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Chapter 1

Introduction

An interpreter is an attractive way to support an evolving computer language, making it easy to

test and refine new language features. The portability of an interpreter also allows a new lan-

guage to be widely deployed. Nevertheless, informal comparisons show that these interpreted

language implementations generally run much more slowly than compiled code. To get the

best of both worlds, today’s high-performance Java implementations run inmixed-mode, that

is, combining interpretation with dynamic just-in-time (JIT) compilation. Given the success of

this strategy for Java, why are many useful languages like Python, JavaScript, Tcl and Ruby

not implemented by mixed-mode systems?

We believe that two main factors block gradually enhancing an interpreter to become a

mixed-mode virtual machine. First, the way virtual instructions are packaged in modern in-

terpreters makes it hard to dispatch them from regions of generated code. Second, current JIT

compilers follow the legacy of static compilation and generate code only for methods. This

significantly increases the complexity of the JIT and its runtime.

Our interpreter is packaged so that its virtual instructionscanbe used from generated code.

Our JIT compiler generates code for dynamically discoveredtraces rather than methods. This

enables our system to grow into a mixed-mode run-time systemalong two dimensions. First,

our compiler can be extended gradually, adding support for virtual instructions one at a time.

7



1.1. CHALLENGES OF EFFICIENT INTERPRETATION

Second, our system can be incrementally extended to identify larger regions of the program.

We focus onvirtual machine interpretersin which source code is compiled to avirtual

programor bytecoderepresentation (i.e., a sequence ofvirtual instructionsand their operands).

Typically, virtual instructions are described as though provided by real hardware, but in fact

the virtual machine implements each with a block of code, called thevirtual instruction body,

or simply body. The interpreter executes the virtual program bydispatchingeach body in

sequence.

Our work has two main parts. First, we show that organizing the implementation of an

interpreter by packaging virtual instruction bodies as callable units is efficient. Second, we

demonstrate that a trace-based dynamic compiler has reasonable overhead and achieves good

speedup.

1.1 Challenges of Efficient Interpretation

Recently, Ertl and Gregg observed that the performance of otherwise efficientdirect-threaded

interpretation is limited by pipeline stalls and flushes dueto extremely poor indirect branch

prediction [18]. Modern pipelined architectures, such as the Pentium IV (P4) and the Pow-

erPC (PPC), must keep their pipelines full to perform well. Hardware branch predictors use

thenativePC to exploit the highly-biased branches found in typical (native code) CPU work-

loads [28, 30, 35]. Direct-threaded virtual machine (VM) interpreters, however, are not typical

workloads. Their branches’ targets are unbiased and therefore unpredictable [18, 19]. For an

interpreted program, it is thevirtual program counter (orvPC) that is correlated with control

flow. We therefore propose to organize the interpreter so that the native PC correlates with the

vPC, exposing virtual control flow to the hardware.

We introduce a technique based onsubroutine threading, once popular in early interpreters

for languages like Forth. To leverage return address stack prediction we implement each virtual

instruction body as a subroutine which ends in a nativereturn instruction [5]. Note, however,

RCSfile : intro.lyx, v Revision : 1.17 8



CHAPTER 1. INTRODUCTION

that these subroutines are not full-fledged functions in thesense of a higher-level programming

language such as C (no register save/restore, stack frame creation, etc.). When the instruc-

tions of a virtual program are loaded by the interpreter, we translate them to a sequence of

call instructions, one per virtual instruction, whose targets are these subroutines. Virtual in-

structions are then dispatched by executing this sequence of calls. The key to the effectiveness

of this simple approach is that at dispatch time, the native PC is perfectly correlated with the

virtual PC. Thus, for non-branching bytecodes, the return address stack in modern processors

reliably predicts the address of the next bytecode to execute. Because the next dynamic instruc-

tion is not generally the next static instruction in the virtual program, branches pose a greater

challenge, For these virtual instructions, we provide a limited form of specialized inlining, re-

placing indirect with relative branches, thus exposing virtual branches to the hardware’s branch

predictors.

1.2 Challenges of Evolving to a Mixed-Mode System

Current JIT compilers are method-oriented, that is, the JIT must generate code for entire meth-

ods at a time. This leads to two problems. First, if the construction of the JIT is approached in

isolation from an existing interpreter, the JIT project is a“big bang” development effort where

the code generation for dozens, if not hundreds, of virtual instructions is written and debugged

at the same time. Second, compiling whole methods compiles cold code as well as hot. This

complicates the generated code and its runtime.

The first issue can be dealt with by more closely integrating the JIT with the interpreter.

If the interpreter provides a callable routine to implementeach virtual instruction body, then,

when the JIT encounters a virtual instruction it does not fully support, it can simply gener-

ate a call to the body instead [48]. Hence, rather than a big bang, development can proceed

more gradually, in a sequence of stages, where JIT support for one or a few virtual instruc-

tions is added in each stage. Modern interpreters do not, however, typically provide callable

RCSfile : intro.lyx, v Revision : 1.17 9



1.2. CHALLENGES OF EVOLVING TO A MIXED-MODE SYSTEM

implementations of virtual instruction bodies.

The second issue, compiling cold code (i.e., code that has never executed), has more im-

plications than simply wasting compile time. Except at the very highest levels of optimization,

where analyzing cold code may prove useful facts about hot regions, there is little point com-

piling code that never runs. Moreover, cold code increases the complexity of dynamic compi-

lation. We give three examples. First, for late binding languages such as Java, cold code likely

contains references to program values which are not yet bound. If the cold code eventually

does run, the generated code and the runtime that supports itmust deal with the complexities

of late binding [52]. Second, certain dynamic optimizations are not possible without profiling

information. Foremost amongst these is the optimization ofvirtual function calls. Since there

is no profiling information for cold code the JIT may have to generate relatively slow con-

servative code. Third, as execution proceeds, cold regionsin compiled methods may become

hot. The conservative assumptions made during the initial compilation may now be a drag on

performance. The straightforward-sounding approach of recompiling these methods is com-

plicated by problems such as what to do about threads that arestill executing in the method or

which must return to the method in the future.

These considerations suggest that the architecture of agradually extensible mixed-mode

virtual machine should have three important properties. First, virtual bodies should be callable

routines. Second, the unit of compilation must be dynamically determined and of flexible

shape, so as to capture hot regions while avoiding cold. Third, as new regions of hot code

reveal themselves, a way is needed of gracefully compiling and linking it on to previously

compiled hot code.

Currently, languages like Java, OCaml, and Tcl deploy relatively high performance inter-

preters based on thedirect threadingvirtual instruction dispatch technique [4, 17]. Unfor-

tunately, there is no straightforward and efficient way for direct threaded virtual instruction

bodies to interoperate with generated code. The problem is caused by the nature of threaded

dispatch, namely that once dispatched a direct threaded body branches to its successor, out

RCSfile : intro.lyx, v Revision : 1.17 10



CHAPTER 1. INTRODUCTION

of the control of any generated code that may have dispatchedit. Thus, the legacy of direct

threading, originally adopted for performance reasons, has led to a situation where the instruc-

tion bodies cannot be reused from generated code. Ironically, on modern hardware, direct

threading is no longer particularly efficient because of itspoor branch prediction behavior. In

contrast, our implementation (Chapter 3) and evaluation (Chapter 4) of subroutine threading

has shown that direct threaded bodies repackaged as callable routines can be dispatched very

efficiently.

1.3 Overview of Our Solution

Our aim is to design an infrastructure that supports dynamiccompilation units of varying

shapes. Just as a virtual instruction body implements a virtual instruction, anexecution unit

implements a region of the virtual program. Possible execution units include single virtual

instructions, basic blocks, methods, partial methods, inlined method nests, and traces (i.e.,

frequently-executed paths through the virtual program). The key idea is to package every ex-

ecution unit as callable, regardless of the size or shape of the region of the virtual program

that it implements. The interpreter can then execute the virtual program by dispatching each

execution unit in sequence.

Execution units corresponding to longer sequences of virtual instructions will run faster

than those compiled from short ones because fewer dispatches are required. In addition, larger

execution units should offer more opportunities for optimization. However, larger execution

units are more complicated and so we expect them to require more development effort to detect

and compile than short ones. This suggests that the performance of a mixed-mode VM can be

gradually extended by incrementally increasing the scope of execution units it identifies and

compiles. Ultimately, the peak performance of the system should be at least as high as current

method-based JIT compilers since, with enough engineeringeffort, execution units of inlined

method nests could be supported.

RCSfile : intro.lyx, v Revision : 1.17 11



1.3. OVERVIEW OF OUR SOLUTION

The practicality of our scheme depends on the efficiency of subroutine dispatch so the

first phase of our research was to retrofit a Java virtual machine, andocamlrun, an Ocaml

interpreter [9], to a new hybrid dispatch technique we callcontext threading. We evaluated

context threading on PowerPC and Pentium 4 platforms by comparing branch predictor and

run time performance of common benchmarks to unmodified, direct threaded versions of the

virtual machines.

In the second phase of this research we gradually extended JamVM, a cleanly implemented

and relatively high performance Java interpreter [33] to create our prototype, Yeti, (graduallY

Extensible Trace Interpreter). We built Yeti in five phases:First, we repackaged all virtual

instruction bodies as callable. Our initial implementation executed only single virtual instruc-

tions which were dispatched from a simple dispatch loop. Second, we identified basic blocks,

or sequences of virtual instructions. Third, we extended our system to identify and dispatch

traces, or sequences of basic blocks. Traces are significantly morecomplex execution units

than basic blocks because they must accommodate virtual branch instructions. Fourth, we ex-

tended the trace system to link traces together. In the fifth and final stage, we implemented a

naive, non-optimizing compiler to compile the traces. Our compiler currently generates Pow-

erPC code for about 50 virtual instructions.

We chose traces because they have several attractive properties: (i) they can extend across

the invocation and return of methods, and thus have an inter-procedural view of the program,

(ii) they contain only hot code, (iii) they are relatively simple to compile as they aresingle-entry

multiple-exitregions of code, and (iv), as new hot paths reveal themselvesit is straightforward

to generate new traces and link them onto existing ones.

These properties make traces an ideal execution unit for an entry level mixed-mode system

like Yeti is today. However, new shapes of execution units assembled from linked traces may

turn out to have all the advantages of inlined method nests but also side-step the overhead of

generating code for cold regions within the methods.

RCSfile : intro.lyx, v Revision : 1.17 12



CHAPTER 1. INTRODUCTION

1.4 Thesis Statement

The implementation of a new programming language should make the exploration of new

features easy, yet at the same time be extensible to a high performance mixed-mode system

as the language matures. To achieve this, an interpreter should be organized around callable

virtual instruction bodies for efficient dispatch and the ability to call bodies from generated

code. By dispatching regions of the virtual program, initially the callable bodies, from an

instrumented dispatch loop the interpreter can be gradually extended to be a trace-oriented

mixed-mode system. This structure enables extensibility in two dimension. First, callable

bodies can be dispatched from generated code, so the compiler can be extended one virtual

instruction at a time. Second, the instrumented dispatch loop makes it simple to identify, then

dispatch, larger and more complex execution units.

1.5 Contribution

The contributions of this thesis are twofold:

1. We show that packaging virtual instruction bodies as callable routines is desirable on

modern processors because the additional cost of call and return is more than made up for

by improvements in branch prediction. We show that subroutine threading significantly

outperforms direct threading, for Java and Ocaml on Pentiumand PowerPC. We show

how with a few extensions a context threaded interpreter canperform as well as or better

than a selective inlining interpreter, previously the state of the art.

2. We propose an architecture for, and describe our implementation of, a trace-oriented

mixed-mode system that allows a subroutine threaded interpreter to be gradually en-

hanced to identify and compile larger execution units and thus obtain better performance.

By adopting our architecture the implementors of new or existing languages can more

easily enhance their systems to run mixed mode and hence balance development costs

RCSfile : intro.lyx, v Revision : 1.17 13



1.6. OUTLINE OF THESIS

against performance benefits.

1.6 Outline of Thesis

We describe an architecture for a virtual machine interpreter that facilitates the gradual exten-

sion to a trace-based mixed-mode JIT compiler. We demonstrate the feasibility of this approach

in a prototype, Yeti, and show that performance can be gradually improved as larger program

regions are identified and compiled.

In Chapter 2 we present background and related work on interpreters and JIT compilers. In

Chapter 3 we describe the design and implementation of context threading. Chapter4 describes

how we evaluated context threading. The design and implementation of Yeti is described in

Chapter 5. We evaluate the benefits of this approach in Chapter 6. Finally, we discuss possible

avenues for future work and conclusions in Chapter 7.

RCSfile : intro.lyx, v Revision : 1.17 14



Chapter 2

Background and Related Work

To motivate the design choices we made in our system, we first review existing interpreter

dispatch and JIT compilation strategies. We note that portability is an important property of

interpreters, particularly for a new language implementation. Thus, it should be possible to

build the source code base of the interpreter on a large number of platforms. On the other hand,

dynamic compilers are intrinsically non-portable software, since they must generate platform-

specific code. Some non-portable functionality may therefore be required by an interpreter to

help it to integrate conveniently with the JIT. As we review various interpreter techniques, we

comment on both their portability and suitability for gradual JIT development.

2.1 Interpreter Dispatch

An interpreter must load a virtual program before starting to execute it. Whereas the compact-

ness of the storage format of a virtual program may be important, the loaded representation has

likely been designed for good execution performance. As we shall see, the representation of the

loaded virtual program goes hand in hand with the dispatch mechanism used by the interpreter.

