Yield Maximization for System-level Task Assignment and
Configuration Selection of Configurable MultiProcessors

Love Singhal
Center for Embeddded
Computer Systems
University of California, Irvine

Isinghal @ics.uci.edu

ABSTRACT

Configurable multiprocessor system is a promising design alter-
native because of its high degree of flexibility, short development
time, and potentially high performance under constraints and chal-
lenges driven by applications. An important design challenge at
45nm for multi-core system is manufacturing process variation.
Due to increasing concern of WID variation, designers will have
to choose configurations of processing cores that maximize yield
of the system while not affecting performance and throughput con-
straints. Due to interdependency between processor configuration
selection and task allocation and its impact on yield and latency
constraints, we tackle both problems simultaneously. In this paper,
we propose the problem of task allocation and configuration selec-
tion for yield optimization. We prove the problem is NP-hard and
propose an optimal pseudo-polynomial on Serial-Parallel graphs.
We target streaming applications in pipelined reconfigurable multi-
processor systems. We provide a case study of configurable Leon
processors as the cores implemented on FPGA. Results show that
proposed problem could result in significant improvement of the
timing yield of the system by exploiting extra slack on tasks.

Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Reliability, availability, and serviceability; C.3 [Special-
Purpose and Application-Based Systems]: Real-time and embed-
ded systems

General Terms: Design, performance, and reliability.

Keywords: configuration selection, delay budgeting, process vari-
ation, task allocation, timing yield, and within-die variation.

1. INTRODUCTION

Configurable multiprocessor system is a promising design al-
ternative because of its high degree of flexibility, short develop-
ment time, and potentially high performance attributed to appli-
cation specific techniques. This configurability allows designers
to change, for example, cache size, cache associativity, pipeline
stages, register window, functional units, etc. at later stages of de-
sign process [1,2]. The configurability can also be realized using
either fully or partially reconfigurable hardware. Examples are soft
core processors [3] such as MicroBlaze processors that are config-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS’08, October 19-24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

Sejong Oh
Korea Advanced Institute of
Science and Technology
Daejeon, Republic of Korea

sejong.oh.sayhi@gmail.com

249

Eli Bozorgzadeh
Center for Embeddded
Computer Systems
University of California, Irvine

eli@ics.uci.edu

urable, incorporating custom instructions [4], or co-processors by
programming the hardware, etc.

Multi-core system designers today face enormous challenges in
selecting right configurations of hundreds of cores on their chip. An
important design challenge at 45nm for multi-core system is man-
ufacturing process variation. Due to increasing with-in die (WID)
variation, performance yield of a core will change on different parts
of a chip. Moreover, performance yield of a core will vary with
different configurations of the core, due to difference in number of
critical paths [5].

Due to increasing concern of WID variation, designers have to
choose configurations of processing cores that maximize yield of
the system while not affecting performance and throughput con-
straints. This paper focuses on configurable multiprocessors and
aims to exploit configurability of the cores to achieve the best yield.
We specifically target streaming applications and we tune each pro-
cessor to the configuration which can lead to enhance the yield of
overall system. We also consider the impact of configurations on
the execution cycle count of the allocated task on the processor.
If configuration selection is aware of task allocation, the processor
configurations will not affect the throughput of the system.

Due to interdependency between processor configuration selec-
tion and task allocation and its impact on yield and latency con-
straints, we tackle both problems simultaneously and we propose
the problem of task allocation and configuration selection for yield
optimization. We prove the problem is NP-hard even for task se-
ries (task chains). We propose an optimal pseudo-polynomial al-
gorithm which is adapted from discrete budgeting in high level
synthesis. The proposed algorithm targets serial-parallel graphs,
as widely used to model embedded system benchmarks and data-
parallel streaming applications. The algorithm is dynamic pro-
gramming based and can be simply modified to an approximation
algorithm in order reduce the runtime complexity of the algorithm
while returning close-to optimal solution.

