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Preface

Understanding the dynamic evolution of the yield curve is
important for many tasks, including pricing financial assets and
their derivatives, managing financial risk, allocating portfolios,
structuring fiscal debt, conducting monetary policy, and valuing
capital goods. To investigate yield curve dynamics, researchers
have produced a huge literature with a wide variety of mod-
els. In our view it would be neither interesting nor desirable to
produce an extensive survey. Indeed our desire is precisely the
opposite: we have worked hard to preserve the sharp focus of
our Econometric Institute and Tinbergen Institute (EITI) Lec-
tures, delivered in Rotterdam in June 2010, on which this book
is based.

Our sharp focus is driven by an important observation: most
yield curve models tend to be either theoretically rigorous but
empirically disappointing, or empirically successful but theo-
retically lacking. In contrast, we emphasize in this book two
intimately-related extensions of the classic yield curve model
of Nelson and Siegel (1987). The first is a dynamized version,
which we call “dynamic Nelson-Siegel” (DNS). The second takes
DNS and makes it arbitrage-free; we call it “arbitrage-free Nel-
son Siegel” (AFNS). Indeed the two models are just slightly dif-
ferent implementations of a single, unified approach to dynamic
yield curve modeling and forecasting. DNS has been highly suc-
cessful empirically and can easily be made arbitrage-free (i.e.,

xi
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converted to AFNS) if and when that is desirable.

Our intended audience is all those concerned with bond mar-
kets and their links to the macroeconomy, whether researchers,
practitioners or students. It spans academic economics and fi-
nance, central banks and NGOs, government, and industry. Our
methods are of special relevance for those interested in asset
pricing, portfolio allocation, and risk management.

We use this book, just as we used the EITI Lectures, as an
opportunity to step back from the signposts of individual journal
articles and assess the broader landscape – where we’ve been,
where we are, and where we’re going as regards the whats and
whys and hows of yield curve modeling, all through a DNS lens.
Our methods and framework have strong grounding in the best
of the past, yet simultaneously they are very much intertwined
with the current research frontier and actively helping to push
it outward.

We begin with an overview of yield curve “facts” and quickly
move to the key fact: Beneath the high-dimensional set of ob-
served yields, and guiding their evolution, is a much lower-
dimensional set of yield factors. We then motivate DNS as a
powerful approximation to that dynamic factor structure. We
treat DNS yield curve modeling in a variety of contexts, em-
phasizing both descriptive aspects (in-sample fit, out-of-sample
forecasting, etc.) and efficient-markets aspects (imposition of
absence of arbitrage, whether and where one would want to im-
pose absence of arbitrage, etc.). We devote special attention
to the links between the yield curve and macroeconomic funda-
mentals.

We are pleased to have participated in the DNS research
program with talented co-authors who have taught us much en
route: Boragan Aruoba, Lei Ji, Canlin Li, Jens Christensen,
Jose Lopez, Monika Piazzesi, Eric Swanson, Tao Wu, and Vivian
Yue. Christensen’s influence, in particular, runs throughout this
book.

We are exceptionally indebted to Herman van Dijk and Dick
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van Dijk for their intellectual leadership in organizing the EITI
Lectures. We are similarly indebted to the team at Princeton
University Press, especially Seth Ditchik, for meticulous and
efficient administration and production.

We are grateful to many colleagues and institutions for help-
ful input at various stages. In particular, we thank – with-
out implicating in any way – Caio Almeida, Boragan Aruoba,
Jens Christensen, Dick van Dijk, Herman van Dijk, Greg Duffee,
Darrell Duffie, Jesús Fernández-Villaverde, Mike Gibbons, Jim
Hamilton, Jian Hua, Lawrence Klein, Siem Jan Koopman, Leo
Krippner, Jose Lopez, Andre Lucas, Emanuel Mönch, James
Morley, Charles Nelson, Ken Singleton, Dongho Song, Jim Stee-
ley, Chuck Whiteman, and Tao Wu. Several anonymous re-
viewers of the manuscript also provided insightful and valuable
comments. For research assistance we thank Fei Chen, Jian
Hua, and Eric Johnson. For financial support we are grateful to
the National Science Foundation, the Wharton Financial Insti-
tutions Center, and the Guggenheim Foundation.

