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ABSTRACT: 

YES/MVS (Yorktown Expert System for MVS opera- 
tors) is a continuous, real time expert system that exerts 
interactive control over an operating system as an aid to 
computer operators. This paper discusses the YES/MVS 
system, its domain of application, and issues that arise in 
the design and development of an expert system that runs 
continuously in real time. 

I INTRODUCTION 

Expert systems techniques are beginning to be success- 
fully applied to real problems in industry, although only a 
handful are reportedly in use so far. Most of the applica- 
tions are consultation oriented, run in a session or in a batch 
mode, and deal with a static world. The nuclear reactor 
monitoring expert system, REACTOR [ 11, and the patient 
monitoring expert system for intensive care units, VM [2], 
are among the few attempts at continuous on-line operation 
and real time processing. However, neither of these sys- 
tems exercise any real time interactive control over the 
subject being monitored. The Yorktown Expert System for 
MVS operators (YES/MVS) is a real time interactive con- 
trol system that operates continuously. 

The idea of on-line monitoring or controlling of one 
computer by another is not new. Watch-dog processors 
[3] and maintenance processors [4] have been designed to 
assist in the recovery from software errors and hardware 
errors while the subject computer is in operation. What is 
new is the application of an expert system approach to the 
control of computer operations. 

A. Importance of the Domain 

Computer operations is a monitoring and problem solv- 
ing activity that must be conducted in real time. It is be- 
coming increasingly complex as data processing 
installations grow. Large data processing installations often 
involve multiple CPU’s and a large number of peripherals 
networked together, representing a multi-million dollar in- 
vestment. Many of the installations run real time applica- 
tions (e.g., banking, reservations systems). The control of 
a typical large system rests largely in the hands of just a few 
operators. Besides carrying on such routine activities as 
mounting tapes, loading and changing forms in printers, and 
answering phones, an operator continuously monitors the 
condition of the subject operating system and initiates 
queries and/or commands to diagnose and solve problems 

as they arise. A long training period is required to produce 
a skilled operator; trained operators, in turn, are often pro- 
moted to systems programmers. The resulting shortage of 
skilled operators and the increasing complexity of the op- 
erator’s job calls for more powerful installation manage- 
ment tools. We have chosen the management of a Multiple 
Virtual Storage (MVS) operating system, the most widely 
used operating system on large IBM mainframe computers, 
as an example of the application of expert systems to 
problems in computer installation management. 

B. Use of Expert System Techniques 

Each installation has a different configuration and dif- 
ferent local policies for computer operations, both of which 
change over time. The software running in a large com- 
puter installation represents hundreds of man-years of de- 
velopment and is comprised of many interacting 
subsystems. To deal with such complexify, operators and 
system programmers often rely on many rules of thumb 
gained through experience. The development of installa- 
tion management tools which can be easily tailored and 
modified, and which can incorporate such “rules of thumb” 
are highly desirable. An expert systems approach was a 
natural choice because of its flexibility and maintainability. 

C. Special Challenges 

There are many new requirements in building a real time 
expert system to assist a computer operator. The environ- 
ment is too complex and dynamic to allow for obtaining 
information by querying the human operator. Unlike many 
of the consultation style expert systems (e.g., MYCIN [5], 
CASNET [6]), this means that conclusions are based on 
primitive facts obtained directly from the system being 
monitored and not from human interpreted inputs. In ad- 
dition, the dynamic nature of the subject system introduces 
potential inconsistencies in the expert system’s model of the 
subject MVS system. By the time conclusions are to be put 
into effect (recommendations made, actions taken), many 
of the facts from which those conclusions were derived may 

have changed. This complexity and dynamic character 
make it very difficult to simulate or model the subject sys- 
tem. Developing and debugging such an expert system 
presents yet another interesting challenge. 

