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Yield Condition and Propagation of Luders’ Lines in
Tension—Torsion Experiments on Poly(vinyl Chloride)

J. C. BAUWENS, Institut des Matériaur Université Libre de Bruxelles,
Bruxelles, Belgique

Synopsis

We have derived from the Eyring theory of non-Newtonian flow a yield condition
which is valid for an arbitrary state of stress, Experimental data obtained in simple
nxial compression tests show the influence of the hydrostatic stress on the yvielding of
poly(vinyl chloride). This faet confirms the proposed condition and disproves the von
Mises criterion, Tension-torsion tests performed on thin tubes lead to results which
fit our condition fairly well. The pattern of Liders’ lines appearing on the surface of
thin tubes subjected to simple tension, simple shear, and tension-torsion are parallel to
the direction where the value of the normal stress is equal to the hydrostatic stress,

Introduction

In a previous paper' we have proposed a condition which defines the
stress level at which significant plastic deformation starts. Our treatment
was derived from the Eyring theory of non-Newtonian flow® where de-
formation is a rate process. The yield condition takes into account the
influence of the hydrostatic stress and consists in a generalization of the
von Mises eriterion.

Experimental data obtained in tensile and compressive tests fit the
theory fairly well.! It is the purpose of this paper to study the validity
of our yield condition for combined tension and torsion tests and to ob-
serve the directions of the Liiders lines.

Criterion

In the ease where an arbitrary state of stress is applied, plastic deforma-
tion starts when W, a critical value of the energy, is reached. W depends
on temperature and strain rate and means the mechanical energy a seg-

nent of maeromolecule needs to jump from one equilibrium position to
nother.

We have given previously’ the following expression for W

m W = nyye \/r,,’ + 75 + 72 + vep(Ave/vo) (1)

. vhere &, is the volume of the segment of macromolecule, A, is the volume
nerense occurring as a segment jump, v, is the elementary strain, p is the
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hydrostatie stress, and 7,,, r,, 7. are the components of the deviator of
the stress.

We believe that condition (1) is expressed even more simply by using
Nadai's coneept of the octahedral shearing stress 7,.* Equation (1) may
therefore be expressed by writing:

o+ Ap = f(& T) 2

where A is a constant, and 7 and ¢ are temperature and strain rate, re-
spectively. At a given temperature and strain rate, plastic deformation
starts when:

1o + Ap = constant (3)

This condition is reduced to von Mises' eriterion when the hydrostatie
stress vanishes,

According to eq. (3), the yield stress in tensile tests o must differ from
the yield stress in compressive tests o,:

o _V2-A
. V24 A4
If the von Mises condition were valid for high polymers, o, would equal
O
For a tension-torsion test at given temperature and strain rate, condi-
tion (3) must be written:

1/ N67* + 20 + A(0/3) = C (5)

where o and r are the applied stresses and where:

)

é("c = ¢:)
o, + 0,
: 24/2a.0,

A=

(6)

In this case, the components of the plastic strain may be evaluated if one
caleulates the maximum energy dissipation for a given value of the first
strain invariant, according to our previous paper.! If € and v are the ten-
sile and shear strain respectively, the first invariant of the strain is:

R=8td g s o
~3+ v+ 3
The energy dissipation per unit volume is:
Wi = oe + 1y 8)
On taking into account eq. (7), eq. (8) becomes:

Wae = oe + v NI — 3 — 3¢ ©)
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It follows that W 4, i1s maximum when:
/3¢ = 1/ (10)

From condition (10) we may derive the relationship between the applied

stresses o and 7, and the elongation rate é and the shear rate y at the yield
limit:

oy/3 = 7é (11)

The yield value depends on the strain rate. Two different rates of

strain Iy and I'; ean be compared if one considers the time ( necessary to

produce a plastic strain related to a given value of 7;. It follows from eq.
(7) that:

t= NI —3/\y + 3¢ (12)
thus:
i/l = ta/t
Vit + 362/ Ny + 32

Experimental

To determine whether our relationship (3) is valid, we have chosen
poly (vinyl chloride) (Solvie 227, from Solvay et Cie) because this glassy
polymer possesses a stress-strain curve with a well definite yield point
and exhibits fine Liiders’ lines.

