
YEWMVS: A Continuous Real Time Expert System

J.H. Griesmer, S.J. Hong, M. Karnaugh, J.K. Kastner, M.I. Schor

Expert Systems Group, Mathematical Science Department

R.L. Ennis, D.A. Klein, K.R. Milliken, H.M. VanWoerkom

Installation Management Group, Computer Science Department

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

ABSTRACT:

YES/MVS (Yorktown Expert System for MVS opera-
tors) is a continuous, real time expert system that exerts
interactive control over an operating system as an aid to
computer operators. This paper discusses the YES/MVS
system, its domain of application, and issues that arise in
the design and development of an expert system that runs
continuously in real time.

I INTRODUCTION

Expert systems techniques are beginning to be success-
fully applied to real problems in industry, although only a
handful are reportedly in use so far. Most of the applica-
tions are consultation oriented, run in a session or in a batch
mode, and deal with a static world. The nuclear reactor
monitoring expert system, REACTOR [11, and the patient
monitoring expert system for intensive care units, VM [2],
are among the few attempts at continuous on-line operation
and real time processing. However, neither of these sys-
tems exercise any real time interactive control over the
subject being monitored. The Yorktown Expert System for
MVS operators (YES/MVS) is a real time interactive con-
trol system that operates continuously.

The idea of on-line monitoring or controlling of one
computer by another is not new. Watch-dog processors
[3] and maintenance processors [4] have been designed to
assist in the recovery from software errors and hardware
errors while the subject computer is in operation. What is
new is the application of an expert system approach to the
control of computer operations.

A. Importance of the Domain

Computer operations is a monitoring and problem solv-
ing activity that must be conducted in real time. It is be-
coming increasingly complex as data processing
installations grow. Large data processing installations often
involve multiple CPU’s and a large number of peripherals
networked together, representing a multi-million dollar in-
vestment. Many of the installations run real time applica-
tions (e.g., banking, reservations systems). The control of
a typical large system rests largely in the hands of just a few
operators. Besides carrying on such routine activities as
mounting tapes, loading and changing forms in printers, and
answering phones, an operator continuously monitors the
condition of the subject operating system and initiates
queries and/or commands to diagnose and solve problems

as they arise. A long training period is required to produce
a skilled operator; trained operators, in turn, are often pro-
moted to systems programmers. The resulting shortage of
skilled operators and the increasing complexity of the op-
erator’s job calls for more powerful installation manage-
ment tools. We have chosen the management of a Multiple
Virtual Storage (MVS) operating system, the most widely
used operating system on large IBM mainframe computers,
as an example of the application of expert systems to
problems in computer installation management.

B. Use of Expert System Techniques

Each installation has a different configuration and dif-
ferent local policies for computer operations, both of which
change over time. The software running in a large com-
puter installation represents hundreds of man-years of de-
velopment and is comprised of many interacting
subsystems. To deal with such complexify, operators and
system programmers often rely on many rules of thumb
gained through experience. The development of installa-
tion management tools which can be easily tailored and
modified, and which can incorporate such “rules of thumb”
are highly desirable. An expert systems approach was a
natural choice because of its flexibility and maintainability.

C. Special Challenges

There are many new requirements in building a real time
expert system to assist a computer operator. The environ-
ment is too complex and dynamic to allow for obtaining
information by querying the human operator. Unlike many
of the consultation style expert systems (e.g., MYCIN [5],
CASNET [6]), this means that conclusions are based on
primitive facts obtained directly from the system being
monitored and not from human interpreted inputs. In ad-
dition, the dynamic nature of the subject system introduces
potential inconsistencies in the expert system’s model of the
subject MVS system. By the time conclusions are to be put
into effect (recommendations made, actions taken), many
of the facts from which those conclusions were derived may

have changed. This complexity and dynamic character
make it very difficult to simulate or model the subject sys-
tem. Developing and debugging such an expert system
presents yet another interesting challenge.