In the next few sections we will describe several dispatch techniques. Typically we will give

a small C language example that illustrates the way the interpreter is structured and a diagram

showing how the internal representation is arranged. The examples may give the impression

15



2.1. INTERPRETER DISPATCH

that all interpreters are always hand written C programs. Precisely because so many dispatch

mechanisms exist, some researchers argue that the interpreter portion of a virtual machine

should be generated from some more generic representation [20, 48].

2.1.1 Switch Dispatch

Perhaps the simplest combination of loaded representationand dispatch mechanism, switch

dispatch, is illustrated by Figure 2.1. The figure introduces a running example we will use

several times, so we will briefly describe it here. First, a Java compiler creates a class file

describing part of a virtual program in a standardized format. In our example we show just

one Java expression{c=a+b} which adds the values of two Java local variables and stores

the result in a third.Javac, a Java compiler, has translated this to the sequence of virtual

instructions shown in the middle box on the left. The actual semantics of the virtual instructions

are not important to our example other than to note that none are virtual branch instructions.

Before our example can be run by the interpreter it must beloaded, or converted into a

representation that can be executed. The loaded representation appears on the bottom left.

There are two main things that happen during loading. First,the virtual opcode of each virtual

instruction is translated into a form best suited for the dispatch technique in use. For example,

in this case each virtual opcode is loaded as a token corresponding to the operation it carries out.

Second, the arguments of the virtual instructions must be loaded. In the figure the arguments,

for those virtual instructions that take them, are loaded following the token representing the

virtual opcode.

Figure 2.1 illustrates the situation just before the our example expression is run. Note the

virtual program counter, thevPC, points to the word in the loaded representation corresponding

to the leadingiload. The correspondingcase in the switch statement does the actual

work. All execution time other than that spent executing thebodies is dispatch overhead.

Switch dispatch can be implemented in ANSI standard C and so it is very portable and

very commonly used (e.g. in the JavaScript and Python interpreters). It is also slow due to the
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CHAPTER 2. BACKGROUND AND RELATED WORK

Java

source

Java 

Bytecode

{
  c=a+b+1;
}

vPC

loaded

representation

of virtual 

program

iload

a

iload

b

iconst

1

iadd

iadd

istore

c

interp(){
  int *vPC;

  while(1){

    switch(*vPC++){

    case ILOAD:
      //push var..
      break;

    case ICONST:
      //push constant
      break;

    case IADD:
      //add 2 slots
      break;

    case ISTORE:
      //pop,store 
      break;

    }

  }

}

iload a
iload b
iconst 1
iadd
iadd
istore c

Figure 2.1: A switch interpreter loads each virtual instruction as a virtual opcode, or token,

corresponding to the case of the switch statement that implements it.
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2.1. INTERPRETER DISPATCH

overhead of the dispatch loop and the switch.

2.1.2 Direct Call Threading

Another highly portable way to organize an interpreter is towrite each virtual instruction as

a function and dispatch the function corresponding to each virtual instruction via a function

pointer from a dispatch loop. A variation of this technique called direct call threading is de-

scribed by Ertl [17]. This is illustrated by Figure 2.2. For historical reasons the name “direct”

is given to interpreters which store the address of the virtual instruction bodies in the loaded

representation. Presumably this is because they avoid the need for any mapping table. How-

ever, the name can be confusing since the machine instruction generated by the compiler to

implement the function pointer is anindirect call. In the figure thevPC is a static variable

which means theinterp function as shown is not re-entrant. This example is meant togive

the flavor of call threading not be a realistic program.

In Chapter 5 we will show that direct call threading can perform about the same as switch

threading. Next we will describe direct threading, perhapsthe most well known “high perfor-

mance” dispatch technique.

2.1.3 Direct Threading

As shown on the left of Figure 2.3, a virtual program is loadedinto a direct-threaded interpreter

by constructing alist of addresses, one for each virtual instruction in the program, pointing to

the entry of the body for that instruction. We refer to this list as theDirect Threading Table, or

DTT, and refer to locations in the DTT asslots. Virtual instruction operands are also stored in

the DTT, immediately after the address of the correspondingbody. The interpreter maintains a

virtual program counter, orvPC, which points to a slot in the DTT, to identify the next virtual

instruction to be executed and to allow bodies to locate their operands.

Interpretation begins by initializing thevPC to the first slot in the DTT, and then jumping

RCSfile : background − related.lyx, v Revision : 1.23 18
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vPC

iload

a

iload

b

iconst

1

iadd

iadd

istore

c

DTT   void iload(){ // push var
    vPC++;
  }
  void iconst(){// push constant
    vPC++;
  }
  void iadd(){  //pop,pop,add,push
    vPC++;
  }
  void istore(){ //pop,store...
  }
  vPC = &dtt[0];
  interp(){
   while(1){
   (*vPC)(); //dispatch loop
  } 
}

loaded data

Figure 2.2: A direct call threaded interpreter packages each virtual instruction body as a func-

tion. The shaded box highlights the dispatch loop showing how instructions are called through

a function pointer. Direct call threading requires the loaded representation of the program to

indicate theaddressof the function implementing each virtual instruction.
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2.1. INTERPRETER DISPATCH

vPC

iload a
iload b
iconst 1
iadd
iadd
istore c

{
  c=a+b+1;
} &&iload

a
&&iload
b
&&iconst
1
&&iadd
&&iadd
&&istore
c

DTT
interp(){
  iload:
    //push var..
    
     goto *vPC++;

  iconst:
    //push constant
     
    goto *vPC++;

  iadd://add 2 slots

  istore://pop,store 
}

Java source

Java Bytecode

B
ytecode Loader

Javac
Compiler

Virtual Instruction Bodies

Figure 2.3: Direct Threaded Interpreter showing how Java Source code compiled to Java byte-

code is loaded into the Direct Threading Table (DTT). The virtual instruction bodies are written

in a single C function, each identified by a separate label. The double-ampersand (&&) shown

in the DTT is gcc syntax for the address of a label.

mov %eax = (%rx) ; rx is vPC lwz r2 = 0(rx)

addl 4,%rx mtctr r2

jmp (%eax) addi rx,rx,4

bctr

(a) Pentium IV assembly (b) Power PC assembly

Figure 2.4: Machine instructions used for direct dispatch.On both platforms assume that

rx has been dedicated for thevPC. Note that on the PowerPC indirect branches are two part

instructions that first load thectr register and second branch to its contents.
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CHAPTER 2. BACKGROUND AND RELATED WORK

to the address stored there. Each body then ends by transferring control to the next instruction,

shown in Figure 2.3 asgoto *vPC++. In C, bodies are identified by alabel. Common C

language extensions permit the address of this label to be taken, which is used when initializing

the DTT. The computed goto used to transfer control between instructions is also a common

extension, making direct threading very portable.

This requires fewer instructions and is faster than switch dispatch. Assembler for the dis-

patch sequence is shown in Figure 2.4. When executing the indirect branch in Figure 2.4(a) the

Pentium IV will speculatively dispatch instructions usinga predicted target address. The Pow-

erPC uses a different strategy for indirect branches, as shown in Figure 2.4(b). First the target

address is loaded into a register, and then a branch is executed to this register address. Rather

than speculate, the PowerPC stalls until the target addressis known, although other instructions

may be scheduled between the load and the branch to reduce or eliminate these stalls.

2.1.4 The Context Problem

Stalling and incorrect speculation are serious pipeline hazards. To perform at full speed, mod-

ern CPU’s need to keep their pipelines full by correctly predicting branch targets. Indirect

branch predictors assume that the branch destination is highly correlated with the address of

the indirect branch instruction itself. As observed by Ertl[18, 19], this assumption is usually

wrong for direct threaded interpreter workloads. In a direct-threaded implementation, there is

only oneindirect jump instruction per virtual opcode implemented.For example, in the frag-

ment of virtual code illustrated in Figure 2.3, there are twoinstances ofiload followed by

iconst. The indirect dispatch branch at the end of theiload body will execute twice. The

first time, in the context of the first instance ofiload, it will branch back to the head of

the theiload body whereas in the context of the secondiload it will branch toiconst.

To the hardware the destination of the dispatch is unpredictable because its destination is not

correlated with the hardwarepc. Instead, its destination is correlated tovPC. We refer to this

lack of correlation between the hardwarepc andvPC as thecontext problem.
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2.1.5 Optimizing Dispatch

Much of the work on interpreters has focused on the dispatch problem. Kogge [32] remains a

definitive description of many threaded code dispatch techniques. These can be divided into

two broad classes: those which refine the dispatch itself, and those which alter the bodies so

that there are more efficient or simply fewer dispatches. Switch dispatch and direct threading

belong to the first class, as does subroutine threading, discussed next. Later, we will discuss su-

perinstructions and replication, which are in the second class. We are particularly interested in

subroutine threading and replication because they both provide context to the branch prediction

hardware.

Some Forth interpreters use subroutine-threaded dispatch. Here, a loaded virtual program

is not represented as a list of body addresses, but instead asa sequence of nativecalls to

the bodies, which are then constructed to end with nativereturns. Curley [12, 11] describes

a subroutine-threaded Forth for the 68000 CPU. He improves the resulting code by inlining

small opcode bodies, and converts virtual branch opcodes tosingle native branch instructions.

He credits Charles Moore, the inventor of Forth, with discovering these ideas much earlier.

Outside of Forth, there is little thorough literature on subroutine threading. In particular, few

authors address the problem of where to store virtual instruction operands. In Section 3.1.2,

we document how operands are handled in our implementation of subroutine threading.

The choice of optimal dispatch technique depends on the hardware platform, because dis-

patch is highly dependent on micro-architectural features. On earlier hardware,call andreturn

were both expensive and hence subroutine threading required two costly branches, versus one

in the case of direct threading. Rodriguez [43] presents the trade offs for various dispatch types

on several 8 and 16-bit CPUs. For example, he finds direct threading is faster than subroutine

threading on a 6809 CPU, because thejsr andret instruction require extra cycles to push

and pop the return address stack. On the other hand, Curley found subroutine threading faster

on the 68000 [11]. On modern hardware the cost of thecall and return is much lower, due

to return branch prediction hardware, while the cost of direct threading has increased due to
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misprediction. In Chapter 4 we demonstrate this effect on several modern CPUs.

Superinstructionsreduce the number of dispatches. Consider the code to add a constant

integer to a variable. This may require loading the variableonto the stack, loading the con-

stant, adding, and storing back to the variable. VM designers can instead extend the virtual

instruction set with a single superinstruction that performs the work of all four instructions.

This technique is limited, however, because the virtual instruction encoding (often one byte

per opcode) may allow only a limited number of instructions,and the number of desirable

superinstructions grows exponentially in the number of subsumed atomic instructions. Fur-

thermore, the optimal superinstruction set may change based on the workload. One approach

uses profile-feedback to select and create the superinstructions statically (when the interpreter

is compiled [20]).

Piumarta [40] presentsselective inlining. It constructs superinstructions when the virtual

program is loaded. They are created in a relatively portableway, bymemcpy’ing the native

code in the bodies, again using GNU C labels-as-values. Thistechnique was first documented

earlier [45], but Piumarta’s independent discovery inspired many other projects to exploit se-

lective inlining. Like us, he applied his optimization to OCaml, and reports significant speedup

on several micro benchmarks. As we discuss in Section 4.3, our technique is separate from,

but supports and indeed facilitates, inlining optimizations.

Languages, like Java, that require run-time binding complicate the implementation of se-

lective inlining significantly because at load time little is known about the arguments of many

virtual instructions. When a Java method is first loaded some arguments are left unresolved.

For instance, the argument of aninvokevirtual instruction will initially point to a string

naming the callee. The first time the virtual instruction executes the argument will be re-written

to point to a descriptor of the now resolved callee. At the same time, the virtual opcode is

rewritten so that subsequently a “quick” form of the virtualinstruction body executes. In Java,

if resolution fails, the instruction throws an exception. The process of rewriting the arguments

and especially the need to point to a new virtual instructionbody, complicates superinstruction
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formation. Gagnon describes a technique that deals with this additional complexity which he

implemented in SableVM [23].

Only certain classes of opcode bodies can be relocated usingmemcpy alone—the body

must contain no pc-relative instructions (typically this excludes C function calls). Selective

inlining requires that the superinstruction starts at a virtual basic block, and ends at or before

the end of the block. Ertl’sdynamic superinstructions[19] also usememcpy, but are applied

to effect a simple native compilation by inlining bodies fornearly every virtual instruction.

Ertl shows how to avoid the virtual basic block constraints,so dispatch to interpreter code is

only required for virtual branches and unrelocatable bodies. Vitale and Abdelrahman describe

a technique called catenation, which patches Sparc native code so that all implementations can

be moved, specializes operands, and converts virtual branches to native, thereby eliminating

the virtual program counter [55].

Replication— creating multiple copies of the opcode body—decreases thenumber of con-

texts in which it is executed, and hence increases the chances of successfully predicting the

successor [19]. Replication implemented by inlining opcodebodies reduces the number of

dispatches, and therefore, the average dispatch overhead [40]. In the extreme, one could cre-

ate a copy for each instruction, eliminating mispredictionentirely. This technique results in

significant code growth, which may [55] or may not [19] cause cache misses.

