Thesis Proposal:

YETI: a graduallY Extensible Trace Interpreter

Mathew Zaleski

(for advisory committee meeting Jan 17/2007)

Contents

1

Introduction 7
1.1 Challenges of Efficient Interpretation 8
1.2 Challenges of Evolving to a Mixed-Mode System 9
1.3 OverviewofOQurSolution. 11
1.4 ThesisStatement 13
1.5 Contribution 31
1.6 OutlineofThesis 14
Background and Related Work 15
2.1 InterpreterDispatch e 15
2.1.1 SwitchDispatch, 16
2.1.2 DirectCall Threading 18
2.1.3 DirectThreading 18
2.1.4 TheContextProblem 21
2.1.5 Optimizing Dispatch 22
2.2 Dynamic Hardware Branch Prediction 25
23 Traces 26
231 HPDynamo. e e 26
2.3.2 Other Trace-oriented Systems 29
24 JIT Compilation 13

CONTENTS CONTENTS

3 Efficient Interpretation 35

3.1 DesignandImplementation L. 35
3.1.1 UnderstandingBranches 6 3

3.1.2 Handling Linear Dispatch 36

3.1.3 Handling Virtual Branches 39

3.1.4 Handling Virtual Calland Return 42

4 Evaluation 47

4.1 \Virtual Machines, Benchmarks and Platforms 47

411 OCaml 48
4.1.2 SableVM 48
4.1.3 OCamlBenchmarks 49
4.1.4 SableVMBenchmarks 50
4.1.5 PentiumIV Measurements 0 5
4.1.6 PowerPC Measurements 50
4.2 Interpretingthedata e 51
4.2.1 Effecton Pipeline BranchHazards 51
4.2.2 Performance 54
4.3 Inlining e e e 59
4.4 Limitations of Context Threading 60
45 SUMMANY e e e e e e e 62
5 Design and Implementation of YETI 63
5.1 Instrumentation 64
5.2 Loading e 65
5.3 BasicBlock Detection 56
5.4 Trace Selection 67
55 TraceExitRuntime 86

CONTENTS

5.6 Generatingcodefortraces i,

5.6.1 Trace Exits and Trace ExitHandlers

5.6.2 Code Generation

5.6.3 Trace Optimization
5.7 Polymorphicbytecodes
5.8 Otherimplementationdetails,

5.9 Packaging and portability o

6 Evaluation of Yeti
6.1 Effect of region shape on region dispatchcount
6.2 Effect of region shape on performance

6.2.1 JIT Compiledtraces

7 Conclusions and Future Work

8 Remaining Work
8.1 CompileBasicBlocks.
8.2 InstrumentCompile Time
8.3 AnotherRegisterClass,

8.4 Measure Dynamic Proportion of JIT Compiled Instructions.

Bibliography

CONTENTS

Chapter 1

Introduction

An interpreter is an attractive way to support an evolvinghpater language, making it easy to
test and refine new language features. The portability ohtarpreter also allows a new lan-
guage to be widely deployed. Nevertheless, informal corepas show that these interpreted
language implementations generally run much more slowdy ttompiled code. To get the
best of both worlds, today’s high-performance Java implaateons run inrmixed-modgthat

is, combining interpretation with dynamic just-in-timéT))compilation. Given the success of
this strategy for Java, why are many useful languages likbdPy JavaScript, Tcl and Ruby

not implemented by mixed-mode systems?

We believe that two main factors block gradually enhancingrderpreter to become a
mixed-mode virtual machine. First, the way virtual instrons are packaged in modern in-
terpreters makes it hard to dispatch them from regions oéig¢ed code. Second, current JIT
compilers follow the legacy of static compilation and getercode only for methods. This

significantly increases the complexity of the JIT and itgime.

Our interpreter is packaged so that its virtual instructicembe used from generated code.
Our JIT compiler generates code for dynamically discovéracks rather than methods. This
enables our system to grow into a mixed-mode run-time sysieng two dimensions. First,

our compiler can be extended gradually, adding supportiftwal instructions one at a time.

1.1. CHALLENGES OF EFFICIENT INTERPRETATION

Second, our system can be incrementally extended to igidatger regions of the program.
We focus onvirtual machine interpreterén which source code is compiled tovartual
programor bytecodeepresentation (i.e., a sequenceiofual instructionsand their operands).
Typically, virtual instructions are described as thougbvited by real hardware, but in fact
the virtual machine implements each with a block of coddedahevirtual instruction body
or simply body The interpreter executes the virtual programdigpatchingeach body in
sequence.
Our work has two main parts. First, we show that organizirgithplementation of an
interpreter by packaging virtual instruction bodies adatdé units is efficient. Second, we
demonstrate that a trace-based dynamic compiler has i@asooverhead and achieves good

speedup.

1.1 Challenges of Efficient Interpretation

Recently, Ertl and Gregg observed that the performance efwike efficientdirect-threaded
interpretation is limited by pipeline stalls and flushes dmextremely poor indirect branch
prediction [18]. Modern pipelined architectures, suchtesRentium IV (P4) and the Pow-
erPC (PPC), must keep their pipelines full to perform well.rddeare branch predictors use
the native PC to exploit the highly-biased branches found in typicatigree code) CPU work-
loads [28, 30, 35]. Direct-threaded virtual machine (VMEenpreters, however, are not typical
workloads. Their branches’ targets are unbiased and trerehpredictable [18, 19]. For an
interpreted program, it is thartual program counter (ovPC) that is correlated with control
flow. We therefore propose to organize the interpreter sitiganative PC correlates with the
v PC, exposing virtual control flow to the hardware.

We introduce a technique basedsubroutine threadingonce popular in early interpreters
for languages like Forth. To leverage return address stazkgiion we implement each virtual

instruction body as a subroutine which ends in a natern instruction [5]. Note, however,

RCS file : intro.lyxz, v Revision : 1.17 8

CHAPTER 1. INTRODUCTION

that these subroutines are not full-fledged functions irsérese of a higher-level programming
language such as C (no register save/restore, stack frasagaer, etc.). When the instruc-
tions of a virtual program are loaded by the interpreter, r@@dlate them to a sequence of
call instructions, one per virtual instruction, whose &ggare these subroutines. Virtual in-
structions are then dispatched by executing this sequdrual®. The key to the effectiveness
of this simple approach is that at dispatch time, the nat®@as$perfectly correlated with the
virtual PC. Thus, for non-branching bytecodes, the retudress stack in modern processors
reliably predicts the address of the next bytecode to egre@dcause the next dynamic instruc-
tion is not generally the next static instruction in the watt program, branches pose a greater
challenge, For these virtual instructions, we provide atéchform of specialized inlining, re-
placing indirect with relative branches, thus exposingaalbranches to the hardware’s branch

predictors.

1.2 Challenges of Evolving to a Mixed-Mode System

Current JIT compilers are method-oriented, that is, the Jistrgenerate code for entire meth-
ods at a time. This leads to two problems. First, if the carcsiton of the JIT is approached in
isolation from an existing interpreter, the JIT project ey bang” development effort where
the code generation for dozens, if not hundreds, of virtstiuctions is written and debugged
at the same time. Second, compiling whole methods compiliesaode as well as hot. This
complicates the generated code and its runtime.

The first issue can be dealt with by more closely integrativgXIT with the interpreter.
If the interpreter provides a callable routine to implemeacth virtual instruction body, then,
when the JIT encounters a virtual instruction it does ndfaupport, it can simply gener-
ate a call to the body instead [48]. Hence, rather than a hig,bdevelopment can proceed
more gradually, in a sequence of stages, where JIT suppooni® or a few virtual instruc-

tions is added in each stage. Modern interpreters do noteventypically provide callable

RCS file : intro.lyxz, v Revision : 1.17 9

1.2. CHALLENGES OF EVOLVING TO A MIXED-MODE SYSTEM

implementations of virtual instruction bodies.

The second issue, compiling cold code (i.e., code that heer mxecuted), has more im-
plications than simply wasting compile time. Except at tegphighest levels of optimization,
where analyzing cold code may prove useful facts about fysbme, there is little point com-
piling code that never runs. Moreover, cold code incredsesdmplexity of dynamic compi-
lation. We give three examples. First, for late binding laages such as Java, cold code likely
contains references to program values which are not yetdolirthe cold code eventually
does run, the generated code and the runtime that supportssitdeal with the complexities
of late binding [52]. Second, certain dynamic optimizas@mne not possible without profiling
information. Foremost amongst these is the optimizatiovirtdial function calls. Since there
is no profiling information for cold code the JIT may have tmgerate relatively slow con-
servative code. Third, as execution proceeds, cold regrooempiled methods may become
hot. The conservative assumptions made during the iniiadpilation may now be a drag on
performance. The straightforward-sounding approach admpiling these methods is com-
plicated by problems such as what to do about threads thatiirexecuting in the method or

which must return to the method in the future.

These considerations suggest that the architecturegoh@ually extensible mixed-mode
virtual machine should have three important propertiestRrirtual bodies should be callable
routines. Second, the unit of compilation must be dynaryicdétermined and of flexible
shape, so as to capture hot regions while avoiding cold. dTlais new regions of hot code
reveal themselves, a way is needed of gracefully compilimgd lanking it on to previously

compiled hot code.

Currently, languages like Java, OCaml, and Tcl deploy reditiiigh performance inter-
preters based on thdirect threadingvirtual instruction dispatch technique [4, 17]. Unfor-
tunately, there is no straightforward and efficient way foect threaded virtual instruction
bodies to interoperate with generated code. The probleraused by the nature of threaded

dispatch, namely that once dispatched a direct threadey tw@ohches to its successor, out

RCS file : intro.lyxz, v Revision : 1.17 10

CHAPTER 1. INTRODUCTION

of the control of any generated code that may have dispatthddhus, the legacy of direct
threading, originally adopted for performance reasons Jédto a situation where the instruc-
tion bodies cannot be reused from generated code. Iropicall modern hardware, direct
threading is no longer particularly efficient because optsr branch prediction behavior. In
contrast, our implementation (Chapter 3) and evaluation [g€&nal) of subroutine threading
has shown that direct threaded bodies repackaged as ealtalilnes can be dispatched very

efficiently.

1.3 Overview of Our Solution

Our aim is to design an infrastructure that supports dynasomopilation units of varying
shapes. Just as a virtual instruction body implements aalirhstruction, arexecution unit
implements a region of the virtual program. Possible exenutnits include single virtual
instructions, basic blocks, methods, partial methodsnedl method nests, and traces (i.e.,
frequently-executed paths through the virtual progranie Key idea is to package every ex-
ecution unit as callable, regardless of the size or shapkeofdgion of the virtual program
that it implements. The interpreter can then execute thealiprogram by dispatching each
execution unit in sequence.

Execution units corresponding to longer sequences ofaliitstructions will run faster
than those compiled from short ones because fewer disgaéchaequired. In addition, larger
execution units should offer more opportunities for optation. However, larger execution
units are more complicated and so we expect them to require development effort to detect
and compile than short ones. This suggests that the penfmenaf a mixed-mode VM can be
gradually extended by incrementally increasing the scdmxecution units it identifies and
compiles. Ultimately, the peak performance of the systeoukhbe at least as high as current
method-based JIT compilers since, with enough engineeffiogt, execution units of inlined

method nests could be supported.

RCS file : intro.lyxz, v Revision : 1.17 11

1.3. OVERVIEW OF OUR SOLUTION

The practicality of our scheme depends on the efficiency bfauine dispatch so the
first phase of our research was to retrofit a Java virtual magtandocanm r un, an Ocaml
interpreter [9], to a new hybrid dispatch technique we caltext threading We evaluated
context threading on PowerPC and Pentium 4 platforms by eoimgp branch predictor and
run time performance of common benchmarks to unmodifieéctlthreaded versions of the

virtual machines.

In the second phase of this research we gradually extende@dMaa cleanly implemented
and relatively high performance Java interpreter [33] &ate our prototype, Yeti, (graduallY
Extensible Trace Interpreter). We built Yeti in five phas€gst, we repackaged all virtual
instruction bodies as callable. Our initial implementatexecuted only single virtual instruc-
tions which were dispatched from a simple dispatch loopoB8eécwe identified basic blocks,
or sequences of virtual instructions. Third, we extendedsystem to identify and dispatch
traces or sequences of basic blocks. Traces are significantly wamglex execution units
than basic blocks because they must accommodate virtuatiorastructions. Fourth, we ex-
tended the trace system to link traces together. In the fifthfaal stage, we implemented a
naive, non-optimizing compiler to compile the traces. Campiler currently generates Pow-

erPC code for about 50 virtual instructions.

We chose traces because they have several attractive pespéi) they can extend across
the invocation and return of methods, and thus have an pnteredural view of the program,
(i) they contain only hot code, (iii) they are relativelyrgle to compile as they asngle-entry
multiple-exitregions of code, and (iv), as new hot paths reveal themsgligestraightforward

to generate new traces and link them onto existing ones.

These properties make traces an ideal execution unit fontap kevel mixed-mode system
like Yeti is today. However, new shapes of execution uniteatled from linked traces may
turn out to have all the advantages of inlined method nestslba side-step the overhead of

generating code for cold regions within the methods.

RCS file : intro.lyxz, v Revision : 1.17 12

CHAPTER 1. INTRODUCTION

1.4 Thesis Statement

The implementation of a new programming language shouldenth& exploration of new
features easy, yet at the same time be extensible to a higbrmp@nce mixed-mode system
as the language matures. To achieve this, an interpretefdshe organized around callable
virtual instruction bodies for efficient dispatch and theligbto call bodies from generated
code. By dispatching regions of the virtual program, iniyidhe callable bodies, from an
instrumented dispatch loop the interpreter can be graglealiended to be a trace-oriented
mixed-mode system. This structure enables extensibiitimio dimension. First, callable
bodies can be dispatched from generated code, so the coropilebe extended one virtual
instruction at a time. Second, the instrumented dispatop foakes it simple to identify, then

dispatch, larger and more complex execution units.

1.5 Contribution

The contributions of this thesis are twofold:

1. We show that packaging virtual instruction bodies asabédl routines is desirable on
modern processors because the additional cost of call &nthiie more than made up for
by improvements in branch prediction. We show that subneutiireading significantly
outperforms direct threading, for Java and Ocaml on PenéinchPowerPC. We show
how with a few extensions a context threaded interpretepeaiorm as well as or better

than a selective inlining interpreter, previously theeitthe art.

2. We propose an architecture for, and describe our impl&atien of, a trace-oriented
mixed-mode system that allows a subroutine threaded imtempto be gradually en-
hanced to identify and compile larger execution units and thbtain better performance.
By adopting our architecture the implementors of new or @gskanguages can more

easily enhance their systems to run mixed mode and henceceatevelopment costs

RCS file : intro.lyxz, v Revision : 1.17 13

1.6. OUTLINE OF THESIS

against performance benefits.

1.6 Outline of Thesis

We describe an architecture for a virtual machine integorigtat facilitates the gradual exten-
sion to a trace-based mixed-mode JIT compiler. We demdgstra feasibility of this approach
in a prototype, Yeti, and show that performance can be gigdugproved as larger program
regions are identified and compiled.

In Chapter 2 we present background and related work on irgsrand JIT compilers. In
Chapter 3 we describe the design and implementation of coihi@ading. Chaptet describes
how we evaluated context threading. The design and impl&tien of Yeti is described in
Chapter 5. We evaluate the benefits of this approach in Chapkenélly, we discuss possible

avenues for future work and conclusions in Chapter 7.

RCS file : intro.lyxz, v Revision : 1.17 14

Chapter 2

Background and Related Work

To motivate the design choices we made in our system, we &vsew existing interpreter
dispatch and JIT compilation strategies. We note that poitiais an important property of
interpreters, particularly for a new language implemeaiat Thus, it should be possible to
build the source code base of the interpreter on a large nuohpé&tforms. On the other hand,
dynamic compilers are intrinsically non-portable softejagince they must generate platform-
specific code. Some non-portable functionality may theeehbe required by an interpreter to
help it to integrate conveniently with the JIT. As we reviearious interpreter techniques, we

comment on both their portability and suitability for gradidIT development.

2.1 Interpreter Dispatch

An interpreter must load a virtual program before startmgxecute it. Whereas the compact-

ness of the storage format of a virtual program may be impgrtae loaded representation has

likely been designed for good execution performance. Ashadl see, the representation of the

loaded virtual program goes hand in hand with the dispatathargism used by the interpreter.
In the next few sections we will describe several dispatchrigues. Typically we will give

a small C language example that illustrates the way thegreear is structured and a diagram

showing how the internal representation is arranged. Thenples may give the impression

15

2.1. INTERPRETER DISPATCH

that all interpreters are always hand written C programeciBely because so many dispatch
mechanisms exist, some researchers argue that the inerpagtion of a virtual machine

should be generated from some more generic representaioad].

2.1.1 Switch Dispatch

Perhaps the simplest combination of loaded representatidndispatch mechanism, switch
dispatch, is illustrated by Figure 2.1. The figure introdueerunning example we will use
several times, so we will briefly describe it here. First, @aJeompiler creates a class file
describing part of a virtual program in a standardized fdrnmia our example we show just
one Java expressidrc=a+b} which adds the values of two Java local variables and stores
the result in a third.Javac, a Java compiler, has translated this to the sequence ofVirt
instructions shown in the middle box on the left. The acteatantics of the virtual instructions
are not important to our example other than to note that namegigual branch instructions.

Before our example can be run by the interpreter it musiobded or converted into a
representation that can be executed. The loaded représargppears on the bottom left.
There are two main things that happen during loading. Rhstyirtual opcode of each virtual
instruction is translated into a form best suited for thepdish technique in use. For example,
in this case each virtual opcode is loaded as a token comdsmpto the operation it carries out.
Second, the arguments of the virtual instructions must addd. In the figure the arguments,
for those virtual instructions that take them, are loaddbfiong the token representing the
virtual opcode.