D. The OPS5 Base

To be able to handle real time on-line data, the inference
engine needs to be mainly data driven (also recognized by
REACTOR [l] and VM [2]). The OPS5 production system
developed by C. L. Forgy [7] was chosen as our tool pri-
marily for this reason. Also, significant applications based zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

130

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

on the OPS family of production systems have been re-
ported (Rl/XSEL/PTRANS [8-lo] and ACE [111). Of
importance was our ability to convert OPS5 to run in our
computing environment. While OPS5 was not directly us-
able for our application, it possessed the important proper-
ties of flexibility (stemming from being a low level
language) and easy modifiability. We have made a number
of important extensions to OPS5 so that our continuous
real time requirements could be met.

II THE DOMAIN

The MVS operating system running with a Job Entry
System (JES), puts out various system messages to the op-
erator. While there are literally hundreds of different types
of messages, the number that are relevant to an operator is
much smaller. The majority of purely informational mes-
sages may usually be statically filtered and diverted to a log.
Even then, the peak message rate from MVS to the opera-
tor sometimes exceeds 100 a minute (e.g., a response to an
operator request for a list of jobs in a particular category).

When a (potential) problem is detected, the operator
may query MVS for additional information and send one
or more corrective commands. The operator must often
anticipate informational needs and dynamically keep track
of a number of relevant status variables (out of thousands).

There are many different subdomains in the domain of
operator activities. The six subdomains described below
were selected for early implementation, since they touch a
majority of those operator activities which involve no
physical intervention.

A. JES Oueue Snace Management

All batch jobs processed under MVS are staged from a
central spool file, called the Job Entry System (JES) queue
space, before, during, and after execution. The operator is
concerned with the remaining available queue space, be-
cause the job staging subsystem, JES, cannot recover if
queue space is exhausted. When the level of remaining
queue space becomes critically low, many actions are initi-
ated to free additional space, such as forcing the printing
of jobs which have finished execution and dumping large
print jobs to tape. In extreme cases, the system can be
made to refuse new jobs, and stop data being transmitted
from other systems. To initiate such actions the operator
makes use of the available facilities connected to the sub-
ject MVS system. This means the operator has to perform
some anticipatory actions (e.g., mounting a tape to dump
jobs) as queue space decreases, and before it becomes crit-
ical.

B. Problems in Channel-to-Channel Links

The networking of computers at the same site is often
implemented by means of I/O channel-to-channel trans-
mission links. Failure to maintain these links in an active
status not only delays data traffic but also contributes to the
exhaustion of JES queue space. Monitoring and corrective
actions include: periodic querying of the states of these
links, using heuristics to infer line degradation, attempting
to restart the links, freeing links from troublesome jobs, and
rerouting the data through other computers.

C. Scheduling Large Batch Jobs Off Prime Shift

Large batch jobs must be scheduled to balance consid-
erations of system throughput and user satisfaction. These
considerations may vary in detail from one installation to
another. These include: ensuring that no jobs are indefi-
nitely delayed, employing round-robin scheduling among
users submitting multiple jobs, giving priority to users who
are waiting on site, or require some other special consider-
ation, running longer jobs early in the shift and running
only those jobs that can finish before a scheduled shut-
down. Since new jobs may arrive or be withdrawn during
the shift, initial scheduling may have to be changed among
the jobs that are still in the queue. A separate paper [121
describes a truth maintenance approach using OPS5 for
keeping a dynamically correct priority assignment of the
jobs.

D. MVS Detected Hardware Errors

When MVS fails to recover from a detected hardware
error, the system notifies the operator so that he or she may
attempt to solve the problem. Due to the time criticality of
possible remedies (such as speedy reconfiguration), recov-
erable situations may result in a system crash since a human
operator cannot respond in time. Responses to the most
frequent hardware problems have been implemented in
rules. These rules are not tied to a particular hardware
configuration but rather make use of hardware configura-
tion data placed in the OPS5 working memory. The hard-

ware configuration data is initially loaded
used in the MVS system generation process.

