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Abstract. A long standing challenge for intelligent tutoring system (ITS) 
designers and educators alike is how to encourage students to take pleasure and 
interest in learning activities. In this paper, we present findings from a user 
study involving students interacting with an ITS, focusing on when students 
express excitement, what we dub “yes!” moments. These findings include an 
empirically-based user model that relies on both interaction and physiological 
sensor features to predict “yes!” events; here we describe this model, its 
validation, and initial indicators of its importance for understanding and 
fostering student interest.  
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1   Introduction 

In some cultures, the classic “yes!” gesture is to clench the fist of one’s dominant arm, 
jerk the arm downward and exclaim “yes!” - everyone understands this as an 
expression of triumphal victory. When we noticed this behavior among students using 
our physics tutoring system, we began to wonder about it. For instance, what causes a 
“yes!” during tutoring? Is the “yes!” behavior a desirable outcome in itself or is it also 
associated with other desirable outcomes?  

Because we are interested in building affective learning companions, we are also 
interested in how a companion could use students’ “yes!” behavior for its own ends, 
such as increased bonding with the student. This requires, however, that the 
companion can detect “yes!” behaviors in real time. This paper reports our progress 
on addressing these issues and questions, including:  

1. Is the “yes!” behavior a desirable outcome for a tutoring system or associated 
with one? We argue from the literature that it is both.  

2. What causes “yes!” events and how can we increase their frequency? We 
compare “yes!” episodes with ones where a “yes!” could have occurred but did 
not. This descriptive analysis sets the stage for future work on what could cause 
an increase in “yes!” events.  

3. How can “yes!” events by used by tutors, learning companions or other agents? 
We present a review of the literature that suggests some possibilities.  
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4. Can a “yes!” event be detected more accurately than a baseline approach? We 
developed a regression model based on sensor and tutor log data analysis that 
has high accuracy.  

The rest of this introduction contains literature reviews that address points 1 and 3, 
and a review of related work on affect detection (point 4).   

1.1   The Likely Role of “yes!” in Learning and Interest 

As we describe in Sect. 3, we view “yes!” as a class of brief expressions of (possibly 
highly exuberant) positive affect. Positive affect has been linked to increased personal 
interest [1, 2], which is in turn associated with a facilitative effect on cognitive 
functioning [3], and improved performance on creative problem solving and other 
tasks [4], persevering in the face of failure, investing time when it is needed and 
engaging in mindful and creative processing (for a review see [5]). Although there is 
work in the psychology community on how interest develops and is maintained (e.g., 
[6, 7]), to date there does not yet exist sufficient work on these topics to understand 
the role of positive affect in general and of “yes!” events in particular, so calls for 
additional research are common (e.g., [8]).  

We should point out, however, that while positive affect could itself be considered 
a desirable property during tutoring, it has not always shown strong correlations with 
learning [9]. For instance, doing unchallenging problems may make students happy 
but may not cause learning. However, the “yes!” expression of positive affect may 
well be correlated with learning, because as we show later, “yes!” occurs only after 
the student has been challenged, and challenge fosters learning [10].  

1.2   How Can “yes!” Events Be Used during Tutoring and Learning? 

In general, about 50% of human tutor interventions relate to student affect [11], 
highlighting the importance of addressing affect in pedagogical interactions. As far as 
addressing “yes!” events, work on the impact of tutorial feedback provides some 
direction regarding how “yes!” detection can be valuable to a tutoring system for 
generating subsequent responses. For instance, praise needs to be delivered at the 
right moment, e.g., be perceived as representative of effort and sincere, to be effective 
[12], and so a “yes!” event may be exactly the right time for an agent to give praise. 

If “yes!” events do predict increased learning, interest and motivation, then they 
can be used as proximal rewards for reinforcement learning of agent policies. For 
instance, Min Chi et al. [13] found that a tutorial agent’s policies could be learned 
given a distal reward, namely, a students’ learning gains at the end of six hours of 
tutoring. It seems likely that even better policies could be learned if the rewards 
occurred more frequently. That is, if a “yes!” event occurs, then perhaps the most 
recent dialogue moves by the agent could be credited and reinforced. 