We hope that the book conveys a feeling for the excitement
of the rapidly evolving field of yield curve modeling. That rapid
evolution is related to, but no excuse for, the many errors of
commission and omission that surely remain, for which we apol-
ogize in advance.

Francis X. Diebold
Philadelphia 2011

fdiebold@sas.upenn.edu
http://www.ssc.upenn.edu/~fdiebold

Glenn D. Rudebusch
San Francisco 2011

glenn.rudebusch@sf.frb.org
http://www.frbsf.org/economics/economists/grudebusch
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Chapter 1

Facts, Factors, and
Questions

In this chapter we introduce some important conceptual, descriptive,
and theoretical considerations regarding nominal government bond
yield curves. Conceptually, just what is it that are we trying to
measure? How can we best understand many bond yields at many
maturities over many years? Descriptively, how do yield curves tend
to behave? Can we obtain simple yet accurate dynamic characteriza-
tions and forecasts? Theoretically, what governs and restricts yield
curve shape and evolution? Can we relate yield curves to macroeco-
nomic fundamentals and central bank behavior?

These multifaceted questions are difficult yet very important. Ac-
cordingly, a huge and similarly multifaceted literature attempts to
address them. Numerous currents and cross-currents, statistical and
economic, flow through the literature. There is no simple linear
thought progression, self-contained with each step following logically
from that before. Instead the literature is more of a tangled web;
hence it is not our intention to produce a “balanced” survey of yield
curve modeling, as it is not clear whether that would be helpful or
even what it would mean. On the contrary, in this book we slice
through the literature in a calculated way, assembling and elabo-
rating on a very particular approach to yield curve modeling. Our
approach is simple yet rigorous, simultaneously in close touch with

1



2 CHAPTER 1. FACTS, FACTORS, AND QUESTIONS

modern statistical and financial economic thinking, and effective in
a variety of situations. But we are getting ahead of ourselves. First
we must lay the groundwork.

1.1 Three Interest Rate Curves

Here we fix ideas, establish notation, and elaborate on key concepts
by recalling three key theoretical bond market constructs and the re-
lationships among them: the discount curve, the forward rate curve,
and the yield curve. Let P (τ) denote the price of a τ -period discount
bond, i.e., the present value of $1 receivable τ periods ahead. If y(τ)
is its continuously compounded yield to maturity, then by definition

P (τ) = e−τ y(τ). (1.1)

Hence the discount curve and yield curve are immediately and fun-
damentally related. Knowledge of the discount function lets one
calculate the yield curve.

The discount curve and the forward rate curve are similarly fun-
damentally related. In particular, the forward rate curve is defined
as

f(τ) =
−P ′(τ)

P (τ)
. (1.2)

Thus, just as knowledge of the discount function lets one calculate
the yield curve, so too does knowledge of the discount function let
one calculate the forward rate curve.

Equations (1.1) and (1.2) then imply a relationship between the
yield curve and forward rate curve,

y(τ) =
1

τ

∫ τ

0
f(u)du. (1.3)

In particular, the zero-coupon yield is an equally weighted average
of forward rates.

The upshot for our purposes is that, because knowledge of any
one of P (τ), y(τ), and f(τ) implies knowledge of the other two, the
three are effectively interchangable. Hence with no loss of generality
one can choose to work with P (τ), y(τ), or f(τ). In this book,
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following much of both academic and industry practice, we will work
with the yield curve, y(τ). But again, the choice is inconsequential
in theory.

Complications arise in practice, however, because although we
observe prices of traded bonds with various amounts of time to ma-
turity, we do not directly observe yields, let alone the zero-coupon
yields at fixed standardized maturities (e.g., six-month, ten-year, ...),
with which we will work throughout. Hence we now provide some
background on yield construction.

1.2 Zero-Coupon Yields

In practice, yield curves are not observed. Instead, they must be
estimated from observed bond prices. Two historically popular ap-
proaches to constructing yields proceed by fitting a smooth discount
curve and then converting to yields at the relevant maturities using
formulas (1.2) and (1.3) above.