E. Monitoring Software Subsystems

from the files

The main activity in this area is to generate informative
incident reports for the systems programmers who are re-
sponsible for specific software subsystems. When an inci-
dent occurs, such as an abnormal end of execution, relevant
information is captured and an appropriate incident report
is prepared. In limited cases, reallocation of resources may
allow recovery from software failures.

F. Performance Monitoring

This task goes beyond the usual scope of an operator’s
activities. A short term goal is to interpret the data from
existing performance monitoring software, and automat-
ically detect and classify performance problems in real time,
generating summary reports in hard copy as well as in
computer graphics. An eventual goal is to diagnose the
cause of performance problems and to take corrective
actions.

III THE YES/MVS SYSTEM

A. System Organization

YES/MVS runs under the VM/370 operating system
on an IBM 3081 computer. Because YES/MVS and the
subject MVS system are resident in different computers,
problems in MVS do not interfere with the operation of
YES/MVS, and MVS can continue to operate under man-
ual control should the YES/MVS host experience difficul-
ties.

131

SUBJECT

MVS

MACHINE

i

CCOP
VIRTUAL

~~ACHINE

EXPERT

VIRTUAL

MACHINE

HOST VW370 MACHINE

Figure 1. YES/MVS System

YES/MVS is presently partitioned into three virtual
machines for speed as well as functional separation. One
of these contains the MVS operator expert, the second one
contains the MVS Communications Control Facility
(MCCF), and the third one is used to control the
YES/MVS operator’s display console. MCCF communi-
cates with the MVS system through a separately developed
facility, called CCOP [13]. CCOP provides centralized
control and filtering of messages between the various com-
puters in an installation and their operators.

Intelligence in the form of OPS5 rules is distributed be-
tween the expert virtual machine and the display controller.
These machines communicate with each other via the
REMOTE-MAKE mechanism, which is described in the
next section. MCCF is implemented in several thousand
lines of the system exec language, REXX [141.

MCCF acts as a message filter and also translates the
messages between the expert system and MVS. For exam-
ple, a JES command generated by the MVS operator ex-

w-6

(reroute-print-job-from-3211-to-3800-printer)

together with three parameters: job name, 3211 address,
and 3800 address, is translated and sent to JES as

8f u j=SAMPLE, d=6CO, nd=OOE

B. Operator’s Console

~NTE~ACE

VIRTUAL

MACHINE
t

The YES/MVS operator console displays one-line mes-
sages on the top level input screen describing events relat-
ing to the various tasks YES/MVS is concerned with. The
operator may select one of the displayed messages and re-
quest further detail. The detail level screen contains the
recommended action or information along with an expla-
nation. If an action is called for, the operator is given the
choice of automatically issuing the command (U-DO),
showing that he or she will manually type the recommended
command at another terminal (I-DID), or rejecting the
command being proposed (NO-DO). If the command is

rejected (NO-DO), the operator is prompted to enter the
reasons for the rejection which is fed back to the
YES/MVS knowledge engineers. The action screen is in-
tended only for use during a pre-certification phase. Once
a particular command is certified, the operator display ma-
chine will send the commands to MCCF without asking the
operator. For certified commands, the detail screen only
displays information on the action taken along with a justi-
fication. Another second level screen allows operators to
enter unsolicited information or requests.