D. The OPS5 Base 

To be able to handle real time on-line data, the inference 
engine needs to be mainly data driven (also recognized by 
REACTOR [l] and VM [2]). The OPS5 production system 
developed by C. L. Forgy [7] was chosen as our tool pri- 
marily for this reason. Also, significant applications based zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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on the OPS family of production systems have been re- 
ported (Rl/XSEL/PTRANS [8-lo] and ACE [ 111). Of 
importance was our ability to convert OPS5 to run in our 
computing environment. While OPS5 was not directly us- 
able for our application, it possessed the important proper- 
ties of flexibility (stemming from being a low level 
language) and easy modifiability. We have made a number 
of important extensions to OPS5 so that our continuous 
real time requirements could be met. 

II THE DOMAIN 

The MVS operating system running with a Job Entry 
System (JES), puts out various system messages to the op- 
erator. While there are literally hundreds of different types 
of messages, the number that are relevant to an operator is 
much smaller. The majority of purely informational mes- 
sages may usually be statically filtered and diverted to a log. 
Even then, the peak message rate from MVS to the opera- 
tor sometimes exceeds 100 a minute (e.g., a response to an 
operator request for a list of jobs in a particular category). 

When a (potential) problem is detected, the operator 
may query MVS for additional information and send one 
or more corrective commands. The operator must often 
anticipate informational needs and dynamically keep track 
of a number of relevant status variables (out of thousands). 

There are many different subdomains in the domain of 
operator activities. The six subdomains described below 
were selected for early implementation, since they touch a 
majority of those operator activities which involve no 
physical intervention. 

A. JES Oueue Snace Management 

All batch jobs processed under MVS are staged from a 
central spool file, called the Job Entry System (JES) queue 
space, before, during, and after execution. The operator is 
concerned with the remaining available queue space, be- 
cause the job staging subsystem, JES, cannot recover if 
queue space is exhausted. When the level of remaining 
queue space becomes critically low, many actions are initi- 
ated to free additional space, such as forcing the printing 
of jobs which have finished execution and dumping large 
print jobs to tape. In extreme cases, the system can be 
made to refuse new jobs, and stop data being transmitted 
from other systems. To initiate such actions the operator 
makes use of the available facilities connected to the sub- 
ject MVS system. This means the operator has to perform 
some anticipatory actions (e.g., mounting a tape to dump 
jobs) as queue space decreases, and before it becomes crit- 
ical. 

B. Problems in Channel-to-Channel Links 

The networking of computers at the same site is often 
implemented by means of I/O channel-to-channel trans- 
mission links. Failure to maintain these links in an active 
status not only delays data traffic but also contributes to the 
exhaustion of JES queue space. Monitoring and corrective 
actions include: periodic querying of the states of these 
links, using heuristics to infer line degradation, attempting 
to restart the links, freeing links from troublesome jobs, and 
rerouting the data through other computers. 

C. Scheduling Large Batch Jobs Off Prime Shift 

Large batch jobs must be scheduled to balance consid- 
erations of system throughput and user satisfaction. These 
considerations may vary in detail from one installation to 
another. These include: ensuring that no jobs are indefi- 
nitely delayed, employing round-robin scheduling among 
users submitting multiple jobs, giving priority to users who 
are waiting on site, or require some other special consider- 
ation, running longer jobs early in the shift and running 
only those jobs that can finish before a scheduled shut- 
down. Since new jobs may arrive or be withdrawn during 
the shift, initial scheduling may have to be changed among 
the jobs that are still in the queue. A separate paper [ 121 
describes a truth maintenance approach using OPS5 for 
keeping a dynamically correct priority assignment of the 
jobs. 

D. MVS Detected Hardware Errors 

When MVS fails to recover from a detected hardware 
error, the system notifies the operator so that he or she may 
attempt to solve the problem. Due to the time criticality of 
possible remedies (such as speedy reconfiguration), recov- 
erable situations may result in a system crash since a human 
operator cannot respond in time. Responses to the most 
frequent hardware problems have been implemented in 
rules. These rules are not tied to a particular hardware 
configuration but rather make use of hardware configura- 
tion data placed in the OPS5 working memory. The hard- 

ware configuration data is initially loaded 
used in the MVS system generation process. 