In summary, misprediction of the indirect branches used by adirect threaded interpreter

to dispatch virtual instructions limits its performance onmodern CPUs because of the context

problem. We have described several recent dispatch optimization techniques. Some of the

techniques improve performance of each dispatch by reducing the number of contexts in which

a body is executed. Others reduce the number of dispatches, possibly to zero.
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2.2 Dynamic Hardware Branch Prediction

In Section 3.1 we will describe dispatch optimizations thatare effective because they better use

the dynamic hardware branch predictor resources present onmodern processors. As discussed

in Section 2.1.4, a direct threaded interpreter presents anunusual workload which confounds

indirect branch predictors. The primary mechanism used to predict indirect branches on mod-

ern computers is thebranch target buffer(BTB). The BTB is a memory that associates the des-

tination of a branch with its address [26]. The Pentium IV implements a 4K entry BTB [28].

(There is no mention of a BTB in the PowerPC 970 programmers manual [30].) Direct thread-

ing confounds the BTB because all instances of a given virtualinstruction compete for the same

BTB slot. The performance impact of this can be hard to predict. For instance, if a tight loop

of the virtual program happens to contain a sequence of unique virtual instructions then the

BTB may successfully predict each one. On the other hand, if the sequence contains duplicate

virtual instructions, like the pair ofiload instructions in Figure 2.3, the BTB may mispredict

all of them.

Another kind of dynamic branch predictor is used for conditional branch instructions. Con-

ditional branches are relative, or direct, branches so there are only two possible destinations.

The challenge lies in predicting whether the branch will be taken or fall through. For this pur-

pose modern processors implement abranch history table. The PowerPC 7410, as an example,

deploys a 2048 entry 2 bit branch history table [35]. Direct threading also confounds the branch

history table as all the instances of each conditional branch virtual instruction compete for the

same branch history table entry. This will be discussed in more detail in Section 3.1.3.

Return instructions can be predicted perfectly using a stackof addresses pushed by call

instructions. The Pentium IV has a 16 entryreturn address stack[28] whereas the PPC970

uses a similar structure called thelink stack[30].
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2.3 Traces

We usetrace to describe an interprocedural path through a program. The term has been used

in several different contexts. The application of the term that doesnot concern our work and

yet is potentially confusing is by the Multiflow compiler [34, 21] which performs instruction

scheduling on traces of instructions.

The Pentium 4 processor refers to its level 1 instruction cache as an “Execution Trace

Cache” [28]. The concept of storing traces in a hardware instruction cache to maximize use

of instruction fetch bandwidth is discussed by Rotenberg andBennett in [46]. Optimization

techniques such as the “Software Trace Cache” reorder code toachieve a similar result [42].

2.3.1 HP Dynamo

HP Dynamo [2, 16, 1] is a system for trace-based runtime optimization of statically optimized

binary code. Dynamo initially interprets a binary executable program, detecting interprocedu-

ral paths, ortraces, through the program as it runs. These traces are then optimized and loaded

into atrace cache. Subsequently, when the interpreter encounters a program location for which

a trace exists, it is dispatched from the trace cache. If execution diverges from the path taken

when the trace was generated then atrace exitoccurs, execution leaves the trace cache and

interpretation resumes. If the program follows the same path repeatedly, it will be faster to ex-

ecute code generated for the trace rather than the original code. Dynamo successfully reduced

the execution time of many important benchmarks on HP computers of it day.

Dynamo uses a simple heuristic, called Next Executing Tail (NET), to identify traces. NET

starts generating a trace from the destination of a hot reverse branch, since this location is likely

to be the head of a loop, and hence a hot region of the program islikely to follow. If a given

trace exit becomes hot, a new trace is generated starting from its destination.

Software trace caches are efficient structures for dynamic optimization. Bruening and

Duesterwald [6] compare execution time coverage and code size for three dynamic optimiza-
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c1a

c1b

callsite1 library code

call glue

return glue
library code

call guard

return guard

c1a

c1b

trace1

(a)

(b)

Figure 2.5: A simple dynamically loaded callee (a) requiresan indirect branch whereas trace

code (b) guards with conditional branches.

tion units: method bodies, loop bodies, and traces. They show that method bodies require

significantly more code size to capture an equivalent amountof execution time than either

traces or loop bodies. This result, together with the properties outlined in Section 1.3, suggest

that traces are a desirable execution unit for our gradually-extensible interpreter.

As part of trace generation Dynamo reverses the sense of conditional branches so the path

along the trace sees onlynot takenconditional branches. This is significant because, subse-

quently, when the trace is dispatched, all the frequently executed conditional branches are not

taken, which is the sense that many static CPU branch prediction schemes [57] assume will

be taken for forward branches. On HP hardware of the day this may have led to better use of

the skimpy, by today’s standards, branch prediction resources available. In addition to better

branch prediction, the traces should promote better use of the instruction cache prefetch band-

width. Since we expect that fewer conditional branches are being taken by the traces, we should

also expect that the portions of instruction cache lines following the conditional branches will

be used more effectively. The Dynamo team did not report micro-architectural data to explain

exactly why Dynamo obtained the speed-ups it did.
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Calls and Returns

Over an above making better use of the micro-architecture Dynamo can perform optimistic

dynamic optimizations. A good example is its treatment of external calls and returns to shared

library routines. The Hewlett-Packard PA-8000, in the spirit of its RISC architecture, does

not offer complex call and return instructions. A callsite to a shared routine first branches to

a small chunk of glue code written by the static linker. The glue code loads the destination

of the shared code from a data location that was mapped by the static linker and initialized

by the dynamic loader. An indirect branch then transfers control to that location. When glue

code is encountered during trace generation it is optimizedin a similar spirit to conditional

branches but also with the flavor of inlining. Figure 2.5 (a) illustrates the original extern call

and (b) shows how it is trace generated. The indirect branch is replaced by a conditional

trace exit. The call guard in the figure is in fact a conditional branch comparing the target of

the indirect branch to the original destination observed during trace generation [59]. That is,

instead of using the destination loaded by the loader glue code as input to an indirect branch,

Dynamo uses it to check that the trace contains the right copyof the destination. As before, the

conditional branch is arranged so that it is not taken when control remains in the trace. Hence

the technique straightens the glue code and replaces an expensive, taken, indirect branch with

a cheaper, not-taken conditional branch, as well as inlinesthe callee code. Returns are handled

essentially the same way. If the destination of the shared code were to be changed by some

action of the dynamic loader, the guard code would detect that this does not correspond to the

code that was earlier inlined into the trace, and the trace would exit.

The callsite of a C++ virtual function or a regular C function pointer will also start out as an

indirect call and be trace generated in a similar way. If a C++ virtual function callsite turns out

to be effectively polymorphic, then the destination encountered during trace generation will be

inlined into the initial trace. As overrides of the virtual method are encountered, the trace exit

guarding the inlined code will fail. Eventually one of them will become hot, and a new trace

will be generated from its entry point. Each time this occurs, Dynamo inserts the address of
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the new trace into a hash table specific to the callsite keyed by the address in the originating

code. Then, when a trace exit occurs resulting from an indirect branch, Dynamo can find the

destination trace by looking up the originating destination in the hash table.

This technique provides a simple mechanism for dynamic optimizers to generate specula-

tive optimizations. In the examples we have just described code generated in the trace specu-

lates that the destination of a shared library call remains constant. However, the technique is

general and could be used for various speculations. In Sections 5.6.3 and 5.7 we will discuss

variations of the technique for virtual method invocation and optimizing polymorphic virtual

instructions.

Cache Management

Caches, in general, hold recently used items, which means that that older, unused items are

at some point removed or replaced. The management of a high-performance trace cache can

be very complex [25]. Given that Dynamo can always fall back on interpretation it has a very

simple option. When its trace cache becomes full, Dynamo flushes the entire cache and starts

afresh. Dynamo calls this approachreactive flushing. The hope is that some of the (older)

fragments are no longer part of the current working set of theprogram and so if all fragments

are discarded the actual working set will fit into the cache. Though Dynamo deployed the

technique to manage trace cache space (according to the technical report [1], the overhead of

normal cache management becomes much higher if garbage collection or some other adaptive

mechanism is used) it might also be an interesting way of repairing speculative optimizations

that turned out to be incorrect or perform poorly.

2.3.2 Other Trace-oriented Systems

Significant trace-oriented binary optimization systems include Microsoft’s Mojo [10], Trans-

meta’s CMS [14] and many others.
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DynamoRIO

Bruening describes a new version of Dynamo which runs on the Intel x86 architecture. The

current focus of this work is to provide an efficient environment to instrument real world pro-

grams for various purposes such as improve the security of legacy applications [8, 7].

One interesting application of DynamoRIO was by Sullivan et al [51]. They ran their

own tiny interpreter on top of DynamoRIO in the hope that it would be able to dynamically

optimize away a significant proportion of interpretation overhead. They did not initially see

the results they were hoping for because the indirect dispatch branches confounded Dynamo’s

trace selection. They responded by creating a small interface by which the interpreter could

programatically give DynamoRIO hints about the relationship between the virtual pc and the

hardware pc. This was essentially their way around what we have described as the context

problem (Section 2.1.4). Whereas interpretation slowed down by almost two using regular

DynamoRIO after they had inserted calls to the hint API they saw speedups of about 20% on

a set of small benchmarks. Baron [3] reports similar performance results running a similarly

modified Kaffe JVM [58].

Hotpath

Gal, Probst and Franz describe the Hotpath project. Hotpathalso extends JamVM (one of

the interpreters we use for our experiments) to be a trace oriented mixed-mode system [24].

Their profiling system, similar to those used by many method based JIT compilers, is loosely

coupled with the interpreter. They focus on traces startingat loop headers and do not compile

traces not in loops. Thus, they do not attempt trace linking as described by Dynamo, but rather

“merge” traces that originate from side exits leading back to loop headers. This technique

allows Hotpath to compile loop nests. They describe an interesting way of modeling traces

using Single Static Assignment (SSA) [13] that exploits theconstrained flow of control present

in traces. This both simplifies their construction of SSA andallows very efficient optimization.

Their experimental results show excellent speedup, withina factor of two of Sun’s HotSpot,
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for scientific style loop nests like those in benchmarks likeLU, SOR and Linpack, and more

modest speedup, around a factor of two over interpretation,for FFT. No results are given for

tests in the SPECjvm98 suite, perhaps because their system does not yet support “trace merging

across (inlined) method invocations” [24] pp. 151. The optimization techniques they describe

seem complimentary to the overall architecture we propose in Chapter 5.

Last Executed Iteration (LEI)

Hiniker, Hazelwood and Smith performed a simulation study evaluating enhancements to the

basic Dynamo trace selection heuristics described above [27]. They observed two main prob-

lems with Dynamo’s NET heuristic. The first problem, “trace separation” occurs when traces

that turn out to often execute sequentially happen to be placed far apart in the trace cache, hurt-

ing the locality of reference of code in the instruction cache. LEI maintains a branch history

mechanism as part of its trace collection system that allowsit to do a better job handling loop

nests, requiring fewer traces to span the nest. The second problem, “excessive code duplica-

tion”, occurs when many different paths become hot through aregion of code. The problem is

caused when a trace exit becomes hot and a new trace is generated that diverges from the pre-

existing trace for only one or a few blocks before rejoining its path. As a consequence the new

trace replicates blocks of the old from the place they rejointo their common end. Combining

several such “observed traces” together forms a region withmultiple paths and less duplication.

2.4 JIT Compilation

Modern Just In Time (JIT) compilers can achieve much higher performance than efficient in-

terpreters because they generate code for potentially large regions of the virtual program and

hence can optimize the region. Typically these JIT compilers and the interpreters with which

they coexist are not very tightly coupled [49, 36]. Rather, a profiling mechanism detects hot

methods, or inlined method nests, which are then compiled tonative code. When the interpreter
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next attempts to invoke a method which has been compiled, thenative code is dispatched in-

stead. Although JIT compilation of entire methods has been proven in practice, it nevertheless

has a few limitations. First, some of the code in a compiled method may be cold and will never

be executed. Compiling this code can have only indirect benefits, such as proving facts about

the portions of the method thatare hot. Second, some of the code in a method may not have

executed yet when the method is first compiled, even though itwill become hot later. In this

case the JIT compiler has no profiling data to work with when itcompiles the cold code and

hence cannot optimize as effectively.

Another challenge raised by cold code is caused by late binding. Java, as well as many

other modern languages binds many external references late. In an interpreter this can be

relatively simply handled by rewriting unresolved arguments in the DTT with the resolved

version after the instruction has run the first time. In native code the equivalent process requires

code rewriting. This, in turn adds significant complexity because multiple threads may be

racing to rewrite the instruction [52].

JIT compilers perform many of the same optimizations performed by static compilers, in-

cluding method inlining and data flow analysis, both of whichcan be hindered by methods that

contain large amounts of cold code, as observed by Suganuma et al. [50]. To deal with the prob-

lem, they modify a method-based JIT to allow selected regions within a method to be inlined,

and rely onon stack replacement[29] and recompilation to recover if a non-inlined part of a

method is executed. Although avoiding cold code reduced compilation overhead significantly,

only modest overall performance gains were realized.