Figure 2.1 illustrates the situation just before the oumapa expression is run. Note the
virtual program counter, thePC, points to the word in the loaded representation correspgnd
to the leading | oad. The correspondingase in theswi t ch statement does the actual
work. All execution time other than that spent executinglibdies is dispatch overhead.

Switch dispatch can be implemented in ANSI standard C and isoviery portable and

very commonly used (e.g. in the JavaScript and Python irg&ss). It is also slow due to the

RCS file : background — related.lyx, v Revision : 1.23 16

CHAPTER 2. BACKGROUND AND RELATED WORK

interp () {

Java { int *vPC;
c=a+b+1;

source

while (1) {
v switch (*vPC++) {

Java iload a <“--4-----__ .

Bytecode iload b . case ILOAD:
iconst 1 \ é/puih var. .
iadd PC reax;
iadd v
. case ICONST:
1istore c

//push constant
l break;

loaded iload <« case IADD:

. //add 2 slots
representahon a -

of virtual iload i

program b case ISTORE:

; //pop, store
iconst break ;

1

iadd }

iadd }

istore

c }

Figure 2.1: A switch interpreter loads each virtual instiart as a virtual opcode, or token,

corresponding to the case of the switch statement that mmgai¢s it.

RCS file : background — related.lyx, v Revision : 1.23 17

2.1. INTERPRETER DISPATCH

overhead of the dispatch loop and the switch.

2.1.2 Direct Call Threading

Another highly portable way to organize an interpreter isvtde each virtual instruction as
a function and dispatch the function corresponding to eachal instruction via a function
pointer from a dispatch loop. A variation of this techniq@dled direct call threading is de-
scribed by Ertl [17]. This is illustrated by Figure 2.2. Fastorical reasons the name “direct”
is given to interpreters which store the address of the afiitustruction bodies in the loaded
representation. Presumably this is because they avoidetbe for any mapping table. How-
ever, the name can be confusing since the machine instnugéaerated by the compiler to
implement the function pointer is andirect call. In the figure thevPC is a static variable
which means thé nt er p function as shown is not re-entrant. This example is meagivi®
the flavor of call threading not be a realistic program.

In Chapter 5 we will show that direct call threading can perf@bout the same as switch
threading. Next we will describe direct threading, perhiggesmost well known “high perfor-

mance” dispatch technique.

2.1.3 Direct Threading

As shown on the left of Figure 2.3, a virtual program is loagted a direct-threaded interpreter
by constructing dist of addressesone for each virtual instruction in the program, pointing t
the entry of the body for that instruction. We refer to thet As theDirect Threading Tableor
DTT, and refer to locations in the DTT afots Virtual instruction operands are also stored in
the DTT, immediately after the address of the correspondody. The interpreter maintains a
virtual program counteror vPC, which points to a slot in the DTT, to identify the next virtua
instruction to be executed and to allow bodies to locate thy@erands.

Interpretation begins by initializing thePC to the first slot in the DTT, and then jumping

RCS file : background — related.lyx, v Revision : 1.23 18

CHAPTER 2. BACKGROUND AND RELATED WORK

vPC DTT

iload

a

iload
b
iconst
1

iadd
iadd
istore

C
loaded data

Figure 2.2: A direct call threaded interpreter packageb eatual instruction body as a func-
tion. The shaded box highlights the dispatch loop showing imstructions are called through

a function pointer. Direct call threading requires the lddepresentation of the program to

WA

void iload(){ // push var
VPC++;
}'d i O{// h
void iconst ush constant
//) VPC++; °
!
;771void iadd(){ //pop,pop,add,pustl
VPC++;

}

'//avoid istore(){ //pop,store...

!

vPC = &dtt[0];

interp () {

while (1) {

(*vPC) () ; //dispatch loop
}
1

indicate theaddres=f the function implementing each virtual instruction.

RCS file : background — related.lyx, v Revision : 1.23

19

2.1. INTERPRETER DISPATCH

Java source) : :
DTT Virtual Instruction Bodies
vPC -
c=a+b+1; 3 - interp(){
&&i | oad =7 1 oad:
a /I push var. .
l o &&i | oad — got o *VPCH:
Javac S b
Compiler | g &&i const i const :
@ 1 /I push const ant
—
o "
iload a % &&i add | goto *VPC+H+;
i1oad b j g && add _\ .
iconst 1 &&i store J iadd://add 2 slots
i add -
istore c i store://pop, store
}

Java Bytecode

Figure 2.3: Direct Threaded Interpreter showing how Java&@ocode compiled to Java byte-
code is loaded into the Direct Threading Table (DTT). Thaagkinstruction bodies are written
in a single C function, each identified by a separate labet dduble-ampersand&) shown

in the DTT is gcc syntax for the address of a label.

nmov Y%eax = (% Xx) ; rxisvPC | Iwz r2 = 0(rx)
addl 4, % x ntctr r2
jmp (%eax) addi rx,rx, 4
bectr
(a) Pentium IV assembly (b) Power PC assembly

Figure 2.4: Machine instructions used for direct dispat€n both platforms assume that
r x has been dedicated for thé>C. Note that on the PowerPC indirect branches are two part

instructions that first load thet r register and second branch to its contents.

RCS file : background — related.lyx, v Revision : 1.23 20

CHAPTER 2. BACKGROUND AND RELATED WORK

to the address stored there. Each body then ends by trangfeontrol to the next instruction,
shown in Figure 2.3 agot o *vPC++. In C, bodies are identified byleabel . Common C
language extensions permit the address of this label tddea tavhich is used when initializing
the DTT. The computed goto used to transfer control betwestnuctions is also a common
extension, making direct threading very portable.

This requires fewer instructions and is faster than swiispatch. Assembler for the dis-
patch sequence is shown in Figure 2.4. When executing theectdiranch in Figure 2.4(a) the
Pentium IV will speculatively dispatch instructions usmg@redicted target address. The Pow-
erPC uses a different strategy for indirect branches, asrshoFigure 2.4(b). First the target
address is loaded into a register, and then a branch is eketuthis register address. Rather
than speculate, the PowerPC stalls until the target addr&eswn, although other instructions

may be scheduled between the load and the branch to redulimiorate these stalls.

2.1.4 The Context Problem

Stalling and incorrect speculation are serious pipelireatds. To perform at full speed, mod-
ern CPU’s need to keep their pipelines full by correctly pcgdg branch targets. Indirect
branch predictors assume that the branch destination idynigrrelated with the address of
the indirect branch instruction itself. As observed by Et8, 19], this assumption is usually
wrong for direct threaded interpreter workloads. In a diteceaded implementation, there is
only oneindirect jump instruction per virtual opcode implement&dr example, in the frag-
ment of virtual code illustrated in Figure 2.3, there are ingtances of | oad followed by

i const . The indirect dispatch branch at the end of thead body will execute twice. The
first time, in the context of the first instance iof oad, it will branch back to the head of
the thei | oad body whereas in the context of the secardad it will branch toi const .
To the hardware the destination of the dispatch is unpralietbecause its destination is not
correlated with the hardwargec. Instead, its destination is correlatedtBC. We refer to this

lack of correlation between the hardware andv PC as thecontext problem

RCS file : background — related.lyx, v Revision : 1.23 21

2.1. INTERPRETER DISPATCH

2.1.5 Optimizing Dispatch

Much of the work on interpreters has focused on the dispatohlgm. Kogge [32] remains a
definitive description of many threaded code dispatch tegi@s. These can be divided into
two broad classes: those which refine the dispatch itsedf tlaose which alter the bodies so
that there are more efficient or simply fewer dispatches.t@wdispatch and direct threading
belong to the first class, as does subroutine threadingjsied next. Later, we will discuss su-
perinstructions and replication, which are in the secoadst|We are particularly interested in
subroutine threading and replication because they bothge@ontext to the branch prediction
hardware.

Some Forth interpreters use subroutine-threaded dispHiete, a loaded virtual program
is not represented as a list of body addresses, but insteadsequence of nativealls to
the bodies, which are then constructed to end with naguarns. Curley [12, 11] describes
a subroutine-threaded Forth for the 68000 CPU. He improvesdbulting code by inlining
small opcode bodies, and converts virtual branch opcodsisige native branch instructions.
He credits Charles Moore, the inventor of Forth, with discoge these ideas much earlier.
Outside of Forth, there is little thorough literature on ultine threading. In particular, few
authors address the problem of where to store virtual ioBtmu operands. In Section 3.1.2,
we document how operands are handled in our implementatismbooutine threading.

The choice of optimal dispatch technique depends on thealzaiedplatform, because dis-
patch is highly dependent on micro-architectural featu@searlier hardwaresall andreturn
were both expensive and hence subroutine threading relquwiecostly branches, versus one
in the case of direct threading. Rodriguez [43] presentg #uketoffs for various dispatch types
on several 8 and 16-bit CPUs. For example, he finds directdimgas faster than subroutine
threading on a 6809 CPU, because jtlse andr et instruction require extra cycles to push
and pop the return address stack. On the other hand, Curlag fubroutine threading faster
on the 68000 [11]. On modern hardware the cost ofdhk andreturn is much lower, due

to return branch prediction hardware, while the cost ofditbreading has increased due to

RCS file : background — related.lyx, v Revision : 1.23 22

CHAPTER 2. BACKGROUND AND RELATED WORK

misprediction. In Chapter 4 we demonstrate this effect orrséwnodern CPUs.

Superinstructionseduce the number of dispatches. Consider the code to addstanbn
integer to a variable. This may require loading the variabl®o the stack, loading the con-
stant, adding, and storing back to the variable. VM desmgan instead extend the virtual
instruction set with a single superinstruction that perferthe work of all four instructions.
This technique is limited, however, because the virtuarircsion encoding (often one byte
per opcode) may allow only a limited number of instructioasd the number of desirable
superinstructions grows exponentially in the number ofssnfied atomic instructions. Fur-
thermore, the optimal superinstruction set may changedoasé¢he workload. One approach
uses profile-feedback to select and create the superitistractatically (when the interpreter

is compiled [20]).

Piumarta [40] presentselective inlining It constructs superinstructions when the virtual
program is loaded. They are created in a relatively portalalg bynentpy’ing the native
code in the bodies, again using GNU C labels-as-values.tébmique was first documented
earlier [45], but Piumarta’s independent discovery insghimany other projects to exploit se-
lective inlining. Like us, he applied his optimization to Q@laand reports significant speedup
on several micro benchmarks. As we discuss in Section 4r3tegtinique is separate from,

but supports and indeed facilitates, inlining optimizato

Languages, like Java, that require run-time binding cocapd the implementation of se-
lective inlining significantly because at load time littieknown about the arguments of many
virtual instructions. When a Java method is first loaded somenaents are left unresolved.
For instance, the argument of anvokevi r t ual instruction will initially point to a string
naming the callee. The first time the virtual instruction@xes the argument will be re-written
to point to a descriptor of the now resolved callee. At the eséime, the virtual opcode is
rewritten so that subsequently a “quick” form of the virtuadtruction body executes. In Java,
if resolution fails, the instruction throws an exceptiomelprocess of rewriting the arguments

and especially the need to point to a new virtual instructiody, complicates superinstruction

RCS file : background — related.lyx, v Revision : 1.23 23

2.1. INTERPRETER DISPATCH

formation. Gagnon describes a technique that deals wishatthditional complexity which he

implemented in SableVM [23].

Only certain classes of opcode bodies can be relocated usingpy alone—the body
must contain no pc-relative instructions (typically thicckides C function calls). Selective
inlining requires that the superinstruction starts at suairbasic block, and ends at or before
the end of the block. Ertl'slynamic superinstructiond 9] also userentpy, but are applied
to effect a simple native compilation by inlining bodies fogarly every virtual instruction.
Ertl shows how to avoid the virtual basic block constraists dispatch to interpreter code is
only required for virtual branches and unrelocatable badtale and Abdelrahman describe
a technique called catenation, which patches Sparc naitke o0 that all implementations can
be moved, specializes operands, and converts virtual besno native, thereby eliminating

the virtual program counter [55].

Replication— creating multiple copies of the opcode body—decreasesuhwer of con-
texts in which it is executed, and hence increases the charfcauccessfully predicting the
successor [19]. Replication implemented by inlining opcbddies reduces the number of
dispatches, and therefore, the average dispatch overd@adih the extreme, one could cre-
ate a copy for each instruction, eliminating mispredictegmirely. This technique results in

significant code growth, which may [55] or may not [19] cauaehe misses.

In summary, misprediction of the indirect branches used byrect threaded interpreter
to dispatch virtual instructions limits its performancermndern CPUs because of the context
problem. We have described several recent dispatch optiioiz techniques. Some of the
techniques improve performance of each dispatch by reddlcgnnumber of contexts in which

a body is executed. Others reduce the number of dispatcbesipfy to zero.

RCS file : background — related.lyx, v Revision : 1.23 24

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Dynamic Hardware Branch Prediction

In Section 3.1 we will describe dispatch optimizations Hrateffective because they better use
the dynamic hardware branch predictor resources presanbdern processors. As discussed
in Section 2.1.4, a direct threaded interpreter presentsyasual workload which confounds
indirect branch predictors. The primary mechanism usedddipt indirect branches on mod-
ern computers is thieranch target buffe(BTB). The BTB is a memory that associates the des-
tination of a branch with its address [26]. The Pentium IV iempents a 4K entry BTB [28].
(There is no mention of a BTB in the PowerPC 970 programmersiaig80].) Direct thread-
ing confounds the BTB because all instances of a given vimgaluction compete for the same
BTB slot. The performance impact of this can be hard to predhot instance, if a tight loop
of the virtual program happens to contain a sequence of enigtual instructions then the
BTB may successfully predict each one. On the other hande if#lguence contains duplicate
virtual instructions, like the pair afl oad instructions in Figure 2.3, the BTB may mispredict

all of them.

Another kind of dynamic branch predictor is used for comahitil branch instructions. Con-
ditional branches are relative, or direct, branches seethez only two possible destinations.
The challenge lies in predicting whether the branch willdde=h or fall through. For this pur-
pose modern processors implemebtanch history tableThe PowerPC 7410, as an example,
deploys a 2048 entry 2 bit branch history table [35]. Diracgading also confounds the branch
history table as all the instances of each conditional Brasmtual instruction compete for the

same branch history table entry. This will be discussed irendetail in Section 3.1.3.

Return instructions can be predicted perfectly using a stdaddresses pushed by call
instructions. The Pentium IV has a 16 enteturn address staci28] whereas the PPC970

uses a similar structure called thek stack[30].

RCS file : background — related.lyx, v Revision : 1.23 25

2.3. TRACES

2.3 Traces

We usetraceto describe an interprocedural path through a program. dime has been used
in several different contexts. The application of the tehait tdoesnot concern our work and
yet is potentially confusing is by the Multiflow compiler [321] which performs instruction
scheduling on traces of instructions.

The Pentium 4 processor refers to its level 1 instructiorheags an “Execution Trace
Cache” [28]. The concept of storing traces in a hardwareunttin cache to maximize use
of instruction fetch bandwidth is discussed by RotenbergBehett in [46]. Optimization

techniques such as the “Software Trace Cache” reorder caatthteve a similar result [42].

2.3.1 HP Dynamo

HP Dynamo [2, 16, 1] is a system for trace-based runtime opdition of statically optimized
binary code. Dynamo initially interprets a binary execlggtrogram, detecting interprocedu-
ral paths, otraces through the program as it runs. These traces are then @gtihaind loaded
into atrace cache Subsequently, when the interpreter encounters a progreation for which

a trace exists, it is dispatched from the trace cache. Ifidi@tdiverges from the path taken
when the trace was generated thetraee exitoccurs, execution leaves the trace cache and
interpretation resumes. If the program follows the samb pgteatedly, it will be faster to ex-
ecute code generated for the trace rather than the origadal. ©@ynamo successfully reduced
the execution time of many important benchmarks on HP coenpuif it day.

Dynamo uses a simple heuristic, called Next Executing NHT), to identify traces. NET
starts generating a trace from the destination of a hotseugnanch, since this location is likely
to be the head of a loop, and hence a hot region of the progrékelg to follow. If a given
trace exit becomes hot, a new trace is generated startingifsalestination.

Software trace caches are efficient structures for dynamien@ation. Bruening and

Duesterwald [6] compare execution time coverage and caaefer three dynamic optimiza-

RCS file : background — related.lyx, v Revision : 1.23 26

CHAPTER 2. BACKGROUND AND RELATED WORK

tracel
cla /r call glue cla
callsite1 library code call guard

“«— library code
cb return glue
return guard
(@) clb
(b)

Figure 2.5: A simple dynamically loaded callee (a) requaesndirect branch whereas trace

code (b) guards with conditional branches.

tion units: method bodies, loop bodies, and traces. Thewghat method bodies require
significantly more code size to capture an equivalent amotigixecution time than either
traces or loop bodies. This result, together with the priggeoutlined in Section 1.3, suggest

that traces are a desirable execution unit for our gracgadtgnsible interpreter.

As part of trace generation Dynamo reverses the sense oitiomad branches so the path
along the trace sees onfhpt takenconditional branches. This is significant because, subse-
guently, when the trace is dispatched, all the frequenticeted conditional branches are not
taken, which is the sense that many static CPU branch predisthemes [57] assume will
be taken for forward branches. On HP hardware of the day thismave led to better use of
the skimpy, by today’s standards, branch prediction ressuavailable. In addition to better
branch prediction, the traces should promote better udgeahstruction cache prefetch band-
width. Since we expect that fewer conditional branches aggtaken by the traces, we should
also expect that the portions of instruction cache lindsohg the conditional branches will
be used more effectively. The Dynamo team did not reportergechitectural data to explain

exactly why Dynamo obtained the speed-ups it did.