E. Monitoring Software Subsystems 

from the files 

The main activity in this area is to generate informative 
incident reports for the systems programmers who are re- 
sponsible for specific software subsystems. When an inci- 
dent occurs, such as an abnormal end of execution, relevant 
information is captured and an appropriate incident report 
is prepared. In limited cases, reallocation of resources may 
allow recovery from software failures. 

F. Performance Monitoring 

This task goes beyond the usual scope of an operator’s 
activities. A short term goal is to interpret the data from 
existing performance monitoring software, and automat- 
ically detect and classify performance problems in real time, 
generating summary reports in hard copy as well as in 
computer graphics. An eventual goal is to diagnose the 
cause of performance problems and to take corrective 
actions. 

III THE YES/MVS SYSTEM 

A. System Organization 

YES/MVS runs under the VM/370 operating system 
on an IBM 3081 computer. Because YES/MVS and the 
subject MVS system are resident in different computers, 
problems in MVS do not interfere with the operation of 
YES/MVS, and MVS can continue to operate under man- 
ual control should the YES/MVS host experience difficul- 
ties. 
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Figure 1. YES/MVS System 

YES/MVS is presently partitioned into three virtual 
machines for speed as well as functional separation. One 
of these contains the MVS operator expert, the second one 
contains the MVS Communications Control Facility 
(MCCF), and the third one is used to control the 
YES/MVS operator’s display console. MCCF communi- 
cates with the MVS system through a separately developed 
facility, called CCOP [13]. CCOP provides centralized 
control and filtering of messages between the various com- 
puters in an installation and their operators. 

Intelligence in the form of OPS5 rules is distributed be- 
tween the expert virtual machine and the display controller. 
These machines communicate with each other via the 
REMOTE-MAKE mechanism, which is described in the 
next section. MCCF is implemented in several thousand 
lines of the system exec language, REXX [ 141. 

MCCF acts as a message filter and also translates the 
messages between the expert system and MVS. For exam- 
ple, a JES command generated by the MVS operator ex- 

w-6 

(reroute-print-job-from-3211-to-3800-printer) 

together with three parameters: job name, 3211 address, 
and 3800 address, is translated and sent to JES as 

8f u j=SAMPLE, d=6CO, nd=OOE 

B. Operator’s Console 

~NTE~ACE 

VIRTUAL 

MACHINE 
t 

The YES/MVS operator console displays one-line mes- 
sages on the top level input screen describing events relat- 
ing to the various tasks YES/MVS is concerned with. The 
operator may select one of the displayed messages and re- 
quest further detail. The detail level screen contains the 
recommended action or information along with an expla- 
nation. If an action is called for, the operator is given the 
choice of automatically issuing the command (U-DO), 
showing that he or she will manually type the recommended 
command at another terminal (I-DID), or rejecting the 
command being proposed (NO-DO). If the command is 

rejected (NO-DO), the operator is prompted to enter the 
reasons for the rejection which is fed back to the 
YES/MVS knowledge engineers. The action screen is in- 
tended only for use during a pre-certification phase. Once 
a particular command is certified, the operator display ma- 
chine will send the commands to MCCF without asking the 
operator. For certified commands, the detail screen only 
displays information on the action taken along with a justi- 
fication. Another second level screen allows operators to 
enter unsolicited information or requests. 