YES/MVS TOP LEVEL 16:14 Pending: 0
===>

15:57 BATCH SCHEDULER STATUS UPDATED: 16:09

15:57 SMF: CHECK STATUS OF SMF DATASETS
16:09 BATCH SCHED: MODIFY JOB-ID 5003 TO PRIORITY 14
16:lO SMF: ENTER DUMP FOR SYSl.MANA
16:ll CTCFIX: RESTART COMMUNICATION TO YKTVMZ

PFOl PFOZ PF03 PF04 PF05 PF06 PF07 PF08 PFO9 PFlO PFll PF12

U.I. EXIT WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

Figure 2. YES/MVS Operator Console Top Level Screen

IV CONTINUOUS, REAL TIME, INTERACTIVE
CONTROL ISSUES

The MVS system being monitored and controlled by
YES/MVS is a dynamic world. Problem states may be en-
tered spontaneously. Also, a problem may disappear in the
middle of the solution process. In this sense, the MVS
world is highly non-monotonic. It is impossible to maintain
an accurate model of MVS that is complete in all detail.
Instead we maintain a model that provides a reasonably
good description of the status of MVS, from the viewpoint

132

of operations. The model is updated whenever MVS vol-
unteers pertinent status information, based upon responses
to queries and upon acknowledgement messages to control
commands. Queries of status information are submitted at
regular intervals or may be triggered by events and the need
for information in the resulting analysis. The frequency of
different queries varies enormously based on the volatility
of the status data involved and on the requirement for cur-
rent information. Extensive use of timestamps and validity
flags provides additional information on the “currentness ’
of MVS status.

The status model of MVS is updated only on the receipt
of information from MVS. Attempts to compute status
from history and the anticipated response to stimuli are
avoided. This is because of the many pitfalls that exist for
a stimulus not to have the anticipated effect. These include
delays in command submission or processing, conflicting
commands from operators, and non-response or errors in
response by operators to advice. It is especially the case
that, when YES/MVS is providing advice as opposed to
submitting control commands directly, there is a potential
race condition between the existence of a problem state and
the submission of a corrective command. It should be
noted that this is an inherent problem and the use of an
automatic control system such as YES/MVS improves
rather than exacerbates such situations.

We now identify specific requirements of an inference
system which is to perform continuous, real time, interac-
tive control, and describe solutions in terms of various ex-
tensions to OPS5. Some of these extensions take the form
of new primitives; others are LISP functions and macros
added to the OPS5 environment.

A. Speed Considerations

The ability of an inference engine to process in real time
is a basic concern. We have improved the speed of exe-
cution of OPS5 by compiling the right hand side (RHS) or
consequent part of a rule. (Such a compilation process has
been independently introduced in YAPS [151, and in
OPS83 [161.) The matching process has been tuned with
several LISP macros. The modified version of OPS5 runs
significantly faster than other LISP implementations of
OPS5. Also, we distribute the rules among multiple OPS5
systems using concurrent processes in the form of separate
virtual machines supported by a host computer.

B. Timed Productions

Being able to initiate an action at a given time is one of
the fundamental requirements of a real time control prob-
lem. With a data-driven inference engine, this includes the
production of working memory elements (WMEs) at some
future time. We accomplish this by defining a new RHS
action primitive for delayed production, TIMED-MAKE,
which takes the normal OPS5 MAKE arguments followed
by a time specification. (The OPS5 MAKE action creates
new elements and adds them to working memory.) For
example, execution of an RHS action,

(TIMED-MAKE AAAI tdue-date past

(AT TIME: 1700 DATE: 84 4 2))

would cause the production of a WME, named AAAI, at 5
p.m. on April 2nd, 1984, with the value “past” assigned to
the attribute “due-date” .

A timer function and timer queue were added as neces-
sary support functions for the TIMED-MAKE action. To
support debugging, functions were provided to manipulate
the timer clock and pop the timer queue as needed.

C. Communications

Another requirement of real time processing is the abil-
ity to have distributed processes interact in a timely fashion.
Fast communication is achieved by introducing a new
communication phase in the normal OPS5 inference cycle
(recognize, conflict resolution, act). During the communi-
cation phase, external messages are picked up and out-
bound messages are sent. Conflict resolution then takes
place based on changes to working memory as the result of
both RHS actions and incoming messages.