RCS file : background — related.lyx, v Revision : 1.23 27

2.3. TRACES

Calls and Returns

Over an above making better use of the micro-architectuneab can perform optimistic
dynamic optimizations. A good example is its treatment ¢émal calls and returns to shared
library routines. The Hewlett-Packard PA-8000, in theispif its RISC architecture, does
not offer complex call and return instructions. A callsibest shared routine first branches to
a small chunk of glue code written by the static linker. Theegtode loads the destination
of the shared code from a data location that was mapped bydhie Bnker and initialized
by the dynamic loader. An indirect branch then transfergrobto that location. When glue
code is encountered during trace generation it is optimiaeal similar spirit to conditional
branches but also with the flavor of inlining. Figure 2.5 (alsirates the original extern call
and (b) shows how it is trace generated. The indirect brasaeplaced by a conditional
trace exit. The call guard in the figure is in fact a conditidmanch comparing the target of
the indirect branch to the original destination observedngdutrace generation [59]. That is,
instead of using the destination loaded by the loader glde @s input to an indirect branch,
Dynamo uses it to check that the trace contains the right obthe destination. As before, the
conditional branch is arranged so that it is not taken wherrobremains in the trace. Hence
the technique straightens the glue code and replaces ansxpgetaken, indirect branch with
a cheaper, not-taken conditional branch, as well as intimesallee code. Returns are handled
essentially the same way. If the destination of the sharele ecere to be changed by some
action of the dynamic loader, the guard code would detetthisidoes not correspond to the
code that was earlier inlined into the trace, and the traaddvexit.

The callsite of a C++ virtual function or a regular C functiammer will also start out as an
indirect call and be trace generated in a similar way. If a Cirtu&l function callsite turns out
to be effectively polymorphic, then the destination endeted during trace generation will be
inlined into the initial trace. As overrides of the virtuakthod are encountered, the trace exit
guarding the inlined code will fail. Eventually one of thenilldecome hot, and a new trace

will be generated from its entry point. Each time this occldgnamo inserts the address of

RCS file : background — related.lyx, v Revision : 1.23 28

CHAPTER 2. BACKGROUND AND RELATED WORK

the new trace into a hash table specific to the callsite keyetidaddress in the originating
code. Then, when a trace exit occurs resulting from an intlseanch, Dynamo can find the
destination trace by looking up the originating destinaiiothe hash table.

This technique provides a simple mechanism for dynamicyapérs to generate specula-
tive optimizations. In the examples we have just descrilmetkgenerated in the trace specu-
lates that the destination of a shared library call remagms@ant. However, the technique is
general and could be used for various speculations. In@ec§.6.3 and 5.7 we will discuss
variations of the technique for virtual method invocatiom aptimizing polymorphic virtual

instructions.

Cache Management

Caches, in general, hold recently used items, which meansghégolder, unused items are
at some point removed or replaced. The management of a leidbrmance trace cache can
be very complex [25]. Given that Dynamo can always fall backraerpretation it has a very
simple option. When its trace cache becomes full, Dynamo dsigie entire cache and starts
afresh. Dynamo calls this approasdactive flushing The hope is that some of the (older)
fragments are no longer part of the current working set optlogram and so if all fragments
are discarded the actual working set will fit into the caché&oudgh Dynamo deployed the
technique to manage trace cache space (according to thedakteport [1], the overhead of
normal cache management becomes much higher if garbagetomtl or some other adaptive
mechanism is used) it might also be an interesting way ofin@gaspeculative optimizations

that turned out to be incorrect or perform poorly.

2.3.2 Other Trace-oriented Systems

Significant trace-oriented binary optimization systenwude Microsoft’s Mojo [10], Trans-

meta’s CMS [14] and many others.

RCS file : background — related.lyx, v Revision : 1.23 29

2.3. TRACES

DynamoRIO

Bruening describes a new version of Dynamo which runs on tted 86 architecture. The
current focus of this work is to provide an efficient envira@mhto instrument real world pro-
grams for various purposes such as improve the securitgatieapplications [8, 7].

One interesting application of DynamoRIO was by Sullivan lef5a]. They ran their
own tiny interpreter on top of DynamoRIO in the hope that it Vdobe able to dynamically
optimize away a significant proportion of interpretatioredwead. They did not initially see
the results they were hoping for because the indirect dibdatanches confounded Dynamao’s
trace selection. They responded by creating a small irderfeyy which the interpreter could
programatically give DynamoRIO hints about the relatiopdtetween the virtual pc and the
hardware pc. This was essentially their way around what we kiascribed as the context
problem (Section 2.1.4). Whereas interpretation slowedndbw almost two using regular
DynamoRIO after they had inserted calls to the hint API they speedups of about 20% on
a set of small benchmarks. Baron [3] reports similar perforcearesults running a similarly

modified Kaffe JVM [58].

Hotpath

Gal, Probst and Franz describe the Hotpath project. Hotplsth extends JamVM (one of
the interpreters we use for our experiments) to be a traemtad mixed-mode system [24].
Their profiling system, similar to those used by many methaskeld JIT compilers, is loosely
coupled with the interpreter. They focus on traces stadirigop headers and do not compile
traces not in loops. Thus, they do not attempt trace linksxdescribed by Dynamo, but rather
“merge” traces that originate from side exits leading bachkobp headers. This technique
allows Hotpath to compile loop nests. They describe anasterg way of modeling traces
using Single Static Assignment (SSA) [13] that exploits¢bastrained flow of control present
in traces. This both simplifies their construction of SSA alidws very efficient optimization.

Their experimental results show excellent speedup, wihiactor of two of Sun’s HotSpot,

RCS file : background — related.lyx, v Revision : 1.23 30

CHAPTER 2. BACKGROUND AND RELATED WORK

for scientific style loop nests like those in benchmarks like SOR and Linpack, and more
modest speedup, around a factor of two over interpretatoyr;FT. No results are given for
tests in the SPECjvm98 suite, perhaps because their sysessmdbyet support “trace merging
across (inlined) method invocations” [24] pp. 151. The m@ation techniques they describe

seem complimentary to the overall architecture we propo$ghapter 5.

Last Executed Iteration (LEI)

Hiniker, Hazelwood and Smith performed a simulation studgl@ating enhancements to the
basic Dynamo trace selection heuristics described abdije They observed two main prob-
lems with Dynamo’s NET heuristic. The first problem, “tra@paration” occurs when traces
that turn out to often execute sequentially happen to besgdléar apart in the trace cache, hurt-
ing the locality of reference of code in the instruction aachEl maintains a branch history
mechanism as part of its trace collection system that allbwsdo a better job handling loop
nests, requiring fewer traces to span the nest. The secoidepr, “excessive code duplica-
tion”, occurs when many different paths become hot througdgaon of code. The problem is
caused when a trace exit becomes hot and a new trace is gehtrat diverges from the pre-
existing trace for only one or a few blocks before rejoinitsgaath. As a consequence the new
trace replicates blocks of the old from the place they rejoitheir common end. Combining

several such “observed traces” together forms a regionmithiple paths and less duplication.

2.4 JIT Compilation

Modern Just In Time (JIT) compilers can achieve much higleefgpmance than efficient in-
terpreters because they generate code for potentiallg f@gjons of the virtual program and
hence can optimize the region. Typically these JIT compiterd the interpreters with which
they coexist are not very tightly coupled [49, 36]. Rathery@fing mechanism detects hot

methods, or inlined method nests, which are then compiledtive code. When the interpreter

RCS file : background — related.lyx, v Revision : 1.23 31

2.4. JIT COMPILATION

next attempts to invoke a method which has been compilechdtiee code is dispatched in-
stead. Although JIT compilation of entire methods has beewgn in practice, it nevertheless
has a few limitations. First, some of the code in a compilethodmay be cold and will never

be executed. Compiling this code can have only indirect bispsfich as proving facts about
the portions of the method thate hot. Second, some of the code in a method may not have
executed yet when the method is first compiled, even thougfilibecome hot later. In this
case the JIT compiler has no profiling data to work with wheroimhpiles the cold code and

hence cannot optimize as effectively.

Another challenge raised by cold code is caused by late tgndlava, as well as many
other modern languages binds many external references latan interpreter this can be
relatively simply handled by rewriting unresolved argunseim the DTT with the resolved
version after the instruction has run the first time. In retede the equivalent process requires
code rewriting. This, in turn adds significant complexitychese multiple threads may be

racing to rewrite the instruction [52].

JIT compilers perform many of the same optimizations pentx by static compilers, in-
cluding method inlining and data flow analysis, both of wheelm be hindered by methods that
contain large amounts of cold code, as observed by Sugarahd&®]. To deal with the prob-
lem, they modify a method-based JIT to allow selected regywithin a method to be inlined,
and rely onon stack replacemeii29] and recompilation to recover if a non-inlined part of a
method is executed. Although avoiding cold code reducecdpdation overhead significantly,

only modest overall performance gains were realized.

A JIT compiler can also perform optimizations that requitedrmation obtained from a
running program. A classic example addresses virtual ndetivamcation, which is expensive
at least in part because the destination depends on a daadary, namely the class of the
invoked-upon object. Polymorphic method invocation hasnbleeavily studied and it is well
known that in most programs most polymorphic callsitesedfectively monomorphievhich

means that at run time the invoked-upon object always tumgmhave the same type, and

RCS file : background — related.lyx, v Revision : 1.23 32

CHAPTER 2. BACKGROUND AND RELATED WORK

hence the same callee is invoked all or most of the time [1&]f. [S3] pioneered the dynamic
optimization of virtual dispatch, an optimization that lgasat impact on the performance of
Java programs today. With profile information, a JIT compilgn transform a virtual method
dispatch to a relatively cheap check of the class of the iedgakpon object followed by the
inlined code of the callee. If the callsite continues to benormorphic the check succeeds
and the inlined code executes. If, on the other hand, thekdladls, a relatively slow virtual
dispatch must take place. Holzle [29] describes how a poipimo inline cache (PIC) can deal
with an effectively polymorphic callsite which has a few ldetstinations.

A problem faced by all profile-driven dynamic compilers, bapecially by those that com-
pile code code, is that assumptions made when code is campidg turn out to be wrong
leading to incorrect code or code that performs less weli thhad been compiled under dif-
ferent assumptions. For instance, Pechtchanski and Saekaribe a speculative scheme by
which their compiler assumes that a method for which theomig one loaded definition will
never be overridden. Later, if the loader loads a class telmes another definition of the
method the original code is incorrect and must not be runnagh this case the entire en-
closing method (or inlined method nest) must be recompitettumore realistic assumptions
and the original compilation discarded [37]. Similar regmlation events are caused when the
original code is not wrong but slower than it could be.

The infrastructure to replace a method is called On Stackdeptent (OSR) and is a
fundamental requirement of speculative optimizations @thnd-oriented dynamic compilers.
Fink and Qian [22] show how to restrict method-based opttiin so that OSR is always
possible. The key issue is that values that may be dead catkr tnaditional optimization
schemes must be kept alive in order a less aggressivelyiaptimeplacement method to com-

plete calculations started by the invalidated code.

RCS file : background — related.lyx, v Revision : 1.23 33

2.4. JIT COMPILATION

RCS file : background — related.lyx, v Revision : 1.23

34

Chapter 3

Efficient Interpretation

Our goal is to design and build a virtual machine that can bduyglly extended from interpre-
tation to mixed-mode execution. At the beginning of thditime we expect most languages

to rely on pure interpretation and so its performance is irg.

3.1 Design and Implementation

Direct-threaded interpreters are known to have very poandir prediction properties, how-
ever, they are also known to have a small cache footprintsfimall to medium sized opcode
bodies) [44]. Since both branches and cache misses are pipgdine hazards, we would like
to retain the good cache behavior of direct-threaded intégps while improving the branch
behavior. The preceding chapter describes various tegésifipr improving branch prediction
by replicating entire bodies. The effect of these techrsqs¢o trade instruction cache size for
better branch prediction. We believe it is best to avoid gngveode if possible. We introduce
a new technique which minimally affects code size and preduramatically fewer branch

mispredictions than either direct threading or directaliag with inlining.

35

3.1. DESIGN AND IMPLEMENTATION

3.1.1 Understanding Branches

To motivate our design, first note that the virtual progranymantain all the usual types of
control flow: conditional and unconditional branches, iedt branches, and calls and returns.
We must also consider the dispatch of straight-line virinatructions. For direct-threaded
interpreters, sequential (virtual) execution is just agessive as handling control transfers,
sinceall virtual instructions are dispatched with an indirect bfancSecond, note that the
dynamic execution path of the virtual program will contaattprns (loops, for example) that
are similar in nature to the patterns found when executiriiysn@ode. These control flow
patterns originate in the algorithm that the virtual progianplements.

As described in Section 2.2 modern microprocessors hav&dmnable resources devoted
to identifying these patterns in native code, and explgitimem to predict branches. Direct
threading uses only indirect branches for dispatch and{altre context problem, the patterns
that exist in the virtual program are effectively hiddemfréhe microprocessor.

The fundamental goal of our approach is to expose theseal/gtuntrol flow patterns to the
hardware, such that the physical execution path matchearthal execution path. To achieve
this goal, we exploit the different types of hardware prédicresources to handle the different
types of virtual control flow transfers. In Section 3.1.2 wew how to replace straight-line
dispatch with subroutine threading. In Section 3.1.3 weashow to inline conditional and
indirect jumps and in Section 3.1.4 we discuss handlingialrtalls and returns with native
calls and returns. We strive to maintain the property thatthual program counter is precisely
correlated with the physical program counter and in facthwur technique there is a one-to-

one mapping between them at most control flow points.

3.1.2 Handling Linear Dispatch

The dispatch of straight-line virtual instructions is tlaegest single source of branches when

executing an interpreter. Any technique that hopes to ingbsanch prediction accuracy must

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 36

CHAPTER 3. EFFICIENT INTERPRETATION

Virtual Instruction Bodies

DTT
interp () {
1:| &ctt[0]~ vPC CTT ot void iload () {
a ot //push var. .
~ call iload - "‘:x" VvPC++;
> ECtt o T iToaa }
5: &ctt [2] 44— call iconst = -f-r--ee--eees -1 void iconst () {
. 1 , call iadd -1, //push constant
/a call iadd 1 VBCH+;
7:| s&ctt[3] // : SURIN }
8:| scttla] A call istore e
: / b void iadd(){
&CtE (5] //add 2 slots}
C S
‘Pvoid istore () {
loaded data generated code //pop, store var
}

Figure 3.1: Subroutine Threaded Interpreter showing h@QhT contains one generated di-
rect call instruction for each virtual instruction and hdw first entry in the DTT corresponding

to each virtual instruction points to generated code toatdpit.

Virtual Instruction Bodies

interp(){

i | oad:
/I push var. .

asmvolatile("ret");
goto *VPC+H+;

i const:
/I push const ant

asmvol atile("ret");
goto *VPC++,

Figure 3.2: Direct threaded bodies retrofitted as callamlgéimes by inserting inline assembler

ret on Pentium.

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 37

3.1. DESIGN AND IMPLEMENTATION

address straight-line dispatch. An obvious solution iging, as it eliminates the dispatch
entirely for straight-line sequences of virtual instroas. The increase in code size caused
by aggressive inlining, however, has the potential to owetv the benefits with the cost of

increased instruction cache misses [55].

Rather than eliminate dispatch, we propose an alternaty&naration for the interpreter
in which native call and return instructions are used. Cotdly, this approach is elegant
because subroutines are a natural unit of abstraction t@exphe implementations of virtual

instructions.

Figure 3.1 illustrates our implementation of subroutine#aling, using the same example
program as Figure 2.3. In this case, we show the state of theal/imachineafter the first
virtual instruction has been executed. We add a new streittuthe interpreter architecture,
called theContext Threading TablgCTT), which contains a sequence of nateadl instruc-
tions. Each nativeall dispatches the body for its virtual instruction. We use #rentContext
Threading because the hardware address of each call instructios @ T provides execution

context to the hardware, most importantly, to the brancdipters.

Although Figure 3.1 shows each body as a nested functioraanvie simulate this by
ending each non-branching opcode body with a naéti@ninstruction as shown in Figure 3.2.
The Direct Threading Table (DTT) is still necessary to siarmediate virtual operands, and
to correctly resolve virtual control transfer instructsorn direct threading, entries in the DTT

point to opcode bodies, whereas in subroutine threadingréfer to call sites in the CTT.

It seems counterintuitive to improve dispatch performamgealling each body. It is not
obvious whether a call to a constant target is more or lessresiye to execute than an indirect
jump, but that is not the issue. Modern microprocessorsatospecialized hardware to im-
prove the performance ehll andreturn— specifically, a return address stack that predicts the
destination of the return to be the instruction following ttorresponding call. Although the
cost of subroutine threading is two control transfers, wei@ne for direct threading, this cost

is outweighed by the benefit of eliminating a large sourcengiradictable branches.

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 38

CHAPTER 3. EFFICIENT INTERPRETATION

3.1.3 Handling Virtual Branches

Subroutine threading handles the branches that are inducéke dispatch of straight-line
virtual instructions, however, the actual control flow oé tirtual program is still hidden from
the hardware. Thatis, bodies of opcodes that affect thealicontrol flow still have no context.
There are two problems, one relating to shared indirectdbramediction resources, and one

relating to a lack of history context for conditional brammediction resources.

Figure 3.3 introduces another Java example, this time divafua virtual branch. Consider
the implementation of f eq, marked (a) in the figure. Even for this simple virtual branch
prediction is problematic, becaua# instances of f eq instructions in the virtual program
share a single indirect branch instruction (and hence hasiagie prediction context). A
simple solution is to generate replicas of the indirect bhainstruction in the CTT immediately
following the call to the branching opcode body. Branchingase bodies now end with native
return, which transfers control to the replicated indite@nch in the CTT. As a consequence,
each virtual branch instruction now has its own hardwardecdn We refer to this technique

asbranch replication Figure 3.4 illustrates how branch replication works.