YES/MVS TOP LEVEL 16:14 Pending: 0 
===> 

15:57 BATCH SCHEDULER STATUS UPDATED: 16:09 

15:57 SMF: CHECK STATUS OF SMF DATASETS 
16:09 BATCH SCHED: MODIFY JOB-ID 5003 TO PRIORITY 14 
16:lO SMF: ENTER DUMP FOR SYSl.MANA 
16:ll CTCFIX: RESTART COMMUNICATION TO YKTVMZ 

PFOl PFOZ PF03 PF04 PF05 PF06 PF07 PF08 PFO9 PFlO PFll PF12 

U.I. EXIT WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME 

Figure 2. YES/MVS Operator Console Top Level Screen 

IV CONTINUOUS, REAL TIME, INTERACTIVE 
CONTROL ISSUES 

The MVS system being monitored and controlled by 
YES/MVS is a dynamic world. Problem states may be en- 
tered spontaneously. Also, a problem may disappear in the 
middle of the solution process. In this sense, the MVS 
world is highly non-monotonic. It is impossible to maintain 
an accurate model of MVS that is complete in all detail. 
Instead we maintain a model that provides a reasonably 
good description of the status of MVS, from the viewpoint 
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of operations. The model is updated whenever MVS vol- 
unteers pertinent status information, based upon responses 
to queries and upon acknowledgement messages to control 
commands. Queries of status information are submitted at 
regular intervals or may be triggered by events and the need 
for information in the resulting analysis. The frequency of 
different queries varies enormously based on the volatility 
of the status data involved and on the requirement for cur- 
rent information. Extensive use of timestamps and validity 
flags provides additional information on the “currentness ’ 
of MVS status. 

The status model of MVS is updated only on the receipt 
of information from MVS. Attempts to compute status 
from history and the anticipated response to stimuli are 
avoided. This is because of the many pitfalls that exist for 
a stimulus not to have the anticipated effect. These include 
delays in command submission or processing, conflicting 
commands from operators, and non-response or errors in 
response by operators to advice. It is especially the case 
that, when YES/MVS is providing advice as opposed to 
submitting control commands directly, there is a potential 
race condition between the existence of a problem state and 
the submission of a corrective command. It should be 
noted that this is an inherent problem and the use of an 
automatic control system such as YES/MVS improves 
rather than exacerbates such situations. 

We now identify specific requirements of an inference 
system which is to perform continuous, real time, interac- 
tive control, and describe solutions in terms of various ex- 
tensions to OPS5. Some of these extensions take the form 
of new primitives; others are LISP functions and macros 
added to the OPS5 environment. 

A. Speed Considerations 

The ability of an inference engine to process in real time 
is a basic concern. We have improved the speed of exe- 
cution of OPS5 by compiling the right hand side (RHS) or 
consequent part of a rule. (Such a compilation process has 
been independently introduced in YAPS [ 151, and in 
OPS83 [ 161.) The matching process has been tuned with 
several LISP macros. The modified version of OPS5 runs 
significantly faster than other LISP implementations of 
OPS5. Also, we distribute the rules among multiple OPS5 
systems using concurrent processes in the form of separate 
virtual machines supported by a host computer. 

B. Timed Productions 

Being able to initiate an action at a given time is one of 
the fundamental requirements of a real time control prob- 
lem. With a data-driven inference engine, this includes the 
production of working memory elements (WMEs) at some 
future time. We accomplish this by defining a new RHS 
action primitive for delayed production, TIMED-MAKE, 
which takes the normal OPS5 MAKE arguments followed 
by a time specification. (The OPS5 MAKE action creates 
new elements and adds them to working memory.) For 
example, execution of an RHS action, 

(TIMED-MAKE AAAI tdue-date past 

(AT TIME: 1700 DATE: 84 4 2)) 

would cause the production of a WME, named AAAI, at 5 
p.m. on April 2nd, 1984, with the value “past” assigned to 
the attribute “due-date” . 

A timer function and timer queue were added as neces- 
sary support functions for the TIMED-MAKE action. To 
support debugging, functions were provided to manipulate 
the timer clock and pop the timer queue as needed. 