The first discount curve approach to yield curve construction
is due to McCulloch (1971) and McCulloch (1975), who model the
discount curve using polynomial splines.1 The fitted discount curve,
however, diverges at long maturities due to the polynomial structure,
and the corresponding yield curve inherits that unfortunate property.
Hence such curves can provide poor fits to yields that flatten out with
maturity, as emphasized by Shea (1984).

An improved discount curve approach to yield curve construction
is due to Vasicek and Fong (1982), who model the discount curve
using exponential splines. Their clever use of a negative transforma-
tion of maturity, rather than maturity itself, ensures that forward
rates and zero-coupon yields converge to a fixed limit as maturity
increases. Hence the Vasicek-Fong approach may be more successful
at fitting yield curves with flat long ends.

Notwithstanding the progress of Vasicek and Fong (1982), dis-
count curve approaches remain potentially problematic, as the im-
plied forward rates are not necessarily positive. An alternative and
popular approach to yield construction is due to Fama and Bliss

1See also McCulloch and Kwon (1993).
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(1987), who construct yields not from an estimated discount curve,
but rather from estimated forward rates at the observed maturities.
Their method sequentially constructs the forward rates necessary to
price successively longer-maturity bonds. Those forward rates are
often called “unsmoothed Fama-Bliss” forward rates, and they are
transformed to unsmoothed Fama-Bliss yields by appropriate averag-
ing, using formula (1.3) above. The unsmoothed Fama-Bliss yields
exactly price the included bonds. Unsmoothed Fama-Bliss yields
are often the “raw” yields to which researchers fit empirical yield
curves, such as members of the Nelson-Siegel family, about which we
will have much to say throughout this book. Such fitting effectively
smooths the unsmoothed Fama-Bliss yields.

1.3 Yield Curve Facts

At any time, dozens of different yields may be observed, correspond-
ing to different bond maturities. But yield curves evolve dynamically;
hence they have not only a cross-sectional, but also a temporal, di-
mension.2 In this section we address the obvious descriptive ques-
tion: How do yields tend to behave across different maturities and
over time?

The situation at hand is in a sense very simple – modeling and
forecasting a time series – but in another sense rather more com-
plex and interesting, as the series to be modeled is in fact a series
of curves.3 In Figure 1.1 we show the resulting three-dimensional
surface for the U.S., with yields shown as a function of maturity,
over time. The figure reveals a key yield curve fact: yield curves
move a lot, shifting among different shapes: increasing at increasing

2We will be interested in dynamic modeling and forecasting of yield
curves, so the temporal dimension is as important as the variation across
bond maturity.

3The statistical literature on functional regression deals with sets of
curves and is therefore somewhat related to our concerns. See, for example,
Ramsay and Silverman (2005) and Ramsay et al. (2009). But the functional
regression literature typically does not address dynamics, let alone the many
special nuances of yield curve modeling. Hence we are led to rather different
approaches.



1.3. YIELD CURVE FACTS 5

Table 1.1: Bond Yield Statistics

Maturity
(Months) ȳ σ̂y ρ̂y(1) ρ̂y(12)

6 4.9 2.1 0.98 0.64
12 5.1 2.1 0.98 0.65
24 5.3 2.1 0.97 0.65
36 5.6 2.0 0.97 0.65
60 5.9 1.9 0.97 0.66
120 6.5 1.8 0.97 0.68

Notes: We present descriptive statistics for end-of-month yields at various
maturities. We show sample mean, sample standard deviation, and first-
and twelfth-order sample autocorrelations. Data are from the Board of
Governors of the Federal Reserve System. The sample period is January
1985 through December 2008.

or decreasing rates, decreasing at increasing or decreasing rates, flat,
U-shaped, etc.

In Table 1.1 we show descriptive statistics for yields at vari-
ous maturities. Several well-known and important yield curve facts
emerge. First, time-averaged yields (the ”average yield curve”) in-
crease with maturity; that is, term premia appear to exist, perhaps
due to risk aversion, liquidity preferences, or preferred habitats. Sec-
ond, yield volatilities decrease with maturity, presumably because
long rates involve averages of expected future short rates. Third,
yields are highly persistent, as evidenced not only by the very large
one-month autocorrelations but also by the sizable twelve-month au-
tocorrelations.

