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Abstract

While it’s always possible to compute a varia-

tional approximation to a posterior distribution,

it can be difficult to discover problems with this

approximation. We propose two diagnostic al-

gorithms to alleviate this problem. The Pareto-

smoothed importance sampling (PSIS) diagnostic

gives a goodness of fit measurement for joint dis-

tributions, while simultaneously improving the

error in the estimate. The variational simulation-

based calibration (VSBC) assesses the average

performance of point estimates.

1. Introduction

Variational Inference (VI), including a large family of pos-

terior approximation methods like stochastic VI (Hoffman

et al. 2013), black-box VI (Ranganath et al. 2014), automatic

differentiation VI (ADVI, Kucukelbir et al. 2017), and many

other variants, has emerged as a widely-used method for

scalable Bayesian inference. These methods come with few

theoretical guarantees and it’s difficult to assess how well

the computed variational posterior approximates the true

posterior.

Instead of computing expectations or sampling draws from

the posterior p(θ | y), variational inference fixes a fam-

ily of approximate densities Q, and finds the member q∗

minimizing the Kullback-Leibler (KL) divergence to the

true posterior: KL (q(θ), p(θ | y)) . This is equivalent to

maximizing the evidence lower bound (ELBO):

ELBO(q) =

∫

Θ

(log p(θ, y)− log q(θ)) q(θ)dθ. (1)

There are many situations where the VI approximation is

flawed. This can be due to the slow convergence of the
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optimization problem, the inability of the approximation

family to capture the true posterior, the asymmetry of the

true distribution, the fact that the direction of the KL diver-

gence under-penalizes approximation with too-light tails, or

all these reasons. We need a diagnostic algorithm to test

whether the VI approximation is useful.

There are two levels of diagnostics for variational inference.

First the convergence test should be able to tell if the ob-

jective function has converged to a local optimum. When

the optimization problem (1) is solved through stochastic

gradient descent (SGD), the convergence can be assessed

by monitoring the running average of ELBO changes. Re-

searchers have introduced many convergence tests based on

the asymptotic property of stochastic approximations (e.g.,

Sielken, 1973; Stroup & Braun, 1982; Pflug, 1990; Wada &

Fujisaki, 2015; Chee & Toulis, 2017). Alternatively, Blei

et al. (2017) suggest monitoring the expected log predictive

density by holding out an independent test dataset. After

convergence, the optimum is still an approximation to the

truth. This paper is focusing on the second level of VI di-

agnostics whether the variational posterior q∗(θ) is close

enough to the true posterior p(θ|y) to be used in its place.

Purely relying on the objective function or the equivalent

ELBO does not solve the problem. An unknown multi-

plicative constant exists in p(θ, y) ∝ p(θ | y) that changes

with reparametrization, making it meaningless to compare

ELBO across two approximations. Moreover, the ELBO is

a quantity on an uninterpretable scale, that is it’s not clear at

what value of the ELBO we can begin to trust the variational

posterior. This makes it next to useless as a method to assess

how well the variational inference has fit.

In this paper we propose two diagnostic methods that assess,

respectively, the quality of the entire variational posterior for

a particular data set, and the average bias of a point estimate

produced under correct model specification.

The first method is based on generalized Pareto distribution

diagnostics used to assess the quality of a importance sam-

pling proposal distribution in Pareto smoothed importance

sampling (PSIS, Vehtari et al., 2017). The benefit of PSIS

diagnostics is two-fold. First, we can tell the discrepancy

between the approximate and the true distribution by the

estimated continuous k̂ value. When it is larger than a pre-

specified threshold, users should be alert of the limitation
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of current variational inference computation and consider

further tuning it or turn to exact sampling like Markov chain

Monte Carlo (MCMC). Second, in the case when k̂ is small,

the fast convergence rate of the importance-weighted Monte

Carlo integration guarantees a better estimation accuracy. In

such sense, the PSIS diagnostics could also be viewed as a

post-adjustment for VI approximations. Unlike the second-

order correction Giordano et al. (2017), which relies on an

un-testable unbiasedness assumption, we make diagnostics

and adjustment at the same time.

The second diagnostic considers only the quality of the

median of the variational posterior as a point estimate (in

Gaussian mean-field VI this corresponds to the modal es-

timate). This diagnostic assesses the average behavior of

the point estimate under data from the model and can in-

dicate when a systemic bias is present. The magnitude of

that bias can be monitored while computing the diagnostic.