1.3   Related Work on Detecting Brief Affective States 

Affect recognition has been steadily gaining prominence in the user modeling 
community, motivated by the key role of affect in various interactions. Like us, 
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some researchers have proposed models for identifying a single emotion. For 
instance, Kappor et al. [14] rely on a sensor framework , incorporating a mouse, 
posture chair, video camera and skin conductance bracelet, to recognize 
frustration. McQuiggan and Lester [15] describe a data-driven architecture called 
CARE for learning models of empathy from human social interactions. In contrast 
to Kappor’s and our work, CARE only uses situational data as predictors for 
empathy assessment. Others have focused on identifying a set of emotions. Cooper 
et al.’s [16] four linear regression models each predict an emotion (frustration, 
interest, excitement, confusion). Like our work, these models are built from a 
combination of tutor and sensor log data, although only we explore the utility of 
eye tracking and student reasoning data. D’Mello et al. [17] use dialog and posture 
features to identify four affective states (boredom, flow, confusion, and 
frustration). In Conati’s model, [18] a set of six emotions are assessed (joy/regret, 
admiration/reproach, pride/shame) from tutor log data, subsequently refined to 
include one sensor modality, namely an EEG [19]. 

While there is some work on modeling users with eye tracker information, most of 
it has focused on how attention shifts predict focus (e.g., [20]), or how pupillary 
response predicts cognitive load [21]. This latter work is inspired by findings in 
psychology showing that pupillary response is increased by cognitive load [22]; 
likewise, affect also increases pupillary size [23]. However, results from experiments 
less tightly controlled than traditional psychology ones have been mixed, with many 
failing to find the anticipated link between pupillary response and state of interest 
(e.g., [24]). In the past we investigated how only pupillary response distinguishes 
different types of affect [25], and did not propose a model based on our results. In 
contrast, here we present a model that relies on a broad range of features across both 
interaction and sensor data to predict “yes!” moments. In doing so, we provide insight 
into the utility of pupillary information for predicting “yes!” events. 

In short, although others have investigated predicting positive affective states, 
including joy [26], engagement [17] and excitement [16], our work distinguishes 
itself in several ways. First, we identify a novel set of features unique to “yes!”, 
including time on task, degree of reasoning and pupillary response. A more 
important difference relates to our methodology. A fundamental challenge in 
inferring affect from data is finding the appropriate gold standard against which to 
compare a model’s predictions. A common approach is to elicit affect information by 
explicitly querying users [16, 26]. This approach has the potential to be disruptive, 
thus resulting in inaccurate affect labels; it can also miss salient moments of interest 
(i.e., when affect is actually occurring). Another common approach relies on using 
human coders to identify affect in users [17], a technique that also suffers from 
limitations since human coder performance can be variable [17]. In contrast, we rely 
on talk-aloud for obtaining affective labels. Doing so has the potential to avoid the 
above pitfalls, because it is a form of naturally occurring data that has been shown to 
not interfere with the task at hand [27]. Talk-aloud is also used in [28], although 
there, only conversational cues are considered as affect predictors, while we use an 
array of tutor and sensor features. 
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2   Obtaining Data on “yes!” Moments 

We obtained data on “yes!” moments from a previous user study we conducted 
[25], which involved students interacting with an intelligent tutoring system (ITS) 
for introductory Newtonian physics. This ITS, referred to as the Example Analogy 
(EA)-Coach [29], provides support to students during problem solving in the 
presence of worked-out examples. To solve problems with the EA-Coach, students 
use the problem window (Fig. 1, left) to draw free body diagrams and type 
equations; students are free to enter steps in any order and/or skip steps. For each 
solution entry, the EA-Coach responds with immediate feedback for correctness, 
realized by coloring entries red or green, indicating correct vs. incorrect entries. 
Instead of providing hints, for instance on instructional material, the EA-Coach 
makes examples available to students (accessed with the “GetExample” button); 
these are displayed in the example window (Fig. 1, right). The system relies on a 
decision-theoretic approach to tailor the choice of example to a student’s needs by 
considering problem/example similarity, a student’s knowledge and reasoning 
capabilities (see [29] for details). 

