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ABSTRACT Yield optimization aims at finding microwave filter designs with high yield under fabrication

tolerance. The electromagnetic (EM) simulation-based yield optimization methods are computationally

expensive because a large number of EM simulations is required. Moreover, the microwave filter design

usually requires several performance objectives to be met, which is not considered by the current yield

optimization methods for microwave filters. In this paper, an efficient yield-constrained optimization using

polynomial chaos surrogates (YCOPCS) is employed for microwave filters considering multiple objectives.

In the YCOPCS method, the low-cost and high-accuracy of polynomial chaos is used as a surrogate.

An efficient yield-constrained design framework is implemented to obtain the optimal design solution. Two

numerical examples demonstrate the performance of the YCOPCS method, including a coupling matrix

model of a fourth-order filter with cascaded quadruplet topology and an EM simulationmodel of amicrowave

waveguide bandpass filter. The numerical results show that the YCOPCSmethod can obtain the filter designs

with higher yield and reduce EM simulations by 80% compared to Monte Carlo-based yield optimization in

all testing examples.

INDEX TERMS Yield optimization, polynomial chaos, microwave filters.

I. INTRODUCTION

Manufacturing (process) variations in the structures of the

microwave filters are unavoidable despite using advanced

manufacturing techniques [1]–[3]. The yield is a ratio of the

number of qualified products to the total number of prod-

ucts under fabrication tolerance [4], [5]. The manufacturing

industry strives to increase the yield of microwave filter

production to reduce the cost. In this case, it is important to

obtain the designs with high yield before fabrication. Yield

optimization method [6]–[9] focuses on this task and aims

at finding designs with high yield for a certain performance

specification.

Yield optimization consists of two stages: yield estima-

tion (calculating the yield of a given set of design variable

values) and optimization (searching for the design with a

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiu Yin Zhang .

high yield). Yield estimation usually provides the objective of

yield optimization [10]–[13]. Monte Carlo sampling (MCS)

method [14] is a conventional method for yield estimation

of microwave filters [15], [16]. To accurately estimate the

yield, a large number of electromagnetic (EM) simulations

are required, which is very time-consuming [17]. To reduce

EM simulation costs, surrogate-based methods, using low-

cost mathematical models to replace EM models, are often

utilized in the yield estimation ofmicrowave filters [17]–[20].

Among various methods, machine learning techniques are

adopted in the surrogate-based yield estimation, e.g. artificial

neural network [18] and Gaussian process regression [19].

However, these methods still require lots of EM simulation

samples for surrogate modeling.

Polynomial chaos (PC) [21]–[23] is an analytical repre-

sentation with an orthonormal polynomial basis that requires

fewer samples than other models such as artificial neural

networks and Gaussian process regression. PC is a popular
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technique in the field of uncertainty quantification, where

it is typically used to replace a computationally expensive

model with an inexpensive-to-evaluate polynomial function

[22], [23]. The PC model obtained enables reliable estima-

tion of the statistics of the output, provided that a suitable

probabilistic model of the input is available. In recent years,

the PC method has been used in microwave filter design [5],

[24]. As a result, the computational cost of the PC method

is significantly reduced for yield estimation than that of the

MCS method.

For yield optimization, gradient-based optimizers are often

utilized [4], [5], [17], [25]. In [4], three gradient-based

optimizers are reviewed for the yield optimization of the

microwave circuit models. To improve the search ability

of gradient-based optimization methods, the modified ellip-

soidal technique is designed for obtaining the design center

of gradient-based optimization methods [17]. A boundary

gradient search technique is used for generating a sequence

of points on the boundary of the feasible region [25]. Since

gradient-based optimization algorithms are easy to fall into

local optimum [26], it is difficult to find the optimal solu-

tion accurately by gradient-based optimization. To partially

address this issue, the objective function is transformed into

a simplified form [5].

The microwave filters usually have several design speci-

fications such as return loss, insertion loss, passband ripple

in various bands. The current yield optimization methods [4],

[5] only consider the maximum yield with respect to one of

them. The maximization of the yield often contradicts with

other specifications or performance objectives. For example,

in order to reduce the insertion loss in the passband, it may be

necessary to reduce bandwidth. As a result, directly optimiz-

ing the yield with respect to one specification may lead to the

deterioration of other performance objectives.