All messages are sent out by a communication primitive,
REMOTE-MAKE, which takes the same arguments as the
regular OPS5 MAKE action, with an additional attribute
4Rm-to: whose value is the user-id of the intended receiver
virtual machine. The message is actually sent by the host
system’s program level message sending mechanism. The
f Rm-to: attribute-value pair is changed, en route, to an-
other attribute tRm-from: with the sender’s machine
user-id as its value.

The REMOTE-MAKE action can use any of the OPS5
functions to create result elements, Thus, one can write a
meta level REMOTE-MAKE rule, if desired, to dynam-
ically create messages from templates, defaults, and substi-
tuted values of bound variables.

For debugging purposes, a global variable can be set to
block the actual transmission of result elements. Then the
messages are displayed along with requests for replies.
When a reply is entered or selected from a pre-existing file
using a multi-window interactive editor, it is employed just
as if it came from another virtual machine.

D. Need for Explicit Control

There are critical problems that require a command se-
quence to be issued to MVS without other queries or com-
mands being interspersed, which can happen when
different kinds of problem episodes overlap in real time.
Hardware error message handling is one such case. Such a
real time requirement necessitates explicit control over the
rule firing in the inference engine. For this purpose, the two
modes of OPS5 conflict resolution, LEX (lexical) and MEA
(means-ends-analysis) [7], have been extended by a Prior-
ity Mode which is orthogonal to these.

To implement the priority mechanism, each rule has an
additional left-hand-side (LHS) condition element, (TASK
ttask-id XXX), where XXX is a unique task name or a list
(expressed as an OPS5 disjunction) of task names to which
the rule is relevant. Each such task-id XXX has an associ-
ated priority. The conflict resolution phase of OPS5 is
modified so that the active conflict set is temporarily re-
duced by excluding all active rules that do not have the
highest priority task among the set. Then, the normal OPS5
conflict resolution process acts on this reduced set. The
task working memory elements as well as associated priori-
ties are defined either by a top level MAKE or by an RHS
action. Tasks can thus be dynamically created or de-
stroyed. The priority can also be dynamically computed as
an RHS action of a rule.

133

(p Start-Clean-Up

(Task ttask-id CLEAN-UP)

; Low priority rule

; that fires when no

-. (Make Task ttask-id I N-CLEAN-UP))

; other normal action

; rules fire.

(p Doing-Clean-Up

(Task ttask- id IN-CLEAN-UP)

; This rule repeatedly

(<garbage>

; fires and removes all

[List of WME names to be removed])

; garbage as an atomic

; procedure, at high

* (R emove <garbage>))

; priority.

(p Clean-up-done

{<done-task>

(Task ttask-id IN-CLEAN-UP))

* (R emove <done-task>))

; This rule removes the

; IN-CLEAN-UP task which

; is now garbage and the

; system reverts back to a

; low priority CLEAN-UP mode.

Figure 3. Three Rules Ill ustrat ing the Collection of Unneeded WME’s

a s an Atomi c AC tion

The priority control mechanism effectively satisfies our
real time control needs. It also allows a powerful control
over rule interaction between different subdomain areas,
The priority mechanism emulates the control aspects of
meta rules and eliminates the need for an additional level
of indirection caused by their use. (Benjamin and Harrison
[171 use meta rules for a different purpose: reasoning about
the contents of the conflict set.) Furthermore, it allows rule
grouping similar to the use of contexts in EMYCIN [5] and
rule-groups in EXPERT [181.