We carried out our tests with thin tubes. The shape and dimensions
of the test pieces used in simple tension and in tension-torsion tests are
shown in Figure 1.

Compression tests were made on hollow eylindrical specimens 2 mm high,
which were cut from the central part of the test pieces shown in Figure 1.

Tensile and compression curves were obtained with an Instron testing
machine at room temperature. Both tests were made at the same rate of
strain, ¢ = 10%/min. (This value was calculated from the erosshead
speed because at the yvield point the rate of change of stress is zero although
the strain is increasing at a constant rate.) The imposed strain was parallel
to the axis of the specimens,

Tension-torsion stress-strain curves were obtained with an Instron
testing machine combined with a elassieal torsion apparatus (see Fig. 2).
The imposed elongation was parallel to the axis of the specimen, the elonga-
tion rate € was chosen equal to 10%/min. The applied shearing stress
r produced by hanging weights was normal to the axis of the specimen.
The shear rate ¥ depending on = was measured by using an Instron marker
control. Whenever the angle of torsion varied from a constant value, a
“pip” appeared on the stress-strain curve.

(13)
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Fig. 1. The test piece used in simple tension and in tension-torsion tests,  Unit: 1 mm.

An example of a stress-strain curve is given in Figure 3; the distance
between two adjacent pips corresponds to a variation of shear strain Ay =
4.4 X 1073

Results and Discussion

Tensile and compression tests performed at the same temperature
(23°C) and the same rate of strain (109, /min) give the following value:

o./o. = 1.30 (14)

g, us well as ¢ corresponds to the average of four experimental values.
The fact that ¢. differs from o, proves the influence of the hydrostatic stress
and gives some confidenece in the validity of our treatment.

According to eqs. (5); (6), and (14), yvielding in a tube subjected to
tension-torsion should start when

23V3rt + o' + 03 0 = 2.6 o, (15)

On plotting ¢ and 7 as rectangular coordinates, the expression above gives
an ellipse.  This ellipse is shown in Figure 4; the ellipse corresponding to
the von Mises criterion is also given for comparison,
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Fig. 2. Apparatus for combined tension and torsion tests,
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Fig. 3. Example of stress-strain curve obtained in a tension-torsion test. The “pips'
on the curve allow evaluation of the shear rate .
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Fig. 4. Plot of r vs. o at the yield limit for tension-torsion tests. Experimental data are
compared to the ellipse corresponding to eq. (15) and to the von Mises ellipse.
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Fig. 5. Plot of ré vs. o /3. Experimental data are compared to the straight line
corresponding to eq. (11).

Our tests were made at room temperature, which varied between 22.1°C
and 23.9°C. As in our equipment the shear stress was imposed, v de-
pended on r. In order to compare our tests points with the ellipses shown
on Figure 4, the measured values of ¢ and = have to be corrected to take
into account the changes in temperature and shear rate.

We have studied previously* the variation of the yield stress of poly-
(vinyl chloride) with temperature and strain rate. From these results
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we know that the stress is 1.5% higher when temperature is lowered from
1°C and 39, higher when strain rate is doubled. We have reduced our
data to a constant temperature (23°C).

From eq. (13) we may compare strain rates in order to correct the values
of o and r.  All the data have been reduced to the strain rate of the tensile
test € = 10%/min. This correction is significant for high shear loads;
it exceeds 119 in the present case and may not be neglected.

Tests points are plotted in Figure 4; they follow very closely the upper
ellipse corresponding to eq. (15), disproving von Mises' eriterion.

On plotting 7¢é versus /3, eq. (11) gives a straight line which is drawn
in Figure 5.  The experimental points lie about 109 above the theoretical
straight line, but it is not possible to draw conclusions because the accuracy
of our measurements of y at the yield point is also about 10%.