A JIT compiler can also perform optimizations that require information obtained from a

running program. A classic example addresses virtual method invocation, which is expensive

at least in part because the destination depends on a data dependency, namely the class of the

invoked-upon object. Polymorphic method invocation has been heavily studied and it is well

known that in most programs most polymorphic callsites areeffectively monomorphic, which

means that at run time the invoked-upon object always turns out to have the same type, and
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hence the same callee is invoked all or most of the time [15]. Self [53] pioneered the dynamic

optimization of virtual dispatch, an optimization that hasgreat impact on the performance of

Java programs today. With profile information, a JIT compiler can transform a virtual method

dispatch to a relatively cheap check of the class of the invoked-upon object followed by the

inlined code of the callee. If the callsite continues to be monomorphic the check succeeds

and the inlined code executes. If, on the other hand, the check fails, a relatively slow virtual

dispatch must take place. Hölzle [29] describes how a polymorphic inline cache (PIC) can deal

with an effectively polymorphic callsite which has a few hotdestinations.

A problem faced by all profile-driven dynamic compilers, butespecially by those that com-

pile code code, is that assumptions made when code is compiled may turn out to be wrong

leading to incorrect code or code that performs less well than if had been compiled under dif-

ferent assumptions. For instance, Pechtchanski and Sarkardescribe a speculative scheme by

which their compiler assumes that a method for which there isonly one loaded definition will

never be overridden. Later, if the loader loads a class that defines another definition of the

method the original code is incorrect and must not be run again. In this case the entire en-

closing method (or inlined method nest) must be recompiled under more realistic assumptions

and the original compilation discarded [37]. Similar recompilation events are caused when the

original code is not wrong but slower than it could be.

The infrastructure to replace a method is called On Stack Replacement (OSR) and is a

fundamental requirement of speculative optimizations in method-oriented dynamic compilers.

Fink and Qian [22] show how to restrict method-based optimization so that OSR is always

possible. The key issue is that values that may be dead code under traditional optimization

schemes must be kept alive in order a less aggressively optimized replacement method to com-

plete calculations started by the invalidated code.
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Chapter 3

Efficient Interpretation

Our goal is to design and build a virtual machine that can be gradually extended from interpre-

tation to mixed-mode execution. At the beginning of their lifetime we expect most languages

to rely on pure interpretation and so its performance is important.

3.1 Design and Implementation

Direct-threaded interpreters are known to have very poor branch prediction properties, how-

ever, they are also known to have a small cache footprint (forsmall to medium sized opcode

bodies) [44]. Since both branches and cache misses are majorpipeline hazards, we would like

to retain the good cache behavior of direct-threaded interpreters while improving the branch

behavior. The preceding chapter describes various techniques for improving branch prediction

by replicating entire bodies. The effect of these techniques is to trade instruction cache size for

better branch prediction. We believe it is best to avoid growing code if possible. We introduce

a new technique which minimally affects code size and produces dramatically fewer branch

mispredictions than either direct threading or direct threading with inlining.
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3.1.1 Understanding Branches

To motivate our design, first note that the virtual program may contain all the usual types of

control flow: conditional and unconditional branches, indirect branches, and calls and returns.

We must also consider the dispatch of straight-line virtualinstructions. For direct-threaded

interpreters, sequential (virtual) execution is just as expensive as handling control transfers,

sinceall virtual instructions are dispatched with an indirect branch. Second, note that the

dynamic execution path of the virtual program will contain patterns (loops, for example) that

are similar in nature to the patterns found when executing native code. These control flow

patterns originate in the algorithm that the virtual program implements.

As described in Section 2.2 modern microprocessors have considerable resources devoted

to identifying these patterns in native code, and exploiting them to predict branches. Direct

threading uses only indirect branches for dispatch and, dueto the context problem, the patterns

that exist in the virtual program are effectively hidden from the microprocessor.

The fundamental goal of our approach is to expose these virtual control flow patterns to the

hardware, such that the physical execution path matches thevirtual execution path. To achieve

this goal, we exploit the different types of hardware prediction resources to handle the different

types of virtual control flow transfers. In Section 3.1.2 we show how to replace straight-line

dispatch with subroutine threading. In Section 3.1.3 we show how to inline conditional and

indirect jumps and in Section 3.1.4 we discuss handling virtual calls and returns with native

calls and returns. We strive to maintain the property that the virtual program counter is precisely

correlated with the physical program counter and in fact, with our technique there is a one-to-

one mapping between them at most control flow points.

3.1.2 Handling Linear Dispatch

The dispatch of straight-line virtual instructions is the largest single source of branches when

executing an interpreter. Any technique that hopes to improve branch prediction accuracy must
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vPC1:  &ctt[0]

    a

3:  &ctt[1]

    b

5:  &ctt[2]

    1

7:  &ctt[3]

8:  &ctt[4]

9:  &ctt[5]

    c

call iload

call iload

call iconst

call iadd

call iadd

call istore

DTT

CTT
interp(){
  void iload(){
    //push var..
    vPC++;
    }

  void iconst(){
    //push constant
    vPC++; 
    }

  void iadd(){ 
    //add 2 slots}
 
 void istore(){
    //pop, store var
}

Virtual Instruction Bodies

loaded data generated code

Figure 3.1: Subroutine Threaded Interpreter showing how the CTT contains one generated di-

rect call instruction for each virtual instruction and how the first entry in the DTT corresponding

to each virtual instruction points to generated code to dispatch it.

interp(){

  iload:
    //push var..
    
      asm volatile("ret");
 goto *vPC++;

  
  iconst:
    //push constant

    asm volatile("ret"); 
    goto *vPC++;

}

Virtual Instruction Bodies

Figure 3.2: Direct threaded bodies retrofitted as callable routines by inserting inline assembler

ret on Pentium.
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address straight-line dispatch. An obvious solution is inlining, as it eliminates the dispatch

entirely for straight-line sequences of virtual instructions. The increase in code size caused

by aggressive inlining, however, has the potential to overwhelm the benefits with the cost of

increased instruction cache misses [55].

Rather than eliminate dispatch, we propose an alternative organization for the interpreter

in which native call and return instructions are used. Conceptually, this approach is elegant

because subroutines are a natural unit of abstraction to express the implementations of virtual

instructions.

Figure 3.1 illustrates our implementation of subroutine threading, using the same example

program as Figure 2.3. In this case, we show the state of the virtual machineafter the first

virtual instruction has been executed. We add a new structure to the interpreter architecture,

called theContext Threading Table(CTT), which contains a sequence of nativecall instruc-

tions. Each nativecall dispatches the body for its virtual instruction. We use the termContext

Threading, because the hardware address of each call instruction in the CTT provides execution

context to the hardware, most importantly, to the branch predictors.

Although Figure 3.1 shows each body as a nested function, in fact we simulate this by

ending each non-branching opcode body with a nativereturn instruction as shown in Figure 3.2.

The Direct Threading Table (DTT) is still necessary to storeimmediate virtual operands, and

to correctly resolve virtual control transfer instructions. In direct threading, entries in the DTT

point to opcode bodies, whereas in subroutine threading they refer to call sites in the CTT.

It seems counterintuitive to improve dispatch performanceby calling each body. It is not

obvious whether a call to a constant target is more or less expensive to execute than an indirect

jump, but that is not the issue. Modern microprocessors contain specialized hardware to im-

prove the performance ofcall andreturn— specifically, a return address stack that predicts the

destination of the return to be the instruction following the corresponding call. Although the

cost of subroutine threading is two control transfers, versus one for direct threading, this cost

is outweighed by the benefit of eliminating a large source of unpredictable branches.
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3.1.3 Handling Virtual Branches

Subroutine threading handles the branches that are inducedby the dispatch of straight-line

virtual instructions, however, the actual control flow of the virtual program is still hidden from

the hardware. That is, bodies of opcodes that affect the virtual control flow still have no context.

There are two problems, one relating to shared indirect branch prediction resources, and one

relating to a lack of history context for conditional branchprediction resources.

Figure 3.3 introduces another Java example, this time including a virtual branch. Consider

the implementation ofifeq, marked (a) in the figure. Even for this simple virtual branch,

prediction is problematic, becauseall instances ofifeq instructions in the virtual program

share a single indirect branch instruction (and hence have asingle prediction context). A

simple solution is to generate replicas of the indirect branch instruction in the CTT immediately

following the call to the branching opcode body. Branching opcode bodies now end with native

return, which transfers control to the replicated indirectbranch in the CTT. As a consequence,

each virtual branch instruction now has its own hardware context. We refer to this technique

asbranch replication. Figure 3.4 illustrates how branch replication works.

Branch replication is attractive because it is simple and produces the desired context with

a minimum of replicated instructions. However, it has a number of drawbacks. First, for

branching opcodes, we execute three hardware control transfers (a call to the body, a return,

and the actual branch), which is an unnecessary overhead. Second, we still use the overly

general indirect branch instruction, even in cases likegoto where we would prefer a simpler

direct native branch. Third, by only replicating the dispatch part of the virtual instruction,

we do not take full advantage of the conditional branch predictor resources provided by the

hardware. Due to these limitations, we only use branch replication for indirect virtual branches

and exceptions1.

For all other branches we fully inline the bodies of virtual branch instructions into the CTT.

1Ocaml defines explicit exception virtual instructions
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(a)

boolean isOne(int);
  Code:
   0: iload_1
   1: ifeq 6
   4: iconst_1
   5: ireturn
   6: iconst_0
   7: ireturn

{
  boolean isOne(int p1){
  if ( p1!=0 ){
   return true;
  }else{
   return false;
  }
}

Java source

Java Bytecode

call iload_1

call ifeq 

call iconst_1

call ireturn

call iconst_0

call ireturn

CTT

interp(){
 
  iload_1:
    //push local 1
    vPC++;
    asm ("ret")

  ifeq:
    if ( *sp )
      vPC = *vPC;
     else
      vPC++;
    goto *vPC++;

iconst_1: //push 1
iconst_0  //push 0

  ireturn:
   //vPC = return
   goto *vPC;

}

virtual instruction bodiesgenerated code

vPC

0:  &ctt[0]

1:  &ctt[1]

    6

3:  &ctt[2]

4:  &ctt[3]

5:  &ctt[4]

6:  &ctt[5]

   

DTT

loaded data

Figure 3.3: Subroutine Threading does not not address branch instructions. Unlike straight

line virtual instructions virtual branch bodies end with anindirect branch destination (just like

direct threading).
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(a)

(b)

CTT

interp(){
 
  iload_1:
    //push local 1
    vPC++;
    asm ("ret")

  ifeq:
    if ( *sp )
      vPC = *vPC;
     else
      vPC++;
    asm ("ret")

iconst_1: //push 1
iconst_0  //push 0

  ireturn:
   //vPC = return
   asm("ret");

}

generated code

vPC

    &ctt[0]

    &ctt[1]

    6

    &ctt[2]

    &ctt[3]

    &ctt[4]

    &ctt[5]

   

DTT

loaded data virtual instruction bodies

call iload_1

call ifeq

jmp (%vPC)

call iconst_1

call ireturn

jmp (%vPC)

call iconst_0

call ireturn

jmp (%vPC)

Figure 3.4: Context threading with branch replication illustrating the “replicated” indirect

branch in the CTT. The fact that the indirect branch corresponds to only one virtual instruction

gives it better prediction context. The heavy arrow from (a)to (b) is followed when the virtual

branch is taken.
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We refer to this asbranch inlining. In the process of inlining, we convert indirect branches

into direct branches, where possible. On the Pentium this reduces pressure on the branch taken

buffer, or BTB, since it instead exploits the conditional branch predictors. The virtual condi-

tional branches now appear as real conditional branches to the hardware. The primary cost of

branch inlining is increased code size, but this is modest because virtual branch instructions are

simple and have small bodies. For instance, on the Pentium IV, most branch instructions can

be inlined with no more than 10 words of additional space. Figure 3.5 shows an example of

inlining theifeq branch instruction. The machine code, shaded in the figure, implements the

same if-then-else logic as the original direct threaded virtual instruction body. In the figure we

assume key interpreter variables like the virtual PC and expression stack pointer exist in dedi-

cated registers. This is the technique used in Ocaml on both the Pentium 4 and the PowerPC,

and SableVM on the PowerPC, but not for SableVM on the Pentium,where they are stored in

stack slots instead. We use Intel instructions in the figure but similar code must be generated on

the PowerPC. The generated code no longer uses an indirect branch and the inlined conditional

branch instruction (jne, marked (a) in the figure) is fully exposed to the Pentium’s conditional

branch prediction hardware.

An obvious challenge with branch inlining is that the generated code is not portable and

assumes detailed knowledge of the virtual bodies it must interoperate with. For instance, in

Figure 3.5 the generated code must know that the Pentium’s%esi register has been dedicated

to thevPC.

3.1.4 Handling Virtual Call and Return

The only significant source of control transfers that remainin the virtual program are virtual

calls and returns. For successful branch prediction, the real problem is not the virtual call, but

rather the virtual return, because one virtual return may goback to multiple call sites. As noted

previously, the hardware already has an elegant solution tothis problem for native code in the

form of the return address stack. We need only to deploy this resource to predict virtual returns.
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(a)

(b)

CTT

generated code

vPC

    &ctt[0]

    &ctt[1]

    6

    &ctt[2]

    &ctt[3]

    &ctt[4]

    &ctt[5]

   

DTT

loaded data

interp(){
 
  iload_1:
    //push local 1
    vPC++;
    asm ("ret")

  iconst_1: 

  iconst_0  

  ireturn:
   //vPC = return
   asm("ret");

}

virtual instruction bodies

call iconst_1

call ireturn

goto *vPC

call iconst_0

call ireturn

goto *vPC

call iload_1
subl $4, %edi

movl (%edi), %eax

cmpl $0, %eax

jne nt

movl (%esi), %esi

jmp cttdest

nt: addl $4, %esi

Figure 3.5: Context Threaded VM Interpreter: Branch Inliningon Pentium. The generated

code (shaded) assumes thevPC is in register%esi and the Java expression stack pointer is in

register%edi. The dashed arrow (a) illustrates the inlined conditional branch instruction, now

fully exposed to the branch prediction hardware, and the heavy arrow (b) illustrates a direct

branch implementing the taken path.