In Table 1.2 we show the same descriptive statistics for yield
spreads relative to the ten-year bond. Yield spread dynamics con-
trast rather sharply with those of yield levels; in particular, spreads
are noticeably less volatile and less persistent. As with yields, the
one-month spread autocorrelations are very large, but they decay
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Figure 1.1: Bond Yields in Three Dimensions
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Notes: We plot end-of-month U.S. Treasury bill and bond yields at ma-
turities ranging from six months to ten years. Data are from the Board
of Governors of the Federal Reserve System, based on Gürkaynak et al.
(2007). The sample period is January 1985 through December 2008.
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Table 1.2: Yield Spread Statistics

Maturity
(Months) s̄ σ̂s ρ̂s(1) ρ̂s(12)

6 -1.6 1.3 0.98 0.44
12 -1.4 1.1 0.98 0.46
24 -1.1 0.9 0.97 0.48
36 -0.9 0.7 0.97 0.47
60 -0.6 0.4 0.96 0.44
120 NA NA NA NA

Notes: We present descriptive statistics for end-of-month yield spreads (rel-
ative to the ten-year bond) at various maturities. We show sample mean,
sample standard deviation, and first- and twelfth-order sample autocor-
relations. Data are from the Board of Governors of the Federal Reserve
System, based on Gürkaynak et al. (2007). The sample period is January
1985 through December 2008.

more quickly, so that the twelve-month spread autocorrelations are
noticeably smaller than those for yields. Indeed many strategies for
active bond trading (sometimes successful and sometimes not!) are
based on spread reversion.

1.4 Yield Curve Factors

Multivariate models are required for sets of bond yields. An ob-
vious model is a vector autoregression or some close relative. But
unrestricted vector autoregressions are profligate parameterizations,
wasteful of degrees of freedom. Fortunately, it turns out that finan-
cial asset returns typically conform to a certain type of restricted
vector autoregression, displaying factor structure. Factor structure
is said to be operative in situations where one sees a high-dimensional
object (e.g., a large set of bond yields), but where that high-dimensional
object is driven by an underlying lower-dimensional set of objects, or
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“factors.” Thus beneath a high-dimensional seemingly complicated
set of observations lies a much simpler reality.

Indeed factor structure is ubiquitous in financial markets, finan-
cial economic theory, macroeconomic fundamentals, and macroeco-
nomic theory. Campbell et al. (1997), for example, discuss aspects
of empirical factor structure in financial markets and theoretical fac-
tor structure in financial economic models.4 Similarly, Aruoba and
Diebold (2010) discuss empirical factor structure in macroeconomic
fundamentals, and Diebold and Rudebusch (1996) discuss theoretical
factor structure in macroeconomic models.

In particular, factor structure provides a fine description of the
term structure of bond yields.5 Most early studies involving mostly
long rates (e.g., Macaulay (1938)) implicitly adopt a single-factor
world view, where the factor is the level (e.g., a long rate). Similarly,
early arbitrage-free models like Vasicek (1977) involve only a single
factor. But single-factor structure severely limits the scope for inter-
esting term structure dynamics, which rings hollow both in terms of
introspection and observation.

In Figure 1.2 we show a time-series plot of a standard set of
bond yields. Clearly they do tend to move noticeably together, but
at the same time, it’s clear that more than just a common level
factor is operative. In the real world, term structure data – and
correspondingly, modern empirical term structure models – involve
multiple factors. This classic recognition traces to Litterman and
Scheinkman (1991), Willner (1996) and Bliss (1997), and it is echoed
repeatedly in the literature. Joslin et al. (2010), for example, note
that:

“The cross-correlations of bond yields are well described
by a low-dimensional factor model in the sense that the
first three principal components of bond yields...explain
well over 95 percent of their variation....Very similar

4Interestingly, asset pricing in the factor framework is closely related to
asset pricing in the pricing kernel framework, as discussed in Chapter 11 of
Singleton (2006).

5For now we do not distinguish between government and corporate bond
yields. We will consider credit risk spreads later.
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Figure 1.2: Bond Yields in Two Dimensions

Notes: We plot end-of-month U.S. Treasury bill and bond yields at ma-
turities of 6, 12, 24, 36, 60, and 120 months. Data are from the Board
of Governors of the Federal Reserve System, based on Gürkaynak et al.
(2007). The sample period is January 1985 through December 2008.

three-factor representations emerge from arbitrage-free,
dynamic term structure models...for a wide range of ma-
turities.”