E. Requirements for Continuous Operation

There are at least three basic requirements to operate in
a continuous mode. They are:

a) The inference engine should not terminate when no
rule is eligible to fire. We implemented a LISP function
C)Z)i;WAIT which puts the system into a suspended waiting

. Any external message (including a timer event)
causes the system to resume, with the new data added to
working memory.

b) The system should ideally run on a special purpose
high availability computer, different from the subject ma-
chine. If the host computer itself or the virtual machines
comprising the system go down, the system must be re-
started. We issue an automatic restart instruction during
the host computer initial-program-load and also when a

down machine is detected during a periodic mutual polling
among virtual machines of the system.

c) Working memory elements that have served their
purposes must be removed. The accumulation of old use-
less data in the working memory not only creates a memory
space problem in continuous operation, but of more im-
portance, instantiates the wrong productions in a data
driven inference engine, such as OPS5. We have made use
of many different ‘garbage collection’ techniques (RHS
actions) to remove old data, including the one illustrated
next.

Removal of multiple working memory elements must be
done carefully so as not to unintentionally trigger rules
which might be satisfied when only a partial set of working

memory elements has been removed. For example, the
ability of a rule to fire may depend not only on the presence
of some elements, but also on the absence of others. The
priority mechanism can be used to cause an atomic proce-
dure as shown in the following three rule example. (This
also illustrates the dynamic creation of tasks.) Suppose the
normal operating priority is 100. The priority for the
CLEAN-UP task would be set low, say, at 50. Define an-
other task name, IN-CLEAN-UP, with a priority, say, 150
which is higher than the priority of other tasks. The
CLEAN-UP task is created in the system as a permanent
WME during initialization.

The final rule in Figure 3 is less specific than the rule
above it and so does not fire until all garbage has been re-
moved, due to the conflict resolution mechanism of OPS5.

V BUILDING THE KNOWLEDGE BASE

Most of the expertise is encoded in over 500 OPS5 rules
distributed between the expert virtual machine and the dis-
play control virtual machine. (The rule coding process was
facilitated by a programming environment in which a locally
developed LISP system [193, on which OPS5 was built, and
the system editor XEDIT [20] exist as co-routines.) The
expertise was gathered mostly from the operations staff at
Yorktown. In addition, systems programmers, manuals and
even the designers of the MVS operating system were con-
sulted.

Some of the expertise was encoded in relational tables.
(An OPS5 WME is equivalent to a row of a relational data
base table. Disjoint cases can be represented as table en-
tries used by driver rules rather than listing separate rules
for each case. Use of WMEs as part of the permanent
knowledge base has been found to provide a cleaner and
more understandable representation in certain cases [21].)

Some expertise was implemented in the MCCF translation
tables for more direct execution. Also, there are a few pa-
rameters hidden from the inference process, that have to
do with the MVS interface. Therefore, the knowledge base
is not restricted to the rule base alone.

(p stop-reception

(Task ttask-id jes-q-space)

(JES-Q tmode panic)

; If the task of

(<the-Link>(Link tid <L-id>

; maintaining JES-q-space
.
, is active, the space

tstatus <<active i/o-active>>

treceive yes))

; is critically low, and

; there is an active

+ (Call remote-make ; receiving Link,

Link-command tid <L-id> ; then cut the Link

treceive no ; and mark the Link

trm-to: MCCF) ; reception status as

(Modify <the-Link> treceive to-be-no)) ; about to be no.

(p start-reception

(Task ttask-id jes-q-space)

; If the task of maintaining

(JES-Q tmode <> lpanic)

; JES-q-space is active,

(<the-Link>(Link tid <L-id>

; the space is not

tstatus <<active i/o-active>>

; critically low, and

treceive no))

; there is an active Link

; not receiving,

* (Call remote-make ; then

Link-command tid <L-id> ; reopen the Link

trece i ve yes

trm-to: MCCF)

; and mark the Link status

(Modify <the-Link>

; as about to be yes

treceive to-be-yes))

Figure 4. Two Rules from the JES Queue Space Subdomain

The number of rules generally increased along with the
coverage. However, increased understanding of the domain
sometimes permitted significant reductions by the use of
tables and improved knowledge representation in general.