The target architecture as described in the next section is pipelined
and consists of a set of configurable processors. In [6-8], researchers
have proposed novel variability-aware task allocation and schedul-
ing algorithms . However, the target architecture does not con-
sider pipeline scheme, and the processors in their architecture are
not configurable and have a fixed yield at a given clock frequency.
Hence, their approach in not applicable to the problem in this paper.
In our experiments, we do two sets of experiments. In the first set,
we target E3S applications that are run on a multi-core system. In
the second set, We use FPGA for implementing configurable Leon-
based multi-core systems. We run streaming multimedia bench-
marks on this system. Experimental results show that significant
improvement in timing yield can be achieved by exploiting extra
slack on tasks. Our proposed algorithm is also able to find optimal
task allocations and select configurations of processors that give
maximum timing yield.

2. ARCHITECTURE MODEL

In this section, we show the architecture model used in our paper.

2.1 Target Configurable MultiProcessor Sys-
tem

The system architecture that we target is a multiprocessor plat-
form designed for efficient execution of stream applications. Fig.
1 shows an example task graph and a block diagram of the system
architecture for the example task graph. The multiprocessor sys-
tem consists of homogeneous processors, interconnections, periph-
eral devices, and memory controller. For simplicity of explanation,
tasks are mapped on separate processors without any optimization
such as task merging. Processors are named P; and arrows indicate
interconnection between components. Tasks mapped on the proces-
sors are executed in the pipeline fashion. Dashed lines in the figure
represent how the pipeline is divided and the example system has a
four-stage pipeline with five processors. Processors are connected
by on-chip interconnection such as shared bus fabric, point-to-point
bus, crossbar switches, etc. Tasks accessing external memory or
peripheral devices are connected to a shared bus to which external
memory controller and peripheral devices are connected. The ap-
plication throughput is the reciprocal of the execution time of the
longest-latency pipeline stage and the application latency is defined
as the elapsed time required for the input data to pass all pipeline

stages.

Stage 2

Stage 0 Stage 1 Stage 3

P2

| \
\E\:\»Ps/

Peripheral
device

Peripheral
device

I

External memory

(b)

Figure 1: An example task graph and a block diagram of the
system architecture for the example task graph

We assume that processors are homogeneous but they are inde-
pendently configurable. Each processor has its own configuration
options and the degree of configuration is similar to popular con-
figurable processors such as Microblaze processor, Leon proces-
sor, and Xtensa processor. The designer can include or exclude
some components such as floating-point unit and Multiply-and-
Accumulate unit, adjust the number of registers, play the trade-off
between latency and clock timing in some components, and so on.
For example, the designer can allow additional delay cycles to func-
tional units in processors when running tasks in non-critical paths,
which increases the yield by shortening the length of critical paths
or reducing the number of critical paths [5].

2.2 Configurability

In our framework, we assume that processors in the system are
partially or fully customizable. This class of multi-processor sys-

250

tem is called application specific or configurable multiprocessor
system. The synthesis of such systems has been a major area of re-
search and many techniques have been proposed to improve perfor-
mance of the system under throughput or latency constraints [3,4].
For example, authors in [3] propose implementation of application
specific multiprocessor system on field programmable gate arrays
(FPGAs) for exploiting parallelism in task graphs. Modern FPGA
devices can hold tens of soft processors in a single chip. Thus they
can allow significant performance improvement as well as flexibil-
ity for application specific adaptations.

Processors in such systems can be customized for application
domains in many ways. For example, they can be customized
to change register file size and its data transfer ports [2], cache
size/associativity and block size [1], the number of pipeline stages,
and so on. These features impact the clock frequency, CPI, and the
number of critical paths in the designs. Recently, processors are
also customized for mitigating the impact of process variations and
improving the yield of the system [5].

2.3 Yield Optimization

As technology scales, the effect of manufacturing process vari-
ation becomes more predominant. Historically, performance met-
rics have varied from wafer to wafer or lot to lot. At-speed test-
ing techniques combined with speed-binning has been used to par-
tially compensate for die-to-die (or inter-die) variations. Now, both
within-die (WID) and inter-die variations have become strong in
the new generations of transistors. As polysilicon gate lengths have
decreased below the wavelength of light used in the optical lithog-
raphy process, the systematic and random within-die variations of
channel length have exceeded the die-to-die variations [9]. High
within-die variations will lead to variations in the performance pa-
rameters of different cores on a multiprocessor system. The multi-
core system designers have to, therefore, take into account the vary-
ing performance of their cores on different parts of the chip.