Typically three factors, or principal components, are all that one
needs to explain most yield variation. In our data set the first three
principal components explain almost one hundred percent of the vari-
ation in bond yields; we show them in Figure 1.3 and provide descrip-
tive statistics in Table 1.3.

The first factor is borderline nonstationary. It drifts downward
over much of the sample period, as inflation was reduced relative to
its high level in the early 1980s. The first factor is the most variable



10 CHAPTER 1. FACTS, FACTORS, AND QUESTIONS

Figure 1.3: Bond Yield Principal Components

Notes: We show the first, second, and third principal components of bond
yields in dark, medium and light shading, respectively.

but also the most predictable, due to its very high persistence. The
second factor is also highly persistent and displays a clear business
cycle rhythm. The second factor is less variable, less persistent, and
less predictable than the level factor. The third factor is the least
variable, least persistent, and least predictable.

In Figure 1.4 we plot the three principal components (factors)
against standard empirical yield curve level, slope and curvature
measures (the 10-year yield, the 10Y-6M spread, and a 6M+10Y-
2*5Y butterfly spread, respectively). The figure reveals that the
three bond yield factors effectively are level, slope, and curvature.
This is important, because it implies that the different factors likely
have different and specific macroeconomic determinants. Inflation,
for example, is clearly related to the yield curve level, and the stage
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Table 1.3: Yield Principal Components Statistics

PC σ̂ ρ̂(1) ρ̂(12) R2

First 2.35 0.97 0.67 0.98
Second 0.52 0.97 0.45 0.95
Third 0.10 0.83 0.15 0.70

Notes: We present descriptive statistics for the first three principal compo-
nents of end-of-month U.S. government bill and bond yields at maturities
of 6, 12, 24, 36, 60, and 120 months. We show principal component sample
standard deviation, first- and twelfth-order principal component sample
autocorrelations, and the predictive R2 (see Diebold and Kilian (2001))
from an AR(p) approximating model with p selected using the Schwartz
criterion. Data are from the Board of Governors of the Federal Reserve
System, based on Gürkaynak et al. (2007). The sample period is January
1985 through December 2008.

of the business cycle is relevant for the slope. It is also noteworthy
that the yield factors are effectively orthogonal due to their excep-
tionally close links to the principal components, which are orthogonal
by construction.

The disproportionate amount of yield variation associated with
the common level factor, together with its high persistence, explains
the broad sweep of earlier-discussed facts, in particular the high per-
sistence of yields and the greatly reduced persistence of yield spreads
(because the common level factor vanishes from the spreads). Real-
ity is of course a bit more complicated, as slope and curvature factors
are also operative, but the effects of the level factor dominate.

A factor structure for yields with a highly persistent level factor
is constrained by economic theory. Economic theory strongly sug-
gests that nominal bond yields should not have unit roots, because
the yields are bounded below by zero, whereas unit-root processes
have random-walk components and therefore will eventually cross
zero almost surely. Nevertheless, the unit root may be a good ap-
proximation so long as yields are not too close to zero, as noted by
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Figure 1.4: Empirical Level, Slope, and Curvature, and First
Three Principal Components, of Bond Yields

Notes: We show the standardized empirical level, slope, and curvature
with dark lines, and the first three standardized principal components with
lighter lines.
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Dungey et al. (2000), Giese (2008) and Jardet et al. (2010), among
others.6 Work in that tradition, most notably Dungey et al. (2000),
finds not only integration but also clear cointegration, and the com-
mon unit roots associated with cointegration imply factor structure.

1.5 Yield Curve Questions

Thus far we have laid the groundwork for subsequent chapters, touch-
ing on aspects of yield definition, data construction, and descriptive
statistical properties of yields and yield factors. We have empha-
sized the high persistence of yields, the lesser persistence of yield
spreads, and related, the good empirical approximation afforded by
a low-dimensional three-factor structure with highly persistent level
and slope factors. Here we roam more widely, in part looking back-
ward, expanding on themes already introduced, and in part looking
forward, foreshadowing additional themes that feature prominently
in what follows.