C. Communications 

Another requirement of real time processing is the abil- 
ity to have distributed processes interact in a timely fashion. 
Fast communication is achieved by introducing a new 
communication phase in the normal OPS5 inference cycle 
(recognize, conflict resolution, act). During the communi- 
cation phase, external messages are picked up and out- 
bound messages are sent. Conflict resolution then takes 
place based on changes to working memory as the result of 
both RHS actions and incoming messages. 

All messages are sent out by a communication primitive, 
REMOTE-MAKE, which takes the same arguments as the 
regular OPS5 MAKE action, with an additional attribute 
4Rm-to: whose value is the user-id of the intended receiver 
virtual machine. The message is actually sent by the host 
system’s program level message sending mechanism. The 
f Rm-to: attribute-value pair is changed, en route, to an- 
other attribute tRm-from: with the sender’s machine 
user-id as its value. 

The REMOTE-MAKE action can use any of the OPS5 
functions to create result elements, Thus, one can write a 
meta level REMOTE-MAKE rule, if desired, to dynam- 
ically create messages from templates, defaults, and substi- 
tuted values of bound variables. 

For debugging purposes, a global variable can be set to 
block the actual transmission of result elements. Then the 
messages are displayed along with requests for replies. 
When a reply is entered or selected from a pre-existing file 
using a multi-window interactive editor, it is employed just 
as if it came from another virtual machine. 

D. Need for Explicit Control 

There are critical problems that require a command se- 
quence to be issued to MVS without other queries or com- 
mands being interspersed, which can happen when 
different kinds of problem episodes overlap in real time. 
Hardware error message handling is one such case. Such a 
real time requirement necessitates explicit control over the 
rule firing in the inference engine. For this purpose, the two 
modes of OPS5 conflict resolution, LEX (lexical) and MEA 
(means-ends-analysis) [7], have been extended by a Prior- 
ity Mode which is orthogonal to these. 

To implement the priority mechanism, each rule has an 
additional left-hand-side (LHS) condition element, (TASK 
ttask-id XXX), where XXX is a unique task name or a list 
(expressed as an OPS5 disjunction) of task names to which 
the rule is relevant. Each such task-id XXX has an associ- 
ated priority. The conflict resolution phase of OPS5 is 
modified so that the active conflict set is temporarily re- 
duced by excluding all active rules that do not have the 
highest priority task among the set. Then, the normal OPS5 
conflict resolution process acts on this reduced set. The 
task working memory elements as well as associated priori- 
ties are defined either by a top level MAKE or by an RHS 
action. Tasks can thus be dynamically created or de- 
stroyed. The priority can also be dynamically computed as 
an RHS action of a rule. 
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(p Start-Clean-Up 

(Task ttask-id CLEAN-UP) 

; Low priority rule 

; that fires when no 

-. (Make Task ttask-id I N-CLEAN-UP)) 

; other normal action 

; rules fire. 

(p Doing-Clean-Up 

(Task ttask- id IN-CLEAN-UP) 

; This rule repeatedly 

(<garbage> 

; fires and removes all 

[List of WME names to be removed]) 

; garbage as an atomic 

; procedure, at high 

* (R emove <garbage>)) 

; priority. 

(p Clean-up-done 

{<done-task> 

(Task ttask-id IN-CLEAN-UP)) 

* (R emove <done-task>)) 

; This rule removes the 

; IN-CLEAN-UP task which 

; is now garbage and the 

; system reverts back to a 

; low priority CLEAN-UP mode. 

Figure 3. Three Rules Ill ustrat ing the Collection of Unneeded WME’s 

a s an Atomi c AC tion 

The priority control mechanism effectively satisfies our 
real time control needs. It also allows a powerful control 
over rule interaction between different subdomain areas, 
The priority mechanism emulates the control aspects of 
meta rules and eliminates the need for an additional level 
of indirection caused by their use. (Benjamin and Harrison 
[ 171 use meta rules for a different purpose: reasoning about 
the contents of the conflict set.) Furthermore, it allows rule 
grouping similar to the use of contexts in EMYCIN [5] and 
rule-groups in EXPERT [ 181. 