Luders’ Lines

Several theories based on different concepts have been proposed!#-7 to
explain the inelination of the Liiders’ lines ohserved on thin specimens of
high polymers or metals strained in tensile tests.

Fig. 6. Liders’ lines sppearing on the surface of a specimen subjected to simple tension o,

According to these theories, Liiders’ lines must make with the direction
of the tensile stress an angle 6 defined by :

1
cos 8 = v, (16)
In the direetion which fits condition (16) the normal stress has the value
of the hydrostatic stress,
In the case of simple tensile tests, Liders’ bands inclined at an angle of
557 with respect to the tensile stress appear on our test pieces; this value
fits eq. (16) fairly well (see Fig. 6).
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In the case of plane stresses, as in tension-torsion tests, the direction
where the normal stress has the value of the hydrostatie stress makes with
the direction of the major stress g, an angle 8 defined by :

cos* 0 =(oy — 204)/[3(oy — o) | (17)

where a. is the minor stress,

We have compared the values of @ obtained from eq. (17) with the in-
clination of Liiders’ lines appearing on the thin tubes subjected to tension-
torsion. In this case, eq. (17) may be written:

Ve T ir—o

cos* 8 = — (18)
6V ot 4+ 47

l 1mm I

Fig. 7. Liiders' lines pattern on n specimen subjected to simple shear stress.  The two
sets of lines are, respectively, parallel and perpendicular to the direction of r.

Fig. 8, Liiders' lines pattern on a specimen subjected to tension-torsion (¢ /2r = 0.968).
The direction where the normal stress has the value of the hydrostatic stress is given on the
micrograph.
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In simple shear, Liiders’ lines are two sets of straight lines parallel and
normal, respectively, to the applied shear stress (see I'ig. 7).  These direc-
tions fit the values of # ealeulated from eq. (18) in this special case.

In Figure 8 we give an example of Liiders’ lines appearing on the surface
of a test piece subjected to tension-torsion. The angle calculated from
eq. (18) is # = 52°.  The two sets of Liiders’ lines must form an angle 2 6;
the value measured on the micrograph is 20 = 105° % 2°,  According to
our results, Liiders' lines seem to form in the direction defined by eq. (18).

Conclusions

The yield stress corresponding to simple tension tests differs from the
vield stress corresponding to simple compression tests. This experi-
mental fact shows the influence of the hydrostatie stress on the yielding of
high polymers and is in agreement with the proposed yield condition.

The yield stress measured in tension-torsion tests fit our yield condition
fairly well, disproving the von Mises criterion.

The observed inclination of the Liiders' lines nppearing on thin tubes sub-
jected to simple tension, simple shear, and tension-torsion, are parallel
to the direction where the normal stress has the value of the hydrostatic
component of the stress.

Our yield condition implies that plastie deformation is a rate process.
This condition consists in a generalization of the von Mises eriterion and is
based on a physical concept.

This work has been carried out at the Institut des Matériaux de 'Université Libre
de Bruxelles,. The author expresses his thanks to Professor Georges Homis, Director
of the Institute, for helpful disenssions and for assistance in the preparation of the paper,

References
L. J. C. Bauwens, J. Polym. Sei. A-2, 5, 1145 (1967 ).
2. J. Byring, J. Chem. Phys., 4,283 (1936).
3. A. Nadai, J. Appl. Phys., 8,205 (1937).
4. C. Bauwens-Crowet, J. C, Bauwens, and 5. Homes, J. Polym. Sei. A-2, 7, 735

(1969).

5. J. C. Banwens, G. A, Homdse, and R. Pankowski-Fern, €. R. Acad. Sei, (Paris),
250, 200 (1960).

6. A. Nadai, Theory of Flow and Fracture of Solids, Vol. 1, MeGraw-Hill, New York,
1950, pp. 316-327.

7. T. Y. Thomas, Plastic Flow and Fracture in Solids, Academic Press, New York,
1961, pp. 100-110.

Reeceived June 9, 1969
Revised November 21, 1969



