modulation of 594 genes in whole 

blood cells, with the highest number of genes being induced 

at day 7 after vaccination. ICA and gene set enrichment al-

lowed us to identify several nodes of transcriptional regulation 

that became induced within the � rst week after immuniza-

tion. This early response was highly integrated, as several of 

the downstream target genes were coordinately regulated by 

these transcription factors. 

 Of the identi� ed nodes, IRF7 was prominently involved 

in this masterswitch regulation. The induction of IRF7 has 

been shown to mediate innate and adaptive immunity against 

many viruses, including encephalomyocarditis virus, vesicu-

lar stomatitis virus, in� uenza virus, and Sindbis virus ( 21, 22 ), 

con� rming the signi� cance of this gene in mediating protective 

immunity and in inducing strong innate and adaptive im-

mune responses. It was also recently reported that the YF17D 

virus activates DCs by triggering their TLR2, 7, 8, and 9 

( 23 ). Our data reveal that TLR7 and its downstream adaptor 

molecule Myd88 are both up-regulated upon vaccination 

with YF17D. TLR7 is a molecular sensor for single-stranded 

RNA, such as the nucleic acid found in YF17D and other 

� aviviruses, and triggering of TLR7 causes the transduction 

of a signal, via Myd88, to up-regulate expression of in� am-

matory cytokines such as IL-6, IL-12, and TNF (via NF- � B) 

and type I IFNs (via IRF7) ( 22, 24 ). Type I IFNs in turn en-

hance the expression of proteins with direct antiviral activity, 

such as ISG20 and OAS1, 2, and 3, which lead to viral RNA 

degradation, and MX1, MX2, ADAR, and EIF2AK2, which 

inhibit viral replication. We are showing that all these genes 

are up-regulated upon YF17D vaccination. 

response to live or UV-inactivated YF17D.  Similarly, YF17D-

pulsed DCs stimulated high numbers of antigen-speci� c Th2 

cells expressing IL-5 and IL-13, upon restimulation with live 

or inactivated virus ( Fig. 8 b ). The levels of the cytokines IL-2, 

IFN- � , IL-13, IL-5, and IL-10 in the MIMIC co-culture 

supernatants were measured by multiplex cytokine analysis 

( Fig. 8 c ). When YF17D was used as pulse and recall antigen, 

the cells produced high levels of all the cytokines measured ex-

cept IL-10, compared with co-cultures with no recall antigen. 

Collectively, the results show that the MIMIC system induced 

a YF17D-speci� c primary CD4 +  T cell response, and further-

more, it allowed us to con� rm the induction of a mixed Th1/

Th2 immune response by the YF17D vaccine. 

 Finally, the MIMIC approach was used to independently 

assess our working hypothesis that the transcriptional nodes in-

duced in whole blood cells after vaccination with YF17D can 

also be induced in vitro by the vaccine. Co-cultures containing 

YF17D-pulsed DCs and CD4 +  T cells (with or without YF17D 

as recall antigen) were harvested and total RNA was isolated 

from the cells. Gene modulation in response to the antigen (day 

7 vs. 0) was assessed by microarray analysis. In total, eight nodes 

of transcriptional regulation of downstream target genes were 

consistently identi� ed; ETS2, STAT1, IRF1, IRF7, IRF8, 

GATA1, LMO2, and JUN ( Fig. 9 ).  Table S3 (available at 

http://www.jem.org/cgi/content/full/jem.20082292/DC1) 

summarizes the transcriptional nodes identi� ed with the Mon-

treal cohort, the Lausanne cohort, and the VaxDesign system. 

These data demonstrate that the same central nodes of tran-

scription are activated in in vivo vaccination with YF17D and 

in an in vitro system of primary immune response to the virus. 