The study involved 15 participants, all Arizona State University students, who 
either were taking or had taken an introductory-level physics course. Each 
participant solved two physics problems with the EA-Coach of the type shown in 
Fig. 1; each problem solution involved about 15 steps (for further study details, see 
[25]).  We used a variety of data collection techniques. First, the EA-Coach logged 
all interface actions. Second, we used talk aloud protocol [27]: we asked students 
to verbalize their thoughts; all sessions were taped and subsequently transcribed. 
Third, a sensor logger captured students’ physiological responses from four 
sensing devices (see Fig. 2): (1) a posture chair pad measured position shifts (the 
pad included three pressure points on the chair seat and three on the back); (2) a 
skin-conductance (SC) bracelet captured skin conductance; (3) a pressure mouse 
measured the pressure exerted on the mouse (via six “pressure points”); (4) an eye 
tracker captured pupillary responses (the tracker was an integrated model that 
appeared as a regular computer screen). 

 

Fig. 1. EA-Coach problem and example windows 
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Fig. 2. Affective sensors (from left to right): posture chair, skin conductance (SC) bracelet, 
pressure mouse, Tobii eye tracker 

3   Data Pre-processing  

As our “gold standard” for “yes!” moments during the study, we relied on the verbal 
protocol data. Since a “yes moment” corresponds to excitement and/or positive affect, 
the transcripts were coded by the first author to identify such instances. As a starting 
point, we used data from an earlier affect coding [25], reanalyzing the codes to 
identify “yes!”. We identified 68 “yes!” moments; all but one were directly associated 
with subjects generating a correct solution step and were expressed directly after 
doing so (recall that the EA-Coach provided immediate feedback for correctness so 
students were aware of the status of their entries). The one “yes!” that was not 
associated with a solution step occurred when a participant was reading the second 
problem statement after having already successfully solved the first problem. 

While some of the “yes!” events were expressed in a very effusive manner (“yes! 
I’m smart!”, “oh yay!”), others were more subdued (“I got it right and that makes me 
feel good”). In general, we found that when participants expressed a “yes!”, it varied 
in terms of tone, expression, etc. Because we found it very difficult to disambiguate 
between the various forms of positive affect related to a “yes!”, we decided to keep all 
instances in the analysis without trying to further distinguish between them. 

We also had data on how subjects were reasoning during the study, obtained from 
an earlier coding [25] that included information on various types of reasoning, e.g., 
whether students were self-explaining by deriving physics principles, drawing 
comparisons between the problem/example, and/or expressing some form of cognitive 
processing (for examples, see [25]). For the purposes of this study, we collapsed the 
various types of reasoning into a single “reasoning” code, because as a starting point 
we were interested in how reasoning was related to “yes!” events.  

Data Features. To analyze what events predict “yes!” moments, we identified a set of 
features we believed could be relevant. Note that the list presented here is not meant 
to be exhaustive, but rather to provide a starting point for understanding predictors of 
excitement/positive affect in instructional situations. First, we identified interaction 
data features we obtained from the EA-Coach logger corresponding to events in the 
tutor’s interface, as follows: - Time: The amount of time taken to generate a correct solution step (as described in 

Sect. 4, we focus on correct solution entries); - NumAttempts: The number of attempts required to generate a correct solution step; 
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- NumReasoning: The number of “reasoning” utterances a student expressed in the 
process of generating a solution step; - Type of step: The type of solution step (e.g., a force, an axis, an equation). 

Second, we identified sensor features that we obtained from the sensor logger: - Pupillary response: The mean change in pupil dilation around a point of interest 
(described in Sect. 4). For instance, if the point of interest is when a student 
generates a solution step, then mean change = (mean pupil size over time span T 
directly following the step) - (mean pupil size over time span T directly preceding 
the step). We set the threshold T=2 seconds, since this comparable to that used in 
other related work involving analysis of pupillary response (e.g., [30]). - Skin Conductance (SC) response: The mean change in SC response around a point 
of interest (calculated as for pupillary response). We set the threshold T=2 seconds, 
based on the timeframe containing a SC response [14].  - Mouse response: The mean change in mouse pressure before and after an event of 
interest, using the method in [16] (where the mean pressure was obtained by 
summing over the pressure points, dividing by a constant and finding the mean). 
We set the threshold T=10 seconds, because this sensor does not measure 
instantaneous responses (like SC and pupillary response) but rather longer scale 
transitions in behavior. - Chair: The number of “sitForward” events, when a student leaned forward prior to 
generating a solution step, calculated by obtaining the pressure on the seat back via 
the formula in [16]. Here, we used a threshold T=10 seconds, as for the mouse. 