This diagnostic can also assess the average calibration of

univariate functionals of the parameters, revealing if the

posterior is under-dispersed, over-dispersed, or biased. This

diagnostic could be used as a partial justification for using

the second-order correction of Giordano et al. (2017).

2. Is the Joint Distribution Good Enough?

If we can draw a sample (θ1, . . . , θS) from p(θ|y), the ex-

pectation of any integrable function Ep[h(θ)] can be esti-

mated by Monte Carlo integration:
∑S

s=1 h(θs)/S
S→∞−−−−−→

Ep [h(θ)] . Alternatively, given samples (θ1, . . . , θS) from

a proposal distribution q(θ), the importance sampling (IS)

estimate is
(

∑S

s=1 h(θs)rs

)

/
∑S

s=1 rs, where the impor-

tance ratios rs are defined as

rs =
p(θs, y)

q(θs)
. (2)

In general, with a sample (θ1, . . . , θS) drawn from the varia-

tional posterior q(θ), we consider a family of estimates with

the form

Ep[h(θ)] ≈
∑S

s=1 h(θs)ws
∑S

s=1 ws

, (3)

which contains two extreme cases:

1. When ws ≡ 1, estimate (3) becomes the plain VI esti-

mate that is we completely trust the VI approximation.

In general, this will be biased to an unknown extent

and inconsistent. However, this estimator has small

variance.

2. When ws = rs, (3) becomes importance sampling.

The strong law of large numbers ensures it is consistent

as S → ∞, and with small O(1/S) bias due to self-

normalization. But the IS estimate may have a large or

infinite variance.

There are two questions to be answered. First, can we find a

better bias-variance trade-off than both plain VI and IS?

Second, VI approximation q(θ) is not designed for an op-

timal IS proposal, for it has a lighter tail than p(θ|y) as a

result of entropy penalization, which lead to a heavy right

tail of rs. A few large-valued rs dominates the summation,

bringing in large uncertainty. But does the finite sample

performance of IS or stabilized IS contain the information

about the dispensary measure between q(θ) and p(θ|y)?

2.1. Pareto Smoothed Importance Sampling

The solution to the first question is the Pareto smoothed

importance sampling (PSIS). We give a brief review, and

more details can be found in Vehtari et al. (2017).

A generalized Pareto distribution with shape parameter k
and location-scale parameter (µ, τ) has the density

p(y|µ, σ, k) =
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PSIS stabilizes importance ratios by fitting a generalized

Pareto distribution using the largest M samples of ri, where

M is empirically set as min(S/5, 3
√
S). It then reports the

estimated shape parameter k̂ and replaces the M largest rs
by their expected value under the fitted generalized Pareto

distribution. The other importance weights remain un-

changed. We further truncate all weights at the raw weight

maximum max(rs). The resulted smoothed weights are

denoted by ws, based on which a lower variance estimation

can be calculated through (3).

Pareto smoothed importance sampling can be considered as

Bayesian version of importance sampling with prior on the

largest importance ratios. It has smaller mean square errors

than plain IS and truncated-IS (Ionides, 2008).

2.2. Using PSIS as a Diagnostic Tool

The fitted shape parameter k̂, turns out to provide the desired

diagnostic measurement between the true posterior p(θ|y)
and the VI approximation q(θ). A generalized Pareto dis-

tribution with shape k has finite moments up to order 1/k,

thus any positive k̂ value can be viewed as an estimate to

k = inf

{

k′ > 0 : Eq

(

p(θ|y)
q(θ)

)
1
k′

< ∞
}

. (4)
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k̂ is invariant under any constant multiplication of p or q,

which explains why we can suppress the marginal likeli-

hood (normalizing constant) p(y) and replace the intractable

p(θ|y) with p(θ, y) in (2).

After log transformation, (4) can be interpreted as Rényi

divergence (Rényi et al., 1961) with order α between p(θ|y)
and q(θ):

k = inf
{

k′ > 0 : D 1
k′

(p||q) < ∞
}

,

whereDα (p||q) = 1

α− 1
log

∫

Θ

p(θ)αq(θ)1−αdθ.

It is well-defined since Rényi divergence is monotonic in-

creasing on order α. Particularly, when k > 0.5, the χ2

divergence χ(p||q), becomes infinite, and when k > 1,

D1(p||q) = KL(p, q) = ∞, indicating a disastrous VI

approximation, despite the fact that KL(q, p) is always min-

imized among the variational family. The connection to

Rényi divergence holds when k > 0. When k < 0, it

predicts the importance ratios are bounded from above.