  DISCUSSION  
 In this study, we have used systems biology and polychro-

matic � ow cytometry to characterize the early immunologi-

  Figure 9.     Consensus transcriptional network of genes differentially expressed on day 7 as compared with day 0 . Network representation of 

inferred transcription factors and predicted target genes that are consistently modulated in at least two out of three datasets, with the third dataset not 

being contradictory.   
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It is possible that NALP1 in� ammasomes were not induced in 

volunteers from the Lausanne cohort, whereas NALP3 in-

� ammasomes were induced in both cohorts. Interestingly, 

our gene array data also show a modulation of genes that are 

involved in IL-1 �  signaling, IL-1R2 and IL-1RN. IL-1R2, 

which is a decoy receptor that competes with the binding of 

IL-1 �  to its receptor ( 45 ), is down-regulated, further con-

� rming increased in� ammasome activities and IL-1 �  process-

ing and secretion after immunization with YF17D. The gene 

encoding IL-1RN, a cytokine that is an IL-1R antagonist, is 

up-regulated upon vaccination; this increase could be part of 

a negative feedback loop or could be caused by the up-regula-

tion of STAT1 and STAT2, two transcription factors that in-

duce IL-1RN up-regulation ( 46, 47 ). Activation of the 

in� ammasome by YF17D was con� rmed at the protein level 

by incubating immature DCs with the virus and assessing 

their IL-1 �  secretion. Representative results of ex vivo ex-

periments performed on cells from a minimum of three indi-

viduals are shown in  Fig. 5 b  and Fig. S4, and clearly validate 

the gene expression data, as we could observe a signi� cant 

up-regulation (up to ninefold) of IL-1 � , which is a critical in-

dicator of in� ammasome formation and activation. Of note, 

we could also observe that the induction of this pathway was 

independent of viral replication, as both UV-inactivated vi-

rus, and to a lesser extent heat-inactivated virus, all induced 

the secretion of IL-1 � . As shown in  Fig. 5 a , the modulation 

of in� ammasome- and IL-1 �  – related genes also similarly oc-

curred in the Lausanne cohort, where increased gene expres-

sion of caspase-1, IL-1RN, and the decrease in the expression 

of IL-1R2, further con� rmed the activation of the in� amma-

some after YF17D vaccination. Altogether, these results con-

� rm the importance of the in� ammasome as a target of the 

YF17D vaccine. Whether this pathway is critical for the adju-

vant e� ect of this vaccine remains to be determined, but is 

certainly suggested by the fact that the in� ammasome is in-

duced by immunization when alum is used as adjuvant ( 43 ). 

Moreover, IL-1 �  is known to play an important role in the 

regulation of T cell activation at multiple levels, and polymor-

phisms in the IL-1 �  gene have been linked to smallpox vac-

cine – induced fever ( 48 ). 

 We observed that YF17D stimulated the up-regulation of 

components of the complement cascade in blood cells, namely 

C1qA and C1qB. These molecules have been shown to induce 

maturation of DCs ( 49 ). Furthermore, distinct components of 

the complement pathway were found to be essential in the de-

velopment of humoral and cellular immunity to another � a-

vivirus, the West Nile Virus ( 50, 51 ). This may underline a 

possible role for the complement system in the establishment 

of immunity in response to YF17D vaccination. 