We describe our solution with reference to Figure 3.6. The virtual call body should effect

a transfer of control to the start of the callee. We begin at a virtual call instruction (see label

“(a)” in the figure). The virtual call body simply sets thevPC to the entry point of the callee

and executes a nativereturn to the next CTT location. Similar to branch replication, we insert

a new nativecall indirect instruction following “(a)” in the CTT to transfer control tothe

start of the callee (solid arrow from “(a)” to “(b)” in the figure). The call indirect causes the

next location in the CTT to be pushed onto the hardware’s return address stack. The first

instruction of the callee is then dispatched. At the end of the callee, we modify the virtual

return instruction as follows. In the CTT, we emit a native directbranchto dispatch the body

of the virtual return (before label “(b)”.) Unlike using a native call for this dispatch, the direct
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call invokestatic

call (*vPC)

jmp return

ret

CTT

interp(){
 
  invokestatic:
    //build frame
    vPC = *vPC;
    asm ("ret")

  return:
   //pop frame
   vPC = return
   asm( "ret");

}

virtual instruction bodiesgenerated code

vPC

   &ctt[0]

    &ctt[callee]

   

DTT

loaded data

(a)

(b)

caller

callee

Figure 3.6: Context Threading Apply-Return Inlining on Pentium. The generated codecalls

invokestatic but jumps(instruction at (b) is ajmp) to the return .

branch avoids perturbing the return address stack. We modify the body of the virtual return

to end with a nativereturn instruction, which now transfers control all the way back tothe

instruction following the original virtual call (dotted arrow from “(b)” to “(a)”.) We refer to

this technique asapply/return inlining2.

With this final step, we have a complete technique that alignsall virtual program control

flow with the corresponding native flow. There are however, some practical challenges to

implementing our design for apply/return inlining. First,one must take care to match the

hardware stack against the virtual program stack. For instance, in OCaml, exceptions unwind

the virtual machine stack; the hardware stack must be unwound in a corresponding manner.

Second, some run-time environments are extremely sensitive to hardware stack manipulations,

since they use or modify the machine stack pointer for their own purposes (such as handling

signals). In such cases, it is possible to create a separate stack structure and swap between the

two at virtual call and return points. This approach would introduce significant overhead, and

2“apply” is the name of the (generalized) function call opcode in OCaml where we first implemented the
technique.

RCSfile : efficient − interpretation.lyx, v Revision : 1.20 44



CHAPTER 3. EFFICIENT INTERPRETATION

is only justified if apply/return inlining provides a substantial performance benefit.

Having described our design and its general implementation, we now evaluate its effective-

ness on real interpreters.
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Chapter 4

Evaluation

In this section, we evaluate the performance of context threading and compare it to direct

threading and direct-threaded selective inlining. Contextthreading combines subroutine thread-

ing, branch inlining and apply/return inlining. We evaluate the contribution of each of these

techniques to the overall impact of context threading usingtwo virtual machines and three

microprocessor architectures. We begin by describing our experimental setup in Section 4.1.

We then investigate how effectively our techniques addresspipeline branch hazards in Sec-

tion 4.2.1, and the overall effect on execution time in Section 4.2.2. Finally, Section 4.3

demonstrates that context threading is complementary to inlining resulting in a portable, rel-

atively simple, technique that provides performance comparable to or better than SableVM’s

implementation of selective inlining.

4.1 Virtual Machines, Benchmarks and Platforms

We evaluated our techniques by modifying interpreters for Java and Ocaml to run on Pentium

IV, PowerPC 7410 and PPC970.
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Table 4.1: Description of OCaml benchmarks

Pentium IV PowerPC 7410 PPC970 Lines

Branch Branch Elapsed of

Time Mispredicts Time Stalls Time Source

Benchmark Description (TSC*108) (MPT*106) (Cycles*108) (Cycles*106) (sec) Code

boyer Boyer theorem prover 3.34 7.21 1.8 43.9 0.18 903

fft Fast Fourier transform 31.9 52.0 18.1 506 1.43 187

fib Fibonacci by recursion 2.12 3.03 2.0 64.7 0.19 23

genlex A lexer generator 1.90 3.62 1.6 27.1 0.11 2682

kb A knowledge base program 17.9 42.9 9.5 283 0.96 611

nucleic nucleic acid’s structure 14.3 19.9 95.2 2660 6.24 3231

quicksort Quicksort 9.94 20.1 7.2 264 0.70 91

sieve Sieve of Eratosthenes 3.04 1.90 2.7 39.0 0.16 55

soli A classic peg game 7.00 16.2 4.0 158 0.47 110

takc Takeuchi function (curried) 4.25 7.66 3.3 114 0.33 22

taku Takeuchi function (tuplified) 7.24 15.7 5.1 183 0.52 21

4.1.1 OCaml

We chose OCaml as representative of a class of efficient, stack-based interpreters that use

direct-threaded dispatch. The bytecode bodies of the interpreter are very efficient, and have

been hand-tuned, including register allocation. The implementation of the OCaml interpreter

is clean and easy to modify.

4.1.2 SableVM

SableVM is a Java Virtual Machine built for quick interpretation, implementing lazy method

loading and a novel bi-directional virtual function lookuptable. Hardware signals are used

to handle exceptions. Most importantly for our purposes, SableVM already implements mul-

tiple dispatch mechanisms, including switch, direct threading, and selective inlining (which

SableVM callsinline threading) [23]. The support for multiple dispatch mechanisms makes it

easy to add context threading, and allows us to compare it against a selective inlining imple-

mentation, which we believe is a more complicated technique.
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Table 4.2: Description of SpecJVM benchmarks

Pentium IV PowerPC 7410 PPC970

Branch Branch Elapsed

Time Mispredicts Time Stalls Time

Benchmark Description (TSC*1011) (MPT*109) (Cycles*1010) (Cycles*108) (sec)

compress Modified Lempel-Ziv compression 4.48 7.13 17.0 493 127.7

db performs multiple database functions 1.96 2.05 7.5 240 65.1

jack A Java parser generator 0.71 0.65 2.7 67 18.9

javac the Java compiler from the JDK 1.0.2 1.59 1.43 6.1 160 44.7

jess Java Expert Shell System 1.04 1.12 4.2 110 29.8

mpegaudio decompresses MPEG Layer-3 audio files 3.72 5.70 14.0 460 106.0

mtrt two thread variant of raytrace 1.06 1.04 5.3 120 26.8

raytrace a raytracer rendering 1.00 1.03 5.2 120 31.2

scimark performs FFT SOR and LU, ’large’ 4.40 6.32 18.0 690 118.1

soot java bytecode to bytecode optimizer 1.09 1.05 2.7 71 35.5

4.1.3 OCaml Benchmarks

The benchmarks in Table 4.1 constitute the complete standard OCaml benchmark suite1. Boyer,

kb, quicksort andsieve are mostly integer processing, whilenucleic andfft are

mostly floating point benchmarks.Soli is an exhaustive search algorithm that solves a soli-

taire peg game.Fib, taku, andtakc are tiny, highly-recursive programs which calculate

integer values. These three benchmarks are unusual becausethey contain very few distinct

virtual instructions, and often contain only one instance of each. These features have two

important consequences. First, the indirect branch in direct-threaded dispatch is relatively pre-

dictable. Second, even minor changes can have dramatic effects (both positive and negative)

because so few instructions contribute to the behavior.

1
ftp://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/benchmarks/objcaml.tar.gz
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4.1.4 SableVM Benchmarks

SableVM experiments were run on the complete SPECjvm98 [47] suite (compress, db,

mpegaudio, raytrace, mtrt, jack, jess andjavac), one large object oriented appli-

cation (soot [54]) and one scientific application (scimark [41]). Table 4.2 summarizes the

key characteristics of these benchmarks.

4.1.5 Pentium IV Measurements

The Pentium IV (P4) processor aggressively dispatches instructions based on branch predic-

tions. As discussed in Section 2.1.4, the taken indirect branches used for direct-threaded dis-

patch are often mispredicted due to the lack of context. Ideally, we would measure the mispre-

dict penalty for these branches to see their effect on execution time, but the P4 does not have a

counter for this purpose. Instead, we count the number ofmispredicted taken branches(MPT)

to show how effectively context threading improves branch prediction. We measure time on the

P4 with the cycle-accuratetime stamp counter(TSC) register. We count both MPT and TSC

events using our own Linux kernel module, which collects complete data for the multithreaded

Java benchmarks2.

4.1.6 PowerPC Measurements

We need to characterize the cost of branches differently on the PowerPC than on the P4, as these

processors do not typically speculate on indirect branches. Instead, split branches are used (as

shown in Figure 2.4(b)) and the PPC stalls in the branch unit until the branch destination is

known. Hence, we would like to count the number of cycles stalled due to link and count

register dependencies. Fortunately, the older PPC7410 CPU has a counter (counter 15, “stall

on LR/CTR dependency”) that provides exactly this information [35]. On the PPC7410, we

2MPT events are counted with performance counter 8 by settingthe P4 CCCR to 0x0003b000 and the ESCR
to value 0xc001004 [31]
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also use the hardware counters to obtain overall execution times in terms of clock cycles. We

expect that the branch stall penalty should be larger on moredeeply-pipelined CPUs like the

PPC970, however, we cannot directly count these stall cycleson this processor. Instead, we

report only elapsed execution time for the PPC970.

4.2 Interpreting the data

In presenting our results, we normalize all experiments to the direct threading case, since it

is the baseline state-of-the art dispatch technique. We give the absolute execution times and

branching characteristics for each benchmark and platformusing direct threading in Tables 4.1

and 4.2. Bar graphs in the following sections show the contributions of each component of

our technique: subroutine threading only (labeled SUB); subroutine threading plus branch

inlining and branch replication for exceptions and indirect branches (labeled BRANCH); and

our complete context threading implementation which includes apply/return inlining (labeled

CONTEXT. We include bars for selective inlining in SableVM (labeledSELECT) and our own

simple inlining technique (labeledTINY) to facilitate comparisons, although inlining results

are not discussed until Section 4.3. We do not show a bar for direct threading because it would

have height 1.0, by definition.

4.2.1 Effect on Pipeline Branch Hazards

Context threading was designed to align virtual program state with physical machine state to

improve branch prediction and reduce pipeline branch hazards. We begin our evaluation by

examining how well we have met this goal.

Figure 4.1 reports the extent to which context threading reduces pipeline branch hazards

for the OCaml benchmarks, while Figure 4.2 reports these results for the Java benchmarks

on SableVM. On the left of each Figure, the graphs labeled (a)present the results on the P4,

where we count mispredicted taken branches (MPT). On the right, graphs labeled (b) present
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Figure 4.2:Java Pipeline Hazards Relative to Direct Threading
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the effect on LR/CTR stall cycles on the PPC7410. The last cluster of each bar graph reports

the geometric mean across all benchmarks.

Context threading eliminates most of the mispredicted takenbranches (MPT) on the Pen-

tium IV and LR/CTR stall cycles on the PPC7410, with similar overall effects for both inter-

preters. Examining Figures 4.1 and 4.2 reveals that subroutine threading has the single greatest

impact, reducing MPT by an average of 75% for OCaml and 85% for SableVM on the P4, and

reducing LR/CTR stalls by 60% and 75% on average for the PPC7410.This result matches

our expectations because subroutine threading addresses the largest single source of unpre-

dictable branches—the dispatch used for all straight-linebytecodes. Branch inlining has the

next largest effect, again as expected, since conditional branches are the most significant re-

maining pipeline hazard after applying subroutine threading. On the P4, branch inlining cuts

the remaining MPTs by about 60%. On the PPC7410 branch inlining has a smaller, though

still important effect, eliminating about 25% of the remaining LR/CTR stall cycles. A notable

exception to the MPT trend occurs for the OCaml benchmarks fib,takc andtaku. In these

tiny, recursive benchmarks branch inlining the conditional branches hurts prediction by a small

amount on the Pentium. As noted previously, even minor changes in the behavior of a single

instruction can have a noticeable impact for these benchmarks.

Having shown that our techniques can significantly reduce pipeline branch hazards, we now

examine the impact of these reductions on overall executiontime.

4.2.2 Performance

Context threading improves branch prediction, resulting inincreased pipeline usage on both the

P4 and the PPC. However, using a nativecall/returnpair for each dispatch increases instruction

overhead. In this section, we examine the net result of thesetwo effects on overall execution

time. As before, all data is reported relative to direct threading.

Figures 4.3 and 4.4 show results for the OCaml and SableVM benchmarks respectively.