1.5.1 Why use factor models for yields?

The first problem faced in term structure modeling is how to summa-
rize the price information at any point in time for the large number
of nominal bonds that are traded. Dynamic factor models prove
appealing for three key reasons.

First, as emphasized already, factor structure generally provides
a highly-accurate empirical description of yield curve data. Because
only a small number of systematic risks appear to underlie the pric-
ing of the myriad of tradable financial assets, nearly all bond price
information can be summarized with just a few constructed variables
or factors. Therefore, yield curve models almost invariably employ
a structure that consists of a small set of factors and the associ-
ated factor loadings that relate yields of different maturities to those

6Alternatively, more sophisticated models, such as the “square-root pro-
cess” of Cox et al. (1985), can allow for unit-root dynamics while still en-
forcing yield non-negativity by requiring that the conditional variance of
yields approach zero as yields approach zero.
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factors.

Second, factor models prove tremendously appealing for statis-
tical reasons. They provide a valuable compression of information,
effectively collapsing an intractable high-dimensional modeling situa-
tion into a tractable low-dimensional situation. This would be small
consolation if the yield data were not well-approximated with fac-
tor structure, but again, they are. Hence we’re in a most fortunate
situation. We need low-dimensional factor structure for statistical
tractability, and mercifully, the data actually have factor structure.

Related, factor structure is consistent with the “parsimony prin-
ciple,” which we interpret here as the broad insight that imposing
restrictions implicitly associated with simple models – even false re-
strictions that may degrade in-sample fit – often helps to avoid data
mining and, related, to produce good out-of-sample forecasts.7 For
example, an unrestricted vector autoregression provides a very gen-
eral linear model of yields typically with good in-sample fit, but the
large number of estimated coefficients may reduce its value for out-
of-sample forecasting.8

Last, and not at all least, financial economic theory suggests, and
routinely invokes, factor structure. We see thousands of financial
assets in the markets, but for a variety of reasons we view the risk
premiums that separate their expected returns as driven by a much
smaller number of components, or risk factors. In the equity sphere,
for example, the celebrated capital asset pricing model (CAPM) is
a single-factor model. Various extensions (e.g., Fama and French
(1992)) invoke a few additional factors but remain intentionally very
low-dimensional, almost always with less than five factors. Yield
curve factor models are a natural bond market parallel.

7See Diebold (2007) for additional discussion.
8Parsimony, however, is not the only consideration for determining the

number of factors needed; the demands of the precise application are of
course also relevant. For example, although just a few factors may account
for almost all dynamic yield variation and optimize forecast accuracy, more
factors may be needed to fit with great accuracy the cross section of yields
at a point in time, say, for pricing derivatives.
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1.5.2 How should bond yield factors and fac-
tor loadings be constructed?

The literature contains a variety of methods for constructing bond
yield factors and factor loadings. One approach places structure only
on the estimated factors, leaving loadings free. For example, the fac-
tors could be the first few principal components, which are restricted
to be mutually orthogonal, while the loadings are left unrestricted.
Alternatively, the factors could be observed bond portfolios, such as
a long-short for slope, a butterfly for curvature, etc.

A second approach, conversely, places structure only on the load-
ings, leaving factors free. The classic example, which has long been
popular among market and central bank practitioners, is the so-
called Nelson-Siegel curve, introduced in Nelson and Siegel (1987).
As shown by Diebold and Li (2006), a suitably dynamized version
of Nelson-Siegel is effectively a dynamic three-factor model of level,
slope, and curvature. However, the Nelson-Siegel factors are unob-
served, or latent, whereas the associated loadings are restricted by
a functional form that imposes smoothness of loadings across matu-
rities, positivity of implied forward rates, and a discount curve that
approaches zero with maturity.

A third approach, the no-arbitrage dynamic latent factor model,
which is the model of choice in finance, restricts both factors and
factor loadings. The most common subclass of such models, affine
models in the tradition of Duffie and Kan (1996), postulates linear
or affine dynamics for the latent factors and derives the associated
restrictions on factor loadings that ensure absence of arbitrage.