To address the problems mentioned above, a yield-

constrained optimization utilizing polynomial chaos surro-

gate (YCOPCS) for microwave filters is proposed. In the

stage of yield estimation, cost-reduced PC models repre-

senting the statistics of the output of the EM models are

established.We define yield functions and objective functions

according to the sensitivity of all specifications with the

manufacturing tolerance. The more sensitive specifications

are defined as yield functions. An efficient yield-constrained

global design framework is designed to obtain the optimal

objective function value with yield functions as constraints.

A set of numerical experiments on microwave filters are

implemented to test the performance of the proposed method.

The rest of the paper is organized as follows. In section II,

we introduce the basic knowledge of yield optimization.

In section III, the YCOPCSmethod is described in detail. Test

examples for the method are demonstrated in Section IV. The

conclusions are drawn in Section V.

II. BASIC KNOWLEDGE OF YIELD OPTIMIZATION

In order to clearly describe yield optimization, the acceptance

index is defined for indicating whether the yield function

fyie(x, ζ ) satisfying the specification u or not.

I (x, ξ ) =

{

1, if fyie(x, ξ ) ≤ u

0, otherwise
(1)

where the n-dimensional vector x = [x1, x2, . . . , xn]
T

is design variables. The n-dimensional vector ξ =

[ξ1, ξ1, . . . , ξn]
T is the process variations.

In this work, we assume that x is uniformly distributed in

the bounded domain and ξ follows a Gaussian distribution

with a probability density function ρ(ξ ). The yield for x is

defined as the probability of I (x, ξ ) = 1, which is defined by

Prob(I (x, ξ ) = 1 | x) = E[I (x, ξ )] =

∫ ∞

−∞

I (x, ξ )ρ(ξ )dξ

(2)

Since it is difficult to calculate prob(I (x, ξ ) = 1|x)

directly [27], yield estimation is used to obtain the approx-

imate solution of (2). Two classical methods, namely yield

estimation using the Monte Carlo sampling (MCS) method

and yield estimation using the PC model, are introduced in

Section II.A and Section II.B, respectively. Based on the yield

estimation, the yield optimization framework is described in

Section II.C.

A. YIELD ESTIMATION USING MCS METHOD

Yield estimation using the MCS method is a conventional

method for obtaining the yield of a given design. It includes

simulating manufacturing errors of the design variables, cal-

culating the acceptance index of the samples with manu-

facturing errors, and estimating yield. The details of yield

estimation using the MCS method are as follows:

Firstly, the manufacturing errors are simulated with

uniform distribution. The k-th simulated manufacturing error

ξ k is defined as

ξ k = rk ◦ s (3)

where rk ◦ s represents Hadamard product [28] between s

and rk . s is the difference between the lower bound and

upper bound of the manufacturing error. rk is a uniformly dis-

tributed random vector with the element between −1 and 1.

Secondly, EM simulation is performed at the sample

x+ ξ k and the acceptance index of x+ ξ k is calculated using

equation (1).

Finally, the yield estimation is approximated by the ratio

of acceptable samples to the total samples, defined by

Prob(I (x, ξ ) = 1 | x) =

K
∑

k=1

I
(

x+ ξ k
)

K
(4)

where K is the number of simulated samples in process

variations.

For the microwave filters, in order to estimate the yield

accurately, a large number of EM simulations are required.

Therefore, yield estimation using the MCS method is

time-consuming.
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B. YIELD ESTIMATION USING THE PC MODEL

Comparedwith yield estimation using theMCSmethod, yield

estimation using the PC model is more efficient because it

adopts a low-cost PC surrogatemodel replacing the expensive

EM simulations. PC can accurately describe the stochastic

process of the random variables in most distribution [29]. The

function f (ξ ) of random variables ξ can be represented by a

spectral expansion as follows

f (ξ) ≈ f PC (ξ) =

p
∑

α=0

cα8α (ξ) (5)

where p is the order of PC expansion, the multivariate poly-

nomials 8α (ξ) is given by the product of corresponding

one-dimensional polynomials φ
(i)
α (ξi)

8α (ξ) =

n
∏

i=1

φ(i)α (ξi) (6)

Various polynomials φ
(i)
α (ξi) have been proposed [30],

they are selected based on the probability density distribu-

tions of random variables. For the uniformly independent

random variables ξ , the spectral expansion of Legendre poly-

nomials (7) are used.






