The parametric yield (or simply, yield) of the system which is
defined as the probability of the system meeting a specified con-
straint, Yield = P(Y < Ymaz), where Y can be performance
or power [6], has become an important design metric for the new
generation of designs. Like area, wirelength, and power, yield is
now an important objective in optimization efforts of new physical
synthesis tools. If the timing yield of a system is lower, then the
system will fail to meet its timing constraints in most of the chips
after manufacturing. The worst-case delay analysis is not feasi-
ble anymore as it can be extremely pessimistic of the delay and
can severely affect other optimization goals of the synthesis tools.
Timing yield, on the other hand, provides a middle path solution to
managing variations.

Like other high-performance integrated circuits, Field Programmable

Gate arrays (FPGAs) are affected by process variation. However
their reconfigurability allows to possibly compensate for the varia-
tion by adapting the application circuit based on the measured pa-
rameters.

There are many techniques in literature for computing yield of
the system. The two most widely used techniques are path-based
and block-based statistical timing analysis (SSTA). The path based
SSTA is considered more accurate, especially when the low-level
circuit information regarding paths is given. For a single path 7 in
a given circuit implementation, with mean delay p, and variance
o2, the yield of the path for given clock period 7" will be [10]:

1 1 T — pir
2 T35 (1)
where erf is the error function. In general, a circuit implementation
will have a number of paths which will contribute to yield loss. If
there are P paths which have sufficiently little delay slack such that
they impact on yield and are 'near-critical’ paths, the yield of the

Yield, = D (T) =

circuit is the product of the yields of the paths:

Yield = D (T)" 2)

Equation 2 assumes that the near-critical paths are independent and
have the same mean delay and variance, and therefore the same
yield.

In multiprocessor systems, the timing yield of each processor
can be computed using path based or block based SSTA. After that,
the timing yield of the whole system with M blocks/cores running
at clock period 7 is given as follows:

M
Yieldr = | [Yieldr(i)

1=1

3

In our work, we use these timing yield equations for yield maxi-
mization of the system. Next, we propose our task allocation and
configuration selection problem on reconfigurable multi-processor
systems as described in this section.

3. PROBLEM FORMULATION

In this section, we propose the problem of task allocation for
yield maximization suited for streaming applications. For the sake
of simplicity, we assume that only one kind of processor is im-
plemented in the multi-core system and the processor can be con-
figured to multiple configurations. The problem can be easily ex-
tended to multiple families of processors and as such, our solution
will not differ with multiple families of processors.

We assume that we are given a graph of n tasks and execution
cycle counts of each task on each configuration of the processor is
predetermined. Let P be the set of all possible configurations for
the configurable processor(s). The number of possible configura-
tions is equal to p. The cycle count of each task on each config-
uration is represented by c;; where 1 <7 < nand1 < 5 < p.
We also assume that the yield of the processor at a given clock fre-
quency, which is dependent on both its configuration and location
on the chip, is also predetermined. This is done by partitioning the
area of the chip into multiple regions. In each region, all configu-
rations of the processor are implemented to calculate the yield. Let
L be the set of all regions such that | L| = , the number of regions.
The yield of a processor at a given clock frequency is represented
by yjx where 1 < j <pand1l <k <.

Each task is mapped to one processor for execution. The con-
figuration and location of the processor will determine the cycle
count of the task and yield of the processor. Processor at a certain
configuration can provide a better yield but may come at the cost
of increase in execution cycle counts of the task. For example, re-
ducing the cache size may lead to increase in cycle counts of some
task but provides a better yield [11]. In addition, if a processor is lo-
cated in the region where the process variation of underlying silicon
is negligible, the processor can be configured to provide minimum
cycle counts for the task. Hence, there is a trade-off between the
yield of a processor and the cycle counts of the tasks, depending on
the configuration and location of the processor. On the other hand,
we cannot increase the cycle counts of the tasks significantly due to
latency and throughput constraints driven by the application. Tun-
ing processor configuration together with task allocation enables to
adapt the system to tolerate the variation of underlying silicon of
the region while ensuring the increase in cycle count of the task on
the configured processor can be tolerated under latency constraints
of the application. Hence we introduce the system-level task allo-
cation and configuration selection problem for yield maximization.
The problem is defined as follows:

Problem Statement:

e Given a task graph G, cycle counts c;; of each task ¢ in con-
figuration j of a processor, and yield, y;x of the processor

251

with configuration j in region k at a given clock frequency,

e Allocate each task to a processor and select the configuration
for each processor such that the total yield of the system is
minimized,

e Subject to given latency and throughput constraints for the
task graph.