 The induction of a mixed Th1/Th2 pro� le by YF17D 

was suggested by Querec et al., who reported that the vac-

cine triggers TLR2, 7, 8, and 9 on DCs ( 23 ); this was recently 

con� rmed with in vivo data in humans ( 52 ). Our results cor-

roborate these � ndings; we have demonstrated at the protein 

level that PBMCs isolated from YF17D-vaccinated volun-

teers display a mixed T helper cell phenotype. Cells from day 

 Another prominent node of transcription regulation in-

duced by YF17D vaccination is the ETS2 transcription fac-

tor. ETS2 is involved in the di� erentiation and maturation of 

several immune cell types ( 25 ). Its expression is up-regulated 

in activated and proliferating T cells ( 26 ) and ETS2 is in-

volved in IL-12 p40 (Th1) and IL-5 (Th2) gene expression 

( 27, 28 ). ETS2 obviously plays a key role in the highly inte-

grated response to YF17D, as it enhanced transcription of 

several downstream genes that play critical roles in the matu-

ration and di� erentiation of T cells, B cells, NK cells, and 

macrophages ( Fig. 2, Fig. 3 , and Fig. S1). Indeed, antigen-

presenting cell – speci� c genes that are targets of ETS2 were 

up-regulated early after vaccination (MARCO, CD86). The 

role of ETS2 in the early induction of innate immunity is 

further demonstrated by the increased expression of NK cell 

receptors, as well as several cytolytic molecules; KIRDL3, 

PRF1, and GZMB are known targets of members of the Ets 

family of transcription factors ( 25, 29 ). Moreover, � ow cy-

tometry analysis on PBMCs from vaccinated volunteers revealed 

that YF17D stimulates the proliferation of several leukocyte 

populations (Fig. S5 b). 

 Several of the other predicted transcription nodes are 

likely to play signi� cant roles in the induction of innate and 

adaptive immunity in response to YF17D. IRF1 mediates the 

antiviral activity of IFNs, similar to IRF7 ( 30 ). IRF1 and 

IRF8 were found to synergistically activate IL-12 p35 and 

p40 gene expression in macrophages ( 31 – 33 ). IRF8 also me-

diates activation of NF- � B upon TLR9 triggering in DCs 

( 34 ), and IRF8 and LMO2 were both found to be expressed 

in B cell germinal centers, suggesting a role in the develop-

ment of the humoral response ( 35, 36 ). Moreover, TAL1 may 

be involved in T cell proliferation and di� erentiation ( 37 ). 

E2F4 is involved in cell cycle regulation ( 38 ), and FOXO3A 

and E2F1 are mediators of apoptosis ( 39, 40 ). 

 A common feature of these masterswitch genes is that they 

control the induction of several pathways of the innate im-

mune response, including type I IFNs, but also the in� amma-

some and complement. The in� ammasome is a large protein 

assembly that includes pyrin- and CARD domain – containing 

adaptor proteins complexed with cysteine proteinases known 

as caspases. It mediates the processing and activation of these 

caspases, and subsequently the cleavage and secretion of the 

proin� ammatory cytokines IL-1 �  and -18 ( 41 ). Activation of 

the in� ammasome has been recently shown to be induced by 

adenoviruses ( 42 ), and to be a key event for the successful ad-

juvant e� ect of alum, one of the only two adjuvants licensed 

to be used in humans ( 43 ). Our gene array results demonstrate 

that two components of the in� ammasome, caspase-1 and -5, 

were up-regulated after YF17D vaccination, in volunteers 

from the Montreal cohort, whereas only caspase-1 is up-regu-

lated in volunteers from the Lausanne cohort ( Fig. 5 a ). There 

are di� erent kinds of in� ammasomes, each containing a spe-

ci� c combination of in� ammatory caspases and adaptor mole-

cules ( 44 ). Hence, NALP1 in� ammasomes contain ASC, 

NALP1, caspase-1, and caspase-5, whereas NALP3 in� am-

masomes contain ASC, NALP3, and caspase-1 (no caspase-5). 
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(Table S5, available at http://www.jem.org/cgi/content/full/

jem.20082292/DC1) happens as this innate response pre-

cedes the emergence of YF17D-speci� c humoral and cellular 

immune responses. Interestingly, complement, IFNs, and the 

in� ammasome can all impact on the quality of the adaptive 

immune response and trigger Th1/Th2 mixed immune re-

sponses ( 42 ). Notably, YF17D triggers TLR2, which is up-

stream of the Th2 pathway ( 56 ) and TLR7, 8, and 9, which 

trigger mostly the Th1 pathway ( 57 ). Our studies have also 

revealed that the mixed Th1/Th2 CD4 +  response preceded 

B cell responses, as monitored by the detection of antibodies 

in serum of vaccinated subjects and the identi� cation of gene 

expression signatures speci� c to B cell responses (Table S2 

and  Fig. 3 e ). An important outcome of the early develop-

ment of Th2 memory CD4 +  T cells is the generation and 

persistence of a strong antibody response. As for CD8 +  re-

sponses, they could certainly be involved in providing long 

lasting protection against reexposure to the virus. In that con-

text, it will be important to compare the immune response 

described herein to that of individuals that have been reex-

posed to the virus, such as those who live in endemic areas or 

who get reimmunized with the vaccine. 