They are organized in the same way as the previous section, with P4 results on the left, labeled
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(a), and PPC7410 results on the right, labeled (b). Figure 4.5reports the performance of OCaml

and SableVM on the PPC970 CPU. The geometric means (rightmost cluster) in Figures 4.3,

4.4 and 4.5 show that context threading significantly outperforms direct threading on both

virtual machines and on all three architectures. The geometric mean execution time of the

Ocaml VM is about 19% lower for context threading than directthreading on P4, 9% lower

on PPC7410, and 39% lower on the PPC970. For SableVM, context threading, compared with

direct threading, runs about 17% faster on the PPC7410 and 26%faster on both the P4 and

PPC970. Although we cannot measure the cost of LR/CTR stalls on the PPC970, the greater

reductions in execution time are consistent with its more deeply-pipelined design (23 stages

vs. 7 for the PPC7410).

Across interpreters and architectures, the effect of our techniques is clear. Subroutine

threading has the single largest impact on elapsed time. Branch inlining has the next largest

impact eliminating an additional 3–7% of the elapsed time. In general, the reductions in exe-

cution time track the reductions in branch hazards seen in Figures 4.1 and 4.2. The instruction

overheads of our dispatch technique are most evident in the OCaml benchmarksfib andtakc

on the P4 where the benefits of improved branch prediction (relative to direct threading) are

minor. In these cases, the opcode bodies are very small and the extra instructions executed for

dispatch are the dominant factor.

The effect of apply/return inlining on execution time is minimal overall, changing the ge-

ometric mean by only±1% with no discernible pattern. Given the limited performance ben-

efit and added complexity, a general implementation of apply/return inlining does not seem

worthwhile. Ideally, one would like to detect heavy recursion automatically, and only perform

apply/return inlining when needed. We conclude that, for general usage, subroutine threading

plus branch inlining provides the best trade-off.

We now demonstrate that context-threaded dispatch is complementary to inlining tech-

niques.
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4.3 Inlining

Inlining techniques address the context problem by replicating bytecode bodies and removing

dispatch code. This reduces both instructions executed as well as pipeline hazards. In this sec-

tion we show that, although both selective inlining and our context threading technique reduce

pipeline hazards, context threading is slower because of instruction overhead. We address this

issue by comparing our owntiny inlining technique with selective inlining.

In Figures 4.2, 4.4 and 4.5(a) the bar labeled SELECT shows ourmeasurements of Gagnon’s

selective inlining implementation for SableVM [23]. From these Figures, we see that selective

inlining reduces both MPT and LR/CTR stalls significantly as compared to direct threading,

but it is not as effective in this regard as subroutine threading alone. The larger reductions in

pipeline hazards for context threading, however, do not necessarily translate into better per-

formance over selective inlining. Figure 4.4(a) illustrates that SableVM’s selective inlining

beats context threading on the P4 by roughly 5%, whereas on the PPC7410 and the PPC970,

both techniques have roughly the same effect on execution time, as shown in Figure 4.4(b)

and Figure 4.5(a), respectively. These results show that reducing pipeline hazards caused by

dispatch is not sufficient to match the performance of selective inlining. By eliminating some

dispatch code, selective inlining can do the same real work with fewer instructions than context

threading.

Context threading is only a dispatch technique, and can be easily combined with inlin-

ing strategies. To investigate the impact of dispatch instruction overhead and to demonstrate

that context threading is complementary to inlining, we implementedTiny Inlining, a simple

heuristic that inlines all bodies with a length less than four times the length of our dispatch

code. This eliminates the dispatch overhead surrounding the smallest bodies and, as calls in

the CTT are replaced with comparably-sized bodies, tiny inlining ensures that the total code

growth is minimal. In fact, the smallest inlined OCaml bodieson P4 weresmaller than the

length of a relative call instruction. Table 4.3 summarizesthe effect of tiny inlining. On the

P4, we come within 1% of SableVM’s sophisticated selective inlining implementation. On
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Table 4.3: Detailed comparison of selective inlining vs thecombination of context+tiny

(SableVM). Numbers are performance relative to direct threading for SableVM.△S − C is

the the difference between selective inlining and context threading.△S − T is the difference

between selective inlining and the combination of context threading and tiny inlining.

Context Selective Tiny ∆ ∆

Arch (C) (S) (T) (S-C) (S-T)

P4 0.762 0.721 0.731 -0.041 -0.010

PPC7410 0.863 0.914 0.839 0.051 0.075

PPC970 0.753 0.739 0.691 -0.014 0.048

PowerPC, we outperform SableVM by 7.8% for the PPC7410 and 4.8%for the PPC970.

The primary costs of direct-threaded interpretation are pipeline branch hazards, caused by

the context problem. Context threading solves this problem by correctly deploying branch

prediction resources, and as a result, outperforms direct threading by a wide margin. Once the

pipelines are full, the secondary cost of executing dispatch instructions is significant. A suitable

technique for addressing this overhead is inlining, and we have shown that context threading

is compatible with inlining using the “tiny” heuristic. Even with this simple approach, context

threading achieves performance equivalent to, or better than, selective inlining.

4.4 Limitations of Context Threading

The techniques described in this chapter address dispatch and hence have should have more ef-

fect on virtual machines that do more dispatch. A key design decision for any virtual machine

is the specific choice of virtual instructions. A design may choose many lightweight virtual

instructions or fewer heavyweight ones. Figure 4.6 shows how a Tcl interpreter typically ex-

ecutes an order of magnitude more cycles per dispatched virtual instruction than does Ocaml.

Another perspective is that Ocaml executes more dispatch because its work is carved up into
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Figure 4.6: Reproduction of Tcl Figure 1 showing cycles run per virtual instructions dispatched

for various Tcl vs Ocaml benchmarks [56]

smaller virtual instructions. In the figure we see that many Ocaml benchmarks average only

tens of cycles per dispatched instruction. This is similar in size to the branch misprediction

penalty of a modern CPU. On the other hand we see that most Tcl benchmarks execute hun-

dreds of cycles per dispatch. Thus, we expect that subroutine threading to speed up Tcl much

less than Ocaml. In fact, the geometric mean of 500 Tcl benchmarks speeds up only 5.4 %

on a UltraSPARC III. Subroutine threading alone improved thesame Ocaml benchmark suite

described in Table 4.1 as shown in Figure 4.7.

Another issue raised by the Tcl implementation was that about 12% of the 500 program

benchmark suite slowed down. Most of these were tiny programs that executed as little as a few

dozen dispatches. This suggests that for small programs theload time overhead of generating

code in the CTT may become an issue. To address this we could adopt a lazy loading approach

and eliminate some of the load time overhead by deferring it to just before the code actually

runs.
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Figure 4.7: Performance of subroutine threading for Ocaml on UltraSPARC III.

4.5 Summary

We have established that calling virtual instruction bodies can be very efficient and also that

generating inlined code for virtual branches is a powerful way to avoid costly branch mispre-

dictions. In the next chapter we will describe how callable virtual instructions play a central

role in the design of a gradually extensible mixed mode virtual machine.

Slowdowns we observed in the Tcl implementation suggest that a more lazy approach to

loading should be explored so that code is not generated for any region of a virtual program

until it has run at least once.
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Chapter 5

Design and Implementation of YETI

Early on we realized that organizing virtual bodies as lightweight routines would make it pos-

sible to call them from generated code and that this has potential to simplify bringing up a JIT.

At the same time, we realized that we could expand our use of the DTT to dispatch execution

units of any size, including basic blocks and traces, and that this would allow us to gradually

extend our system to more ambitious execution units. We knewthat it was necessary to in-

terpose instrumentation between the virtual instructionsbut we could not see a simple way of

doing it. We went ahead regardless and built an instrumentation infrastructure centered around

code generation. The general idea was to initially generatetrampolines, which we called inter-

posers, that would call instrumentation before and after the dispatch of each virtual instruction.

The infrastructure was very efficient (probably more efficient than the system we will describe

in this chapter) but quite difficult to debug. We extended oursystem until it could identify

basic blocks and traces [60]. Its main drawback was that a lotof work was required to build

a profiling system that ran no faster than direct threading. This, we felt, was not “gradual”

enough. Fortunately, a better idea came to mind.

Instead of loading the program as described for context threading, Yeti runs a program by

initially dispatching single virtual instruction bodies from an instrumented dispatch loop rem-

iniscent of direct call threading. Instrumentation added to the dispatch loop detects execution
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units, initially basic blocks, then traces, then linked traces. As execution units are generated

their address is installed into the DTT. Consequently the system speeds up as more time is

spent in execution units and less time on dispatch.

5.1 Instrumentation

In Yeti, as in subroutine threading, thevPC points into the DTT where each virtual instruction

is represented as one or more contiguous slots. The loaded representation of the program has

been elaborated significantly – now the first DTT slot of each instruction points to an instance

of a dispatcherstructure. The dispatcher structure contains four key fields. The execution unit

to be dispatched (initially a virtual instruction body, hence the name) is stored in thebodyfield.

Thepreworkerandpostworkerfields store the addresses of the instrumentation routines to be

called before and after the dispatch of the execution unit. Finally, the dispatcher has apayload

field, which is a chunk of profiling or other data that the instrumentation needs to associate with

an execution unit. Payload structures are used to describe virtual instructions, basic blocks, or

traces.

Despite being slow, a dispatch loop is very attractive because it makes it easy to instrument

the execution of a virtual program. Figure 5.1 shows how instrumentation can be interposed

before and after the dispatch of each virtual instruction. The figure illustrates a generic form

of dispatch loop (the shaded rectangle in the lower right) where the actual instrumentation

routines to be called are implemented as function pointers accessible via thevPC. In addition

we pass a payload to each instrumentation call. The disadvantage of this approach is that the

dispatch of the instrumentation is burdened by the overheadof a call through a function pointer.

This is not a problem because Yeti actually deploys several specialized dispatch loops and the

generic version illustrated in Figure 5.1 only executes a small proportion of the time.

Our strategy for identifying regions of a virtual program requires every thread to execute

in one of several execution “modes”. For instance, when generating a trace, a thread will be in
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trace generation mode. Each thread has associated with it athread context structure(tcs) which

includes various mode bits as well as thehistory list, which is used to accumulate regions of

the virtual program.

5.2 Loading

When a method is first loaded we don’t know which parts of it willbe executed. As each

instruction is loaded it is initialized to a shared dispatcher structure. There is one shared dis-

patcher for each kind of virtual instruction. One instance is shared for alliload instructions,

another instance for alliadd instructions, and so on. Thus, minimal work is done at load time

for instructions that never run. On the other hand, a shared dispatcher cannot be used to profile

instructions that do execute. Hence, the shared dispatcheris replaced by a new, non-shared,

instance of ablock discovery dispatcherwhen the postworker of the shared dispatcher runs for

the first time. The job of the block discovery dispatcher is toidentify new basic blocks.

5.3 Basic Block Detection

When the preworker of a block discovery dispatcher executes for the first time, and the thread is

not currently recording a region, the program is about to enter abasic block that has never run

before. When this occurs we switch the thread intoblock recording modeby setting a bit in the

thread context structure. Figure 5.1 illustrates the discovery of the basic block of our running

example. The postworker called following the execution of each instruction has appended the

instruction’s payload to the thread’s history list. When a branch instruction is encountered by

a thread in block recording mode, the end of the current basicblock has been reached, so the

history list is used to generate an execution unit for the basic block. Figure 5.2 illustrates the

situation just after the collection of the basic block has finished. The dispatcher at the entry

point of the basic block has been replaced by a newbasic block dispatcherwith a new payload
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  asm volatile("ret");
 
  iconst:
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  istore:

  t_thread_context tcs;

  vPC = &dtt[0];
  while(1){ //dispatch loop
   d = vPC->dipatcher;
   pay = d->payload;
   (*d->pre)(vPC,pay,&tcs);
   (*d->body)(); 
   (*d->post)(vPC,pay,&tcs);
  } 
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Figure 5.1: Shows a region of the DTT during block recording mode. The body of each block

discovery dispatcher points to the corresponding virtual instruction body (Only the body for the

first iload is shown). The dispatcher’s payload field points to instances of instruction payload.

The thread context struct is shown as tcs.
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Figure 5.2: Shows a region of the DTT just after block recording mode has finished.

created from the history list. The body field of the basic block dispatcher points to a subroutine

threading style execution unit that has been generated for the basic block. The job of the basic

block dispatcher will be to search for traces.

5.4 Trace Selection

The postworker of a basic block dispatcher is called after the last virtual instruction of the block

has been dispatched. Since basic blocks end with branches, after executing the last instruction

thevPC points to one of the successors of the basic block. If thevPC of the destination is

lessthan thevPC of the virtual branch instruction, this is a reverse branch –a likely candidate

for the latch of a loop. According to the heuristics developed by Dynamo (see Section 2.3),

hot reverse branches are good places to start the search for hot code. Accordingly, when our

system detects a reverse branch that has executed 100 times it enterstrace recording mode. In

trace recording mode, much like in basic block recording mode, the postworker adds each basic

block to a history list. The situation is very similar to thatillustrated in Figure 5.1, except the

history list describes basic blocks. Our system, like Dynamo, ends a trace (i) when it reaches

a reverse branch, (ii) when it finds a cycle, or (iii) when it contains too many (currently 100)
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basic blocks. When trace generation ends, a newtrace dispatcheris created and installed. This

is quite similar to Figure 5.2 except that a trace dispatcheris installed and the generated code

is complicated by the need to support trace exits. The payload of a trace dispatcher includes a

table oftrace exit descriptors, one for each basic block in the trace. Although code could be

generated for the trace at this point, we postpone code generation until the trace has run a few

times, currently five, in trace training mode. Trace training mode uses a specialized dispatch

loop that calls instrumentation before and after dispatching each virtual instruction in the trace.