φ
(i)
0 (ξi)=1

φ
(i)
1 (ξi) = ξi

φ
(i)
α+1 (ζi) =

(

2α+1
α+1

)

ξiφ
(i)
α (ξi)−

(

α
α+1

)

ξiφ
(i)
α−1 (ξi) ,

for α ≥ 1

(7)

For the Gaussian distributed random variables ξ , the spectral

expansion of Hermite polynomials (8) are used.

φ(i)α
(

ξ i
)

= (−1)α e(ξ i)
2
/2 d

α

dξαi
e−(ξ i)

2/2

(8)

The total number of basis functions Np in polynomials (7)

and (8) is the function of the dimension of design variable n

and order of PC polynomial p.

Np =
(n+ p)!

n!p!
(9)

Once the PC model is established, it replaces the EM

simulation models to perform the yield estimation.

C. YIELD OPTIMIZATION FRAMEWORK

Yield optimization is to find the design variable values

with maximal yield. Two common optimization frameworks

include direct yield optimization and yield-constrained opti-

mization. The first uses yield as the objective function directly

[5], [19]. It only considers the yield with respect to one

performance specification. The optimization problem is for-

mulated in equation (10). However, it does not consider other

performances.

x
∗ = argmax

x
Prob(I (x, ξ ) = 1 | x) (10)

where x∗ is the optimal design.

Another method adopts the yield as the constraint [27]

and employs other performances as the objective function

fobj(x, ξ ). This method considers both the yield function and

objective function and we call this method yield-constrained

optimization. It is defined by

x
∗ = argmin

x
fobj(x, ξ )

s.t.Prob (I (x, ξ) = 1 |x ) ≥ 1 − ε (11)

where ε is a user-defined requirement of yield.

III. YCOPCS METHOD

An efficient yield-constrained optimization using polynomial

chaos surrogate (YCOPCS) is implemented for microwave

filters consideringmultiple objectives. YCOPCSmethod uses

a sampling reduction strategy for reducing the cost of the

PC Model for yield estimation as described in Section III.A.

The yield-constrained optimization implemented in the

YCOPCS method is introduced in Section III.B. The sum-

mary of the YCOPCS method is described in Section III.C.

The discussion of the YCOPCS method is presented in

Section III.D.

A. SAMPLING REDUCTION STRATEGY FOR PC MODELS

In the YCOPCS method, the yield function fyie(x, ξ ) is

employed for the constraint. fobj(x, ξ ) is used for the objec-

tive function. The PC models of fyie(x, ξ ) and fobj(x, ξ ) are

established using Legendre polynomials (7) and Hermite

polynomials (8) as expressed in equations (12) and (13),

respectively.

fobj(x, ξ ) ≈

p
∑

β=0

p
∑

α=0

hα,β8α(x)ψβ (ξ ) (12)

fyie(x, ξ ) ≈

p
∑

β=0

p
∑

α=0

cα,β8α(x)ψβ (ξ ) (13)

where 8α(x) and ψβ (ξ ) are basis functions of uniformly

distributed design variables x and the Gaussian distributed

process variation ξ , respectively. hα,β and cα,β are coeffi-

cients of fobj(x, ξ ) and fyie(x, ξ ), respectively.