This also illustrates the advantage of a continuous k̂ estimate

in our approach over only testing the existence of second

moment of Eq(q/p)
2 (Epifani et al., 2008; Koopman et al.,

2009) – it indicates if the Rényi divergence between q and p
is finite for all continuous order α > 0.

Meanwhile, the shape parameter k determines the finite

sample convergence rate of both IS and PSIS adjusted es-

timate. Geweke (1989) shows when Eq[r(θ)
2] < ∞ and

Eq[
(

r(θ)h(θ)
)2
] < ∞ hold (both conditions can be tested

by k̂ in our approach), the central limit theorem guaran-

tees the square root convergence rate. Furthermore, when

k < 1/3, then the Berry-Essen theorem states faster con-

vergence rate to normality (Chen et al., 2004). Cortes et al.

(2010) and Cortes et al. (2013) also link the finite sample

convergence rate of IS with the number of existing moments

of importance ratios.

PSIS has smaller estimation error than the plain VI esti-

mate, which we will experimentally verify this in Section

4. A large k̂ indicates the failure of finite sample PSIS, so it

further indicates the large estimation error of VI approxima-

tion. Therefore, even when the researchers’ primary goal is

not to use variational approximation q as an PSIS proposal,

they should be alert by a large k̂ which tells the discrepancy

between the VI approximation result and the true posterior.

According to empirical study in Vehtari et al. (2017), we set

the threshold of k̂ as follows.

• If k̂ < 0.5, we can invoke the central limit theorem to

suggest PSIS has a fast convergence rate. We conclude

the variational approximation q is close enough to the

true density. We recommend further using PSIS to

Algorithm 1 PSIS diagnostic

1: Input: the joint density function p(θ, y); number of

posterior samples S; number of tail samples M .

2: Run variational inference to p(θ|y), obtain VI approxi-

mation q(θ);
3: Sample (θs, s = 1, . . . , S) from q(θ);
4: Calculate the importance ratio rs = p(θs, y)/q(θs);
5: Fit generalized Pareto distribution to the M largest rs;

6: Report the shape parameter k̂;

7: if k̂ < 0.7 then

8: Conclude VI approximation q(θ) is close enough to

the unknown truth p(θ|y);
9: Recommend further shrinking errors by PSIS.

10: else

11: Warn users that the VI approximation is not reliable.

12: end if

adjust the estimator (3) and calculate other divergence

measures.

• If 0.5 < k̂ < 0.7, we still observe practically useful

finite sample convergence rates and acceptable Monte

Carlo error for PSIS. It indicates the variational ap-

proximation q is not perfect but still useful. Again, we

recommend PSIS to shrink errors.

• If k̂ > 0.7, the PSIS convergence rate becomes im-

practically slow, leading to a large mean square er-

ror, and a even larger error for plain VI estimate. We

should consider tuning the variational methods (e.g.,

re-parametrization, increase iteration times, increase

mini-batch size, decrease learning rate, et.al.,) or turn-

ing to exact MCMC. Theoretically k is always smaller

than 1, for Eq [p(θ|y)/q(θ)] = p(y) < ∞, while in

practice finite sample estimate k̂ may be larger than 1,

which indicates even worse finite sample performance.

The proposed diagnostic method is summarized in Algo-

rithm 1.

2.3. Invariance Under Re-Parametrization

Re-parametrization is common in variational inference. Par-

ticularly, the reparameterization trick (Rezende et al., 2014)

rewrites the objective function to make gradient calculation

easier in Monte Carlo integrations.

A nice property of PSIS diagnostics is that the k̂ quantity is

invariant under any re-parametrization. Suppose ξ = T (θ)
is a smooth transformation, then the density ratio of ξ under

the target p and the proposal q does not change:

p(ξ)

q(ξ)
=

p
(

T−1(ξ)
)

|detJξT−1(ξ)|
q (T−1(ξ)) |detJξT−1(ξ)| =

p (θ)

q(θ)
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Therefore, p(ξ)/q(ξ) and p(θ)/q(θ) have the same distri-

bution under q, making it free to choose any convenient

parametrization form when calculating k̂.