4   Results 

In order to understand predictors of “yes!” in instructional activities, we compared 
“yes!” moments to other instances when students obtained a correct solution step but 
did not generate a “yes!”. Since the “yes!” moments directly followed the generation 
of a correct solution step, we felt this would be the most appropriate comparison; this 
gave us 67 “yes!” instances1 and 218 other events. As a final pre-processing step, for 
each logged correct step we extracted the above-described features, merging across 
the different log files (transcript, EA-Coach, sensor) to produce a single file. 

Our hypotheses were that students would only express a “yes!” if they invested 
some effort into generating the solution step, and that there would be physiological 
manifestations of “yes!” that differed from other correct entries. To analyze whether 
these hypotheses were correct we carried out several types of analysis. 

4.1   The Unique Nature of “yes!” 

As a starting point, we wanted to determine if “yes!” moments differed from other 
correct entries (referred to as other below) in terms of the features listed above. Thus, 
we compared data on these two types of entries for our set of features through 

                                                           
1 There was one exception where a student expressed “yes!” when reading an example; given 

our scheme, we did not consider this one data point in our analysis. 
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univariate ANOVA. As far as the interaction features are concerned, we found that 
students took significantly longer to generate a correct solution step corresponding to 
a “yes!” than other correct entries (on average, 206 sec. vs. 54 sec.; F(1,297) = 77.27; 
p < 0.001). Students also generated significantly more attempts for “yes!” entries, as 
compared to other correct entries (on average, 5.1 vs. 1.7; F(1,297) = 40.47, p < 
0.001), and expressed significantly more reasoning episodes for “yes!” (on average, 
1.34 vs. 0.58 F(1,283) = 11.614, p = 0.001). Our data was too sparse to analyze 
whether type of step had an effect.  

As far as the sensor features are concerned, students had a significantly larger 
pupillary response for a correct solution step associated with a “yes!”, as compared to 
other correct entries (on average, .043mm vs. -.037mm; F(1,271)=8.422, p=0.004). 
Skin conductance response had a marginal effect on “yes!” as compared to other 
entries (.000388µS vs. -.0000422µS, F(1,291)=3.257, p=0.07), suggesting a higher 
level of arousal for “yes!”. Likewise, students had significantly fewer sitForward 
events before a “yes!”, as compared to other entries (6.4 vs. 10.8; F(1,296)=4.63, 
p=0.032). One possibility for why this was the case is that students were more 
focused for “yes” entries and so were fidgeting less. We did not find “yes!” to have a 
significant effect on mouse response. 

4.2   An Empirically-Based Model for Predicting “yes!” 

The above analysis showed that “yes!” moments are uniquely distinguishable. To 
develop a user model, however, we need to understand how the various features 
predict “yes!” events. Thus, we conducted regression analysis. Because we have a 
nominal dependent variable (“yes!” vs. other), we used a logistic regression. A key 
consideration behind our choice of modeling technique was our data set size: while 
acceptable for modeling with logistic regression, where the rule of thumb is at least 20 
data points per independent variable, it was not large enough for some other machine 
learning techniques, e.g., support vector machine. Of the applicable techniques, 
regression was chosen based on prior research showing its suitability for classifying 
affect ([16, 31]); [31] found that regression yielded the highest affect classification 
accuracy over other machine learning methods. 

We begin by presenting the baseline model, one that always predicts the most 
likely event (here, lack of a “yes!”). Given the base rates of the two decision options 
and no other information, the best strategy is to predict that each step is not a “yes!”. 
This model achieves 76% accuracy (# of correctly classified events / total # of 
events), but obviously completely misses our goal of predicting when “yes!” occurs 
(i.e., never predicts “yes!”, and so has a true positive value of 0%, see Table 1, top). 

Using the Step method, we then added our features to the logistic regression 
model2. The resulting model containing time, numReasoning, pupil response, SC 
response and chair was significantly better from the baseline model (p<0.001, see 
Table 1, top). Below, we will analyze the contribution of some of our features to the 
model’s accuracy, but first we examine the full model accuracy.  