The mean value of fyie(x, ξ ) is approximated by

Eξ
(

fyie(x, ξ )
)

≈

p
∑

α=0

cα,08α(x) (14)

And the variance of fyie(x, ξ ) is approximated by

Varξ
(

fyie(x, ξ )
)

≈

p
∑

β=1





p−β
∑

α=0

cα,β8α(x)





2

(15)

A stochastic collocation method [31] is used to generate

samples. Firstly, M1 quadrature points for design variables

and M2 quadrature points for process variations are deter-

mined using the sparse grid approach [32]. Then, in order

to reduce the EM simulation samples for modeling, the joint

quadrature samples for both design variables x and process

variations ξ are obtained through a process involving

min
xk ,ξ k ,wk

N2p
∑

j1=0

N2p−j1
∑

j2=0

(

σ0j1
σ0j2

−

M
∑

k=1

8j1 (xk )ψj2 (ξ k )wk

)2

(16)
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where

σ0 j1σ0 j2 =

{

1 j1 = j2 = 0

0 otherwise

Based on (16), joint quadrature points and their weights

{xk , ξ k ,wk}
M
k=1 are obtained. The number of joint quadrature

points M satisfies Np ≤ M ≤ N2p. According to quadra-

ture points and weights, hα,β and cα,β can be well comp-

uted by

cα,β ≈

M
∑

k=1

fyie
(

xk , ξ k
)

8α (xk) ψβ
(

ξ k
)

wk (17)

hα,β ≈

M
∑

k=1

fobj
(

xk , ξ k
)

8α (xk) ψβ
(

ξ k
)

wk (18)

B. YIELD-CONSTRAINED OPTIMIZATION

Yield-constrained optimization framework is adopted in this

paper. The probabilistic constraint of yield is expressed as

Probξ

(

fyie (x, ξ) ≤ u
)

≥ 1 − ε (19)

where 1-ε is the desired yield by users (or called chance),

and εǫ [0,1] is the risk level that users can accept. For-

mula (21) is also known as the chance constraint [27],

[33]–[36] used for obtaining the optimal solution in different

yield levels.

The probabilistic constraint (19) is transformed into

a deterministic constraint (20). Taking advantage of the

mean (14) and the variance (15) of the yield func-

tion, equation (20) becomes a convex second-order cone

constraint [37].
√

(1 − ε)

ε
Varξ

(

fyie (x, ξ )
)

+ Eξ

(

fyie (x, ξ )
)

≤ u (20)

Then, we combine the yield constraint and the objective

function into the following yield-constrained optimization

problem.

min
x
Eξ

(

fobj(x, ξ )
)

s.t.

√

(1 − ε)

ε
Varξ

(

fyie (x, ξ)
)

+ Eξ

(

fyie (x, ξ)
)

≤ u (21)

Substituting equations (15), (16), (17), and (18) into

equation (21), we obtain

min
x

p
∑

α=0

hα,08α (x)

s.t.

√

(1 − ε)

ε

√

√

√

√

√

p
∑

β=1





p−β
∑

α=0

cα,β8α (x)





2

+

p
∑

α=0

cα,08α (x) ≤ u

(22)

Since the square-root terms are difficult to optimize [38],

equation (22) is transformed into equation (23) to reduce the

FIGURE 1. Flowchart of the proposed YCOPCS method.

complexity of the problem.

min
x∈χ

p
∑

α=0

hα,08α (x)

s.t.
(1 − ε)

ε

p
∑

β=1





p−β
∑

α=0

cα,β8α (x)





2

≤

(

u−

p
∑

α=0

cα,08α (x)

)2

(23)

where χ is the design region of the design variables x.

Both the simplified constraints and objective function are

polynomials. We can obtain the optimal design variables

using any global polynomial solvers. Therefore global opti-

mization solver [39] is used to obtain the optimal design

in (23) in this paper.

C. SUMMARY OF THE YCOPCS METHOD

For yield estimation, the stochastic collocation method is

used to reduce the EM simulation samples for the PC model-

ing, and an order adaptive strategy is designed for improving

the accuracy of the PC model. For optimization, the yield-

constrained optimization (also known as the chance con-

straints technique) is employed to obtain optimal designs with

yield as a constraint. The probabilistic objective function and

constraints are transformed into an equivalent polynomial

optimization problem to reduce complexity. The flowchart of

the algorithm is shown in Fig. 1. The YCOPCS method is

summarized in the following steps.
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FIGURE 2. Schematic of the yield optimization with continuous updating
of the PC model [5].