E. Requirements for Continuous Operation 

There are at least three basic requirements to operate in 
a continuous mode. They are: 

a) The inference engine should not terminate when no 
rule is eligible to fire. We implemented a LISP function 
C)Z)i;WAIT which puts the system into a suspended waiting 

. Any external message (including a timer event) 
causes the system to resume, with the new data added to 
working memory. 

b) The system should ideally run on a special purpose 
high availability computer, different from the subject ma- 
chine. If the host computer itself or the virtual machines 
comprising the system go down, the system must be re- 
started. We issue an automatic restart instruction during 
the host computer initial-program-load and also when a 

down machine is detected during a periodic mutual polling 
among virtual machines of the system. 

c) Working memory elements that have served their 
purposes must be removed. The accumulation of old use- 
less data in the working memory not only creates a memory 
space problem in continuous operation, but of more im- 
portance, instantiates the wrong productions in a data 
driven inference engine, such as OPS5. We have made use 
of many different ‘garbage collection’ techniques (RHS 
actions) to remove old data, including the one illustrated 
next. 

Removal of multiple working memory elements must be 
done carefully so as not to unintentionally trigger rules 
which might be satisfied when only a partial set of working 

memory elements has been removed. For example, the 
ability of a rule to fire may depend not only on the presence 
of some elements, but also on the absence of others. The 
priority mechanism can be used to cause an atomic proce- 
dure as shown in the following three rule example. (This 
also illustrates the dynamic creation of tasks.) Suppose the 
normal operating priority is 100. The priority for the 
CLEAN-UP task would be set low, say, at 50. Define an- 
other task name, IN-CLEAN-UP, with a priority, say, 150 
which is higher than the priority of other tasks. The 
CLEAN-UP task is created in the system as a permanent 
WME during initialization. 

The final rule in Figure 3 is less specific than the rule 
above it and so does not fire until all garbage has been re- 
moved, due to the conflict resolution mechanism of OPS5. 

V BUILDING THE KNOWLEDGE BASE 

Most of the expertise is encoded in over 500 OPS5 rules 
distributed between the expert virtual machine and the dis- 
play control virtual machine. (The rule coding process was 
facilitated by a programming environment in which a locally 
developed LISP system [ 193, on which OPS5 was built, and 
the system editor XEDIT [20] exist as co-routines.) The 
expertise was gathered mostly from the operations staff at 
Yorktown. In addition, systems programmers, manuals and 
even the designers of the MVS operating system were con- 
sulted. 

Some of the expertise was encoded in relational tables. 
(An OPS5 WME is equivalent to a row of a relational data 
base table. Disjoint cases can be represented as table en- 
tries used by driver rules rather than listing separate rules 
for each case. Use of WMEs as part of the permanent 
knowledge base has been found to provide a cleaner and 
more understandable representation in certain cases [21].) 

Some expertise was implemented in the MCCF translation 
tables for more direct execution. Also, there are a few pa- 
rameters hidden from the inference process, that have to 
do with the MVS interface. Therefore, the knowledge base 
is not restricted to the rule base alone. 



(p stop-reception 

(Task ttask-id jes-q-space) 

(JES-Q tmode panic) 

; If the task of 

(<the-Link>(Link tid <L-id> 

; maintaining JES-q-space 
. 
, is active, the space 

tstatus <<active i/o-active>> 

treceive yes)) 

; is critically low, and 

; there is an active 

+ (Call remote-make ; receiving Link, 

Link-command tid <L-id> ; then cut the Link 

treceive no ; and mark the Link 

trm-to: MCCF) ; reception status as 

(Modify <the-Link> treceive to-be-no)) ; about to be no. 