However, if the re-parametrization changes the approxima-

tion family, then it will change the computation result, and

PSIS diagnostics will change accordingly. Finding the op-

timal parametrization form, such that the re-parametrized

posterior distribution lives exactly in the approximation fam-

ily

p(T (ξ)) = p
(

T−1(ξ)
)

|JξT−1(ξ)| ∈ Q,

can be as hard as finding the true posterior. The PSIS diag-

nostic can guide the choice of re-parametrization by simply

comparing the k̂ quantities of any parametrization. Section

4.3 provides a practical example.

2.4. Marginal PSIS Diagnostics Do Not Work

As dimension increases, the VI posterior tends to be further

away from the truth, due to the limitation of approximation

families. As a result, k increases, indicating inefficiency

of importance sampling. This is not the drawback of PSIS

diagnostics. Indeed, when the focus is the joint distribu-

tion, such behaviour accurately reflects the quality of the

variational approximation to the joint posterior.

Denoting the one-dimensional true and approximate

marginal density of the i-th coordinate θi as p(θi|y) and

q(θi), the marginal k for θi can be defined as

ki = inf

{

0 < k′ < 1 : Eq

(

p(θi|y)
q(θi)

)
1
k′

< ∞
}

.

The marginal ki is never larger (and usually smaller) than

the joint k in (4).

Proposition 1. For any two distributions p and q with

support Θ and the margin index i, if there is a num-

ber α > 1 satisfying Eq (p(θ)/q(θ))
α

< ∞, then

Eq (p(θi)/q(θi))
α
< ∞.

Proposition 1 demonstrates why the importance sampling

is usually inefficient in high dimensional sample space, in

that the joint estimation is “worse” than any of the marginal

estimation.

Should we extend the PSIS diagnostics to marginal distri-

butions? We find two reasons why the marginal PSIS diag-

nostics can be misleading. Firstly, unlike the easy access

to the unnormalized joint posterior distribution p(θ, y), the

true marginal posterior density p(θi|y) is typically unknown,

otherwise one can conduct one-dimensional sampling easily

to obtain the the marginal samples. Secondly, a smaller k̂i
does not necessary guarantee a well-performed marginal

estimation. The marginal approximations in variational in-

ference can both over-estimate and under-estimate the tail

thickness of one-dimensional distributions, the latter situa-

tion gives rise to a smaller k̂i. Section 4.3 gives an example,

where the marginal approximations with extremely small

marginal k have large estimation errors. This does not hap-

pen in the joint case as the direction of the Kullback-Leibler

divergence q∗(θ) strongly penalizes too-heavy tails, which

makes it unlikely that the tails of the variational posterior

are significantly heavier than the tails of the true posterior.

3. Assessing the Average Performance of the

Point Estimate

The proposed PSIS diagnostic assesses the quality of the

VI approximation to the full posterior distribution. It is

often observed that while the VI posterior may be a poor

approximation to the full posterior, point estimates that are

derived from it may still have good statistical properties. In

this section, we propose a new method for assessing the

calibration of the center of a VI posterior.

3.1. The Variational Simulation-Based Calibration

(VSBC) Diagnostic

This diagnostic is based on the proposal of Cook et al. (2006)

for validating general statistical software. They noted that if

θ(0) ∼ p(θ) and y ∼ p(y | θ(0)), then

Pr(y,θ(0))

(

Prθ|y(θ < θ(0)) ≤ ·)
)

= Unif[0,1]([0, ·]).

To use the observation of Cook et al. (2006) to assess the per-

formance of a VI point estimate, we propose the following

procedure. Simulate M > 1 data sets {yj}Mj=1 as follows:

Simulate θ
(0)
j ∼ p(θ) and then simulate y(j) ∼ p(y | θ(0)j ),

where y(j) has the same dimension as y. For each of

these data sets, construct a variational approximation to

p(θ | yj) and compute the marginal calibration probabilities

pij = Prθ|y(j)

(

θi ≤ [θ
(0)
j ]i

)

.

To apply the full procedure of Cook et al. (2006), we would

need to test dim(θ) histograms for uniformity, however this

would be too stringent a check as, like our PSIS diagnostic,

this test is only passed if the variational posterior is a good

approximation to the true posterior. Instead, we follow

an observation of Anderson (1996) from the probabilistic

forecasting validation literature and note that asymmetry

in the histogram for pi: indicates bias in the variational

approximation to the marginal posterior θi | y.