The yield of the total system is the product of the yields of all
the processors. The problem defines two types of constraints. The
throughput constraint is used for guaranteeing the performance of
the system. The throughput of the system is measured by the num-
ber of cycles per task. Thus, there is an upper bound on the number
of cycles of each task. The latency constraint is the constraint on
total number of cycles from start operation of the task graph to the
last operation. The total number of cycles defines the total latency
of the system. For example, for a streaming MPEG application, the
latency constraint determines the delay of the system to process a
frame.

At a glance, this problem is related to delay budgeting [12]. Task
level delay budgeting problem exploits the extra latency (referred
as to budget) each task can tolerate under the given latency con-
straint and distributes the delay budget among the tasks such that
the weighted sum of allocated delay budgets is maximized. In our
problem, increase in cycle counts can be viewed as delay budget.
Each configuration of a processor leads to increase in cycle counts
but gain in objective function (i.e., yield) in return. But the gain
is not only the function of configuration of the processor but also
the region the processor is located at. Location constraint adds an-
other dimension to the problem and increases it complexity. For a
given increase in cycle count of a task, there can be up to p different
values of yield enhancement depending to which processor it can
be allocated to. In delay budgeting, for a given budget, the gain is
defined as a single value and it is not location dependent.

This should convince us the problem is not a delay budgeting
problem but it has similarities in some ways. For example, under
same process variation across all regions, the problem becomes de-
lay budgeting since the location constraint is relaxed. In particular,
it is close to discrete budgeting in which increase in delay budget
is not regular as the increase in cycle count is not regular as well.
In addition, in all the proposed delay budgeting problem, objective
function is modeled as a linear function of delay budget. In our
problem, the objective is not a linear function and we do not use
any approximation technique to linearize it.

LEMMA 1. Task allocation and Configuration selection prob-
lem is NP-hard.

PROOF. If all the regions (or locations) have same yields, and
the graph is made of tasks connected in series, the problem is a dis-
crete budgeting on a directed path. The discrete budgeting problem
is shown to be NP Hard even on directed paths by transformation
from the subset problem [12]. []

In order to solve this problem on the general case, we propose
a pseudo polynomial optimal algorithm to solve this problem. We
assume the graphs are series-parallel graphs (SP graph). SP graphs
are the most common topology for task graphs in embedded sys-
tems and data-parallel/streaming applications (such as E3S bench-
mark suite [13]).

4. ALGORITHM ON SP GRAPH

We provide a pseudo polynomial algorithm for solving this prob-
lem when the task graph G is a series-parallel (SP) graph. A Series-
Parallel graph SP is defined as a graph which is composed of series
or parallel combinations of smaller SP graphs. The SP graphs are

fairly common in designs, and are studied extensively in literature
for their many interesting properties. Many embedded system ap-
plications have component graphs that resemble SP graphs. These
include MPEG encoder applications, Software defined radio, and

Embedded Microprocessor Benchmark Consortium benchmarks [13].

© @
S Yoe @

65@-»@
O,

Series-Parallel Graph Rooted SP Tree of Series-Parallel Graph

Figure 2: SP tree from series-parallel graph

Our algorithm is based on dynamic programming algorithm pre-
sented in [12]. However, it has been extended to include location
constraint for task allocation and configuration selection problem.
Location constraint enables uniqueness of allocation of each task
to one processor and vice versa. As opposed to algorithm in [12]
in which the objective function is summation of delay budgets, our
objective function is a non-linear function and is a multiplication of
the yield at each cycle count and configuration point. We present
how to adapt the algorithm to include the the location constraint and
non-linear objective function. We show that after this adaptation,
the algorithm remains optimal with the same complexity.

We first create an SP tree of the SP graph. An SP tree is a tree
whose internal nodes are either S or P nodes, and whose leaf nodes
are the nodes of the original task graph. The S node represents a
series relationship between the child nodes and P node represents
that child nodes are connected in parallel. The creation of SP tree
from SP graph can be done in linear time. Figure 2 shows the
creation of an SP tree from SP graph.