Branch replication is attractive because it is simple andipces the desired context with
a minimum of replicated instructions. However, it has a nambf drawbacks. First, for
branching opcodes, we execute three hardware controféran@ call to the body, a return,
and the actual branch), which is an unnecessary overheatbn&ewe still use the overly
general indirect branch instruction, even in casesdigeo where we would prefer a simpler
direct native branch. Third, by only replicating the disgmpart of the virtual instruction,
we do not take full advantage of the conditional branch mtediresources provided by the
hardware. Due to these limitations, we only use branchaatdin for indirect virtual branches

and exceptions

For all other branches we fully inline the bodies of virtuedioch instructions into the CTT.

tOcaml defines explicit exception virtual instructions

RC S file : ef ficient — interpretation.lyx, v Revision : 1.20 39

3.1. DESIGN AND IMPLEMENTATION

Java source

boolean isOne (int pil) {
if (pl!=0){

return true;

Jelse

return false;

boolean isOne (int) ;
Code:

0: iload_1
> 1: ifeq 6

-
-

. 4: iconst_1

5: ireturn
6: iconst 0
7 ireturn interp() {
Java Bytecode J-p iload_1:
R //push local 1
DTT ,:" VPC++;
// asm ("ret")
0:\| &ctt[0] A CTT .
s -p ifeq:
1: &Ctt[l] \\ - "' x“ if (*Sp)
- \ call ilocad 1 -- "'/' VvPC = *vDPC;
3:| &ctt[2] T call ifeq -7 (a) else
] - PC++;
4:] sctel3) 43— - call iconst 1-.f ot
5. sctt[4] — call ireturn -. | .
6:| sctt[5] - call iconst_ 0--f* "t} iconst 1: //push 1
T call ireturn ---}._ -t iconst_0 //push 0
Tl return:
//VPC = return
goto *vPC;
}
loaded data generated code virtual instruction bodies

Figure 3.3: Subroutine Threading does not not address brastructions. Unlike straight
line virtual instructions virtual branch bodies end withiadirect branch destination (just like

direct threading).

RCS file : ef ficient — interpretation.lyx, v Revision : 1.20 40

CHAPTER 3. EFFICIENT INTERPRETATION

interp () {
,-» iload 1:
. //push local 1
DTT /' VPC++,‘
,," asm ("ret")
sctt [0] CTT ,
sctt[1] \ e
> call iload 1 if (*sp)
6 — vPC = *vPC;
I~ 1 L -
sctt[2] - call ifeq .- else
j % PC++;
&ctt [3] \ jmp (VPC) as; (:;et")
T \\»call %const_l
&ctt [5] ~call ireturn -1 iconst 1: //push 1]
jmp (%vPC) T iconst 0 //push O|
~Scall iconst 0 o
. lreturn:
call ireturn //vPC = return
Jjmp ($VvPC) asm("ret") ;
}
loaded data generated code virtual instruction bodies

Figure 3.4. Context threading with branch replication itating the “replicated” indirect
branch in the CTT. The fact that the indirect branch corredpaa only one virtual instruction
gives it better prediction context. The heavy arrow fromt¢a(b) is followed when the virtual

branch is taken.

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 41

3.1. DESIGN AND IMPLEMENTATION

We refer to this adranch inlining In the process of inlining, we convert indirect branches
into direct branches, where possible. On the Pentium tdisaes pressure on the branch taken
buffer, or BTB, since it instead exploits the conditional lmiampredictors. The virtual condi-
tional branches now appear as real conditional branchd®tbardware. The primary cost of
branch inlining is increased code size, but this is modesdlge virtual branch instructions are
simple and have small bodies. For instance, on the Pentiumdgt branch instructions can
be inlined with no more than 10 words of additional space.uféd3.5 shows an example of
inlining thei f eq branch instruction. The machine code, shaded in the figim@ements the
same if-then-else logic as the original direct threadetialinstruction body. In the figure we
assume key interpreter variables like the virtual PC andesgion stack pointer exist in dedi-
cated registers. This is the technique used in Ocaml on betPéntium 4 and the PowerPC,
and SableVM on the PowerPC, but not for SableVM on the Pentiumare they are stored in
stack slots instead. We use Intel instructions in the figutesimilar code must be generated on
the PowerPC. The generated code no longer uses an indirachiaad the inlined conditional
branch instructionj(ne, marked (a) in the figure) is fully exposed to the Pentiumisditbonal
branch prediction hardware.

An obvious challenge with branch inlining is that the getedacode is not portable and
assumes detailed knowledge of the virtual bodies it mustaperate with. For instance, in
Figure 3.5 the generated code must know that the Pentf4ess register has been dedicated

to thevPC.

3.1.4 Handling Virtual Call and Return

The only significant source of control transfers that remaithe virtual program are virtual
calls and returns. For successful branch prediction, thlepr@blem is not the virtual call, but
rather the virtual return, because one virtual return malgapk to multiple call sites. As noted
previously, the hardware already has an elegant solutitimggroblem for native code in the

form of the return address stack. We need only to deploy ésigurce to predict virtual returns.

RC S file : ef ficient — interpretation.lyz, v Revision : 1.20 42

CHAPTER 3. EFFICIENT INTERPRETATION

vPC
CTT
DTT —call iload_1
&ctt [0] L,subl $4, %edi
N &ctt [1] movl (%edi), %eax interp () {
6 <.:mp1 S0, %eax g Toad 1.
&ctt [2] jne nt e, . (@) //push local 1
&ctt [3] movl (%esi), %esi s VPC++;
sctt [4] jmp cttdest asm ("ret")
sctt [5] ™nt: addl $4, %esi® b iconst 1. |
“call iconst 1 :
call ireturn ..-f1?_iconst 0 |
goto *vPC L3 ireturn:
¢all iconst 0 -~ //vPC = return
call ireturn asm("ret") ;
goto *vPC }
loaded data generated code virtual instruction bodies

Figure 3.5: Context Threaded VM Interpreter: Branch InlinowgPentium. The generated
code (shaded) assumes tHeCis in registelesi and the Java expression stack pointer is in
register¥edi . The dashed arrow (a) illustrates the inlined conditiomahich instruction, now
fully exposed to the branch prediction hardware, and theyhaarow (b) illustrates a direct

branch implementing the taken path.

We describe our solution with reference to Figure 3.6. Thiual call body should effect
a transfer of control to the start of the callee. We begin attaal call instruction (see label
“(a)” in the figure). The virtual call body simply sets thé€C to the entry point of the callee
and executes a nativeturnto the next CTT location. Similar to branch replication, wedrt
a new nativecall indirect instruction following “(a)” in the CTT to transfer control tthe
start of the callee (solid arrow from “(a)” to “(b)” in the fige). The call indirect causes the
next location in the CTT to be pushed onto the hardware’s meagidress stack. The first
instruction of the callee is then dispatched. At the end efdhllee, we modify the virtual
return instruction as follows. In the CTT, we emit a nativeeditbranchto dispatch the body

of the virtual return (before label “(b)".) Unlike using atiee call for this dispatch, the direct

RC S file : ef ficient — interpretation.lyz, v Revision : 1.20 43

3.1. DESIGN AND IMPLEMENTATION

vPC CTT
DTT - call invokestatic|., interp () {
*
call (*vPC) . A : :
S D N --» invokestatic:
&ctt [0] o //build frame
caller VPC = *VPC;
; asm ("ret")
J--> return:
: //pop frame
H callee vPC = return
&ctt[calleel | % .
[~ Jjmp return -7 € asm("ret");
“d.ret b))
loaded data generated code virtual instruction bodies

Figure 3.6: Context Threading Apply-Return Inlining on Penti The generated codsmlls

i nvokest at i ¢ butjumps(instruction at (b) is 4 np) to the return .

branch avoids perturbing the return address stack. We sntwif body of the virtual return
to end with a nativeeturn instruction, which now transfers control all the way backhe
instruction following the original virtual call (dotted raw from “(b)” to “(a)”.) We refer to
this technique aapply/return inlining.

With this final step, we have a complete technique that alahgirtual program control
flow with the corresponding native flow. There are howevemeractical challenges to
implementing our design for apply/return inlining. Firsthe must take care to match the
hardware stack against the virtual program stack. Formestan OCaml, exceptions unwind
the virtual machine stack; the hardware stack must be unevaua corresponding manner.
Second, some run-time environments are extremely semsitivardware stack manipulations,
since they use or modify the machine stack pointer for them purposes (such as handling
signals). In such cases, it is possible to create a sepasatesdructure and swap between the

two at virtual call and return points. This approach wouldladuce significant overhead, and

2«apply” is the name of the (generalized) function call opead OCaml where we first implemented the
technique.

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 44

CHAPTER 3. EFFICIENT INTERPRETATION

is only justified if apply/return inlining provides a substial performance benefit.
Having described our design and its general implementattemow evaluate its effective-

ness on real interpreters.

RC S file : ef ficient — interpretation.lyz, v Revision : 1.20 45

3.1. DESIGN AND IMPLEMENTATION

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 46

Chapter 4

Evaluation

In this section, we evaluate the performance of contextattirey and compare it to direct
threading and direct-threaded selective inlining. Corttexading combines subroutine thread-
ing, branch inlining and apply/return inlining. We evaleidhe contribution of each of these
techniques to the overall impact of context threading usmg virtual machines and three
microprocessor architectures. We begin by describing mpe@mental setup in Section 4.1.
We then investigate how effectively our techniques addpgssline branch hazards in Sec-
tion 4.2.1, and the overall effect on execution time in Sec#.2.2. Finally, Section 4.3
demonstrates that context threading is complementarylitorig resulting in a portable, rel-
atively simple, technique that provides performance couaigla to or better than SableVM’s

implementation of selective inlining.

4.1 Virtual Machines, Benchmarks and Platforms

We evaluated our techniques by modifying interpreters &aknd Ocaml to run on Pentium

IV, PowerPC 7410 and PPC970.

a7

4.1. VIRTUAL MACHINES, BENCHMARKS AND PLATFORMS

Table 4.1: Description of OCaml benchmarks

Pentium IV PowerPC 7410 PPC970| Lines
Branch Branch Elapsed of
Time Mispredicts Time Stalls Time Source

Benchmark | Description (TSC*108) (MPT*10%) | (Cycles*108) (Cycles*109) (sec) Code
boyer Boyer theorem prover 3.34 7.21 1.8 43.9 0.18 903
fft Fast Fourier transform 31.9 52.0 18.1 506 1.43 187
fib Fibonacci by recursion 2.12 3.03 2.0 64.7 0.19 23
genlex A lexer generator 1.90 3.62 1.6 27.1 0.11 2682
kb A knowledge base program 17.9 42.9 9.5 283 0.96 611
nucleic nucleic acid’s structure 14.3 19.9 95.2 2660 6.24 3231
quicksort Quicksort 9.94 20.1 7.2 264 0.70 91
sieve Sieve of Eratosthenes 3.04 1.90 2.7 39.0 0.16 55
soli A classic peg game 7.00 16.2 4.0 158 0.47 110
takc Takeuchi function (curried) 4.25 7.66 3.3 114 0.33 22
taku Takeuchi function (tuplified) 7.24 15.7 5.1 183 0.52 21

4.1.1 OCaml

We chose OCaml as representative of a class of efficient, -bl@s#d interpreters that use
direct-threaded dispatch. The bytecode bodies of thepratar are very efficient, and have
been hand-tuned, including register allocation. The imgletation of the OCaml interpreter

is clean and easy to modify.

4.1.2 SableVM

SableVM is a Java Virtual Machine built for quick interprda, implementing lazy method
loading and a novel bi-directional virtual function looktgble. Hardware signals are used
to handle exceptions. Most importantly for our purposefl&8aM already implements mul-
tiple dispatch mechanisms, including switch, direct thdieg, and selective inlining (which
SableVM callsinline threading [23]. The support for multiple dispatch mechanisms makes i
easy to add context threading, and allows us to compare instga selective inlining imple-

mentation, which we believe is a more complicated technique

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 48

CHAPTER 4. EVALUATION

Table 4.2: Description of SpecJVM benchmarks

Pentium IV PowerPC 7410 PPC970

Branch Branch Elapsed
Time Mispredicts Time Stalls Time
Benchmark | Description (Tsc*10'l) (MPT*10°) | (Cycles*10'0) (Cycles*108) (sec)
compress | Modified Lempel-Ziv compression 4.48 7.13 17.0 493 127.7
db performs multiple database functions 1.96 2.05 7.5 240 65.1
jack A Java parser generator 0.71 0.65 2.7 67 18.9
javac the Java compiler from the JDK 1.0.2 1.59 1.43 6.1 160 44.7
jess Java Expert Shell System 1.04 1.12 4.2 110 29.8
mpegaudio | decompresses MPEG Layer-3 audio files ~ 3.72 5.70 14.0 460 106.0
mtrt two thread variant of raytrace 1.06 1.04 5.3 120 26.8
raytrace a raytracer rendering 1.00 1.03 5.2 120 31.2
scimark performs FFT SOR and LU, 'large’ 4.40 6.32 18.0 690 118.1
soot java bytecode to bytecode optimizer 1.09 1.05 2.7 71 35.5

4.1.3 OCaml Benchmarks

The benchmarks in Table 4.1 constitute the complete stdr@@aml| benchmark suiteBoyer ,
kb, qui cksort andsi eve are mostly integer processing, whiteicl ei ¢ andf ft are
mostly floating point benchmark&ol i is an exhaustive search algorithm that solves a soli-
taire peg gameFi b, t aku, andt akc are tiny, highly-recursive programs which calculate
integer values. These three benchmarks are unusual betteyseontain very few distinct
virtual instructions, and often contain only one instanteach. These features have two
important consequences. First, the indirect branch irctiteeaded dispatch is relatively pre-
dictable. Second, even minor changes can have dramatats{teoth positive and negative)

because so few instructions contribute to the behavior.

1ftp://ftp.inria.fr/INRIA/Proj ects/cristal/ Xavier. Leroy/ benchmar ks/ obj cam . tar. gz

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 49

4.1. VIRTUAL MACHINES, BENCHMARKS AND PLATFORMS

4.1.4 SableVM Benchmarks

SableVM experiments were run on the complete SPECjvm98 [dii¢ gconpr ess, db,
npegaudi o,raytrace,ntrt,j ack,j ess andj avac), one large object oriented appli-
cation 6oot [54]) and one scientific applicatios ¢i mar k [41]). Table 4.2 summarizes the

key characteristics of these benchmarks.

4.1.5 Pentium IV Measurements

The Pentium IV (P4) processor aggressively dispatchesuttgins based on branch predic-
tions. As discussed in Section 2.1.4, the taken indireatdiras used for direct-threaded dis-
patch are often mispredicted due to the lack of context.lije@e would measure the mispre-

dict penalty for these branches to see their effect on ekettitne, but the P4 does not have a
counter for this purpose. Instead, we count the numbetigpredicted taken branch@sIPT)

to show how effectively context threading improves branddjction. We measure time on the
P4 with the cycle-accuratitme stamp countefTSC) register. We count both MPT and TSC
events using our own Linux kernel module, which collects ptate data for the multithreaded

Java benchmarks

4.1.6 PowerPC Measurements

We need to characterize the cost of branches differentlpj@®PowerPC than on the P4, as these
processors do not typically speculate on indirect brancimssead, split branches are used (as
shown in Figure 2.4(b)) and the PPC stalls in the branch uriit the branch destination is
known. Hence, we would like to count the number of cyclesetiatiue to link and count
register dependencies. Fortunately, the older PPC7410 CPW baunter (counter 15, “stall

on LR/CTR dependency”) that provides exactly this informa{id5]. On the PPC7410, we

2MPT events are counted with performance counter 8 by settimg4 CCCR to 0x0003b000 and the ESCR
to value 0xc001004 [31]

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 50

CHAPTER 4. EVALUATION

also use the hardware counters to obtain overall executiwestin terms of clock cycles. We
expect that the branch stall penalty should be larger on meeply-pipelined CPUs like the
PPC970, however, we cannot directly count these stall cyarlethis processor. Instead, we

report only elapsed execution time for the PPC970.

4.2 Interpreting the data

In presenting our results, we normalize all experimenthéodirect threading case, since it
is the baseline state-of-the art dispatch technique. We thig absolute execution times and
branching characteristics for each benchmark and platéing direct threading in Tables 4.1
and 4.2. Bar graphs in the following sections show the caumiobs of each component of
our technique: subroutine threading only (labeled SUB)yrauine threading plus branch
inlining and branch replication for exceptions and indire@nches (labeled BRANCH); and
our complete context threading implementation which idekiapply/return inlining (labeled
CONTEXT. We include bars for selective inlining in SableVMI§eledSELECT) and our own
simple inlining technique (labele@INY) to facilitate comparisons, although inlining results
are not discussed until Section 4.3. We do not show a bar fectdihreading because it would

have height 1.0, by definition.

4.2.1 Effect on Pipeline Branch Hazards

Context threading was designed to align virtual progranmestath physical machine state to
improve branch prediction and reduce pipeline branch liszavwe begin our evaluation by
examining how well we have met this goal.