 The results described herein identify unique features of 

protective immune responses which can now be used as bench-

marks to design and monitor the development of novel vac-

cines. They demonstrate the complexity of this immune 

response and they highlight the fact that it is the sum of all 

arms of the immune response that is most probably required 

for the long-lasting protection induced by this vaccine; and 

they highlight the fact that it is this integrated immune re-

sponse that constitutes the correlates of protection. In that 

context, systems biology becomes an essential tool to identify 

correlates of immune-mediated protection. The recent fail-

ure of the STEP HIV vaccine trial paves the way for the use 

of new immune monitoring strategies focused on the identi-

� cation of multilineage and polyfunctional features of candi-

date vaccine-induced immune response. 

  MATERIALS AND METHODS  

 Vaccination of human volunteers and blood collection.   The volun-

teer recruitment and vaccination protocols for this study were approved by 

the research ethics committees of the Centre Hospitalier de l ’ Universit é  de 

Montr é al (Montreal cohort; 20 volunteers), the Faculty of Biology and 

Medicine of the University of Lausanne (Lausanne cohort; 13 volunteers), 

and Emory University (Emory Cohort; 10 volunteers). Each recruited sub-

ject received a single 0.5-ml subcutaneous injection of the Sano� -Pasteur 

17D-204 live-attenuated YF virus vaccine YF-VAX (Montreal and Emory 

cohorts) or Stamaril (Lausanne cohort). For the Montreal cohort, 50 ml of 

blood were drawn from each volunteer in sodium-heparinized Vacutainer 

tubes (BD) on the day of vaccination (day 0) and 3, 7, 10, 14, 28, 60, 90, 

180, and 365 d thereafter. PBMCs were isolated from these samples using 

standard Ficoll-Paque Plus (GE Healthcare) density gradient centrifugation 

and cryopreserved in bovine serum + 10% DMSO in liquid nitrogen. At 

each time point, an additional 10 ml of blood was collected from each vol-

unteer in PaxGene tubes (QIAGEN), for whole-blood RNA isolation. For 

the Lausanne cohort, whole blood was collected in PaxGene tubes at days 0, 

3, and 7 after vaccination. YF17D-speci� c seroconversion and viremia were 

determined as described in Tables S2 and S5, respectively. 

60 post-vaccination subjects, when stimulated ex vivo with 

YF17D-derived peptides, secreted Th1 and Th2 cytokines in 

their supernatants, as measured by CBA ( Fig. 6  and Fig. S6 e). 

Peptide-stimulated PBMCs from day 28 expressed the Th1 

cytokines IL-2 and/or IFN- � , as revealed by intracellular cy-

tokine staining ( Fig. 7 a ), and � nally, PBMCs from day 365 

after vaccination contained central memory T helper cells 

expressing surface markers typical of Th1 or Th2 cells when 

stimulated twice with immunostimulatory YF17D peptide 

pools ( Fig. 7 b ). Induction of the Th2 pathway by a vaccine 

is essential for the development of humoral immunity; in that 

context, we noted the induction of several B cell – speci� c 

genes in whole blood from volunteers vaccinated with YF17D, 

including POU2AF1, a transcription factor that is essential 

for mature B cell di� erentiation ( 53 ), and CD19, TN-

FRSF13B (BAFF) and TNFRSF17 (BCMA;  Fig. 3 e ), which 

are critical for B cell survival, persistence, and isotype switch-

ing ( 54 ). This late induction of B cell – associated genes (days 

10 and 14) coincided with the onset of YF17D-speci� c neu-

tralizing antibody production, which occurred by day 14 in 

the majority of the vaccinated volunteers (Table S2). 