The VSBC diagnostic tests for symmetry of the marginal cal-

ibration probabilities around 0.5 and either by visual inspec-

tion of the histogram or by using a Kolmogorov-Smirnov

(KS) test to evaluate whether pi: and 1− pi: have the same

distribution. When θ is a high-dimensional parameter, it

is important to interpret the results of any hypothesis tests
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Algorithm 2 VSBC marginal diagnostics

1: Input: prior density p(θ), data likelihood p(y | θ);
number of replications M ; parameter dimensions K;

2: for j = 1 : M do

3: Generate θ
(0)
j from prior p(θ);

4: Generate a size-n dataset
(

y(j)
)

from p(y | θ(0)j );
5: Run variational inference using dataset y(j), obtain a

VI approximation distribution qj(·)
6: for i = 1 : K do

7: Label θ
(0)
ij as the i-th marginal component of θ

(0)
j ;

Label θ∗i as the i-th marginal component of θ∗;

8: Calculate pij = Pr(θ
(0)
ij < θ∗i | θ∗ ∼ qj)

9: end for

10: end for

11: for i = 1 : K do

12: Test if the distribution of {pij}Mj=1 is symmetric;

13: If rejected, the VI approximation is biased in its i-th
margin.

14: end for

through a multiple testing lens.

3.2. Understanding the VSBC Diagnostic

Unlike the PSIS diagnostic, which focuses on a the perfor-

mance of variational inference for a fixed data set y, the

VSBC diagnostic assesses the average calibration of the

point estimation over all datasets that could be constructed

from the model. Hence, the VSBC diagnostic operates

under a different paradigm to the PSIS diagnostic and we

recommend using both as appropriate.

There are two disadvantages to this type of calibration when

compared to the PSIS diagnostic. As is always the case

when interpreting hypothesis tests, just because something

works on average doesn’t mean it will work for a particular

realization of the data. The second disadvantage is that this

diagnostic does not cover the case where the observed data

is not well represented by the model. We suggest interpret-

ing the diagnostic conservatively: if a variational inference

scheme fails the diagnostic, then it will not perform well on

the model in question. If the VI scheme passes the diagnos-

tic, it is not guaranteed that it will perform well for real data,

although if the model is well specified it should do well.

The VSBC diagnostic has some advantages compared to

the PSIS diagnostic. It is well understood that, for complex

models, the VI posterior can be used to produce a good point

estimate even when it is far from the true posterior. In this

case, the PSIS diagnostic will most likely indicate failure.

The second advantage is that unlike the PSIS diagnostic, the

VSBC diagnostic considers one-dimensional marginals θi
(or any functional h(θ)), which allows for a more targeted

interrogation of the fitting procedure.

With stronger assumptions, The VSBC test can be formal-

ized as in Proposition 2.

Proposition 2. Denote θ as a one-dimensional parameter

that is of interest. Suppose in addition we have: (i) the

VI approximation q is symmetric; (ii) the true posterior

p(θ|y) is symmetric. If the VI estimation q is unbiased, i.e.,

Eθ∼q(θ|y) θ = Eθ∼p(θ|y) θ, then the distribution of VSBC

p-value is symmetric. Otherwise, if the VI estimation is

positively/negatively biased, then the distribution of VSBC

p-value is right/left skewed.

The symmetry of the true posterior is a stronger assumption

than is needed in practice for this result to hold. In the

forecast evaluation literature, as well as the literature on

posterior predictive checks, the symmetry of the histogram

is a commonly used heuristic to assess the potential bias of

the distribution. In our tests, we have seen the same thing

occurs: the median of the variational posterior is close to

the median of the true posterior when the VSBC histogram

is symmetric. We suggest again that this test be interpreted

conservatively: if the histogram is not symmetric, then the

VI is unlikely to have produced a point estimate close to the

median of the true posterior.

4. Applications

Both PSIS and VSBC diagnostics are applicable to any

variational inference algorithm. Without loss of generality,

we implement mean-field Gaussian automatic differentiation

variational inference (ADVI) in this section.

4.1. Linear Regression

Consider a Bayesian linear regression y ∼ N(Xβ, σ2) with

prior {βi}Ki=1 ∼ N(0, 1), σ ∼ gamma(.5, .5). We fix sam-

ple size n = 10000 and number of regressors K = 100.

Figure 1 visualizes the VSBC diagnostic, showing the dis-

tribution of VSBC p-values of the first two regression coef-

ficients β1, β2 and log σ based on M = 1000 replications.

The two sided Kolmogorov-Smirnov test for p: and 1− p: is

only rejected for pσ:, suggesting the VI approximation is in

average marginally unbiased for β1 and β2, while σ is over-

estimated as pσ is right-skewed. The under-estimation of

posterior variance is reflected by the U-shaped distributions.