Step 1): Determine the range of the design x, the prob-

ability distribution function of stochastic parameters ρ( ξ ),

the initial polynomial order p = 2, and the maximum

polynomial order pmax .

Step 2): Establish polynomial functions (7) and (8) for

design variables x and process variations ξ , respectively.

Step 3): Initialize the quadrature points for x and quadra-

ture points for ξ . Then, the stochastic collection is used to

obtain the quadrature points (xk , ξ k )k = 1, . . . ,M .

Step 4): Call the simulator to compute fobj(xk , ξ k ) and

fyie(xk , ξ k ) for k = 1, . . . ,M .

Step 5): Calculate the coefficients hα,β and cα,β of the

polynomials, respectively.

Step 6):Calculate the errors of the PCmodels (the yield PC

model and the objective PC model). If the test errors meet the

requirements, perform Step 7. Otherwise, p = p+1, perform

Step 2.

Step 7): Set up the yield-constrained optimization problem,

and optimize the design variables using a global optimization

solver to obtain the final design.

Step 8):Obtain the yield of the final design using the MCS

method using the microwave filter model.

D. DISCUSSION ON THE YCOPCS METHOD

1) THE EFFICIENCY OF THE YCOPCS METHOD

We compare our proposed method with an existing yield opti-

mization method [5] for microwave filters. It continuously

updates the new PC model according to the design center

obtained in each iteration, as shown in Fig. 2. The required

modeling samples are J · Np, where J is the number of

iterations in the optimization process.

In our proposed method, we establish the PC model in the

entire design space considering both the design variables and

the process variations. According to Section III.A, the num-

ber of modeling samples is M (Np < M < N2p) in our

proposed method. M = N2p is the upper bound of EM

simulation samples and can be expanded with Np term as the

following form.

M =
(2p+ n) (2p+ n− 1) · · · (n+ p+ 1)

2

(n+ p)!

n!p!
(24)

FIGURE 3. Samples for modeling without sampling reduction strategy.

FIGURE 4. Samples for modeling with sampling reduction strategy.

Substituting (9) into (24) we can find that the number

of EM simulation samples J · Np using the method in [5]

is larger than our proposed YCOPCS method if J satisfies

J >
(n+2p)(n+2p−1)···(n+p+1)

2
.

In order to further demonstrate the sampling reduction

strategy described in Section III.A of YCOPCS, the p =

3, n = 2 situation in design space [0, 1] is taken as an

example.M1 = 17 quadrature points for the design variables

and M2 = 19 quadrature points for process variations are

determined using the sparse grid approach. The total number

of initial sample points isM1 ·M2 = 323, as shown in Fig. 3.

After the sampling reduction strategy, the number of samples

is reduced to only 47 in the design variables space, as shown

in Fig. 4. It is shown that the sampling reduction strategy of

the proposed YCOPCS method largely reduces the number

of samples. Therefore, it achieves significant computational

cost savings for expensive EM simulation.

2) THE EFFECTIVENESS OF THE YCOPCS METHOD

The effectiveness of the YCOPCS method depends on the

accuracy of PC models. In this work, an order adaptive strat-

egy is designed for improving the accuracy of the PC models.

Besides, the valid design region is the key to guarantee that

the optimal yield design can be found. The valid design region

is defined by [x0−rτ, x0+rτ ], where x0 is the initial design,

τ is the standard deviation of the manufacturing error, and r

determines the size of the design space. In [5], the difference

between the initial design and the optimal yield design is

smaller than 2.5 τ . In this work, r > 4 is recommended,
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FIGURE 5. Topology of the fourth-order filter with cross-coupling.

so that our algorithmworks in a large enough design region to

ensure the optimal yield can be found. In the two examples in

Section IV, r > 4.7 for all design variables, and successfully

optimized to the optimal yield.

IV. VERIFICATION EXAMPLES

In this section, in order to test the performance of the

YCOPCS method, it is compared with MC-based yield opti-

mization [4] by solving two examples including a bandpass

filter design problem based on coupling matrix, and a waveg-

uide filters based on the EM simulation. Both methods are

implemented in the MATLAB 2019a platform. The software

is run on a desktop computer with the configuration of Intel

Core i5-6500 3.20 GHz and 20 GB RAM.