 The MIMIC system con� rmed that the YF17D vaccine 

can induce a mixed Th1/Th2 response, as measured by the 

secretion of the Th1 cytokines IL-2 and IFN- � , and the Th2 

cytokines IL-5 and -13 in the supernatants of the MIMIC 

co-cultures ( Fig. 8 c ), and by the production of IL-5 and -13 

( Fig. 8 b ) or IFN- �  ( Fig. 8 a ) by antigen-speci� c CD154 +  

T helper cells. The observation that both live and UV-inacti-

vated YF17D virus stimulate an identical response clearly 

shows that viral replication is not required for the induction 

of adaptive immunity. Importantly, we show by gene array 

that most of the transcriptional nodes involved in the re-

sponse to YF17D in vivo that were identi� ed with the Mon-

treal cohort ( Fig. 2 ) are also induced in the Lausanne cohort, 

as well as in the in vitro MIMIC system (Table S3), leading 

to the mobilization of several of their downstream transcrip-

tional targets. Speci� cally, we found that immunization with 

YF17D elicits the induction of IRF1, IRF7, IRF8, STAT1, 

and FOXO3a in all three datasets, all of which are master-

switch genes required for the coordination of an e�  cient and 

protective immune response. Moreover, ICA followed by 

gene set enrichment (Table S4, available at http://www.jem

.org/cgi/content/full/jem.20082292/DC1) has revealed a sig-

ni� cant enrichment of genes induced by IFNs and viruses 

among the three datasets, namely those from Montreal, Laus-

anne, and VaxDesign ’ s MIMIC system. 

 Our results highlight the critical role of innate immunity 

in the elicitation of the multilineage and broad immune re-

sponses observed herein, and demonstrate the complexity of 

the innate immune response that is generated upon vaccina-

tion with YF17D. Indeed, several e� ector molecules of the 

innate immune response, including complement, IFNs, the 

in� ammasome, and several e� ector cells of innate immunity 

(i.e., macrophages, NK cells, and DCs, the latter being most 

likely the producers of type I IFNs [ 55 ]), are involved in this 

early response (day 3 and 7). Control of viral replication 
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Vivo 15 medium (Lonza), with YF17D, and harvesting the culture supernatants 

when severe histopathology could be observed (6 – 7 d). The virus particles 

were concentrated using Centricon Plus-20 columns (100 kD cuto� ; Milli-

pore). Viral stocks were titrated on Vero cells by lysis plaque assay. The virus 

was either heat-inactivated by incubation at 65 ° C for 1 h, or UV-inactivated 

at a dose of 0.72 J/cm 2  in a Stratalinker 1800 (Stratagene). Inactivated 

YF17D was tested by plaque assay to ensure total inactivation. 

 Immature DCs were generated by culturing monocytes for 6 d in the 

presence of 100 ng/ml GM-CSF (R & D Systems) and 25 ng/ml IL-4 (R & D 

Systems). The cells were then incubated with live, UV-inactivated or heat-

inactivated YF17D, at a multiplicity of infection of 10. After 24 and 48 h, 

supernatants were collected and analyzed using an IL-1 �  ELISA kit (BD). 