Using one randomly generated dataset in the same problem,

the PSIS k̂ is 0.61, indicating the joint approximation is

close to the true posterior. However, the performance of

ADVI is sensitive to the stopping time, as in any other opti-

mization problems. As displayed in the left panel of Figure

2, changing the threshold of relative ELBO change from

a conservative 10−5 to the default recommendation 10−2

increases k̂ to 4.4, even though 10−2 works fine for many

other simpler problems. In this example, we can also view k̂
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Figure 1. VSBC diagnostics for β1, β2 and log σ in the Bayesian

linear regression example. The VI estimation overestimates σ as

pσ is right-skewed, while β1 and β2 is unbiased as the two-sided

KS-test is not rejected.
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Figure 2. ADVI is sensitive to the stopping time in the linear re-

gression example. The default 0.01 threshold lead to a fake con-

vergence, which can be diagnosed by monitoring PSIS k̂. PSIS

adjustment always shrinks the estimation errors.

as a convergence test. The right panel shows k̂ diagnoses es-

timation error, which eventually become negligible in PSIS

adjustment when k̂ < 0.7. To account for the uncertainty

of stochastic optimization and k̂ estimation, simulations are

repeated 100 times.

4.2. Logistic Regression

Next we run ADVI to a logistic regression Y ∼
Bernoulli

(

logit−1(βX)
)

with a flat prior on β. We gener-

ate X = (x1, . . . , xn) from N(0, (1− ρ)IK×K + ρ1K×K)
such that the correlation in design matrix is ρ, and ρ is

changed from 0 to 0.99. The first panel in Figure 3 shows

PSIS k̂ increases as the design matrix correlation increases.

It is not monotonic because β is initially negatively corre-

lated when X is independent. A large ρ transforms into a

large correlation for posterior distributions in β, making it

harder to be approximated by a mean-field family, as can

be diagnosed by k̂. In panel 2 we calculate mean log pre-

dictive density (lpd) of VI approximation and true posterior

using 200 independent test sets. Larger ρ leads to worse

mean-field approximation, while prediction becomes eas-

ier. Consequently, monitoring lpd does not diagnose the VI

behavior; it increases (misleadingly suggesting better fit)

as ρ increases. In this special case, VI has larger lpd than

the true posterior, due to the VI under-dispersion and the

model misspecification. Indeed, if viewing lpd as a function

h(β), it is the discrepancy between VI lpd and true lpd that

reveals the VI performance, which can also be diagnosed

by k̂. Panel 3 shows a sharp increase of lpd discrepancy

around k̂ = 0.7, consistent with the empirical threshold we

suggest.
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Figure 3. In the logistic regression example, as the correlation in

design matrix increase, the correlation in parameter space also

increases, leading to larger k̂. Such flaw is hard to tell from the

VI log predictive density (lpd), as a larger correlation makes the

prediction easier. k̂ diagnose the discrepancy of VI lpd and true

posterior lpd, with a sharp jump at 0.7.

0.3 0.5 0.7 0.9

0

2.5

5

R
M

S
E

1st Moment

k hat

Raw ADVI

IS

PSIS

0.3 0.5 0.7 0.9

0

25

50

k hat

R
M

S
E

2nd Moment

Figure 4. In the logistic regression with varying correlations, the

k̂ diagnoses the root mean square of first and second moment

errors. No estimation is reliable when k̂ > 0.7. Meanwhile, PSIS

adjustment always shrinks the VI estimation errors.

Figure 4 compares the first and second moment root mean

square errors (RMSE) ||Epβ − Eq∗β||2 and ||Epβ
2 −

Eq∗β
2||2 in the previous example using three estimates:

(a) VI without post-adjustment, (b) VI adjusted by vanilla

importance sampling, and (c) VI adjusted by PSIS.

PSIS diagnostic accomplishes two tasks here: (1) A small k̂
indicates that VI approximation is reliable. When k̂ > 0.7,

all estimations are no longer reasonable so the user should

be alerted. (2) It further improves the approximation using

PSIS adjustment, leading to a quicker convergence rate and

smaller mean square errors for both first and second moment

estimation. Plain importance sampling has larger RMSE for

it suffers from a larger variance.