1.5.3 Is imposition of “no arbitrage” useful?

The assumption of no arbitrage ensures that, after accounting for
risk, the dynamic evolution of yields over time is consistent with the
cross-sectional shape of the yield curve at any point in time. This
consistency condition is likely to hold, given the existence of deep
and well-organized bond markets. Hence one might argue that the
real markets are at least approximately arbitrage-free, so that a good
yield curve model must display freedom from arbitrage.
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But all models are false, and subtlties arise once the inevitability
of model misspecification is acknowledged. Freedom from arbitrage
is essentially an internal consistency condition. But a misspecified
model may be internally consistent (free from arbitrage) yet have
little relationship to the real world, and hence forecast poorly, for ex-
ample. Moreover, imposition of no-arbitrage on a misspecified model
may actually degrade empirical performance.

Conversely, a model may admit arbitrage yet provide a good ap-
proximation to a much more complicated reality, and hence forecast
well. Moreover, if reality is arbitrage-free, and if a model provides
a very good description of reality, then imposition of no-arbitrage
would presumably have little effect. That is, an accurate model
would be at least approximately arbitrage-free, even if freedom from
arbitrage were not explicitly imposed.

Simultaneously a large literature suggests that coaxing or “shrink-
ing” forecasts in various directions (e.g., reflecting prior views) may
improve performance, effectively by producing large reductions in er-
ror variance at the cost of only small increases in bias. An obvious
benchmark shrinkage direction is toward absence of arbitrage. The
key point, however, is that shrinkage methods don’t force absence of
arbitrage; rather, they coax things toward absence of arbitrage.

If we are generally interested in the questions posed in this sub-
section’s title, we are also specifically interested in answering them
in the dynamic Nelson-Siegel context. A first question is whether our
dynamic Nelson-Siegel (DNS) model can be made free from arbitrage.
A second question, assuming that DNS can be made arbitrage-free,
is whether the associated restrictions on the physical yield dynamics
improve forecasting performance.

1.5.4 How should term premiums be speci-
fied?

With risk-neutral investors, yields are equal to the average value of
expected future short rates (up to Jensen’s inequality terms), and
there are no expected excess returns on bonds. In this setting, the
expectations hypothesis, which is still a mainstay of much casual and
formal macroeconomic analysis, is valid. However, it seems likely



1.5. YIELD CURVE QUESTIONS 17

that bonds, which provide an uncertain return, are owned by the
same risk-averse investors who also demand a large equity premium
as compensation for holding risky stocks. Furthermore, as suggested
by many statistical tests in the literature, the risk premiums on nom-
inal bonds appear to vary over time, which suggests time-varying
risk, time-varying risk aversion, or both (e.g., Campbell and Shiller
(1991), Cochrane and Piazzesi (2005)).9

In the finance literature, there are two basic approaches to mod-
eling time-varying term premiums: time-varying quantities of risk or
time-varying “prices of risk” (which translate a unit of factor volatil-
ity into a term premium). The large literature on stochastic volatility
takes the former approach, allowing the variability of yield factors
to change over time. In contrast, the canonical Gaussian affine no-
arbitrage finance representation (e.g., Ang and Piazzesi (2003)) takes
the latter approach, specifying time-varying prices of risk.10

1.5.5 How are yield factors and
macroeconomic variables related?

The modeling of interest rates has long been a prime example of the
disconnect between the macro and finance literatures. In the canon-
ical finance model, the short-term interest rate is a linear function of
a few unobserved factors. Movements in long-term yields are impor-
tantly determined by changes in risk premiums, which also depend
on those latent factors. In contrast, in the macro literature, the
short-term interest rate is set by the central bank according to its
macroeconomic stabilization goals – such as reducing deviations of
inflation and output from the central bank’s targets. Furthermore,

9However, Diebold et al. (2006b) suggest that the importance of the
statistical deviations from the expectations hypothesis may depend on the
application.

10Some recent literature takes an intermediate approach. In a struc-
tural dynamic stochastic general equilibrium (DSGE) model, Rudebusch
and Swanson (2011) show that technology-type shocks can endogenously
generate time-varying prices of risk – namely, conditional heteroskedas-
ticity in the stochastic discount factor – without relying on conditional
heteroskedasticity in the driving shocks.
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the macro literature commonly views long-term yields as largely de-
termined by expectations of future short-term interest rates, which
in turn depend on expectations of the macro variables; that is, possi-
ble changes in risk premiums are often ignored, and the expectations
hypothesis of the term structure is employed.