Figure 4.1 reports the extent to which context threadingiced pipeline branch hazards
for the OCaml benchmarks, while Figure 4.2 reports thesdtsefr the Java benchmarks
on SableVM. On the left of each Figure, the graphs labeleg@dent the results on the P4,

where we count mispredicted taken branches (MPT). On tlint, igaphs labeled (b) present

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 51

sanfSou

T uorstavdy a ‘xfipuorynioadiaiur — U101 f [o

0c't

A

VIVd FH1L ONILFHdHFINI C'v

LR/CTR stall cycles Relative to Direct MPT relative to Direct
o o - o o o [
o o o IS o 0 o
T
«Q
S boyer boyer
¢
ra
= fft fft
O
8 fib [fib
3
o genlex === genlex
o
@
= —~ kb ~ kb
T U 3 T 35 77|
Q mv) = nucleic g = nucleic
N (@) o o
2 g 2 s 2
o Sou S
O '-E gqmckson 3 ngcksort
Py o) AN I
1) ~ . 777 ~) 7 2
Q_.) sieve sieve
—
=
¢ ’ i
8_ soli soli
O
é. take b 5 takce : ’
4H0m 0
o 28%¢ 203 ¢
— <z JZ> @ < 5 z
:_T| taku ﬁ Q taku e
E. 3 45
o geoMean geoMean

CHAPTER 4. EVALUATION

-
O
L
—
m
"

CONTEXT

AAANANANANANANANANNANANNN

1.0

@ «© ~
o o o

199110 01 dAIR[RI LdIN

0.2

uea\oab

100s

Srewis

Ael

mw

Badw

Java benchmark

ssal

(a) Pentium 4

oenel

yoel

ap

§ ssaidwod

SELECT

CONTEXT

Y TINY

22| Uuea|\oab

TR J00S

Srewios

............................... aoelfel

AIIIIILILILILILILLRAAA AR AR

R R 1w
P 772 7 72 777 A
-_ o
ANAANARARAANANANANANNRNNNNNN
BRIz Ssol
7 7777777777772 77777777777
ANNNNNNNNNNNNNNNNNNNNNNNNNNNY
............................ oenel
XA Sjoe|
............. ap
NN
—
=] ssaldwod

77777777}

o
—

@
o

@ < N
o o o

0.0

108117 01 8AIR[9Y S3|2AD |[els ¥1D/41

Java benchmark

(b) PPC7410

Figure 4.2:Java Pipeline Hazards Relative to Direct Threading

53

:1.20

: ef ficient — interpretation.lyx, v Revision

RCS file

4.2. INTERPRETING THE DATA

the effect on LR/CTR stall cycles on the PPC7410. The last clasteach bar graph reports
the geometric mean across all benchmarks.

Context threading eliminates most of the mispredicted tdkkanches (MPT) on the Pen-
tium IV and LR/CTR stall cycles on the PPC7410, with similar @feeffects for both inter-
preters. Examining Figures 4.1 and 4.2 reveals that submotitreading has the single greatest
impact, reducing MPT by an average of 75% for OCaml and 85%dbtey/M on the P4, and
reducing LR/CTR stalls by 60% and 75% on average for the PPC7RA. result matches
our expectations because subroutine threading addrdssédargest single source of unpre-
dictable branches—the dispatch used for all straightitytecodes. Branch inlining has the
next largest effect, again as expected, since conditiorzeldhes are the most significant re-
maining pipeline hazard after applying subroutine thregdiOn the P4, branch inlining cuts
the remaining MPTs by about 60%. On the PPC7410 branch iglihas a smaller, though
still important effect, eliminating about 25% of the remiagpnLR/CTR stall cycles. A notable
exception to the MPT trend occurs for the OCaml benchmarks &lkc andt aku. In these
tiny, recursive benchmarks branch inlining the conditidmanches hurts prediction by a small
amount on the Pentium. As noted previously, even minor cbaungthe behavior of a single
instruction can have a noticeable impact for these bendtsnar

Having shown that our techniques can significantly redupelpie branch hazards, we now

examine the impact of these reductions on overall exectitiog.

4.2.2 Performance

Context threading improves branch prediction, resultingeneased pipeline usage on both the
P4 and the PPC. However, using a natad/return pair for each dispatch increases instruction
overhead. In this section, we examine the net result of tiveseeffects on overall execution
time. As before, all data is reported relative to direct daliag.

Figures 4.3 and 4.4 show results for the OCaml and SableVMHrearks respectively.

They are organized in the same way as the previous sectitnP#iresults on the left, labeled

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 54

CHAPTER 4. EVALUATION

14

1.2

o
—

@ © < N
o o o o

199110 01 9AIR[RI DS L

ueanoab
-
H nxe}
=
zZ >
o Z
o T, el
N
Iios
anals
X
o
5
posxyainbE
=
[S]
c
(&)
o]
R JleIny —
IS
IS
(&)
(@)
P
e IRy
.nunuuuuuununununuuuudununuuuuuununununuuuuuununununuuuuuunununuuuuu DC
————— ——————— — E
J19h0q

(a) Pentium 4

[
x
w
[
z
o
O

uea\oab

nye}

el

Ilos

anais

uosyoInb

J18[oNU

OCaml benchmark
(b) PPC7410

P>

xa|uab

ARSASRRSIARIRRERANSRRNANNENRNNNNNNNANNNNNNASNNNSY

_?’”””"’””””””?”””””?”””’4

108110 01 8ANIR|9Y SB8|0AD

Figure 4.3:0Caml Elapsed Time Relative to Direct Threading

55

: ef ficient — interpretation.lyx, v Revision : 1.20

RCSfile

4.2. INTERPRETING THE DATA

-
O
w
—
m
n

CONTEXT

R R R R R R R R R R R R R RR IR IR

77777 7777777777777 7777777 777777 777777777777 £77777 4

7777727777777777772777777.7777777 7777777777777

AAAARARANARAAAANANANANANAR AR

I SIIIIIIIIIIIIII I IS II SIS IS IS IS SIS IS IS IS IS

oo QDI

[AANANANANANANRNARRARARARARANAAARA AR AR AR AR RN NN ANNANRNNANAN

AT
T ettt et e e e Tt Tt Tt Tt Tt T a e Ta e
277 2 2 2

XX

[N A A

AAAARANARARAAAALANLANARARARARARARARAAA AR AN AN

(277777777777 7777777777777 777777777777

1.0

@
o

199110 01 9AIR[dY OSL

0.6
0.4
0.2
0.0

q ssal

ueaoab

100s

Sewios

Key

Badw

Java benchmark
(a) Pentium IV

oenel

yoel

ap

ssaidwod

—
O
L
—
m
"

BRANCH

CONTEXT

R R R R R R R R R R R R R IR IR IR IR IR IR IIIIIIIIIIIIIZA L2 D |\ O b

7777777777 7777777777777 7777777777777 {77777 27 77772477777

7777777777777277777777 777777777777 7777777 7777727777777 777 771

AN RN AR RN RN RN N NAN N NN NNN N NN NNNNNNNNSSSSY
Sewis
VA SSSSSSSSSSSSSSS LSS LSS S LSS LSS S LSS LSS LSS LSS

aoenhel
= LW

R el Badw

V7 2 2 2 2 2 7 7

ﬂ

ENAAAANANAARAMANARAR AR AR AR RARAAARA AR AR AR AR AR RN AR AR AR RNANANS

Java benchmark

q ssal

(b) PPC 7410

S S ITTINTITIT CTTTTTR T T TT IR TN IUR CUS U NSNS U SNSUSUNUUUORY

AR oenel

AAAANANIALAIAIAEAEAIARAEAEAEE AR R RARARARARARARAANRARNRNN

e e e e e T v_om.—

R T ST ap

[P IO IO I I II I I I I IIIIIIII I IIIIIIIIIIIIIIIIN
2777777777777 7777777777777 77777772 777777 {777 7777 7777724777277

[EXXXXNXNANNNNNA NN NN NN NN NNRN KN KN NN NN NN NN NN NNNNNNY

R R R SS9.1dW09
(2277777777777 7777777 7777 77 777777 777777 77777 7777

1.0

[ee] © < N
o = = o
108110 01 8ANR|9Y SB8|0AD

0.0

Figure 4.4: SableVM Elapsed Time Relative to Direct Thregdin

56

:1.20

: ef ficient — interpretation.lyx, v Revision

RCS file

CHAPTER 4. EVALUATION

-
x
w
[
z
o
O

ueaNoab

R | IE}

N
NN

AAAANARNANAARNANAARNAANARNAN
444444444444444444444444444 oxel

1los

SANENENENEEEEEE NI NI NI NI NN N AN AN SN A NN NN NN NN NN NN NN

anais

Josyainb
PIETRN]

X

H?/éflflf//églf////é/.
xa|uab

R R R R R R R R R R R

qay

_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;

19K0q

<
—

@
o

108110 01 8ANR|9Y awil pasde(g

enchmark

Ocaml b

(a) OCaml PPC970 elapsed (real) seconds

-
O
L
—
m
"

CONTEXT

[EXNXXXNXNKNKNKKRNRNRNKNRNK RN NRRRRRRRRRRY

R S T NI UTTRUNR SURTRUNTIUINS SUSUSUNCRIA

[Z2777777/777777 7777777777777 7777777777777 777777777777 {77777

AAIII1IIITIIIIIIIII LI LA AL AL LA AR AR AN

7 7 7 2 2 2 2 22 2 2 7 2 2 2 2 2 2 P 7 7 7 77 7

m
ENNNNNNNNNNNRNNNNNRNNNRNRNRNRNRNRRRNRY
2222

77777777 7777777 7777777777777 777777777777/

LAAAAAANARANARARARARARANARANANANANANANNANANAN

7777777777777 77 777777777777 77 777 77777777777 77777

[N A A

AAAARARANRARARARARAAAANANANANANANANANANANANANNNNY

H’/f//V/f/f/ﬂrf/f//V/f/f/fff/f////f/f/f/f////ffd

SIS ITITITIIITITITITITIIIT T I I T I FITIT I I I I ITI IS

(20Tt %e?

1.0

10841Q 01 8AIIR|aY awl] pasde|]

uea|\oab

100s

Srewios

el

mw

Badw

ssal

oenel

yoel

qap

ssaidwod

Java benchmark

(b) SableVM PPC970 elapsed (real) seconds

Figure 4.5:PPC970 Elapsed Time Relative to Direct Threading

57

:1.20

: ef ficient — interpretation.lyx, v Revision

RCS file

4.2. INTERPRETING THE DATA

(a), and PPC7410 results on the right, labeled (b). Figureepérts the performance of OCaml
and SableVM on the PPC970 CPU. The geometric means (rightriussén in Figures 4.3,
4.4 and 4.5 show that context threading significantly odigpers direct threading on both
virtual machines and on all three architectures. The geutnetean execution time of the
Ocaml VM is about 19% lower for context threading than dirtaceading on P4, 9% lower
on PPC7410, and 39% lower on the PPC970. For SableVM, conteddimg, compared with
direct threading, runs about 17% faster on the PPC7410 andf2&%r on both the P4 and
PPC970. Although we cannot measure the cost of LR/CTR stallkeRPPC970, the greater
reductions in execution time are consistent with its moreptiepipelined design (23 stages

vs. 7 for the PPC7410).

Across interpreters and architectures, the effect of ocinrtiejues is clear. Subroutine
threading has the single largest impact on elapsed time.cBriaatining has the next largest
impact eliminating an additional 3—7% of the elapsed tinmegéneral, the reductions in exe-
cution time track the reductions in branch hazards seerguarés 4.1 and 4.2. The instruction
overheads of our dispatch technique are most evident in@an®benchmarkki b andt akc
on the P4 where the benefits of improved branch predictidative to direct threading) are
minor. In these cases, the opcode bodies are very small arektra instructions executed for

dispatch are the dominant factor.

The effect of apply/return inlining on execution time is mmal overall, changing the ge-
ometric mean by only-1% with no discernible pattern. Given the limited performaten-
efit and added complexity, a general implementation of dpgtiyrn inlining does not seem
worthwhile. Ideally, one would like to detect heavy recarsautomatically, and only perform
apply/return inlining when needed. We conclude that, foregal usage, subroutine threading

plus branch inlining provides the best trade-off.

We now demonstrate that context-threaded dispatch is @mggitary to inlining tech-

nigues.

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 58

CHAPTER 4. EVALUATION

4.3 Inlining

Inlining techniques address the context problem by rephgebytecode bodies and removing
dispatch code. This reduces both instructions executechsisvpipeline hazards. In this sec-
tion we show that, although both selective inlining and camtext threading technique reduce
pipeline hazards, context threading is slower becausestfiiction overhead. We address this
issue by comparing our owimy inlining technique with selective inlining.

In Figures 4.2, 4.4 and 4.5(a) the bar labeled SELECT showseasurements of Gagnon’s
selective inlining implementation for SableVM [23]. Froheske Figures, we see that selective
inlining reduces both MPT and LR/CTR stalls significantly aspared to direct threading,
but it is not as effective in this regard as subroutine thirgpdlone. The larger reductions in
pipeline hazards for context threading, however, do noesssarily translate into better per-
formance over selective inlining. Figure 4.4(a) illustsathat SableVM's selective inlining
beats context threading on the P4 by roughly 5%, whereaseoRBC7410 and the PPC970,
both techniques have roughly the same effect on executio®a, tas shown in Figure 4.4(b)
and Figure 4.5(a), respectively. These results show tllaicieg pipeline hazards caused by
dispatch is not sufficient to match the performance of sekeatlining. By eliminating some
dispatch code, selective inlining can do the same real watkfewer instructions than context
threading.

Context threading is only a dispatch technique, and can kb emsnbined with inlin-
ing strategies. To investigate the impact of dispatch usion overhead and to demonstrate
that context threading is complementary to inlining, we lenpentedTiny Inlining, a simple
heuristic that inlines all bodies with a length less thanr famnes the length of our dispatch
code. This eliminates the dispatch overhead surroundi@gitimallest bodies and, as calls in
the CTT are replaced with comparably-sized bodies, tinyiing ensures that the total code
growth is minimal. In fact, the smallest inlined OCaml bodegs P4 weresmallerthan the
length of a relative call instruction. Table 4.3 summarittes effect of tiny inlining. On the

P4, we come within 1% of SableVM'’s sophisticated selectilaing implementation. On

RC S file : ef ficient — interpretation.lyz, v Revision : 1.20 59

4.4. LIMITATIONS OF CONTEXT THREADING

Table 4.3: Detailed comparison of selective inlining vs ttembination of context+tiny
(SableVM). Numbers are performance relative to directatieg for SableVMAS — C'is
the the difference between selective inlining and contesdading.AS — 7' is the difference

between selective inlining and the combination of contesading and tiny inlining.

Context Selective Tiny A A
Arch © (S) (M (s-C) (s-M
P4 0.762 0.721| 0.731| -0.041| -0.010

PPC7410] 0.863 0.914| 0.839| 0.051| 0.075

PPC970| 0.753 0.739| 0.691| -0.014| 0.048

PowerPC, we outperform SableVM by 7.8% for the PPC7410 and fh8%e PPC970.

The primary costs of direct-threaded interpretation apelpie branch hazards, caused by
the context problem. Context threading solves this problgnedarectly deploying branch
prediction resources, and as a result, outperforms dineeading by a wide margin. Once the
pipelines are full, the secondary cost of executing digpastructions is significant. A suitable
technique for addressing this overhead is inlining, and axeetshown that context threading
is compatible with inlining using the “tiny” heuristic. Emewith this simple approach, context

threading achieves performance equivalent to, or betser, telective inlining.

4.4 Limitations of Context Threading

The techniques described in this chapter address dispadichesnce have should have more ef-
fect on virtual machines that do more dispatch. A key desgmsion for any virtual machine
is the specific choice of virtual instructions. A design méwpase many lightweight virtual
instructions or fewer heavyweight ones. Figure 4.6 shows &dcl interpreter typically ex-
ecutes an order of magnitude more cycles per dispatchadhvirtstruction than does Ocaml.

Another perspective is that Ocaml executes more dispatchuse its work is carved up into

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 60

CHAPTER 4. EVALUATION

10%¢
i Y e Tcl
i 4 Ocaml 1
10 F 3
- L PY]
] °
@© r ° 1
& 10°F ’ ° .3
a i - ® S]
- [° «n °]
o ‘,b‘) .. ‘ ; ° [] [] ° '
S E ° e &
>
o ‘E N 4 A A A A R]
101 ? A ?
100

Tcl or Ocaml Benchmark

Figure 4.6: Reproduction of Tcl Figure 1 showing cycles rumnviual instructions dispatched

for various Tcl vs Ocaml benchmarks [56]

smaller virtual instructions. In the figure we see that mama® benchmarks average only
tens of cycles per dispatched instruction. This is simitasize to the branch misprediction
penalty of a modern CPU. On the other hand we see that most mchbearks execute hun-
dreds of cycles per dispatch. Thus, we expect that subethireading to speed up Tcl much
less than Ocaml. In fact, the geometric mean of 500 Tcl beacksnspeeds up only 5.4 %
on a UltraSPARC lll. Subroutine threading alone improvedsame Ocaml benchmark suite

described in Table 4.1 as shown in Figure 4.7.

Another issue raised by the Tcl implementation was that ab@% of the 500 program
benchmark suite slowed down. Most of these were tiny progithiat executed as little as a few
dozen dispatches. This suggests that for small programedkdime overhead of generating
code inthe CTT may become an issue. To address this we coybdt athwy loading approach
and eliminate some of the load time overhead by deferring jist before the code actually

runs.

RCS file : ef ficient — interpretation.lyz, v Revision : 1.20 61

4.5. SUMMARY

OCaml Subroutine Threading performance (relative to Direct)

1.0

0.8 j

0.6 f{

0.4 R

Elapsed time (relative to Direct)

0.0

o
x~

boyer
genlex
nucleic
uicksort
sieve
soli
takc
taku

Benchmcark
Figure 4.7: Performance of subroutine threading for OcamltiraSPARC IlI.

4.5 Summary

We have established that calling virtual instruction bedian be very efficient and also that
generating inlined code for virtual branches is a powerfaywo avoid costly branch mispre-
dictions. In the next chapter we will describe how callaki#ual instructions play a central
role in the design of a gradually extensible mixed mode sirtnachine.