4.3. Re-parametrization in a Hierarchical Model

The Eight-School Model (Gelman et al., 2013, Section 5.5)

is the simplest Bayesian hierarchical normal model. Each

school reported the treatment effect mean yi and standard

deviation σi separately. There was no prior reason to believe

that any of the treatments were more effective than any other,

so we model them as independent experiments:

yj |θj ∼ N(θj , σ
2
j ), θj |µ, τ ∼ N(µ, τ2), 1 ≤ j ≤ 8,

µ ∼ N(0, 5), τ ∼ half−Cauchy(0, 5).

where θj represents the treatment effect in school j, and µ
and τ are the hyper-parameters shared across all schools.
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Figure 5. The upper two panels shows the joint and marginal PSIS

diagnostics of the eight-school example. The centered parame-

terization has k̂ > 0.7, for it cannot capture the funnel-shaped

dependency between τ and θ. The bottom-right panel shows the

bias of posterior mean and standard errors of marginal distribu-

tions. Positive bias of τ leads to over-dispersion of θ.

In this hierarchical model, the conditional variance of θ is

strongly dependent on the standard deviation τ , as shown by

the joint sample of µ and log τ in the bottom-left corner in

Figure 5. The Gaussian assumption in ADVI cannot capture

such structure. More interestingly, ADVI over-estimates the

posterior variance for all parameters θ1 through θ8, as shown

by positive biases of their posterior standard deviation in

the last panel. In fact, the posterior mode is at τ = 0, while

the entropy penalization keeps VI estimation away from it,

leading to an overestimation due to the funnel-shape. Since

the conditional expectation E[θi|τ, y, σ] =
(

σ−2
j + τ−2

)−1

is an increasing function on τ , a positive bias of τ produces

over-dispersion of θ.

The top left panel shows the marginal and joint PSIS di-

agnostics. The joint k̂ is 1.00, much beyond the threshold,

while the marginal k̂ calculated through the true marginal

distribution for all θ are misleadingly small due to the over-

dispersion.

Alerted by such large k̂, researchers should seek some im-

provements, such as re-parametrization. The non-centered

parametrization extracts the dependency between θ and τ
through a transformation θ∗ = (θ − µ)/τ :

yj |θj ∼ N(µ+ τθ∗j , σ
2
j ), θ∗j ∼ N(0, 1).

There is no general rule to determine whether non-centered

parametrization is better than the centered one and there

are many other parametrization forms. Finding the optimal

parametrization can be as hard as finding the true posterior,

but k̂ diagnostics always guide the choice of parametriza-
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Figure 6. In the eight-school example, the VSBC diagnostic veri-

fies VI estimation of θ1 is unbiased as the distribution of pθ1: is

symmetric. τ is overestimated in the centered parametrization and

underestimated in the non-centered one, as told by the right/ left

skewness of pτ :.

tion. As shown by the top right panel in Figure 5, the joint

k̂ for the non-centered ADVI decreases to 0.64 which indi-

cated the approximation is not perfect but reasonable and

usable. The bottom-right panel demonstrates that the re-

parametrized ADVI posterior is much closer to the truth,

and has smaller biases for both first and second moment

estimations.

We can assess the marginal estimation using VSBC diagnos-

tic, as summarized in Figure 6. In the centered parametriza-

tion, the point estimation for θ1 is in average unbiased, as

the two-sided KS-test is not rejected. The histogram for τ
is right-skewed, for we can reject one-sided KS-test with

the alternative to be pτ : being stochastically smaller than

pτ :. Hence we conclude τ is over-estimated in the centered

parameterization. On the contrast, the non-centered τ is

negatively biased, as diagnosed by the left-skewness of pτ :.
Such conclusion is consistent with the bottom-right panel in

Figure 5.

To sum up, this example illustrates how the Gaussian fam-

ily assumption can be unrealistic even for a simple hier-

archical model. It also clarifies VI posteriors can be both

over-dispersed and under-dispersed, depending crucially on

the true parameter dependencies. Nevertheless, the recom-

mended PSIS and VSBC diagnostics provide a practical

summary of the computation result.

4.4. Cancer Classification Using Horseshoe Priors

We illustrate how the proposed diagnostic methods work

in the Leukemia microarray cancer dataset that contains

D = 7129 features and n = 72 observations. Denote y1:n
as binary outcome and Xn×D as the predictor, the logistic

regression with a regularized horseshoe prior (Piironen &

Vehtari, 2017) is given by

y|β ∼ Bernoulli
(

logit−1 (Xβ)
)

, βj |τ, λ, c ∼ N(0, τ2λ̃2
j ),

λj ∼ C+(0, 1), τ ∼ C+(0, τ0), c2 ∼ Inv−Gamma(2, 8).

where τ > 0 and λ > 0 are global and local shrinkage

parameters, and λ̃2
j = c2λ2

j/
(

c2 + τ2λ2
j

)

. The regularized
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horseshoe prior adapts to the sparsity and allows us to spec-

ify a minimum level of regularization to the largest values.