Figure 4 is an example of a pair of rules that stop re-
ception on an incoming link when JES queue space is crit-
ically low and restart the reception when it improves.
Notice that the Link status value is modified to an antic-
ipated value, awaiting further confirmation from MVS that
action has been taken.

A real system must be verified by actual on-line testing.
We have found many important pieces of knowledge during
on-line testing that the experts did not mention to us. There
are other problems as well. Some of the error handling rules
can only be exercised during on-line testing if someone
sabotages MVS to cause the error. This was done to some
extent off prime shift hours. The situation stemming from
this real system is that one cannot use a record of test cases
(due to dynamic interaction), or use a simulator of MVS
(too complex and too large). In contrast, REACTOR [l]
was exercised against a simulator and VM [2] used a mag-
netic tape recording of real time data for a relatively small
fixed set of variables. We have used rule walk-throughs,
rules to partially simulate some aspects of MVS, and hand
interaction in lieu of MVS to aid testing. Thus the vali-
dation and certification process is not formal, and needs
long experience and a certain amount of confidence derived
from seeing the general integrity of system actions.

VI PROJECT STATUS AND FUTURE PLANS

The YES/MVS prototype development took little over
one year from inception to on-line testing. We expect the
system will be in continuous use at the Yorktown Comput-
ing Center by May 1984.

YES/MVS now routinely schedules the queue of large
batch jobs. It has alerted MVS operators to network link

problems. When jobs which nearly exhaust JES queue
space are submitted to MVS, YES/MVS responds with
appropriate corrective recommendations to the operator.
Other task areas are in the final stages of testing.

Our future plans include broadening the coverage of
YES/MVS by the addition of other subdomains, such as
facilities to assist the operator during initial-program-
loading of MVS, and both planned and emergency shut-
down. A learning component is planned for the scheduling
of large batch jobs so as to take account of the behavior of
previous jobs submitted by a user in scheduling his or her
next job. Our success with the computer operations domain
causes us to look for the application of expert systems to
other areas of computer installation management: capacity
planning, configuration and installation.

VII CONCLUSIONS

YES/MVS extends the use of expert systems techniques
to continuous, real time, interactive control applications.
The extensions we made to OPS5 include facilities essential
to such applications and generally applicable to other real
time interactive problems such as process control.

We found building the system for actual use to be a
challenge involving much more than the usual expert system
issues. Integration of the core expert system with a com-
plex real time environment required not only extensions to
the OPS5 language, but also some new concerns including
how to distribute processing between the expert system and
the conventional programming environment. The total
system not only interacts intimately with the subject ma-
chine, it also interacts with the host system during process-
ing. The difficulty and importance of integration have been
observed and emphasized by others [22, 231 but there are
still no easy solutions.

While we did learn that OPS5 was an excellent base
language, we found that its trigger happy rule firing was

135

awkward to live with. But it was only through an actual
application experience that we uncovered suitable ways to
improve this forward-chaining production system language.
The techniques we developed are both relevant and effec-
tive for real time processing issues. We have also gained
many valuable ideas for future improvements in inference
engines intended for real time applications.

VII ACKNOWLEDGMENTS

We wish to acknowledge the substantial contribution of
Barry Trager, in making the conversion of OPS5 to run
under the YKTLISP system on VM/370. We thank the
Yorktown Computing Systems management for encour-
agement during the course of this work and express our
deep appreciation to the computer operators who exhibited
considerable patience and good cheer during the knowledge
acquisition and testing phases of our project.