The idea behind our algorithm is that for every node of the SP
tree, we maintain a list of all possible task allocation for the tree
rooted at that node. Therefore for all internal nodes in the SP tree,
we maintain a list of all possible task allocations for all the child
nodes. We also maintain a list of all possible configurations that can
be assigned to the child nodes in those task assignments. For each
of the task allocation, the total delay and the yield are computed.
Hence, for every node ¢ (S, P or leaf node), we maintain a list 7;
of tuple (¢, y, L), where c is the total delay of the tree rooted at the
node based on the assigned configurations, y is the yield of the child
nodes and L is the list of all locations used, L C P. We remove
all the inferior task assignments and configurations. The inferior
point here is the assignment that has higher delay and lower yield
for the same regions used, compared to any other assignment for
that node.

Algorithm 1 shows the pseudo code of the dynamic program-
ming algorithm. The algorithm basically computes the list of tuples
for all the nodes in the SP tree. Then the algorithm selects a tuple
with the highest yield at the root node of the whole SP tree.

Algorithm 2 shows the pseudo code for calculating the list of
tuples for any node. The list of tuples is calculated in the depth-
first search manner. Once the list of tuple 7; is prepared for a child
node, the current list of tuples 7,0+ is merged with the child list 7.
This merging is done exhaustively. While merging the two lists, we
consider all pairs of tuples from the two lists. We make sure that we
only consider the tuples that do not use same resources (L1 N L2 =
¢)(uniqueness of allocation and location constraints). The merged
tuple is added to the new list of tuples of the current node. While the

252

Algorithm 1 Pseudo code for the Dynamic programming algorithm

function DYNAMIC PROGRAMMING ALGORITHM
Form rooted SP tree, S P.
Compute the yields of all processor configurations in all regions
Compute cycle counts of all tasks for all processor configurations
Initialize T, the list of all (¢, y, L) tuples, for all the leaf nodes
Troot = ComputeTuples(root)
return (¢, Ymaz, L) € Troot » a tuple with the maximum yield
end function

1:
2:
3
4:
5:
6.
7
8:

cycle of the merged tuple is either found by addition or maximum
of the cycle counts of each tuple, the yield of the merged tuple is
found by multiplication of yields of the two tuples (yield function).
After all the pairs of two lists are merged, all the inferior points in
the lists are removed. Also, all the tuples that do not meet latency
constraints are also removed from the list.

Algorithm 2 Pseudo Code for calculating the list of tuples

1: function ComputeTuples(root)

2 if root is not a leaf node then

3 Troot = ¢

4: endif

5: for all child node i of root do

6: T; = ComputeTuples (i)

7 Tiemp = ¢

8 for all pair of tuples (c1,y1, L1) € Tyoot and (2, y2, L2) € T; do
9: if L1 N L2 = ¢ then

10: if root is an S node then

11: Tiemp = Tremp U {(cl + ¢2,y1 x y2, L1 U L2)}
12: else if oot is a P node then

13: Tiemp = TrempU{(maz(cl,c2),ylxy2, LIUL2)}
14: end if

15: end if

16: end for

17: Remove all inferior and infeasible points in T%ermp

18: Troot = Tte’mp

19: end for

20: return 1,0t

21: end function

Location constraint is handled in merging process of the tuples,
to ensure the resulted tuple does not violate the uniqueness of allo-
cation of each task to one processor at particular region and vice
versa. The merging process is more complex than the merging
stage in discrete budgeting. Our algorithm is a pseudo polynomial
algorithm. It is able to find optimal solution for the task assignment
and yield maximization problem. In order to run the algorithm with
less runtime complexity, we can bound the number of elements in
the list of tuples for a node depending on the degree of accuracy
required. [12] has proposed an interesting criteria to provide an ap-
proximation algorithm for such dynamic programming when the
number of elements in the list of tuples is bounded. This approxi-
mation technique can also be applied to our algorithm to decrease
the runtime complexity but give results that are close to optimum.