Slowdowns we observed in the Tcl implementation suggestatmore lazy approach to
loading should be explored so that code is not generatednoregion of a virtual program

until it has run at least once.

RCS file : ef ficient — interpretation.lyx, v Revision : 1.20 62

Chapter 5

Design and Implementation of YETI

Early on we realized that organizing virtual bodies as liggight routines would make it pos-
sible to call them from generated code and that this has pakémsimplify bringing up a JIT.
At the same time, we realized that we could expand our useedDTl to dispatch execution
units of any size, including basic blocks and traces, antdtbg&would allow us to gradually
extend our system to more ambitious execution units. We khevit was necessary to in-
terpose instrumentation between the virtual instructimutswve could not see a simple way of
doing it. We went ahead regardless and built an instrumentatfrastructure centered around
code generation. The general idea was to initially gengratepolines, which we called inter-
posers, that would call instrumentation before and aftedibpatch of each virtual instruction.
The infrastructure was very efficient (probably more effitihan the system we will describe
in this chapter) but quite difficult to debug. We extended system until it could identify
basic blocks and traces [60]. Its main drawback was that aflaiork was required to build
a profiling system that ran no faster than direct threadinbis,Twe felt, was not “gradual”

enough. Fortunately, a better idea came to mind.

Instead of loading the program as described for contexathing, Yeti runs a program by
initially dispatching single virtual instruction bodiem an instrumented dispatch loop rem-

iniscent of direct call threading. Instrumentation addethe dispatch loop detects execution

63

5.1. INSTRUMENTATION

units, initially basic blocks, then traces, then linkecc&s. As execution units are generated
their address is installed into the DTT. Consequently théesyspeeds up as more time is

spent in execution units and less time on dispatch.

5.1 Instrumentation

In Yeti, as in subroutine threading, tk€C points into the DTT where each virtual instruction
is represented as one or more contiguous slots. The loageesentation of the program has
been elaborated significantly — now the first DTT slot of eaxdtruction points to an instance
of adispatcherstructure. The dispatcher structure contains four keydi€ldhe execution unit
to be dispatched (initially a virtual instruction body, lserthe name) is stored in thedyfield.
The preworkerandpostworkerfields store the addresses of the instrumentation routibe t
called before and after the dispatch of the execution umlly, the dispatcher haspayload
field, which is a chunk of profiling or other data that the instentation needs to associate with
an execution unit. Payload structures are used to desartib@ahMnstructions, basic blocks, or
traces.

Despite being slow, a dispatch loop is very attractive bsediumakes it easy to instrument
the execution of a virtual program. Figure 5.1 shows howruméntation can be interposed
before and after the dispatch of each virtual instructiohe Tigure illustrates a generic form
of dispatch loop (the shaded rectangle in the lower rightgnehthe actual instrumentation
routines to be called are implemented as function pointezessible via the PC. In addition
we pass a payload to each instrumentation call. The dissatyarf this approach is that the
dispatch of the instrumentation is burdened by the overbéadall through a function pointer.
This is not a problem because Yeti actually deploys seveetialized dispatch loops and the
generic version illustrated in Figure 5.1 only executes alspnoportion of the time.

Our strategy for identifying regions of a virtual prograngu@es every thread to execute

in one of several execution “modes”. For instance, when igeiimg) a trace, a thread will be in

RCS file : implementation — yeti.lyx, v Revision : 1.13 64

CHAPTER 5. DESIGN AND IMPLEMENTATION OF YETI

trace generation moddézach thread has associated withtiheead context structur@cs) which
includes various mode bits as well as thistory list which is used to accumulate regions of

the virtual program.

5.2 Loading

When a method is first loaded we don’t know which parts of it Wil executed. As each
instruction is loaded it is initialized to a shared dispatcstructure. There is one shared dis-
patcher for each kind of virtual instruction. One instarseshared for ali | oad instructions,
another instance for alladd instructions, and so on. Thus, minimal work is done at loawkti
for instructions that never run. On the other hand, a shasgtther cannot be used to profile
instructions that do execute. Hence, the shared dispaisheplaced by a new, non-shared,
instance of dlock discovery dispatchevhen the postworker of the shared dispatcher runs for

the first time. The job of the block discovery dispatcher iglentify new basic blocks.

5.3 Basic Block Detection

When the preworker of a block discovery dispatcher execotdbé first time, and the thread is
not currently recording a region, the program is about to ent&sac block that has never run
before. When this occurs we switch the thread biiteck recording modey setting a bit in the
thread context structure. Figure 5.1 illustrates the disgoof the basic block of our running
example. The postworker called following the executionaxdleinstruction has appended the
instruction’s payload to the thread’s history list. When artwh instruction is encountered by
a thread in block recording mode, the end of the current bdasitk has been reached, so the
history list is used to generate an execution unit for thecdaleck. Figure 5.2 illustrates the
situation just after the collection of the basic block hassfied. The dispatcher at the entry

point of the basic block has been replaced by a hasic block dispatchewith a new payload

RCS file : implementation — yeti.lyx, v Revision : 1.13 65

5.3. BASIC BLOCK DETECTION

interp () {
block discovery dispatcher Instruction *VvPC;
thread context struct
payload ™A
p Pody - mode bb_record | iload: //push var
payload—4 ;tltoad \ history list f VPC+H+;
DTT pre ; asm volatile("ret") ;
post h
Z e / .
Befoas [iload + x teonst:
a B _ V| iadd:
// : istore:
EggYoad iconst /
b / == : / '}~ t_thread context tcs;
Ae— ;
L / B8 Yoa iadd B
> Bost J vPC = &dtt[0];
b while (1) { //dispatch loop
§§§¥oad iadd d = vPC->dipatcher;
3 o5t pay = d->payload;
o (*d->pre) (vPC,pay, &tcs) ;
E’%g%ad — | istore (*d->body) () ;
o (*d->post) (vPC, pay, &tcs) ;
— 1
payload goto }

Figure 5.1: Shows a region of the DTT during block recordingfien The body of each block
discovery dispatcher points to the corresponding virtastiuction body (Only the body for the
first iload is shown). The dispatcher’s payload field pointitances of instruction payload.

The thread context struct is shown as tcs.

RCS file : implementation — yeti.lyx, v Revision : 1.13 66

CHAPTER 5. DESIGN AND IMPLEMENTATION OF YETI

DTT basic block dispatcher

” bod
7 payl{oad—_‘/abbipayloa 7] generated code
= pre call iload
post call iload
2 call iconst
1 call iadd
call iadd
call istore
call goto
c ‘ return
gégoad —_ | goto ‘/

Figure 5.2: Shows a region of the DTT just after block reaagdinode has finished.

created from the history list. The body field of the basic kldispatcher points to a subroutine
threading style execution unit that has been generatetiédvdsic block. The job of the basic

block dispatcher will be to search for traces.

5.4 Trace Selection

The postworker of a basic block dispatcher is called aftetdhbt virtual instruction of the block
has been dispatched. Since basic blocks end with brandbesexgecuting the last instruction
the vPC points to one of the successors of the basic block. IMRE of the destination is
lessthan thev PC of the virtual branch instruction, this is a reverse branehlikely candidate
for the latch of a loop. According to the heuristics develbppy Dynamo (see Section 2.3),
hot reverse branches are good places to start the searcbtfoode. Accordingly, when our
system detects a reverse branch that has executed 100 tiemdsretrace recording modeln
trace recording mode, much like in basic block recording eytite postworker adds each basic
block to a history list. The situation is very similar to thifastrated in Figure 5.1, except the
history list describes basic blocks. Our system, like Dyoaends a trace (i) when it reaches

a reverse branch, (ii) when it finds a cycle, or (iii) when ihtains too many (currently 100)

RCS file : implementation — yeti.lyx, v Revision : 1.13 67

5.5. TRACE EXIT RUNTIME

basic blocks. When trace generation ends, atnaee dispatchers created and installed. This
is quite similar to Figure 5.2 except that a trace dispatcharstalled and the generated code
is complicated by the need to support trace exits. The pdybba trace dispatcher includes a
table oftrace exit descriptorsone for each basic block in the trace. Although code could be
generated for the trace at this point, we postpone code giomeuntil the trace has run a few
times, currently five, in trace training mode. Trace tragnmode uses a specialized dispatch
loop that calls instrumentation before and after dispatgleiach virtual instruction in the trace.
In principle, almost any detail of the virtual machine’stetaould be recorded. Currently, we
record the class of every Java object upon which a virtuahotets invoked. When training is
complete, code is generated for the trace as illustratedduyé5.3. Before we discuss code
generation, we need to describe the runtime of the tracersyahd especially the operation of

trace exits.

5.5 Trace Exit Runtime

The runtime of traces is complicated by the need to suppacetexits, which occur when
execution diverges from the path collected during tracesgaion, in other words, when the
destination of a virtual branch instruction in the traceiffedent than during trace generation.
Generated guard code in the trace detects the divergendeamches to #race exit handler

Generated code in the trace exit handler records which &=itdas occurred in the thread’s
context structure and then returns to the dispatch loop;mimmediately calls the postworker
corresponding to the trace. The postworker determineshitrace exit occurred by examining

the thread context structure. Conceptually, the postwdr&sronly a few things it can do:

1. If the trace exit is still cold, increment the counter i ttorresponding trace exit de-

scriptor.

2. Notice that the counter has crossed the hot thresholdrasuige to generate a new trace.

RCS file : implementation — yeti.lyx, v Revision : 1.13 68

CHAPTER 5. DESIGN AND IMPLEMENTATION OF YETI

3. Notice that a trace already exists at the destinationiakdHe trace exit handler to the

new trace.

Regular conditional branches, like Javiafs i cnp, are quite simple. The branch has only two
destinations, one on the trace and the other off. When the &x%it becomes hot a new trace
is generated starting with the off-trace destination. Thlea next time the trace exit occurs,
the postworker links the trace exit handler to the new traceelwriting the tail of the trace
exit handler to jump directly to the destination trace iastef returning to the dispatch loop.
Subsequently execution stays in the trace cache for boltts péathe program.

Multiple destination branches, like method invocation egtdrn, are more complex. When
a trace exit originating from a multi-way branch occurs we &aced with two additional
challenges. First, profiling multiple destinations is mexpensive than just maintaining one
counter. Second, when one or more of the possible destirsatie also traces, the trace exit
handler needs some mechanism to jump to the right one.

The first challenge we essentially punt on. We use a simplateowand trace generate
all destinations of a hot trace exit that arise. The danger &f gtrategy is that we could
trace generate superfluous cold destinations and waste dgeaeration time and trace cache
memory.

The second challenge concerns the efficient selection osSandéion trace to which to
link, and the mechanics used to branch there. To choose iaaést, we follow the heuristic
developed by Dynamo for regular branches — that is, we lirdketinations in the order they
are encountered. At link time, we rewrite the code in thedrexit handler with code that
checks the value of thePC. If it equals thevPC of a linked trace, we branch directly to that
trace, otherwise we return to the dispatch loop. Because we kime specific values thePC
could have, we can hard-wire the comparand in the generatdel dn fact, we can generate
a sequence of compares checking for two or more destinatibrentually, a sufficiently long
cascade would perform no better than a trip around the disdabp. Currently we limit

ourselves to two linked destinations per trace exit. Thislmaism is similar to a PIC, used to

RCS file : implementation — yeti.lyx, v Revision : 1.13 69

5.6.

GENERATING CODE FOR TRACES

bb0

trace dispatc

!

r

L
trace
payload

trace
exito

generated code
for straight line
portion of bb0

generated code
for trace exit

generated code
for straight line

portion of bb1

bb1

~r

texit
handler0

texit
handler1

generated code for trace

generated code
for trace exit
handlers

}
}»
5
}

DTT

Figure 5.3: Schematic of a trace

dispatch polymorphic methods, as discussed in Section 2.4.

5.6 Generating code for traces

Generating a trace is made up of two main tasks, generatingca exit handler for each
trace exit and generating the main body of the trace. Tranergéon starts with the list of
basic blocks that were selected. We will use these to ackhesasrtual instructions making up
the trace. After a few training runs we have also have fin@agthprofiling information on

the precise values that occur during the execution of treetrdhese values will be used to

devirtualize selected virtual method invocations.

5.6.1 Trace Exits and Trace Exit Handlers

The virtual branch instruction ending each block is contpilgo a trace exit. We follow two
different strategies for trace exits. The first case, regobmditional branch virtual instruc-
tions, are compiled by our JIT into code that performs a compellowed by a conditional

branch. PowerPC code for this case appears in Figure 5.4sélifse of the conditional branch

70

RCS file : implementation — yeti.lyx, v Revision : 1.13

CHAPTER 5. DESIGN AND IMPLEMENTATION OF YETI

is adjusted so that the branch is always not-taken for theame path. More complex virtual
branch instructions, and especially those with multiplstid@tions, are handled differently.
Instead of generating inlined code for the branch we geeeratll to the virtual branch body
instead. This will have the side effect of setting tHeC to the destination of the branch. Since
only one destination can be on-trace, and since we know taeteRC value corresponding
to it, we then generate a compare immediate ofuR€ to the hardwired constant value of
the on-trace destination. Following the compare we geaerabnditional branch to the corre-
sponding trace exit handler. The result is that executiamds the trace if the PC set by the
dispatched body was different from th€C observed during trace generation. Polymorphic
method dispatch is handled this way if it cannot be optimiaedescribed in Section 5.6.3.
Trace exit handlers have three further roles not mentioonefdrs First, since traces may
contain compiled code, it may be necessary to flush valuekihekgisters back to the Java
expression stack before returning to regular interpr@tatCode is generated to do this in each
trace exit handler. Second, some interpreter state may tbave updated. For instance, in
Figure 5.4, the trace exit handler adjusts¥iRE. Third, trace linking is achieved by overwrit-
ing code in a trace exit handler. (This is the only situatiomvhich we rewrite code.) To link
traces, the tail of the trace exit handler is rewritten tobhato the destination trace rather than

return to the dispatch loop.

5.6.2 Code Generation

The body of a trace is made up of straight-line sections oécodrresponding to the body of
each basic block, interspersed with trace exits generadeathe virtual branches ending each
basic block. The JIT therefore has three types of infornmatibostart with. First, there is a list

of virtual instructions making up each basic block in the¢raEnough information is cached
in the trace payload to determine the virtual opcode andaliddress of each instruction in
the trace. Second, there is a trace exit corresponding tbrreh ending each basic block.

The trace exit stores information like théC of the off-trace destination of the trace. Third,

RCS file : implementation — yeti.lyx, v Revision : 1.13 71

5.6. GENERATING CODE FOR TRACES

DTT
OPC ILOAD 3 lwz r3,12(r27)
X
1 4,8(r27 . .
OPC_ILOAD 2 wz r4,8(r27) }4 -------- JIT compiled from iloads
Y .-
4 Scmpw r3,rd4 [: . o
OPC_IF_ICMPGE +121 " bge teh ¢ trace exit JIT compiled from if_icmpge
_..-- VPC adjusted upon leaving JIT compiled region
teh0:addi r26,r26,112«"
y 1i r0,0 .
trace exit stw 0,916 (r30) teh stores trace exit number (0) and
K . hardwired address of trace payload
handler JIT / 1is r0,1050 into thread context struct
compiled for ! ori r0,r0,11488
trace exit :' stw r0,912(r30)
' b 0x10CF0 €-----mmceommmmne- unlinked trace branches back to dispatch loop

if this trace exit becomes hot, trace linking overwrites

this instruction with branch to destination trace
Figure 5.4: PowerPC code for a trace exit and trace exit leanflhe generated code assumes
that thevPChas been assigne@6, base of the local variable®7 and the Java method frame

pointerr 30.

there may be profiling information that was cached when theetran in training mode.

At this phase of our research we have not invested any eff@énerating optimized code
for the straight-line portions of a trace. Instead, we impated a simple one pass JIT com-
piler. The goals of our JIT are modest. First, it should penf@ similar function as branch
inlining (Section 3.1.3) to ensure that code generatedrémet exits exposes the conditional
branch logic of the virtual program to the underlying hardsveonditional branch predictors.
Second, it should reduce the redundant memory traffic badk@th to the interpreter’s ex-
pression stack by holding temporary results in registermsnygossible. Third, it should support

a few simple speculative optimizations.

Our JIT does not build any internal representation of a ttber that what is described
in Section 5.4. Instead, it performs a single pass through &ace allocating registers and
generating code. Register allocation is very simple. As warere each virtual instruction

we maintain ashadow stackvhich associates registers, temporary values and exprestsick

RCS file : implementation — yeti.lyx, v Revision : 1.13 72

CHAPTER 5. DESIGN AND IMPLEMENTATION OF YETI

slots. Whenever a virtual instruction needs to pop an inputinsecheck if there already is a
register for that value in the corresponding shadow staatk $f there is we use the register
instead of generating any code to pop the stack. Similadthgma virtual instruction would
push a new value onto the expression stack we assign a nesteretp the value and push
this on the shadow stack but forgo generating any code to fhestialue. Thus, every value
assigned to a register always habane locatioron the expression stack. If we run out of
registers we simply spill the register whose home locasarelepest on the shadow stack as all

the shallower values will be needed sooner [39].

Since traces contain no control merge points there is ndiaddl complexity at trace exits
other than the generation of the trace exit handler. As desttiin Section 5.6.1 trace exit
handlers include generated code that flushes all the vaiuegisters to the expression stack
in preparation for execution returning to the interpreféhnis is done by walking the shadow
stack and storing each slot that is not already spilled istbome location. Consequently, the
values stay in registers if execution remains on-traceatbriflushed when a trace exit occurs.
Linked trace exits result in potentially redundant staelfic as values are flushed by the trace

exit handler only to be reloaded by the destination trace.