A. EXAMPLE 1: A COUPLING MATRIX MODEL OF A

FOURTH-ORDER FILTER WITH CROSS-COUPLING

A coupling matrix model representing a fourth-order filter

with cross-coupling is used as a mathematical model to verify

the YCOPCS method [40]. The topology of the bandpass

filter is shown in Fig. 5. The filter is operating at the cen-

ter frequency of 11 GHz with a bandwidth of 300MHz.

Two finite transmission zeros are assigned at 10.7 GHz and

11.3 GHz, respectively.

The normalized coupling matrix is written as:

[M] =

















0 MS1 0 0 0 0

MS1 0 M12 0 M14 0

0 M12 0 M23 0 0

0 0 M23 0 M12 0

0 M14 0 M12 0 MS1

0 0 0 0 MS1 0

















(25)

The S-parameters of the microwave filter can be calculated as

S11 = ±

(

1 − 2A−1
11

)

(26)

S21 = 2A−1
21 (27)

where S11 is the reflection coefficient at the port attached

to the first resonator, and S12 is the transmission coefficient

between the ports attached to the first and second resonators.

The immittance matrix A = R+U− jM , whereU =

[

u 0

0 0

]

and R =

[

0 0

0 r

]

.u is a 4 × 4 identity matrix and r is a 2 × 2

identity matrix.

The yield function and the objective function are shown

in (28) and (29).

fyie(x, ξ ) = max |S11|dB (x, ξ , f ) (28)

fobj(x, ξ ) = max (|S12|dB (x, ξ , f1) , |S12|dB (x, ξ , f2)) (29)

TABLE 1. Optimized design variables for the fourth-order filter with
cross-coupling.

TABLE 2. Yield results of different methods for the fourth-order with
cross-coupling.

where f is in the frequency band of [10.85GHz 11.15GHz], f1
is 10.7 GHz and f2 is 11.3 GHz. Because the topology is sym-

metric, the design variables are x = [MS1,M12,M23,M41]
T .

The initial design variable is x0 = [MS1,M12,M23,M41]
T =

[1.11185, 0.95130,−0.23504, 0.83654]T . The design vari-

ables x admits a uniform distribution in [1.034025, 0.88471,

−0.21858, 0.77798]T × [1.14521, 0.97984,−0.24209,

0.86163]T and the uncertain parameter ξ follows a Gaussian

distribution with 0.005 standard deviation. The specification

of yield for this filter is given by |S11|dB < −20 dB from

10.85 GHz to 11.15 GHz. The final yield optimization results

of the proposed YCOPCS method are verified by the MCS

method using 200 mathematical function evaluations (num-

ber of samples), and 200 mathematical function evaluations

are used in each iteration of MC-based yield optimization

with 10 iterations.

The errors of the obtained objective and yield PC models

with respect to the mathematical model are 7.61e−2 and

5.96e−2, respectively. The errors are smaller than the pre-

defined constant (0.10) so that the objective and yield PC

models are suitable for optimization. The optimized design

variables are shown in Table 1 for the risk levels ε =

0.05 and ε = 0.10. Table 2 lists the final yields of the

design solution using the proposed method with the two

risk levels and MC-based yield optimization, as well as

the required number of mathematical function evaluations.

It is seen from Table 2 that the optimization results of the

YCOPCS method are better than MC-based yield optimiza-

tion on accuracy and simulation cost. The proposed YCOPCS

method obtains the optimal solution with a 95 % yield

using 375 mathematical function evaluations. MC-based

yield optimization obtains 92.50 % yield using 5 times

more mathematical function evaluations than our proposed

method. Fig. 6 shows the yield before and after optimization

using the proposed method for the fourth-order bandpass

filter.
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FIGURE 6. Yield optimization results of the fourth-order filter with cross-coupling using MCS method on mathematical model evaluation (a) initial
design, (b) our proposed (ε = 0.05) and (c) our proposed (ε = 0.10). Gray lines: 200 mathematical model evaluation samples. Red line: S11 response
evaluated at the optimal design solution. Green line: S12 response evaluated at the optimal design solution.