111

121

[31

[41

[51

El

171

Bl

REFERENCES

William R. Nelson, “REACTOR: An Expert System
for Diagnosis and Treatment of Nuclear Reactor Ac-
cidents , Proceedings ofAAAI-82, pp. 296-301.
Lawrence M. Fagan, “VM: Representing Time-
Dependent Relations in A Medical Setting” , PhD
Thesis, Stanford University, June 1980.
D. J. Lu, “Watch-Dog Processors and Structural In-
tegrity Checking” , IEEE Trans. on Comput., July
1982.
R. Reilly, A. Sutton, R. Nassar R. Griscom,
“Processor Controller for IBM 3081”, IBM Journal
of Research and Development, Vol. 26, No. 1, January
1982, pp. 22-29.
E. H. Shortliffe, Computer-Based Medical Consulta-
tions: MYCIN, (Elsevier, N.Y.), 1976.
S. M. Weiss, C. A. Kulikowski, S. Amarel, A. Safir,
“A Model-Based Method for Computer-Aided Med-
ical Decision-Making” , Artificial Intelligence, 11: 1,2,
1978, pp. 145-172.
c. L. Forgy, “OPS5 User’s Manual” ,
CMU-CS-81-135, Dept. of Computer Science,
Carnegie-Mellon University, July 198 1.
John McDermott, “Rl: A Rule Based Configurer of
Computer Systems” , Artificial Intelligence, 1982, Vol.
19, pp. 39-88.

[9] John McDermott, “XSEL: A Computer Sales Per-
son’s Assistant” , Machine Intelligence IO, J. E. Hayes,
D. Michie, and Y-H Pao, eds., J. Wiley and Sons, New
York, 1982, pp. 325-337.

[lo] John McDermott, “Building Expert Systems”r Pre-
sented at the 1983 NYU Symposium on Artificial In-
telligence Applications for Business, May 1983.

[l l] G. T. Versonder, S. J. Stolfo, J. E. Zielinski, F. D.
Miller, and D. H. Copp, “ACE: An Expert System for
Telephone Cable Maintenance” , Proceedings of
IJCAI-83, lp. 116-121.

[12] M. Schor, Using Declarative Knowledge Represen-
tation Techniques: Implementing Truth Maintenance
in OPS5”, IBM Research Report RC 10455,
Yorktown Heights, NY, April 4, 1984.

[131 A. A. Guido, “Unattended Automated DP Center
Operation Is It Achievable?“, European GUIDE Pro-
ceedings, June 7-10, 1983, Lyon, France, pp.
440-446.

[14] The VM/SP System Product Interpreter Reference
(Release 3), SC24-5239, IBM Corporation, Septem-
ber 1983.

[151 Elizabeth Allen, University of Maryland, “YAPS: A
Production Rule System Meets Objects” , Proceedings
of AAAI-83,

[16] C. L. Forgy,
pi. 5-7.

OPS-83 User’s Manual” , in prepara-
tion, as a Dept. of Comp. Sci. Report, Carnegie-
Mellon University

[17] D. P. Benjamin and Malcolm C. Harrison, “A Pr$-
duction System for Learning Plans From Expert ,
Proceedings of AAAI-83, pp. 22-26.

[18] S. M. Weiss and C. A. Kulikowski, “EXPERT: A
System for Developing Consultation Models , Pro-
ceedings of IJCAI- 79, pp. 942-947.

[19] C. N. Alberga et al., “A Program Development Envi-

ronment “, IBM Journal of Research and

Development, Vol. 28, No. 1, January 1984, pp. 60-73.
[20] The VM/SP System Product Editor Command and

Macro Reference (Release 3), SC24-5221-2, IBM
Corporation, September 1983.

[21] A. Pasik and M. Schor, “Table Driven Rules in Expert
Systems” , SIGART Newsletter, No. 87, January 1984.

[22] R. Davis, H. Austin, I. Carlbom, B. Frawley, P.
Pruchnik, R. Sneiderman, J. A. Gilreath, ‘The
DIPMETER ADVISOR: Interpretation of Geological
Signals” , Proceedings of IJCAI-81, pp. 846-849.

[23] S. J. Hong, “Knowledge Engineering in Industry” ,
IBM Research Report RC 10330, Yorktown Heights,
NY, January 12, 1984; also in Proceedings of Japan
Systems Science Symposium, January 1984.