Similar to a trace exit handler, when an unfamiliar virtusdtruction is encountered, code
is generated to flush any temporary values held in registek to the Java expression stack.
Then, a sequence of calls is generated to dispatch the bofdiee uncompilable virtual in-
structions. Compilation resumes, with an empty shadow staith any compilable virtual
instructions that follow. This means that generated codst ipe able to load and store values
to the same Java expression stack referred to by the C codenmapting the virtual instruction
bodies. Our current PowerPC implementation side-stepdglifiiculty by dedicating hardware
registers for values that are shared between generatechoddmsodies. Currently we dedicate
registers for thesPC, the top of the Java expression stack and the pointer to thedigbe
local variables. Code is generated to adjust the value of ¢édecdted registers as part of the

flush sequence described above for trace exit handlers.

RCS file : implementation — yeti.lyx, v Revision : 1.13 73

5.6. GENERATING CODE FOR TRACES

The actual machine code generation is performed using thE88¢ run-time assembler.

5.6.3 Trace Optimization

We describe two optimizations here: how loops are handledhaw the training data can be

used to optimize method invocation.

Inner Loops One property of the trace selection heuristic is that inmestntoops of a pro-
gram are often selected into a single trace with the reveeseh at the end. (This is so because
trace generation starts at the target of reverse brancllesrals whenever it reaches a reverse
branch. Note that there may be many branches, including aalll returns, along the way.)
Thus, when the trace is generated the loop will be obviouaudmexthe trace will end with a
virtual branch back to its beginning. This seems an obviqiszation opportunity that, so
far, we have not exploited other than to compile the laseteagdt as a conditional branch back

to the head of the trace.

Virtual Method Invocation When a trace executes, if the class of the invoked-upon object
is different than when the trace was generated, a trace esit otcur. At trace generation time
we know the on-trace destination of each call and from theitrg profile know the class of
each invoked-upon object. Thus, we can easily genendtéual invoke guardhat branches to

the trace exit handler if the class of the object on top of HwaJdun time stack is not the same
as recorded during training. Then, we can generate codertorpea faster, stripped down
version of method invocation. The savings are primarilywhoek associated with looking up
the destination given the class of the receiver. The viualrd is an example of a trace exit

that guards a speculative optimization [24].

Inlining The final optimization we will describe is a simple form ofimhg. Traces are ag-
nostic towards method invocation and return, treating thieerany other multiple-destination

virtual branch instructions. However, when a return cqroesls to an invoke in the same trace

RCS file : implementation — yeti.lyx, v Revision : 1.13 74

CHAPTER 5. DESIGN AND IMPLEMENTATION OF YETI

the trace generator can sometimes remove almost all metirodation overhead. Consider
when the code between a method invocation and the matchimgnrie relatively simple, for
instance, it does not touch the callee’s stack frame (ottear the expression stack) and it can-
not throw. Then, no invoke is necessary and the only methaxtation overhead that remains
is the virtual invoke guard. If the inlined method body comsaany trace exits the situation is
slightly more complex. In this case, in order to prepare foetarn somewhere off-trace, the
trace exit handlers for the trace exits in the inlined codstmuodify the run time stack exactly

as the (optimized away) invoke would have done

5.7 Polymorphic bytecodes

So far we have implemented our ideas in a Java virtual mackiogever, we expect that many
of the techniques will be useful in other virtual machinesvali. For instance, languages like
Tcl or JavaScript define polymorphic virtual arithmetictmstions. An example would be
ADD, which adds the two values on the top of the expressiarkstaach time it is dispatched
ADD must check the type of its inputs, which could be inteflest or even string values, and

perform the correct type of arithmetic. This is similar tdysoorphic method invocation.

We believe the same profiling infrastructure that we use tomepe monomorphic callsites
in Java can be used to improve polymorphic arithmetic bytesoWhereas the destination of
a Java method invocation depends only upon the type of tled@a/upon object, the operation
carried out by a polymorphic virtual instruction may dep@&mdthe type ofeachinput. Now,
suppose that an ADD in Tcl is effectively monomorphic. Thea,would generate two virtual
guards, one for each input. Each would check that the typeeafiput is the same as observed
during training and trace exit if it differs. Then, we wouldgplatch a type-specialized version
of the instruction (integer ADD, float ADD, string ADD, etchd/or generate specialized code

for common cases.

RCS file : implementation — yeti.lyx, v Revision : 1.13 75

5.8. OTHER IMPLEMENTATION DETAILS

5.8 Other implementation details

Our use of a dispatch loop similar to Figure 5.1 in conjurrctiath ending virtual bodies with
inlined assembler return instructions results in a coritogV graph that is not apparent to the
compiler. This is because the optimizer cannot know thatrobfiows from the inlined return
instruction back to the dispatch loop. Similarly, the opzien cannot know that control can
flow from the function pointer call in the dispatch loop to dndy. We insert computed goto
statements that are never actually executed to simulatamigsng edges. If the bodies were

packaged as nested functions like in Figure 3.1 these preeould not occur.

5.9 Packaging and portability

A obvious packaging strategy for a portable language implgation based on our work would
be to differentiate platforms into “primary” targets, (tleose supported by our trace-oriented
JIT) and “secondary” targets supported only by direct ttireg

Another approach would be to package the bodies as for stibedtireading (i.e. as illus-
trated by Figure 3.2) and use direct call threading on atf@les. In Section 6.2 we show that
although direct call threading is much slower than directdlling it is about the same speed
as switch dispatch. Many useful systems run switch dispatchresumably its performance is
acceptable under at least some circumstances. This wouse ¢the performance gap between
primary and secondary platforms to be larger than if seagnplatforms used direct threaded
dispatch.

Bodies could be very cleanly packaged as nested functionsen€Bly this should be
almost as portable as the computed goto extensions dimeetdimng depends upon. However
nested functions do not yet appear to be in mainstream usabgoaseven gcc support may be
unreliable. For instance, a recent version of gcc, versioril4or Apple OSX 10.4, shipped

with nested function support disabled.

RCS file : implementation — yeti.lyx, v Revision : 1.13 76

Chapter 6

Evaluation of Yeti

In this chapter we show how Yeti gradually improves in parfance as we extend the size
of execution units. We prototyped Yeti in a Java VM (ratheartra language which does
not have a JIT) to allow comparisons of well-known benchrea@ainst other high-quality

implementations.

In order to evaluate the effectiveness of our system we reeegadmine performance from
three perspectives. First, we show that almost all execwiones from the trace cache. Sec-
ond, to evaluate the overhead of trace selection, we me#seigerformance of our system
with the JITturned off We compare elapsed time against SableVM and a version ofNam
modified to use subroutine threading. Third, to evaluatetiesall performance of our modest
trace-oriented JIT compiler we compare elapsed time fdn éaachmark to Sun’s optimizing

HotSpofM Java virtual machine.

Table 6.1 briefly describes each SpecJVM98 benchmark [47¢. al&0b report data for
sci mar k, a typical scientific program. Below we report performandatiee to the perfor-
mance of either unmodified JamVM 1.3.3 or Sun’s Java Hotdgosd the raw elapsed time

for each benchmark appears in Table 6.1 also.

All our data was collected on a dual CPU 2 GHz PPC970 processioib5d?2 MB of mem-

ory running Apple OSX 10.4. Performance is reported as tleea@e of three measurements

77

6.1. EFFECT OF REGION SHAPE ON REGION DISPATCH COUNT

Table 6.1: SPECjvm98 benchmarks including elapsed timerforadified JamVM 1.3.3 and
Sun Java Hotspot 1.05.0_6_64

Elapsed Time

Benchmark| Description (seconds)

JamVM | HotspotM
compress | Lempel-Ziv compression 98 8.0
db Database functions 56 23
jack Parser generator 22 54
javac Java compiler JDK 1.0.2 33 9.9
jess Expert shell System 29 4.4
mpeg decompresses MPEG-3 87 4.6
mtrt Two thread raytracer 30 2.1
raytrace raytracer 29 2.3
scimark FFT, SOR and LU, 'large’ 145 16

of elapsed time, as printed by thé me command.

Java Interpreters We present data obtained by running various modification¥ataVM
version 1.3.3 built with gcc 4.0.1. SableVM is a JVM built fquick interpretation. It imple-
ments a variation of selective inlining calledine threading[23]. SableVM version 1.1.8 has

not yet been ported to gcc 4 so we compiled it with gcc 3.3 atkte

6.1 Effect of region shape on region dispatch count

For a JIT to be effective, execution must spend most of ite imcompiled code. Fgrack,
traces account for 99.3% of virtual instructions executeak all the remaining benchmarks,
traces account for 99.9% or more. A remaining concern is hftencexecution enters and

leaves the trace cache. In our system, regions of generadiedeee called from dispatch loops

RCS file : experiments.lyx, v Revision : 1.9 78

hap

I0Nes

CHAPTER 6. EVALUATION OF YETI

—
= ueawoab 2
VIO NNI I IS NI INNI I I I NI IIIIIII NI INNIIII SN INNIIII IS,
i o)
—
1S9ll0s >
%
POOOOOOODOIIKHIHIHIHIHIHIHIHIHI XXX XXX XXX XHXHXIIOOOOOOOOOOOOOONNN XY \A.m.h (%2} 0
I T 4 15
[
] e
R R R R R S S SRR e IR R R AR AR XX AR RIS uw m ..ﬁla.
o Z Q) ~
2} ; R e e adw g S
o Omrxewr R T T R m =y
Y 0mF F o
_‘ o0 —
R R R R R R R R I KRR XN XX (@] o
HinHnnnnnnninnnnnn i M m
> S
= S S oenel ™ c
-= T == -= T = I Q [@))
o
() o i
OZOTOTO OO IO TOTOTO O OO IO TOTOTOTO OO0 TOTOTOTO OO TOTOTOTOTOTOTO IO TOTOTOTOTOTOTO V_Oﬁ.— (@)) - g
i — B
. R
© 3
_ &
200002020202 %% %% 202020202 %% %2000 Qﬁ m =
(IR R R RN ===_==== HIH -===== I = ====_ S -
o) >
ssa1dwod (I g
[ROBCIOIIIOHHXAIHXHXHHXHXHIHXXHIHXHX XX XHIHXXIHXHXIHXHXIRIXHXHXIHXHXHIHXX XXX XX I3
R T N
g
£
o (e0) © <t N o)
i Q Q Q Q Q g
(5} — — — — —
i

1unod yoledsip 60|

RCS file :

6.1. EFFECT OF REGION SHAPE ON REGION DISPATCH COUNT

like those illustrated by Figures 2.2 and 5.1. In this segtiwe report how many iterations of
the dispatch loops occur during the execution of each beadhriigure 6.1 shows how direct
call threading (DCT) compares to basic blocks (BB), traces withinking (TR) and linked

traces (TR-LINK). Note the y-axis has a logarithmic scale.

DCT dispatches each virtual instruction independently, o @DCT bars on Figure 6.1
report how many virtual instructions were executed. Conmggithe geometric mean across all
benchmarks, we see that BB reduces the number of dispatdaesxéo DCT by about a factor
of 6.3. For each benchmark, the ratio of DCT to BB shows the dynarerage basic block
length. As expected, the scientific benchmarks have longsictblocks. For instance, the
dynamic average basic block &ti t est has about 20 virtual instructions whergasvac,

j ess andj ack average about 4 instructions in length.

Even without trace linking, the average dispatch of a tramgses about 10 times more
virtual instructions to be executed than the dispatch of a BBis(can be read off Figure 6.1
by dividing the height of the TR geomean bar into the BB geontigau) This shows that traces
do predict the path taken through the program. The improneoan be dramatic. For instance,
while running TRj avac executes about 22 virtual instructions per trace dispaiclayerage.

This is much longer than its dynamic average basic blocktteafy4 virtual instructions.

TR-LINK makes the greatest contribution, reducing the nundb¢imes execution leaves
the trace cache by between one and &ders of magnitude The reason TR-LINK is so

effective is that it links traces together around loop nests

Although these data show that execution is overwhelmingiynfthe trace cache it gives
no indication of how effectively code cache memory is beisgdiby the traces. A thorough
treatment of this, like the one done by Bruening and Duestdry@, remains future work.
Nevertheless, we can relate a few anecdotes based on datathaofiling system collects.
For instance, we observe that for an entire run ofcb@pr ess benchmark all generated
traces contain only 60% of the virtual instructions corgdirmn all loaded methods. This is a

good result for traces, suggesting that a trace-based &dsrte compile fewer virtual instruc-

RCS file : experiments.lyx, v Revision : 1.9 80

CHAPTER 6. EVALUATION OF YETI

tions than a method-based JIT. On the other handj, &wac we find that the traces bloat —
almost eightimesas many virtual instructions appear in traces than are oerdan the loaded
methods. Improvements to our trace selection heuristihygps adopting the suggestions of

Hiniker et al [27], are future work.

6.2 Effect of region shape on performance

Figure 6.2 shows how performance varies as differently stiapgions of the virtual program
are identified, loaded and dispatched. The figure showsedlase relative to the elapsed time
of the unmodified JamVM distribution, which uses directetated dispatch. Our compiler
is turned off, so in a sense this section reports the dispatchprofiling overhead of Yeti
by comparing to the performance of other high-performamterpretation techniques. The
four bars in each cluster represent, from left to right, subne threading (SUB), direct call
threading (DCT), basic blocks (BB), unlinked traces (TR), anlldd traces (TR-LINK).

The simplest technique, direct call threading, or DCT, dispes single virtual instruction
bodies from a dispatch loop as in Figure 2.2. As expected, BGIower than direct threading
by about 50%. Not shown in the figure is switch dispatch, forclwithe geometric mean
elapsed time across all the benchmarks is within 1% of DCT. DQT'SUB are baselines, in
the sense that the former burdens the execution of eveyaviristruction with the overhead
of the dispatch loop, whereas for the latter, all overheasliweurred at load time. The results
show that SUB is a very efficient dispatch technique [5]. Queriest here is to assess the
overhead of BB and TR-LINK by comparing them with SUB. BB discevand generates
code at runtime that is very similar to what SUB generate®ad ltime, so the difference
between them is the overhead of our profiling system. Comgani& geometric means across
benchmarks we see that BB is about 43% slower than SUB. On teelmnd, it is difficult to
move forward from SUB dispatch, primarily because it is harddd and remove the profiling

needed for dynamic region selection.

RCS file : experiments.lyx, v Revision : 1.9 81

211 fSoU

T w0510y a ‘rhi) sjuswrsadra

6'T

8

"©°€"T UOISIOA

INAWEL papealy) 19311p Paljipouun 0} SAIE[2IP3IdesIP LIFOA JO awi pasde|3 :z'g ainbi4

sylewyouag g6IWAC 29ds

Elapsed time relative to jam-distro

compress

db

ray

scitest

geomean

puaban

FONVYINHO4H3d NO IdVHS NOIO3H 40 103443 °'C°9

CHAPTER 6. EVALUATION OF YETI

Execution of TR-LINK is faster than BB primarily because trdicking so effectively
reduces dispatch loop overhead, as described in SectioM& have not yet investigated the
micro-architectural reasons for the speedup of TR-LINK caregd to SUB. Presumably it is
caused by the same factors that make context threading thate SUB [5], namely helping
the hardware to better predict the destination of virtuahlsh instructions. Regardless of the
precise cause, TR-LINK more than makes up for the profilingluead required to identify and
generate traces. In fact, even before we started work ol Buoul profiling system already ran
faster than SUB. Looking forward to Figure 6.3, we see that TRKLoutperforms selective
inlining as implemented by SableVM 1.1.8 as well.

For all benchmarks, performance improves as executios beitcome longer, that is, BB
performs better than DCT, TR performs better than BB, etc. Oprageh is indeed allowing

us to gradually improve performance by gradually invesiinigetter region selection.

6.2.1 JIT Compiled traces

Figure 6.3 compares the performance of our best-perforrengjon of Yeti (JIT), to SableVM
(SABVM). Performance is reported relative to the Java Hot3pdIT. In addition, we show
the TR-LINK condition from Figure 6.2 again to relate our mpester and JIT performance.
In most cases TR-LINK, our profiling system alone (i.e withting JIT), does as well or better
than SableVM.Sci t est and npeg are exceptions, where SableVM’'s implementation of
selective inlining works well on very long basic blocks.

Not surprisingly, the optimizing HotSpdtJIT generates much faster code than our naive
compiler. This is particularly evident for mathematicatameavily looping codes like com-
press, mpeg, the raytracers and scitest. Neverthelegstedeapporting only 50 integer and
object virtual instructions, our trace JIT improves thefpenance of integer programs like
conpr ess significantly. Our most ambitious optimization, of virtuakthod invocation, im-
proved the performance ofayt r ace by about 32%.Rayt r ace is written in an object-

oriented style with many small methods invoked to accessoblfields. Hence, even though it

RCS file : experiments.lyx, v Revision : 1.9 83

6'1 : uorsraay a ‘xhip squawraadea : 211 f S OY

¥8

‘Buiulju 9AD3I9S UM 8'T"T INASIGRS SA ‘IBA JO UOIS

-JaA pajgeua-L|[C JN0 ‘L |C Saoedy 9 0°SO’T BARL UNS 0] 9AlR|al awi pasde|3 :£'9 ainbig

SyJewyouag 86NAC 29ds

compress
db
jack
javac
jess
mpeg
mtrt
ray
scitest

geomean

Elapsed time relative to hotspot

4.07
3.45

4.31

5.94
5.69

i
ANIT-4L

WNAGVS

puaba

FONVYINHO4H3d NO IdVHS NOIO3H 40 103443 °'C°9

CHAPTER 6. EVALUATION OF YETI

is a floating point benchmark, it is greatly improved by dmatizing and inlining the acces-
sor methods. Comparing geometric means, we see that ourdrigeeged JIT is roughly 24%

faster than just linked traces.