In principle, almost any detail of the virtual machine’s state could be recorded. Currently, we

record the class of every Java object upon which a virtual method is invoked. When training is

complete, code is generated for the trace as illustrated by Figure 5.3. Before we discuss code

generation, we need to describe the runtime of the trace system and especially the operation of

trace exits.

5.5 Trace Exit Runtime

The runtime of traces is complicated by the need to support trace exits, which occur when

execution diverges from the path collected during trace generation, in other words, when the

destination of a virtual branch instruction in the trace is different than during trace generation.

Generated guard code in the trace detects the divergence andbranches to atrace exit handler.

Generated code in the trace exit handler records which traceexit has occurred in the thread’s

context structure and then returns to the dispatch loop, which immediately calls the postworker

corresponding to the trace. The postworker determines which trace exit occurred by examining

the thread context structure. Conceptually, the postworkerhas only a few things it can do:

1. If the trace exit is still cold, increment the counter in the corresponding trace exit de-

scriptor.

2. Notice that the counter has crossed the hot threshold and arrange to generate a new trace.
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3. Notice that a trace already exists at the destination and link the trace exit handler to the

new trace.

Regular conditional branches, like Java’sif_icmp, are quite simple. The branch has only two

destinations, one on the trace and the other off. When the trace exit becomes hot a new trace

is generated starting with the off-trace destination. Then, the next time the trace exit occurs,

the postworker links the trace exit handler to the new trace by rewriting the tail of the trace

exit handler to jump directly to the destination trace instead of returning to the dispatch loop.

Subsequently execution stays in the trace cache for both paths of the program.

Multiple destination branches, like method invocation andreturn, are more complex. When

a trace exit originating from a multi-way branch occurs we are faced with two additional

challenges. First, profiling multiple destinations is moreexpensive than just maintaining one

counter. Second, when one or more of the possible destinations are also traces, the trace exit

handler needs some mechanism to jump to the right one.

The first challenge we essentially punt on. We use a simple counter and trace generate

all destinations of a hot trace exit that arise. The danger of this strategy is that we could

trace generate superfluous cold destinations and waste trace generation time and trace cache

memory.

The second challenge concerns the efficient selection of a destination trace to which to

link, and the mechanics used to branch there. To choose a destination, we follow the heuristic

developed by Dynamo for regular branches – that is, we link todestinations in the order they

are encountered. At link time, we rewrite the code in the trace exit handler with code that

checks the value of thevPC. If it equals thevPC of a linked trace, we branch directly to that

trace, otherwise we return to the dispatch loop. Because we know the specific values thevPC

could have, we can hard-wire the comparand in the generated code. In fact, we can generate

a sequence of compares checking for two or more destinations. Eventually, a sufficiently long

cascade would perform no better than a trip around the dispatch loop. Currently we limit

ourselves to two linked destinations per trace exit. This mechanism is similar to a PIC, used to

RCSfile : implementation − yeti.lyx, v Revision : 1.13 69



5.6. GENERATING CODE FOR TRACES

DTT

trace dispatcher

trace 

payload

bb0

bb1

trace
exit0

texit
handler0

trace
exit1

texit
handler1

generated code for trace

generated code 
for straight line
portion of bb1

generated code 
for straight line
portion of bb0

generated code 
for trace exit

generated code 
for trace exit 

handlers

Figure 5.3: Schematic of a trace

dispatch polymorphic methods, as discussed in Section 2.4.

5.6 Generating code for traces

Generating a trace is made up of two main tasks, generating a trace exit handler for each

trace exit and generating the main body of the trace. Trace generation starts with the list of

basic blocks that were selected. We will use these to access the virtual instructions making up

the trace. After a few training runs we have also have fine-grained profiling information on

the precise values that occur during the execution of the trace. These values will be used to

devirtualize selected virtual method invocations.

5.6.1 Trace Exits and Trace Exit Handlers

The virtual branch instruction ending each block is compiled into a trace exit. We follow two

different strategies for trace exits. The first case, regular conditional branch virtual instruc-

tions, are compiled by our JIT into code that performs a compare followed by a conditional

branch. PowerPC code for this case appears in Figure 5.4. Thesense of the conditional branch
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is adjusted so that the branch is always not-taken for the on-trace path. More complex virtual

branch instructions, and especially those with multiple destinations, are handled differently.

Instead of generating inlined code for the branch we generate a call to the virtual branch body

instead. This will have the side effect of setting thevPC to the destination of the branch. Since

only one destination can be on-trace, and since we know the exactvPC value corresponding

to it, we then generate a compare immediate of thevPC to the hardwired constant value of

the on-trace destination. Following the compare we generate a conditional branch to the corre-

sponding trace exit handler. The result is that execution leaves the trace if thevPC set by the

dispatched body was different from thevPC observed during trace generation. Polymorphic

method dispatch is handled this way if it cannot be optimizedas described in Section 5.6.3.

Trace exit handlers have three further roles not mentioned so far. First, since traces may

contain compiled code, it may be necessary to flush values held in registers back to the Java

expression stack before returning to regular interpretation. Code is generated to do this in each

trace exit handler. Second, some interpreter state may haveto be updated. For instance, in

Figure 5.4, the trace exit handler adjusts thevPC. Third, trace linking is achieved by overwrit-

ing code in a trace exit handler. (This is the only situation in which we rewrite code.) To link

traces, the tail of the trace exit handler is rewritten to branch to the destination trace rather than

return to the dispatch loop.

5.6.2 Code Generation

The body of a trace is made up of straight-line sections of code, corresponding to the body of

each basic block, interspersed with trace exits generated from the virtual branches ending each

basic block. The JIT therefore has three types of information to start with. First, there is a list

of virtual instructions making up each basic block in the trace. Enough information is cached

in the trace payload to determine the virtual opcode and virtual address of each instruction in

the trace. Second, there is a trace exit corresponding to thebranch ending each basic block.

The trace exit stores information like thevPC of the off-trace destination of the trace. Third,
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...
OPC_ILOAD_3
x
OPC_ILOAD_2
y
OPC_IF_ICMPGE +121

...
lwz r3,12(r27)

lwz r4,8(r27)

cmpw r3,r4    
bge teh0

teh0:addi r26,r26,112
     li r0,0 
     stw r0,916(r30)
     lis r0,1090
     ori r0,r0,11488
     stw r0,912(r30)
     b 0x10cf0

trace exit JIT compiled from if_icmpge

trace exit
handler JIT 
compiled for
trace exit 

JIT compiled from iloads

if this trace exit becomes hot, trace linking overwrites 
this instruction with branch to destination trace

unlinked trace branches back to dispatch loop

teh stores trace exit number (0) and 
hardwired address of trace payload 
into thread context struct

vPC adjusted upon leaving JIT compiled region

DTT

Figure 5.4: PowerPC code for a trace exit and trace exit handler. The generated code assumes

that thevPC has been assignedr26, base of the local variablesr27 and the Java method frame

pointerr30.

there may be profiling information that was cached when the trace ran in training mode.

At this phase of our research we have not invested any effort in generating optimized code

for the straight-line portions of a trace. Instead, we implemented a simple one pass JIT com-

piler. The goals of our JIT are modest. First, it should perform a similar function as branch

inlining (Section 3.1.3) to ensure that code generated for trace exits exposes the conditional

branch logic of the virtual program to the underlying hardware conditional branch predictors.

Second, it should reduce the redundant memory traffic back and forth to the interpreter’s ex-

pression stack by holding temporary results in registers when possible. Third, it should support

a few simple speculative optimizations.

Our JIT does not build any internal representation of a traceother that what is described

in Section 5.4. Instead, it performs a single pass through each trace allocating registers and

generating code. Register allocation is very simple. As we examine each virtual instruction

we maintain ashadow stackwhich associates registers, temporary values and expression stack
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slots. Whenever a virtual instruction needs to pop an input wefirst check if there already is a

register for that value in the corresponding shadow stack slot. If there is we use the register

instead of generating any code to pop the stack. Similarly, when a virtual instruction would

push a new value onto the expression stack we assign a new register to the value and push

this on the shadow stack but forgo generating any code to pushthe value. Thus, every value

assigned to a register always has ahome locationon the expression stack. If we run out of

registers we simply spill the register whose home location is deepest on the shadow stack as all

the shallower values will be needed sooner [39].

Since traces contain no control merge points there is no additional complexity at trace exits

other than the generation of the trace exit handler. As described in Section 5.6.1 trace exit

handlers include generated code that flushes all the values in registers to the expression stack

in preparation for execution returning to the interpreter.This is done by walking the shadow

stack and storing each slot that is not already spilled into its home location. Consequently, the

values stay in registers if execution remains on-trace, butare flushed when a trace exit occurs.

Linked trace exits result in potentially redundant stack traffic as values are flushed by the trace

exit handler only to be reloaded by the destination trace.

Similar to a trace exit handler, when an unfamiliar virtual instruction is encountered, code

is generated to flush any temporary values held in registers back to the Java expression stack.

Then, a sequence of calls is generated to dispatch the bodiesof the uncompilable virtual in-

structions. Compilation resumes, with an empty shadow stack, with any compilable virtual

instructions that follow. This means that generated code must be able to load and store values

to the same Java expression stack referred to by the C code implementing the virtual instruction

bodies. Our current PowerPC implementation side-steps this difficulty by dedicating hardware

registers for values that are shared between generated codeand bodies. Currently we dedicate

registers for thevPC, the top of the Java expression stack and the pointer to the base of the

local variables. Code is generated to adjust the value of the dedicated registers as part of the

flush sequence described above for trace exit handlers.
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The actual machine code generation is performed using the ccg [38] run-time assembler.

5.6.3 Trace Optimization

We describe two optimizations here: how loops are handled and how the training data can be

used to optimize method invocation.

Inner Loops One property of the trace selection heuristic is that innermost loops of a pro-

gram are often selected into a single trace with the reverse branch at the end. (This is so because

trace generation starts at the target of reverse branches and ends whenever it reaches a reverse

branch. Note that there may be many branches, including calls and returns, along the way.)

Thus, when the trace is generated the loop will be obvious because the trace will end with a

virtual branch back to its beginning. This seems an obvious optimization opportunity that, so

far, we have not exploited other than to compile the last trace exit as a conditional branch back

to the head of the trace.

Virtual Method Invocation When a trace executes, if the class of the invoked-upon object

is different than when the trace was generated, a trace exit must occur. At trace generation time

we know the on-trace destination of each call and from the training profile know the class of

each invoked-upon object. Thus, we can easily generate avirtual invoke guardthat branches to

the trace exit handler if the class of the object on top of the Java run time stack is not the same

as recorded during training. Then, we can generate code to perform a faster, stripped down

version of method invocation. The savings are primarily thework associated with looking up

the destination given the class of the receiver. The virtualguard is an example of a trace exit

that guards a speculative optimization [24].

Inlining The final optimization we will describe is a simple form of inlining. Traces are ag-

nostic towards method invocation and return, treating themlike any other multiple-destination

virtual branch instructions. However, when a return corresponds to an invoke in the same trace
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the trace generator can sometimes remove almost all method invocation overhead. Consider

when the code between a method invocation and the matching return is relatively simple, for

instance, it does not touch the callee’s stack frame (other than the expression stack) and it can-

not throw. Then, no invoke is necessary and the only method invocation overhead that remains

is the virtual invoke guard. If the inlined method body contains any trace exits the situation is

slightly more complex. In this case, in order to prepare for areturn somewhere off-trace, the

trace exit handlers for the trace exits in the inlined code must modify the run time stack exactly

as the (optimized away) invoke would have done

5.7 Polymorphic bytecodes

So far we have implemented our ideas in a Java virtual machine. However, we expect that many

of the techniques will be useful in other virtual machines aswell. For instance, languages like

Tcl or JavaScript define polymorphic virtual arithmetic instructions. An example would be

ADD, which adds the two values on the top of the expression stack. Each time it is dispatched

ADD must check the type of its inputs, which could be integer,float or even string values, and

perform the correct type of arithmetic. This is similar to polymorphic method invocation.

We believe the same profiling infrastructure that we use to optimize monomorphic callsites

in Java can be used to improve polymorphic arithmetic bytecodes. Whereas the destination of

a Java method invocation depends only upon the type of the invoked upon object, the operation

carried out by a polymorphic virtual instruction may dependon the type ofeachinput. Now,

suppose that an ADD in Tcl is effectively monomorphic. Then,we would generate two virtual

guards, one for each input. Each would check that the type of the input is the same as observed

during training and trace exit if it differs. Then, we would dispatch a type-specialized version

of the instruction (integer ADD, float ADD, string ADD, etc) and/or generate specialized code

for common cases.
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5.8 Other implementation details

Our use of a dispatch loop similar to Figure 5.1 in conjunction with ending virtual bodies with

inlined assembler return instructions results in a controlflow graph that is not apparent to the

compiler. This is because the optimizer cannot know that control flows from the inlined return

instruction back to the dispatch loop. Similarly, the optimizer cannot know that control can

flow from the function pointer call in the dispatch loop to anybody. We insert computed goto

statements that are never actually executed to simulate themissing edges. If the bodies were

packaged as nested functions like in Figure 3.1 these problems would not occur.

5.9 Packaging and portability

A obvious packaging strategy for a portable language implementation based on our work would

be to differentiate platforms into “primary” targets, (i.ethose supported by our trace-oriented

JIT) and “secondary” targets supported only by direct threading.