S. EXPERIMENTS AND RESULTS

In this section, we show the results of our technique and our case
study on application-specific multiprocessors using Leon processor
on FPGA. We implement our algorithm in Java and experiments are
conducted in

5.1 Results on E3S benchmarks

In this section, we analyze our proposed technique for task allo-
cation and configuration selection using a set of embedded system
synthesis benchmarks from E3S suites [13]. These benchmarks are
extracted data provided by the Embedded Microprocessor Bench-

mark Consortium (EEMBC), and includes real cycle counts of ap-
plications on various industry cores. We use AMD K6-2E 400 Mhz
processing core for our experiments. We extract the cycle counts of
various benchmarks for this core. We assume that there are 5 dif-
ferent configurations of this core, the different configurations affect
the CPI by at most 30%. The timing yield of different configura-
tions is assumed to vary from 0.985 to 0.999. This represents a
case when all configurations have high probability of meeting tim-
ing constraints. Due to within-die variation, we assume that yield
of these configurations deteriorate by 0.995 at different locations.
We then run our benchmarks for different values of latency con-
straints. The latency constraints are chosen from the ASAP time
(fastest) to the latency constraint of 1.3 times the ASAP time.
Table 1 shows the results of the various E3S benchmarks. The
various columns show the yields of the task graphs after task al-
location and configuration selection, at various latency constraints.
The first 6 benchmarks consists of tasks in series, and the remaining
benchmarks have series-parallel topology. We compare the results
with the column for Best cycle. This column refers to the solu-
tion when all tasks are assigned to the processor configurations that
minimize their cycle counts. Usually, designers configure the pro-
cessors that minimizes the cycle counts of the tasks. However, we
see that such configuration and assignment can negatively impact
the yields of the system as they do not use the budget on tasks. On
average, the yield of the bestcycle approach is worse by 12.3%
than the solution when timing constraint is 10% more than ASAP
time (column 1.1x ASAP time) The extra clock cycle budget on
the tasks can help improve the yield of the system significantly.

5.2 Target System for Configurable MultiPro-
cessor Case Study

We now discuss our case study of application specific multi-
processor system. Our target multiprocessor system is Leon-MP,
Leon multiprocessor system. The Leon-MP is a shared-memory
and shared address-space multiprocessor system. It is based on the
open source SPARC V8 compliant Leon multiprocessor core. The
Leon processor is a synthesizable VHDL model of a 32-bit pro-
cessor compliant with the SPARC V8 architecture. Its integer unit
consists of a 7 stage pipeline; and there are hardware multiply, di-
vide and MAC units and separate instruction and data caches. The
processor is particularly designed for system-on-a-chip designs. It
is also highly configurable and the designer can configure func-
tional units, register windows, and instruction and data caches. In
the Leon-MP system, Leon processors are attached to the shared
AMBA high performance bus (AHB) and it provides snoopy proto-
col mechanism for cache coherence, invalid and update. Peripheral
devices are attached to AMBA peripheral bus (APB) bus and they
are accessible through AHB/APB bridge.

The Leon-MP system can have a variable number of Leon pro-
cessors; however, the system with more than four cores are not
practical due to the memory bandwidth of the shared bus [14]. Our
system architecture may require more than four cores to achieve a
high degree of throughput. However, since it is not necessary that
all processors need to access external memory in stream applica-
tions, interconnections between processors can be separated from
the main shared bus. Therefore, we assume that our target system
has the main shared bus for external memory access and several
shared bus fabrics for interprocessor communication, as shown in
Figure 3. The instructions and data for processors are loaded into
local memories and each processor has its own instruction and data
cache. Since each process has its own caches, the shared bus fabric
must provide cache coherence mechanisms and burst transaction
to fetch data into cache lines efficiently. In this paper, we assume
that interconnection between processors are well-designed and par-
titioned properly to minimize the communication overhead. In ad-

253

dition, the communication overhead is not taken into account in the
proposed algorithm and left for the future research.

Local
Mem

| Local
Mem

P2

GPIO
Timer
UART

AHB/APB
bridge

P1 P4

Memory
Controller

External memory

Figure 3: A example block diagram of the target multiproces-
sor system

5.3 Configurable MultiProcessor Experimen-
tal Setup

The experimental flow is divided into three major phases - criti-
cal path analysis, performance analysis(execution cycles), the pro-
pose algorithm for yield-aware task allocation - as shown in Fig.
4. In the critical path analysis, we synthesize Leon processor with
several processor configurations in order to observe the number of
critical paths. We use Xilinx Virtex 5 FPGA as the development
platform. The performance analysis run all tasks in the benchmarks
on a cycle-accurate simulator to measure the number of execution
cycles of each kernel for every processor configuration. The pro-
posed algorithm takes as inputs the critical path information and
the performance results and perform yield-aware task allocation.