                                                           
2 Because increasing the number of predictors decreases experimental power, we omitted 

numTries from this analysis, as it was redundant due to its high correlation with time; we also 
omitted mouse response since it did not significantly distinguish “yes!” from other entries. 
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The output of a logistic regression equation is a probability that a given event 
belongs to a particular class. In order to use the model for prediction, it is therefore 
necessary to have a decision rule: if the probability of an event is greater or equal to 
some threshold then we will predict that event will take place (and not take place 
otherwise). To choose the optimal threshold, we built a Receiver Operating 
Characteristic (ROC) curve (Fig. 3). The ROC curve is a standard technique used in 
machine learning to evaluate the extent to which a classifier can successfully 
distinguish between data points (episodes correctly classified as positive, or true 
positives) and noise (episodes incorrectly classified as positive, or false positives), 
given a choice of different thresholds. Figure 3 shows the ROC curve we obtained for 
our “yes!” models, where each point on the curve represents a model with a different 
threshold value. As is standard practice, we chose as our final threshold the point on 
the curve that corresponds to a reasonable tradeoff between too many false positives 
vs. too few true positives (P=0.26, labeled by a cross on the curve in Fig. 3). 

When reporting classifier accuracy, it is standard to provide sensitivity (true 
positives) and specificity (true negatives), since these are more informative then 
overall accuracy (true positives + true negatives / total number of instances). Our 
classifier is significantly better than the baseline model (p < 0.05) and obtained a 
sensitivity of 60.3%, a specificity of 87.2% (and overall accuracy of 81.4% - see 
Table 1, top). Thus, this classifier correctly identifies 60% of “yes” moments, without 
incorrectly classifying other entries as “yes!” for 87% of the time. 

Model Validation. To validate the above model, we conducted a leave-one-out cross 
validation. Specifically, we trained the classifier using N-1 data points and tested on 
the remaining data point, repeating this process N times (where N is equal to the 
number of samples, 269 full samples, i.e., without any missing data points that were 
the result of, for instance, the eye tracker failing to find a valid pupil reading). The 
validation showed that our model accuracy does not degrade substantially (i.e., 
sensitivity=55.2%, specificity = 87.1%, accuracy = 79.5%).  

Parsimonious Models. We wanted to explore what kind of model fit we could obtain 
with a subset of our features, which helps to make an informed decision as to which 
sensors to use if not all are available. Thus, we ran a series of regressions using time 
as the tutor variable (as this variable was highly significant in our regression model) 
 

Table 1. Logistic regression “yes!” models (TP=Sensitivity, TN=Specificity; Acc= TP + TN / N) 

 Overall Logistic Regression Equation TP TN Acc. 
Baseline model -2.206  0 100 76 
Full model ** -2.206+time*.008+ numReasoning*.309 + 

pupilResponse*1.68 +SC*126.4+chair*-.019 
60.3 87.2 81.4 

Time*+numReasoning* -2.437 + time*.01 + numReasoning*.345 55.2 89.2 81.6 
Time*+pupilResponse* -2.157+time*.009+pupilResponse*2.082 54.2 85.0 78.4 
Time*+SC -2.308 + time*0.01+ SC*128.97 57.6 89.9 82.6 
Time*+Chair -2.084 +time*0.01 + chair*-.017 56.7 88.3 81.2 

** Significantly better than baseline model, p<0.05 
 * Each feature significantly improves model fit over previous model (i.e., model 1=baseline, 
model 2=time, model 3= time+2nd feature), p<0.05 



 “Yes!”: Using Tutor and Sensor Data to Predict Moments of Delight 167 

 
Fig. 3. ROC curve for various decision rule thresholds 

and one of the other features. As Table 1 illustrates, we obtained reasonable results in 
terms of sensitivity and specificity with these reduced models, although only 
reasoning and pupil response resulted in significantly better models over a model that 
only included time (SC response and chair both improved the model fit, but this did 
not reach significance, i.e., p=.151 for the SC response and p=.153 for the chair). 