 Proliferation and cytokine secretion assays.   PBMCs from vaccinated 

volunteers were labeled with CFSE (Invitrogen), as previously described 

( 64 ). 2 million cells were incubated in polypropylene snap-cap tubes (Fal-

con) in the presence of YF17D-derived peptide pools (Fig. S6 a) at a � nal 

concentration of 2  µ g/ml/peptide, SEB (50 ng/ml; Toxin Technology) or 

nothing (nonstimulated; NS). After 24 h of incubation at 37 ° C/5% CO 2 , 

120  µ l of supernatant was withdrawn from each tube and frozen at  � 80 ° C 

for subsequent cytokine analysis. The same volume of fresh medium was re-

placed in each tube, and 5 d later (6 d total incubation), the cells were har-

vested and stained with anti-CD3, -CD4, and -CD8 antibodies (BD). The 

cells were collected on a BD LSRII � ow cytometer and the results were ana-

lyzed using the BD FACSDiva software. The BD Th1/Th2 CBA array (BD) 

was used to measure levels of IL-2, IL-4, IL-5, IL-10, IFN- � , and TNF in 

PBMCs supernatants, as suggested by the manufacturer. 

 Flow cytometric analysis of IFN- � /IL-2 – producing activated CD4 

T cells.   To assess the cytokine production ability of YF17D-speci� c helper 

T cells, 2 million PBMCs from vaccinated subjects (day 14 and 28) were 

stimulated for 6 h with YF17D-derived peptide pools, in the presence of 

Brefeldin A (Sigma-Aldrich), and then stained with anti-CD8 and -CD4 

antibodies. They were then permeabilized and stained with anti-CD154, 

IL-2, and IFN- �  (BD). 

 To determine the T helper phenotype of long-term, vaccine-speci� c 

CD4 +  T cells, 2 million PBMCs were stimulated for 6 d with YF17D pep-

tide pools, and subsequently restimulated with the same pools for 12 h, in the 

presence of Brefeldin A. Non-restimulated cells were used as controls. The 

cells were then stained with anti-CD3, -CD4, -CD8, -CD45RA, -CCR7, 

-CCR4, -CXCR3, and -CCR6 antibodies (BD). After permeabilization, 

they were stained for intracellular CD154 and � xed. 

 The MIMIC co-culture system.   PBMCs used in the assays were acquired 

from normal healthy donors enrolled in a VaxDesign Corporation apheresis 

study program (protocol CRRI 0906009). Blood collections were per-

formed at Florida ’ s Blood Centers (Orlando, FL) using standard techniques. 

The enriched leukocytes were isolated and cryopreserved. Human DCs 

were prepared as described above. After 5 d of culture with IL-4 and GM-

CSF, the DCs were infected with a 1:100 dilution of the live-attenuated 

YF-VAX vaccine. After 24 h, 5% human AB serum was added to the media 

to quench the infection. Alternatively, some of the DCs were pulsed with a 

1:100 dilution of YF-VAX (YF) that had been UV-inactivated. On the sixth 

day, all DCs were matured with an overnight treatment of 25 ng/ml TNF- �  

(R & D Systems). 

 CD4 +  T cell stimulation assay.   Frozen stocks of autologous PBMCs 

were used as a source of lymphocytes. Puri� ed CD4 +  T cells were co-cul-

tured with untreated or YF17D-pulsed DCs at a ratio of 60:1 for 14 d; 

thereafter, the activated lymphocytes were harvested and evaluated for e� ec-

tor activity using autologous DCs as APCs. The T cells and APCs were co-

cultured for 7 h, stained with CD4 antibody, permeabilized, and labeled 

intracellularly with anti – IFN- � ,  – IL-5,  – IL-13, and -CD154 antibodies. 

 Multiplex cytokine analysis.   At the time the lymphocytes were harvested 

from DC/T cell co-cultures, the supernatants were also collected and stored 

 Gene array analysis of whole-blood and VaxDesign samples.   Whole-

blood total RNA was puri� ed from PaxGene tubes using RNA extraction 

kits (QIAGEN). Quanti� cation was performed using a spectrophotometer 

(NanoDrop Technologies) and RNA quality was assessed using the Ex-

perion automated electrophoresis system (Bio-Rad Laboratories). Total 

RNA was then ampli� ed and labeled using the Illumina TotalPrep RNA 

Ampli� cation kit, which is based on the Eberwine ampli� cation protocol 

( 58 ). This protocol involves a � rst cDNA synthesis step followed by in vitro 

transcription for cRNA synthesis. The biotinylated cRNA was hybridized 

onto Illumina Human RefSeq-8 BeadChips v2 (Montreal and Lausanne 

samples) or v3 (VaxDesign samples) at 58 ° C for 20 h and quanti� ed using Il-

lumina BeadStation 500GX scanner and Illumina BeadStudio v3 software. 