(p start-reception 

(Task ttask-id jes-q-space) 

; If the task of maintaining 

(JES-Q tmode <> lpanic) 

; JES-q-space is active, 

(<the-Link>(Link tid <L-id> 

; the space is not 

tstatus <<active i/o-active>> 

; critically low, and 

treceive no)) 

; there is an active Link 

; not receiving, 

* (Call remote-make ; then 

Link-command tid <L-id> ; reopen the Link 

trece i ve yes 

trm-to: MCCF) 

; and mark the Link status 

(Modify <the-Link> 

; as about to be yes 

treceive to-be-yes)) 

Figure 4. Two Rules from the JES Queue Space Subdomain 

The number of rules generally increased along with the 
coverage. However, increased understanding of the domain 
sometimes permitted significant reductions by the use of 
tables and improved knowledge representation in general. 

Figure 4 is an example of a pair of rules that stop re- 
ception on an incoming link when JES queue space is crit- 
ically low and restart the reception when it improves. 
Notice that the Link status value is modified to an antic- 
ipated value, awaiting further confirmation from MVS that 
action has been taken. 

A real system must be verified by actual on-line testing. 
We have found many important pieces of knowledge during 
on-line testing that the experts did not mention to us. There 
are other problems as well. Some of the error handling rules 
can only be exercised during on-line testing if someone 
sabotages MVS to cause the error. This was done to some 
extent off prime shift hours. The situation stemming from 
this real system is that one cannot use a record of test cases 
(due to dynamic interaction), or use a simulator of MVS 
(too complex and too large). In contrast, REACTOR [l] 
was exercised against a simulator and VM [2] used a mag- 
netic tape recording of real time data for a relatively small 
fixed set of variables. We have used rule walk-throughs, 
rules to partially simulate some aspects of MVS, and hand 
interaction in lieu of MVS to aid testing. Thus the vali- 
dation and certification process is not formal, and needs 
long experience and a certain amount of confidence derived 
from seeing the general integrity of system actions. 

VI PROJECT STATUS AND FUTURE PLANS 

The YES/MVS prototype development took little over 
one year from inception to on-line testing. We expect the 
system will be in continuous use at the Yorktown Comput- 
ing Center by May 1984. 

YES/MVS now routinely schedules the queue of large 
batch jobs. It has alerted MVS operators to network link 

problems. When jobs which nearly exhaust JES queue 
space are submitted to MVS, YES/MVS responds with 
appropriate corrective recommendations to the operator. 
Other task areas are in the final stages of testing. 

Our future plans include broadening the coverage of 
YES/MVS by the addition of other subdomains, such as 
facilities to assist the operator during initial-program- 
loading of MVS, and both planned and emergency shut- 
down. A learning component is planned for the scheduling 
of large batch jobs so as to take account of the behavior of 
previous jobs submitted by a user in scheduling his or her 
next job. Our success with the computer operations domain 
causes us to look for the application of expert systems to 
other areas of computer installation management: capacity 
planning, configuration and installation. 

VII CONCLUSIONS 

YES/MVS extends the use of expert systems techniques 
to continuous, real time, interactive control applications. 
The extensions we made to OPS5 include facilities essential 
to such applications and generally applicable to other real 
time interactive problems such as process control. 

We found building the system for actual use to be a 
challenge involving much more than the usual expert system 
issues. Integration of the core expert system with a com- 
plex real time environment required not only extensions to 
the OPS5 language, but also some new concerns including 
how to distribute processing between the expert system and 
the conventional programming environment. The total 
system not only interacts intimately with the subject ma- 
chine, it also interacts with the host system during process- 
ing. The difficulty and importance of integration have been 
observed and emphasized by others [22, 231 but there are 
still no easy solutions. 

While we did learn that OPS5 was an excellent base 
language, we found that its trigger happy rule firing was 
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awkward to live with. But it was only through an actual 
application experience that we uncovered suitable ways to 
improve this forward-chaining production system language. 
The techniques we developed are both relevant and effec- 
tive for real time processing issues. We have also gained 
many valuable ideas for future improvements in inference 
engines intended for real time applications. 
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