FIGURE 7. Geometry of the fourth-order bandpass waveguide filter with
process variation of metal diaphragms x = [d1, d2, d3]T .

B. EXAMPLE 2: A FOURTH-ORDER BANDPASS

WAVEGUIDE FILTER WITH PROCESS VARIATIONS OF

METAL DIAPHRAGMS

A waveguide bandpass filter [41] is used to test the per-

formance of the proposed YCOPCS method. The geometry

of the structure is shown in Fig. 7. The design parameters

are x = [d1, d2, d3]
T (mm), where d1, d2, and d3 represent

the distances between the first, second, and third pairs of

metal diaphragms, respectively. The section dimensions of

the waveguide are a = 22.86 mm and b = 10.16 mm (WR-

90). The specification for the yield of this filter is given by

|S11|dB ≤ −19 dB in the frequency range from 10.88 GHz

to 11.16 GHz. The objective function is the maximum value

of |S12|dB at 10.7 GHz and 11.3 GHz. The yield function

and the objective function are formulated in (30) and (31),

respectively.

fyie(x, ξ ) = max |S11|dB (x, ξ , f ) (30)

fobj(x, ξ ) = max (|S12|dB (x, ξ , f1) , |S12|dB (x, ξ , f2)) (31)

where f is in the frequency band of [10.88 GHz 11.16 GHz],

f1 is 10.7 GHz and f2 is 11.3 GHz. The design variables x sat-

isfy a uniform distribution in [10.3940, 6.6389, 6.0855]T ×

[10.6040, 6.7731, 6.2085]T , and the process variations

ξ follow a Gaussian distribution with 20µm standard

deviation. The initial design variable value is x0 =

[10.499, 6.706, 6.147]T . The final yield optimization results

are verified by the MCS method using 200 EM simulations

(CST). As a comparison, the MC-based yield optimization is

performed with 10 iterations and 200 EM simulations (CST)

at each iteration.

TABLE 3. Optimized design variable values for the fourth-order bandpass
waveguide filter with process variation of metal diaphragms /mm.

TABLE 4. Yield results of different methods for the fourth-order
bandpass waveguide with process variations of metal diaphragms.

The errors of the obtained objective and yield PC models

are 8.72e−2 and 7.91e−2, respectively. The errors are smaller

than the predefined constant (0.10) so that the objective and

yield PC models are suitable for optimization. The optimized

design variables for the risk level ε = 0.05 and ε =

0.10 are shown in Table 3. The final yield of the proposed

YCOPCS method with the two risk levels and MC-based

yield optimization and the number of required EM simu-

lations are listed in Table 4. From Table 4, we see that

the optimization results of the proposed YCOPCS method

are better than MC-based yield optimization in both accu-

racy and EM simulation cost. Using only 248 EM simula-

tions, the optimal solutions obtained by our proposed method

achieve the yields of 91.5 % and 83.5 % for ε = 0.05

and ε = 0.10, respectively. As a comparison, MC-based

yield optimization obtains an optimal solution with a yield

of 82.5 % using 5.67 times more EM simulations than the

YCOPCS method. Fig. 8 shows the yield before and after

optimization using the YCOPCS method for the fourth-order

bandpass waveguide filter with process variation of metal

diaphragms.
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FIGURE 8. Yield optimization results of the fourth-order bandpass waveguide filter with process variation of metal diaphragms using MCS method on EM
simulations (a) initial design, (b) our proposed (ε = 0.15) and (c) our proposed (ε = 0.20). Gray lines: 200 EM simulations. Red line: S11 response
evaluated at the optimal design solution. Green line: S12 response evaluated at the optimal design solution.

V. CONCLUSION

In this paper, a novel yield-constrained optimization method

based on the polynomial chaos (PC) model for microwave

filters is presented for fast and accurately obtaining the design

solution with high yield and good performances. Numer-

ical experiments show that the proposed method achieves

high-accuracy yield estimation and good yield optimization

results with only a fraction of the sampling cost that other

methods require. In the future, the yield-constrained opti-

mization method is used to solve the complex microwave

filters with high dimension.
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