ADVI is computationally appealing for it only takes a few

minutes while MCMC sampling takes hours on this dataset.

However, PSIS diagnostic gives k̂ = 9.8 for ADVI, sug-

gesting the VI approximation is not even close to the true

posterior. Figure 7 compares the ADVI and true posterior

density of β1834, log λ1834 and τ . The Gaussian assumption

makes it impossible to recover the bimodal distribution of

some β.
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Figure 7. The comparison of ADVI and true posterior density of

θ1834, log λ1834 and τ in the horseshoe logistic regression. ADVI

misses the right mode of log λ, making β ∝ λ become a spike.
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Figure 8. VSBC test in the horseshoe logistic regression. It tells the

positive bias of τ and negative bias of λ1834. β1834 is in average

unbiased for its symmetric prior.

The VSBC diagnostics as shown in Figure 8 tell the neg-

ative bias of local shrinkage λ1834 from the left-skewness

of plog λ1834
, which is the consequence of the right-missing

mode. For compensation, the global shrinkage τ is over-

estimated, which is in agreement with the right-skewness

of plog τ . β1834 is in average unbiased, even though it is

strongly underestimated from in Figure 7. This is because

VI estimation is mostly a spike at 0 and its prior is symmet-

ric. As we have explained, passing the VSBC test means the

average unbiasedness, and does not ensure the unbiasedness

for a specific parameter setting. This is the price that VSBC

pays for averaging over all priors.

5. Discussion

5.1. The Proposed Diagnostics are Local

As no single diagnostic method can tell all problems, the

proposed diagnostic methods have limitations. The PSIS

diagnostic is limited when the posterior is multimodal as

the samples drawn from q(θ) may not cover all the modes

of the posterior and the estimation of k will be indifferent

to the unseen modes. In this sense, the PSIS diagnostic is

a local diagnostic that will not detect unseen modes. For

example, imagine the true posterior is p = 0.8N(0, 0.2) +
0.2N(3, 0.2) with two isolated modes. Gaussian family VI

will converge to one of the modes, with the importance ratio

to be a constant number 0.8 or 0.2. Therefore k is 0, failing

to penalize the missing density. In fact, any divergence

measure based on samples from the approximation such as

KL(q, p) is local.

The bi-modality can be detected by multiple over-dispersed

initialization. It can also be diagnosed by other divergence

measures such as KL(p, q) = Ep log(q/p), which is com-

putable through PSIS by letting h = log(q/p).

In practice a marginal missing mode will typically lead to

large joint discrepancy that is still detectable by k̂, such as

in Section 4.4.

The VSBC test, however, samples the true parameter from

the prior distribution directly. Unless the prior is too restric-

tive, the VSBC p-value will diagnose the potential missing

mode.

5.2. Tailoring Variational Inference for Importance

Sampling

The PSIS diagnostic makes use of stabilized IS to diag-

nose VI. By contrast, can we modify VI to give a better IS

proposal?

Geweke (1989) introduce an optimal proposal distribution

based on split-normal and split-t, implicitly minimizing

the χ2 divergence between q and p. Following this idea,

we could first find the usual VI solution, and then switch

Gaussian to Student-t with a scale chosen to minimize the

χ2 divergence.

More recently, some progress is made to carry out varia-

tional inference based on Rényi divergence (Li & Turner,

2016; Dieng et al., 2017). But a big α, say α = 2, is only

meaningful when the proposal has a much heavier tail than

the target. For example, a normal family does not contain

any member having finite χ2 divergence to a Student-t dis-

tribution, leaving the optimal objective function defined by

Dieng et al. (2017) infinitely large.

There are several research directions. First, our proposed

diagnostics are applicable to these modified approximation

methods. Second, PSIS re-weighting will give a more re-

liable importance ratio estimation in the Rényi divergence

variational inference. Third, a continuous k̂ and the cor-

responding α are more desirable than only fixing α = 2,

as the latter one does not necessarily have a finite result.

Considering the role k̂ plays in the importance sampling, we

can optimize the discrepancy Dα(q||p) and α > 0 simulta-

neously. We leave this for future research.
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