5   Discussion and Future Work  

In this paper, we reported on our analysis of moments of excitement and positive 
affect during instructional activities, which we refer to as “yes!” events. We found 
that “yes!” always followed a correct solution step, but conversely, a correct step was 
not always followed by a “yes!”. In particular, students were significantly more likely 
to express a “yes!” after investing more time, generating more attempts, and 
expressing more reasoning episodes, as compared to correct entries for which 
corresponding enthusiasm was not expressed. Note that in addition to verbal 
expression of “yes!”, another indication of arousal related to these events was 
provided by the pupil dilation and skin conductance data. These findings imply that 
students experience excitement and/or positive affect in tutoring situations when they 
have invested effort into the process and that effort pays off (i.e., correct solution is 
obtained). It is possible, however, that students express “yes!” not because they 
invested thoughtful, deliberate processing but because they guessed and/or arrived at 
the solution by luck. Our analysis does provide some indication that this is not the 
case, as students engaged in significantly more reasoning (captured by the 
“reasoning” code that included self-explanation, a form of deep processing) prior to 
“yes!”. This does not guarantee every student behavior related a “yes!” is an instances 
of “deep” reasoning – in the future, we plan to delve deeper into this issue of mindful 
processing and “yes!”. 

To the best our knowledge, ours is the first work to propose a model for affect 
recognition incorporating pupillary response data. Although in contrast to the other 
low-cost sensors we used, eye tracking technology is more expensive, it is becoming 
more and more accessible, and so investigating its utility for user modeling is 
important. In a prior study [25], we also found a significant difference in pupil size 
between affective responses, but there are four key differences between that study and 
the present. First, in [25] we analyzed how pupillary response differs between positive 
and negative affect, without developing a model based on this data. Second, here we 
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focus on “yes!” while in [25], we focused on differences between four affective states. 
Third, in [25] we normalized the pupil data using Z scores – while this approach is 
sometimes used (e.g., [19]) and increases experimental power, it requires subtracting 
the overall signal mean from each data point. Since this mean can only be obtained 
after a user finishes interacting with a system, the findings are difficult to apply for 
real-time user models. In contrast, here we use the raw signal values, making our 
findings more applicable to real-time modeling. Fourth, our feature set includes an 
array of sensors and tutor features, while in [25], we analyzed only pupillary data. 

Overall, the tutor and sensor features resulted in a model that predicted “yes!” with 
60% sensitivity and 87% specificity, a significant improvement over the baseline 
model. We also analyzed how using subsets of features impacts model fit: although 
the model incorporating the full set of features allowed the best trade-off between 
sensitivity and specificity, using a subset of features also resulted in models with 
reasonable fit. For instance, a model that includes only information on time and 
reasoning performs quite well – this may be useful if a system already has the tools to 
capture reasoning style (e.g., as in [32]) but sensors are not available. As far as the 
sensor features are concerned, when we explored parsimonious models, each sensor 
improved model fit over the time-only model. However, this improvement was only 
reliable, as reported by the p value, for the pupillary response feature. Compared to 
the pupil-based model, the models incorporating the other sensors resulted in higher 
specificity and/or specificity. These results, however, have to be interpreted with 
caution, since they approached but did not reach significance. This may be due to our 
modest sample size, and so more data is needed to confirm these sensors’ utility. 

While there is room for improvement, our model is a first step in providing 
information on “yes!” moments, which in turn can be used for tailoring pedagogical 
scaffolding to foster interest. For this purpose, it is key that the classifier not 
misclassify too many other entries as “yes!” (i.e., has high specificity), while still 
identifying some “yes!” moments, as is the case for our classifier. Given our limited 
sample size and particular instructional context, however, more work is needed to 
validate and generalize our findings.  

Returning to our original four questions, we summarize the progress made so far 
and directions for future work. 

1. Are “yes!” events desirable outcomes or associated with desirable outcomes? 
We argue that it is both. We now know that “yes!” occurs after students appear to 
have overcome a challenge related to generating a solution step, as indicated by 
time spent and number of tries produced. Since challenge fosters interest, this 
suggests that “yes!” events may be suitable as a predictor of increased learning, 
interest and motivation, something we plan to explore in future studies. 

2. What causes “yes!” events and how can we increase their frequency? We now 
know that “yes!” events occur after a challenge is overcome with an example as 
the only the aid from the tutor. This is consistent with Lepper’s advice of keeping 
the student optimally challenged [10].  

3. How can “yes!” events be useful to tutors, learning companions and other 
agents? We offer some suggestions based on theory, but this remains to be 
empirically explored. 

4. Can “yes!” events be detected more accurately than a baseline approach? Yes! 
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