Another approach would be to package the bodies as for subroutine threading (i.e. as illus-

trated by Figure 3.2) and use direct call threading on all platforms. In Section 6.2 we show that

although direct call threading is much slower than direct threading it is about the same speed

as switch dispatch. Many useful systems run switch dispatch, so presumably its performance is

acceptable under at least some circumstances. This would cause the performance gap between

primary and secondary platforms to be larger than if secondary platforms used direct threaded

dispatch.

Bodies could be very cleanly packaged as nested functions. Ostensibly this should be

almost as portable as the computed goto extensions direct threading depends upon. However

nested functions do not yet appear to be in mainstream usage and so even gcc support may be

unreliable. For instance, a recent version of gcc, version 4.0.1 for Apple OSX 10.4, shipped

with nested function support disabled.

RCSfile : implementation − yeti.lyx, v Revision : 1.13 76



Chapter 6

Evaluation of Yeti

In this chapter we show how Yeti gradually improves in performance as we extend the size

of execution units. We prototyped Yeti in a Java VM (rather than a language which does

not have a JIT) to allow comparisons of well-known benchmarks against other high-quality

implementations.

In order to evaluate the effectiveness of our system we need to examine performance from

three perspectives. First, we show that almost all execution comes from the trace cache. Sec-

ond, to evaluate the overhead of trace selection, we measurethe performance of our system

with the JITturned off. We compare elapsed time against SableVM and a version of JamVM

modified to use subroutine threading. Third, to evaluate theoverall performance of our modest

trace-oriented JIT compiler we compare elapsed time for each benchmark to Sun’s optimizing

HotSpotTM Java virtual machine.

Table 6.1 briefly describes each SpecJVM98 benchmark [47]. We also report data for

scimark, a typical scientific program. Below we report performance relative to the perfor-

mance of either unmodified JamVM 1.3.3 or Sun’s Java Hotspot JIT, so the raw elapsed time

for each benchmark appears in Table 6.1 also.

All our data was collected on a dual CPU 2 GHz PPC970 processor with 512 MB of mem-

ory running Apple OSX 10.4. Performance is reported as the average of three measurements
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6.1. EFFECT OF REGION SHAPE ON REGION DISPATCH COUNT

Table 6.1: SPECjvm98 benchmarks including elapsed time for unmodified JamVM 1.3.3 and

Sun Java Hotspot 1.05.0_6_64

Elapsed Time

Benchmark Description (seconds)

JamVM HotspotTM

compress Lempel-Ziv compression 98 8.0

db Database functions 56 23

jack Parser generator 22 5.4

javac Java compiler JDK 1.0.2 33 9.9

jess Expert shell System 29 4.4

mpeg decompresses MPEG-3 87 4.6

mtrt Two thread raytracer 30 2.1

raytrace raytracer 29 2.3

scimark FFT, SOR and LU, ’large’ 145 16

of elapsed time, as printed by thetime command.

Java Interpreters We present data obtained by running various modifications toJamVM

version 1.3.3 built with gcc 4.0.1. SableVM is a JVM built forquick interpretation. It imple-

ments a variation of selective inlining calledinline threading[23]. SableVM version 1.1.8 has

not yet been ported to gcc 4 so we compiled it with gcc 3.3 instead.

6.1 Effect of region shape on region dispatch count

For a JIT to be effective, execution must spend most of its time in compiled code. Forjack,

traces account for 99.3% of virtual instructions executed.For all the remaining benchmarks,

traces account for 99.9% or more. A remaining concern is how often execution enters and

leaves the trace cache. In our system, regions of generated code are called from dispatch loops
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like those illustrated by Figures 2.2 and 5.1. In this section, we report how many iterations of

the dispatch loops occur during the execution of each benchmark. Figure 6.1 shows how direct

call threading (DCT) compares to basic blocks (BB), traces withno linking (TR) and linked

traces (TR-LINK). Note the y-axis has a logarithmic scale.

DCT dispatches each virtual instruction independently, so the DCT bars on Figure 6.1

report how many virtual instructions were executed. Comparing the geometric mean across all

benchmarks, we see that BB reduces the number of dispatches relative to DCT by about a factor

of 6.3. For each benchmark, the ratio of DCT to BB shows the dynamic average basic block

length. As expected, the scientific benchmarks have longer basic blocks. For instance, the

dynamic average basic block inscitest has about 20 virtual instructions whereasjavac,

jess andjack average about 4 instructions in length.

Even without trace linking, the average dispatch of a trace causes about 10 times more

virtual instructions to be executed than the dispatch of a BB. (This can be read off Figure 6.1

by dividing the height of the TR geomean bar into the BB geomeanbar.) This shows that traces

do predict the path taken through the program. The improvement can be dramatic. For instance,

while running TR,javac executes about 22 virtual instructions per trace dispatch,on average.

This is much longer than its dynamic average basic block length of 4 virtual instructions.

TR-LINK makes the greatest contribution, reducing the number of times execution leaves

the trace cache by between one and 3.7orders of magnitude. The reason TR-LINK is so

effective is that it links traces together around loop nests.

Although these data show that execution is overwhelmingly from the trace cache it gives

no indication of how effectively code cache memory is being used by the traces. A thorough

treatment of this, like the one done by Bruening and Duesterwald [6], remains future work.

Nevertheless, we can relate a few anecdotes based on data that our profiling system collects.

For instance, we observe that for an entire run of thecompress benchmark all generated

traces contain only 60% of the virtual instructions contained in all loaded methods. This is a

good result for traces, suggesting that a trace-based JIT needs to compile fewer virtual instruc-
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tions than a method-based JIT. On the other hand, forjavac we find that the traces bloat –

almost eighttimesas many virtual instructions appear in traces than are contained in the loaded

methods. Improvements to our trace selection heuristic, perhaps adopting the suggestions of

Hiniker et al [27], are future work.

6.2 Effect of region shape on performance

Figure 6.2 shows how performance varies as differently shaped regions of the virtual program

are identified, loaded and dispatched. The figure shows elapsed time relative to the elapsed time

of the unmodified JamVM distribution, which uses direct-threaded dispatch. Our compiler

is turned off, so in a sense this section reports the dispatchand profiling overhead of Yeti

by comparing to the performance of other high-performance interpretation techniques. The

four bars in each cluster represent, from left to right, subroutine threading (SUB), direct call

threading (DCT), basic blocks (BB), unlinked traces (TR), and linked traces (TR-LINK).

The simplest technique, direct call threading, or DCT, dispatches single virtual instruction

bodies from a dispatch loop as in Figure 2.2. As expected, DCT is slower than direct threading

by about 50%. Not shown in the figure is switch dispatch, for which the geometric mean

elapsed time across all the benchmarks is within 1% of DCT. DCT and SUB are baselines, in

the sense that the former burdens the execution of every virtual instruction with the overhead

of the dispatch loop, whereas for the latter, all overhead was incurred at load time. The results

show that SUB is a very efficient dispatch technique [5]. Our interest here is to assess the

overhead of BB and TR-LINK by comparing them with SUB. BB discovers and generates

code at runtime that is very similar to what SUB generates at load time, so the difference

between them is the overhead of our profiling system. Comparing the geometric means across

benchmarks we see that BB is about 43% slower than SUB. On the other hand, it is difficult to

move forward from SUB dispatch, primarily because it is hardto add and remove the profiling

needed for dynamic region selection.
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CHAPTER 6. EVALUATION OF YETI

Execution of TR-LINK is faster than BB primarily because tracelinking so effectively

reduces dispatch loop overhead, as described in Section 6.1. We have not yet investigated the

micro-architectural reasons for the speedup of TR-LINK compared to SUB. Presumably it is

caused by the same factors that make context threading faster than SUB [5], namely helping

the hardware to better predict the destination of virtual branch instructions. Regardless of the

precise cause, TR-LINK more than makes up for the profiling overhead required to identify and

generate traces. In fact, even before we started work on our JIT, our profiling system already ran

faster than SUB. Looking forward to Figure 6.3, we see that TR-LINK outperforms selective

inlining as implemented by SableVM 1.1.8 as well.

For all benchmarks, performance improves as execution units become longer, that is, BB

performs better than DCT, TR performs better than BB, etc. Our approach is indeed allowing

us to gradually improve performance by gradually investingin better region selection.

6.2.1 JIT Compiled traces

Figure 6.3 compares the performance of our best-performingversion of Yeti (JIT), to SableVM

(SABVM). Performance is reported relative to the Java HotSpotTM JIT. In addition, we show

the TR-LINK condition from Figure 6.2 again to relate our interpreter and JIT performance.

In most cases TR-LINK, our profiling system alone (i.e withoutthe JIT), does as well or better

than SableVM.Scitest andmpeg are exceptions, where SableVM’s implementation of

selective inlining works well on very long basic blocks.

Not surprisingly, the optimizing HotSpotTMJIT generates much faster code than our naive

compiler. This is particularly evident for mathematical and heavily looping codes like com-

press, mpeg, the raytracers and scitest. Nevertheless, despite supporting only 50 integer and

object virtual instructions, our trace JIT improves the performance of integer programs like

compress significantly. Our most ambitious optimization, of virtualmethod invocation, im-

proved the performance ofraytrace by about 32%.Raytrace is written in an object-

oriented style with many small methods invoked to access object fields. Hence, even though it
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CHAPTER 6. EVALUATION OF YETI

is a floating point benchmark, it is greatly improved by devirtualizing and inlining the acces-

sor methods. Comparing geometric means, we see that our trace-oriented JIT is roughly 24%

faster than just linked traces.
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Chapter 7

Conclusions and Future Work

We described an architecture for a virtual machine interpreter that facilitates its gradual ex-

tension to a trace-based mixed-mode JIT compiler. We start by taking a step back from high-

performance dispatch techniques to direct call threading.We package all execution units (from

single instruction bodies up to linked traces) as callable routines that are dispatched via a func-

tion pointer in an old-fashioned dispatch loop. The first benefit is that existing bodies can be

reused by generated code, so that compiler support for virtual instructions can be added one

by one. The second benefit is that it is easy to add instrumentation, allowing us to discover

hot regions of the program and to install new execution unitsas they reveal themselves. The

cost of this flexibility is increased dispatch overhead. We have shown that by generating larger

execution units, the frequency of dispatch is reduced significantly. Dispatching basic blocks

nearly breaks even, losing to direct threading by only 15%. Combining basic blocks into traces

and linking traces together, however, wins by 17% and 25% respectively. Investing the ad-

ditional effort to generate non-optimized code for roughly50 integer and object bytecodes

within traces gains an additional 18%, now running nearly twice as fast as direct threading.

This demonstrates that it is indeed possible to achieve gradual, but significant, performance

gains through gradual development of a JIT.

Substantial additional performance gains are possible by extending the JIT to handle more

87



types of instructions such as the floating point bytecodes, and by applying classical optimiza-

tions such as common subexpression elimination. More interesting, however, is the opportu-

nity to apply dynamic and speculative optimizations based on the profiling data that we already

collect. The technique we describe for optimizing virtual dispatch in Section 5.6.3 could be

applied to guard various speculations. In particular, thistechnique could be used in languages

like Python or JavaScript to optimize virtual instructionsthat must accept arguments of varying

type. Finally, just as basic blocks are collected into traces, so traces can be collected into larger

units for optimization.

The techniques we applied in Yeti are not specific to Java. By lowering the up-front devel-

opment effort required, a system based on our architecture can gradually bring the benefits of

mixed-mode JIT compilation to other interpreted languages.
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Chapter 8

Remaining Work

We believe that our research is mostly complete and that we have shown that our efficient inter-

pretation technique is effective and supports a gradual extension to mixed-mode interpretation.

By modestly extending our system and collecting more data we can more fully report on the

strenghts and weaknesses of our approach. Hence, during thewinter of 2007 we propose to

extend the functionality and performance instrumentationof our JIT compiler. These exten-

sions and related data collection and writing-up should, ifaccepted by the committee, allow

the dissertation to be finished by late spring or early summerof 2007.

The remaining sections of this chapter describe work we intend to pursue.

8.1 Compile Basic Blocks

In the push to compile traces we skipped the obvious step of compiling basic blocks alone.

The basic block region data presented in Chapter 6 is for CT-style basic blocks with no branch

inlining. It would be interesting to compare the performance of basic blocks compiled with

our JIT to traces. Especially on loop nest dominated programs with long basic blocks, like

scimark, compiled basic blocks might perform well enough torecoup the time spent compiling

cold blocks.
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8.2. INSTRUMENT COMPILE TIME

8.2 Instrument Compile Time

Our infrastructure does not currently make any attempt to record time spent compiling. Since

compiling short traces will take much less time than the resolution of the Unix clock some

machine dependent tinkering may be required. Knowing the overhead of compilation would

help characterize the overhead of our technique.

8.3 Another Register Class

Adding support for float registers would make our performance results for float programs like

scimark more directly comparible to high performance JIT compilers like HotSpot. Extending

our simple JIT to handle another register class would show that our design is not somehow

limited to one register class. Compiler support would need tobe extended by about another

dozen floating point virtual instructions in order to test our design.

8.4 Measure Dynamic Proportion of JIT Compiled Instruc-

tions

As the JIT is extended to support for more virtual instructions it would be useful to measure

the proportion of all executed virtual instructions made upby JIT compiled instructions.
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