RCS file : experiments.lyx, v Revision : 1.9 85

6.2. EFFECT OF REGION SHAPE ON PERFORMANCE

RCS file : experiments.lyx, v Revision : 1.9 86

Chapter 7

Conclusions and Future Work

We described an architecture for a virtual machine intéegpréhat facilitates its gradual ex-
tension to a trace-based mixed-mode JIT compiler. We syatdhing a step back from high-
performance dispatch techniques to direct call threadiveypackage all execution units (from
single instruction bodies up to linked traces) as callablgines that are dispatched via a func-
tion pointer in an old-fashioned dispatch loop. The firstdfgns that existing bodies can be
reused by generated code, so that compiler support foravimgtructions can be added one
by one. The second benefit is that it is easy to add instrurhentallowing us to discover
hot regions of the program and to install new execution wastshey reveal themselves. The
cost of this flexibility is increased dispatch overhead. \&feeshown that by generating larger
execution units, the frequency of dispatch is reduced fogmtly. Dispatching basic blocks
nearly breaks even, losing to direct threading by only 15%mK&iaing basic blocks into traces
and linking traces together, however, wins by 17% and 25%ew#/ely. Investing the ad-
ditional effort to generate non-optimized code for roughty integer and object bytecodes
within traces gains an additional 18%, now running nearlicéwas fast as direct threading.
This demonstrates that it is indeed possible to achieveugtatiut significant, performance

gains through gradual development of a JIT.

Substantial additional performance gains are possiblextsnding the JIT to handle more

87

types of instructions such as the floating point bytecoded by applying classical optimiza-
tions such as common subexpression elimination. Moredstegrg, however, is the opportu-
nity to apply dynamic and speculative optimizations basethe profiling data that we already
collect. The technique we describe for optimizing virtuadpatch in Section 5.6.3 could be
applied to guard various speculations. In particular, ththnique could be used in languages
like Python or JavaScript to optimize virtual instructidhat must accept arguments of varying
type. Finally, just as basic blocks are collected into tsase traces can be collected into larger
units for optimization.
The techniques we applied in Yeti are not specific to Java. Bgtimg the up-front devel-

opment effort required, a system based on our architecangadually bring the benefits of

mixed-mode JIT compilation to other interpreted languages

RCS file : concl.lyz, v Revision : 1.6 88

Chapter 8

Remaining Work

We believe that our research is mostly complete and that we $tzown that our efficient inter-
pretation technique is effective and supports a graduahsitn to mixed-mode interpretation.
By modestly extending our system and collecting more dataamengore fully report on the
strenghts and weaknesses of our approach. Hence, duringritex of 2007 we propose to
extend the functionality and performance instrumentatibour JIT compiler. These exten-
sions and related data collection and writing-up shoul@ctepted by the committee, allow

the dissertation to be finished by late spring or early sunoh2007.

The remaining sections of this chapter describe work wenahte pursue.

8.1 Compile Basic Blocks

In the push to compile traces we skipped the obvious step mpdimg basic blocks alone.
The basic block region data presented in Chapter 6 is for d&-bgsic blocks with no branch
inlining. It would be interesting to compare the performamd basic blocks compiled with
our JIT to traces. Especially on loop nest dominated prograiith long basic blocks, like
scimark, compiled basic blocks might perform well enougtetmup the time spent compiling

cold blocks.

89

8.2. INSTRUMENT COMPILE TIME

8.2 Instrument Compile Time

Our infrastructure does not currently make any attemptdongtime spent compiling. Since
compiling short traces will take much less time than the Itggm of the Unix clock some
machine dependent tinkering may be required. Knowing tlegtmad of compilation would

help characterize the overhead of our technique.

8.3 Another Register Class

Adding support for float registers would make our perfornearesults for float programs like
scimark more directly comparible to high performance Jifinpders like HotSpot. Extending
our simple JIT to handle another register class would sh@aw dbr design is not somehow
limited to one register class. Compiler support would neede@xtended by about another

dozen floating point virtual instructions in order to test dasign.

8.4 Measure Dynamic Proportion of JIT Compiled Instruc-
tions

As the JIT is extended to support for more virtual instruasiat would be useful to measure

the proportion of all executed virtual instructions madeoylIT compiled instructions.

RCS file : futureWork.lyx, v Revision : 1.4 90

Bibliography

[1]

[2]

[3]

[4]
[5]

[6]

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjisandparent dynamic op-
timization: The design and implementation of Dynamo. Técdnreport, Hewlett
Packard, 1999. Available from:htt p://wwv. hpl . hp. conft echreports/
1999/ HPL- 1999- 78. ht m .

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjignaino: A transparent dy-
namic optimization system. Rroc. of the ACM SIGPLAN 2000 Conf. on Prog. Language
Design and Imp|.pages 1-12, Jun. 2000.

Iris Baron. Dynamic Optimization of Interpreters using DynamoRIOPhD the-
sis, MIT, 2003. Available from: http://ww. cag.csail.mt.edu/rio/

iris-smthesis. pdf.
James R. Bell. Threaded codgomm. of the ACML6(6):370-372, 1973.

Marc Berndl, Benjamin Vitale, Mathew Zaleski, and Angelarbke Brown. Context
threading: A flexible and efficient dispatch technique fatual machine interpreters. In
Proc. of the 3rd Intl. Symp. on Code Generation and Optimirafpages 15-26, Mar.
2005.

Derek Bruening and Evelyn Duesterwald. Exploring opfic@mpilation unit shapes for
an embedded just-in-time compiler. Rroc. of the 3rd ACM Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-3pec. 2000. Available fromhtt p:

/ I www. eecs. harvar d. edu/ f ddo/ paper s/ 108. ps.

91

BIBLIOGRAPHY

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Derek Bruening, Evelyn Duesterwald, and Saman Amar&sndesign and implemen-
tation of a dynamic optimization framework for windows.Rroc. of the 4th ACM Work-

shop on Feedback-Directed and Dynamic Optimization (FDO@ec. 2000.

Derek Bruening, Timothy Garnett, and Saman Amarasindtreinfrastructure for adap-
tive dynamic optimization. IfProc. of the 1st Intl. Symp. on Code Generation and Opti-
mization pages 265-275, Mar. 2003. Available froht:t p: / / ww. cag. |l cs. m t.
edu/ dynanori o/ CG203. pdf .

Emmanuel Chailloux, Pascal Manoury, and Bruno PagBeveloping Applications With

Objective Caml O’Reilly France, 2000.

Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David &lli Mojo: A dynamic
optimization system. IrProc. of the 3rd ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-3)Dec. 2000. Available from:htt p: // www. cs.

washi ngt on. edu/ hones/ | er ns/ noj o. pdf.

Charles Curley. Life in the FastForth lanBorth Dimensions14(4), January-February
1993.

Charles Curley. Optimizing in a BSR/JSR threaded fortfarth Dimensions 14(5),
March-April 1993.

Ron Cytron, Jean Ferrante, B. K. Rosen, M. N Wegman, and Fade@k. Efficiently
computing static single assignment form and the controéddpnce graphACM Trans-

actions on Programming Languages and Syste@g}):451-490, 1991.

James C. Dehnert, Brian K. Grant, John P. Banning, Richandsbim, Thomas Kistler,
Alexander Klaiber, and Jim Mattson. The Transmeta code hngpsoftware: Using
speculation, recovery, and adaptive retranslation toesddreal-life challenges. Froc.

of the 1st Intl. Symp. on Code Generation and Optimizapages 15-24, Mar. 2003.

RCS file : futureWork.lyx, v Revision : 1.4 92

BIBLIOGRAPHY

[15] Karel Driesen Efficient Polymorphic CallsKlumer Academic Publishers, 2001.

[16] Evelyn Duesterwald and Vasanth Bala. Software profiforghot path prediction: less is
more. ACM SIGPLAN Notices35(11):202-211, 2000.

[17] M. Anton Ertl. Stack caching for interpreters. Rroc. of the ACM SIGPLAN 1995
Conf. on Prog. Language Design and Impages 315-327, June 1995. Available from:

http://ww. conpl ang. t uwi en. ac. at/ papers/ertl 95pl di . ps. gz.

[18] M. Anton Ertl and David Gregg. The behavior of efficiemtual machine interpreters on

modern architectured.ecture Notes in Computer Scien@450, 2001.

[19] M. Anton Ertl and David Gregg. Optimizing indirect bi@mprediction accuracy in virtual
machine interpreters. IRroc. of the ACM SIGPLAN 2003 Conf. on Prog. Language
Design and Imp|.pages 278-288, June 2003.

[20] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Pays VMgen — a generator
of efficient virtual machine interpreterSoftware Practice and Experiencg2:265-294,

2002.

[21] Paolo Faraboschi, Joseph A. Fisher, and Cliff Youngtrumsion scheduling for instruc-

tion level parallel processors. Proceedings of the IEER2001.

[22] S. Fink and F. Qian. Design, implementation, and ev&neaof adaptive recompilation
with on-stack replacement. lim Proceedings of the First Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (C@®@y¥ch 2003. Avail-
able from: http://ww.research.ibm coni peopl e/ s/ sfink/ papers/

cgo03. ps. gz.

[23] Etienne Gagnon and Laurie Hendren. Effective inline#ding of Java bytecode using
preparation sequences.Pnoc. of the 12th Intl. Conf. on Compiler Constructjmolume

2622 ofLecture Notes in Computer Scienpages 170-184. Springer, Apr. 2003.

RCS file : futureWork.lyx, v Revision : 1.4 93

BIBLIOGRAPHY

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Andreas Gal, Christian W. Probst, and Michael Franz.pdtitvm: an effective jit com-
piler for resource-constrained devicesPlioc. of the 2nd Intl. Conf. on Virtual Execution

Environmentspages 144-153, 2006.

Kim Hazelwood and Michael D. Smith. Code cache managesaremes for dynamic
optimizers. InSixth Annual Workshop on Interaction between Compilers andpDten
Architectures held in conjunction with the Eighth Intermat@l Symposium on High-
Performance Computer Architectyiéeb 2002. Available fromht t p: / / www. eecs.

har var d. edu/ hube/ publ i cati ons/i nteract 6. pdf .

J. L. Hennessy and D. A. Patterso@omputer Architecture: A Quantitative Approach

Morgan Kaufmann Publishers, 1990.

David Hiniker, Kim Hazelwood, and Michael D. Smith. Imgving region selection in
dynamic optimization systems. Froc. of the 38th Intl. Symp. on Microarchitecture

pages 141-154, Nov. 2005.

Glenn Hinton, Dave Sagar, Mike Upton, Darrell Boggs, DdDarmean, Alan Kyker,
and Patrice Roussel. The microarchitecture of the Pentiumodegsor.Intel Technol-
ogy Journa) Q1, 2001. Available fromht t p: // ww. i nt el . com’ t echnol ogy/

i t)/ql2001. htm

Urs Holzle. Adaptive Optimization For Self:Reconciling High Performea With Ex-

ploratory Programming PhD thesis, Stanford University, 1994.
IBM Corporation.IBM PowerPC 970FX RISC Microprocessor, version. 2605.

Intel CorporationlA-32 Intel Architecture Software Developer's Manual Votug Sys-

tem Programming Guide2004.

Peter M. Kogge. An architectural trail to threaded- esgistemslEEE Computerl5(3),
March 1982.

RCS file : futureWork.lyx, v Revision : 1.4 94

BIBLIOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Robert Lougher. JamVM [online]. Available fromht t p: / / j anvm sour cef or ge.

net/.

P. Geoffrey Lowney, Stefan M. Freudenberger, Thomasailzes, W. D. Lichtenstein,
Robert P. Nix, John S. O’'Donnell, and John C. Ruttenberg. Theifitmé Trace Schedul-
ing compiler. The Journal of Supercomputing(1-2):51-142, 1993. Available from:

http://citeseer.nj.nec.conllowey92nul tiflow htn .

Motorola CorporationMPC7410/MPC7400 RISC Microprocessor User's Manual, Rev.
1. 2002.

Michael Paleczny, Christopher Vick, and CIiff Click. Theavd HotSpot"
server compiler. INn2001 USENIX Java Virtual Machine Symposjura001.
Available from: http://ww. useni x. org/ events/jvn0l/full _papers/

pal eczny/ pal eczny. pdf.

Igor Pechtchanski and Vivek Sarkar. Dynamic optingistiterprocedural analysis: A
framework and an application. IRroc. of the 16th ACM SIGPLAN Conf. on Object-
Oriented Programming, Systems, Languages, and Applitatiopages 195-210, Oct.
2001. Available fromht t p: / / www. ¢s. nyu. edu/ phd_st udent s/ pecht cha/

pubs/ oopsl a01l. pdf.

lan Piumarta. Ccg: A tool for writing dynamic code gertera. INnOOPSLA99 Work-
shop on simplicity, performance and portability in virtualachine designNov. 1999.

Available from:ht t p: / / pi umart a. coni ccg.

lan Piumarta. The virtual processor: Fast, architecteutral dynamic code generation.

In 2004 USENIX Java Virtual Machine Symposj@04.

lan Piumarta and Fabio Riccardi. Optimizing directetdmled code by selective inlining.
In Proc. of the ACM SIGPLAN 1998 Conf. on Prog. Language Designlaupdl, pages
291-300, June 1998.

RCS file : futureWork.lyx, v Revision : 1.4 95

BIBLIOGRAPHY

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

R. Pozo and B. Miller.SciMark: a numerical benchmark for Java and C/C+4998.

Available from:ht t p: / / www. mat h. ni st. gov/ Sci Mar k.

Alex Ramirez, Josep-Lluis Larriba-Pey, Carlos Navardosep Torrellas, and Mateo
Valero. Software trace cache. International Conference on Supercomputipgges

119-126, 1999. Available frontit t p: / / ci t eseer. nj . nec. com 15361. htm .

Brad Rodriguez. Benchmarks and case studies of forth keriibe Computer Journal

60, 1993.

Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Algalman, Wayne A. Wong,
Jean-Loup Baer, Brian N. Bershad, and Henry M. Levy. The stracnd performance

of interpreters. IiProc. ASPLOS ,/pages 150-159, October 1996.

Markku Rossi and Kengatharan Sivalingam. A survey ofrugion dispatch techniques
for byte-code interpreters. Technical Report TKO-C79, hhdsUniversity Faculty of
Information Technology, May 1996.

Eric Rotenberg, Steve Bennett, and James E. Smith. Teat®c A low latency approach
to high bandwidth instruction fetching. International Symposium on Microarchitecture

pages 24-35, 1996.

SPECjvm98 benchmarks [online]. 1998. Available framh:t p: / / www. spec. or g/
osg/jvnb8/ .

Dan Sugalski. Implementing an interpreter [online]lvafable from: ht t p: / / www.
si dhe. or g/ % Edan/ pr esent ati ons/ Parr ot %201 npl enent at i on. ppt.

Notes for slide 21.

Toshio Suganuma, Takeshi Ogasawara, Mikio TakeucbgshiBki Yasue, Motohiro

Kawahito, Kazuaki Ishizaki, Hideaki Komatsu, and ToshiockBani. Overview of the

RCS file : futureWork.lyx, v Revision : 1.4 96

BIBLIOGRAPHY

[50]

[51]

[52]

[53]

[54]

[55]

[56]

IBM Java just-in-time compilerIBM Systems Journals, Java Performance Is89€1),

Feb. 2000.

Toshio Suganuma, Toshiaki Yasue, and Toshio Nakaté&nregion-based compilation
technique for dynamic compilersACM Trans. Program. Lang. Sys28(1):134-174,
2006.

Gregory T. Sullivan, Derek L. Bruening, Iris Baron, TirhgtGarnett, and Saman Ama-
rasinghe. Dynamic native optimization of interpreters. Piioc. of the Workshop on

Interpreters, Virtual Machines and Emulato2003.

V. Sundaresan, D. Maier, P Ramarao, and M Stoodley. kspess with multi-threading
and dynamic class loading in a Java just-in-time compilePrbc. of the 4th Intl. Symp.

on Code Generation and Optimizatigmages 87-97, Mar. 2006.

David Ungar, Randall B. Smith, Craig Chambers, and Urs Kdl@bject, message, and
performance: how they coexist in SEIEEE-COMPUTER25(10):53-64, Oct. 1992.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendpatrick Lam, and Vijay
Sundaresan. Soot - a java bytecode optimization framewnorRroceedings of the 1999
conference of the Centre for Advanced Studies on Collaberatisearchpage 13. IBM

Press, 1999.

Benjamin Vitale and Tarek S. Abdelrahman. Catenation@merand specialization for

Tcl VM performance. IrProc. 2nd IVME pages 42-50, 2004.

Benjamin Vitale and Mathew Zaleski. Alternative disgatechniques for the Tcl vm
interpreter. InProceeedings of Tcl'2005: The 12th Annual Tcl/Tk Confergre-
tober 2005. Available from:htt p: // ww. cs. t or ont 0. edu/ sysl ab/ pubs/
tcl 2005- vi t al e- zal eski . pdf.

RCS file : futureWork.lyx,v Revision : 1.4 97

BIBLIOGRAPHY

[57] Hank S Warren, Jr. Instruction scheduling for the IBM RI§Gtem/6000 processéBM
Systems Journal84(1), Jan 1990.

[58] Tom Wilkinson. The Kaffe java virtual machine [onlineAvailable from: http://

www. kaf fe. org/.

[59] Emmett Witchel and Mendel Rosenblum. Embra: Fast andbliexnachine simulation.
In Measurement and Modeling of Computer Sysigrages 68—79, 1996. Available from:

citeseer.nj.nec.confw tchel 96enbra. htnm .

[60] Mathew Zaleski, Marc Berndl, and Angela Demke Brown. Mixaode execution with
context threading. "CASCON '05: Proceedings of the 2005 conference of the Centre

for Advanced Studies on Collaborative reseail&M Press, 2005.

RCS file : futureWork.lyx,v Revision : 1.4 98