 Illumina probe data were exported from BeadStudio as raw data and 

screened for quality. Samples failing chip visual inspection and control ex-

amination were removed. Gene expression data were analyzed using Bio-

conductor ( 59 ), an open-source software library for the analyses of genomic 

database on R, which is a language and environment for statistical comput-

ing and graphics (www.r-project.org). The R software package was used to 

� rst � lter out probes with intensities below background in all samples, and 

then to minimum replace (a surrogate replacement policy) values below 

background using the mean background value of the built-in Illumina probe 

controls as an alternative to background subtraction (which may introduce 

negative values) to reduce  “ overin� ated ”  expression ratios determined in 

subsequent steps, and � nally quantile normalize the probe intensities. The 

resulting matrix showing probes as rows and samples as columns was log 2  

transformed and used as input for linear modeling using BioConductor Lin-

ear models for microarray analysis (LIMMA [ 60 ]). The LIMMA package 

( 61 ) was used to identify di� erentially expressed genes (pFDR  < 0.05; fold 

change greater than  � 1.3 or  > 1.3) at days 3, 7, 10, 14, 28, and 60, compared 

with day 0 for the Montreal samples, at days 3 and 7 compared with day 0 

for the Lausanne samples, and at days 3 and 7 compared with the respective 

control for the VaxDesign samples. Our microarray data are available through 

the National Center for Biotechnology Information Gene Expression Om-

nibus (GEO) under series accession no. GSE13699. 

 qPCR validation.   Changes in gene expression observed by microarray 

analyses were veri� ed by qPCR. The expression of 43 genes, which were 

chosen according to our microarray results and to biomedical literature, was 

analyzed on samples obtained at day 0 and 7 after vaccination from the Mon-

treal and Lausanne cohorts. To further validate our microarray data, we also 

performed qPCR analysis on RNA samples (day 0 and 7) from 10 YF17D-

vaccinated volunteers enrolled in another vaccination trial conducted by the 

Emory Vaccine Center in Atlanta, GA (a gift from B. Pulendran). qPCR 

analysis was performed at the genomics platform of the Institute for Research 

in Immunology and Cancer (Montreal), as previously described ( 62 ). 

 Identi� cation of transcription factors and curated gene sets.   Tran-

scription factors were identi� ed using ICA and gene set enrichment as de-

scribed in Teschendor�  et al. ( 63 ). ICA was performed on the expression 

pro� les of the whole-blood and ex vivo model gene arrays (Montreal, Laus-

anne, and VaxDesign) on each day individually, as well as on the whole da-

tasets from each study. The CRAN package fastICA (v1.1-9) was used to 

carry out the ICA. Genes in each component were chosen for enrichment 

by selecting genes with loads below the 2.� fth percentile or above the 97.

� fth percentile. Gene set enrichment was done on the C2  “ curated gene 

sets ”  and C3  “ motif gene sets ”  collections of MsigDB. The resulting P values 

were Benjamini-Hochberg adjusted to keep the false discovery rates within 

each component  < 5%. Results annotated with unknown transcription fac-

tors that were discarded. Additionally, at least one gene in the gene sets used 

for enrichment had to be di� erentially expressed (see Gene array analysis of 

whole blood and VaxDesign samples) on at least one of the available time 

points up to day 14. 

 In vitro infection of immature DCs with YF17D.   Stocks of live 

YF17D virus were prepared in our laboratory by infecting Vero cell mono-

layers grown in DME medium (Sigma-Aldrich) supplemented with 10% X-
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