Surprisingly, the disparate finance and macro modeling strate-
gies have long been maintained, largely in isolation of each other.
Of course, differences between the finance and macro perspectives
reflect, in part, different questions, methods, and avenues of explo-
ration. However, it is striking how little interchange or overlap be-
tween the two research literatures has occurred in the past. Notably,
both the DNS and affine no-arbitrage dynamic latent factor models
provide useful statistical descriptions of the yield curve, but in their
original, most basic, forms they offer little insight into the nature of
the underlying economic forces that drive its movements.

Hence, to illuminate the fundamental determinants of interest
rates, researchers have begun to incorporate macroeconomic vari-
ables into the DNS and affine no-arbitrage dynamic latent factor
yield curve models. For example, Diebold et al. (2006b) provide a
macroeconomic interpretation of the DNS representation by combin-
ing it with vector-autoregressive dynamics for the macroeconomy.
Their maximum likelihood estimation approach extracts three latent
factors (essentially level, slope, and curvature) from a set of seventeen
yields on U.S. Treasury securities and simultaneously relates these
factors to three observable macroeconomic variables (specifically, real
activity, inflation, and a monetary policy instrument). By examining
the correlations between the DNS yield factors and macroeconomic
variables, they find that the level factor is highly correlated with
inflation and the slope factor is highly correlated with real activity.
The curvature factor appears unrelated to any of the main macroe-
conomic variables.

The role of macroeconomic variables in a no-arbitrage affine model
is explored in several papers. In Ang and Piazzesi (2003), the macroe-
conomic factors are measures of inflation and real activity, and the
joint dynamics of macro factors and additional latent factors are
captured by vector autoregressions.11 They find that output shocks

11To avoid relying on specific macro series, Ang and Piazzesi construct
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have a significant impact on intermediate yields and curvature, while
inflation surprises have large effects on the level of the entire yield
curve.

For estimation tractability, Ang and Piazzesi allow only for unidi-
rectional dynamics in their arbitrage-free model; specifically, macro
variables help determine yields but not the reverse. In contrast,
Diebold et al. (2006b) consider a bidirectional characterization of
dynamic macro/yield interactions. They find that the causality from
the macroeconomy to yields is indeed significantly stronger than in
the reverse direction, but that interactions in both directions can
be important. Ang et al. (2007) also allow for bidirectional macro-
finance links but impose the no-arbitrage restriction as well, which
poses a severe estimation challenge. They find that the amount of
yield variation that can be attributed to macro factors depends on
whether or not the system allows for bidirectional linkages. When
the interactions are constrained to be unidirectional (from macro to
yield factors), macro factors can only explain a small portion of the
variance of long yields. In contrast, when interactions are allowed
to be bidirectional, the system attributes over half of the variance of
long yields to macro factors. Similar results in a more robust setting
are reported in Bibkov and Chernov (2010).

Finally, Rudebusch and Wu (2008) provide an example of a macro-
finance specification that employs more macroeconomic structure
and includes both rational expectations and inertial elements. They
obtain a good fit to the data with a model that combines an affine no-
arbitrage dynamic specification for yields and a small fairly standard
macro model, which consists of a monetary policy reaction function,
an output Euler equation, and an inflation equation. In their model,
the level factor reflects market participants’ views about the under-
lying or medium-term inflation target of the central bank, and the
slope factor captures the cyclical response of the central bank, which
manipulates the short rate to fulfill its dual mandate to stabilize the
real economy and keep inflation close to target. In addition, shocks
to the level factor feed back to the real economy through an ex ante
real interest rate.

their measures of real activity and inflation as the first principal component
of a large set of candidate macroeconomic series,
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1.6 Onward

In the chapters that follow, we address the issues and questions raised
here, and many others. We introduce DNS in chapter 2, we make it
arbitrage-free in chapter 3, and we explore a variety of variations and
extensions in chapter 4. In chapter 5 we provide in-depth treatment
of aspects of the interplay between the yield curve and the macroe-
conomy. In chapter 6 we highlight aspects of the current frontier,
attempting to separate wheat from chaff, pointing the way toward
additional progress.
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