Leon Software

Leon Configuration implementation of

VIIDLK / options \ application
Xilinx
ISE Leon
- Cross-compiler
Critical path -
information of Cycle-accurate
each configuration Application simulator
* task graph +
(_I Execution
Proposed
. o cycles of
algorithm
each task for every

configuration

v

Yield-aware task allocation and
configuration selection

Figure 4: Experimental flow of Task Assignment and Configu-
ration Selection on Configurable MultiProcessor System

The input benchmarks are stream applications composed of sev-
eral image processing kernels and TI image library. The bench-
marks are analysis/filter applications and the front part of JPEG
compression before Huffman coding. In order to measure the
execution cycles, we have developed a cycle-accurate simulator for
a Leon-based mono-processor system compatible to the cross com-
piler and the booting program in BCC system. The simulator pro-
vides simulation modes for Leon processor, instruction and data
cache, AHB and APB, and UART. Although Gaisler Research pro-
vides high-performance simulators of the Leon processors, the sim-
ulators are commercial and they don’t provide some configuration
options of the Leon processor. We run each task in the applications
multiple times and measure the average number of execution cycles

Table 1: Yields of various benchmarks on AMD K-6 multi-processor system using various latency constraints

Benchmark Best Cycle | ASAP Time | 1.1x ASAPtime | 1.15x ASAPtime | 1.2Xx ASAPtime | 1.25x ASAP time | 1.3Xx ASAP time
E3S - TelecomQ 0.876 0.876 0.956 0.9658 0.9658 0.9757 0.984
E3S - Network1 0.876 0.876 0.956 0.958 0.972 0.977 0.9806
E3S - Network2 0.876 0.876 0.948 0.956 0.9674 0.977 0.984
E3S - Network3 0.876 0.876 0.953 0.963 0.972 0.977 0.984

E3S - Autol 0.876 0.876 0.956 0.963 0.9658 0.9757 0.984

E3S - Auto3 0.839 0.839 0.932 0.943 0.9544 0.9674 0.971
E3S - Telecom1 0.814 0.8384 0.9417 0.9514 0.9514 0.961 0.969

E3S - Auto2 0.7355 0.7573 0.9124 0.928 0.947 0.9553 0.9553

E3S - Consumer0 0.789 0.789 0.936 0.939 0.949 0.9635 0.9669
E3S - Automation0 0.8396 0.8644 0.943 0.943 0.9543 0.9626 0.967
Average 0.8397 0.8468 0.9434 0.95102 0.95991 0.9692 0.97458

Table 2: Yields of various real benchmarks on Leon multi-processor system using various latency constraints

Benchmark | Best Cycle | ASAP Time | 1.1x ASAPtime | 1.2Xx ASAPtime | 1.5X ASAP time | 2x ASAP time | 3Xx ASAP time
Laplace 0.8537 0.8537 0.897 0.897 0.9157 0.9299 0.9355
Sobel 0.792 0.792 0.8597 0.8597 0.8912 0.897 0.902
Unsharp 0.76 0.76 0.87 0.87 0.888 0.902 0.907
JPEG 0.851 0.851 0.851 0.851 0.8644 0.8778 0.883
Average 0.8142 0.8142 0.8694 0.8694 0.8898 0.9017 0.90687

for a single execution of each task. We also exclude the first few
executions of tasks to avoid the transient state of the system.

We pick 5 configurations of Leon processor for our experiments.
These configurations are shown in Table 3. All the benchmarks are
executed using these configurations to measure execution cycles.
All the configurations in Table 3 are implemented on Xilinx Virtex
5 FPGA to measure the yield of configuration. In order to compute
the yield of various configurations, we measure the number of criti-
cal paths in each configuration. Assuming the yield of a single path
to be 0.9985 (the value of 4+ 30), we calculate the yield of the
processor using Equation 2. We also assume that due to within-die
variation, the yields of various processor configurations deteriorate
by 0.995.

5.4 Results of Leon Processor Case Study

Table 2 shows the results of yields of various benchmarks. Table
2 shows that the yields can be improved significantly if the bud-
get of additional cycle counts is provided to the task graphs. The
task graphs are able to utilize the extra budget allocated to them to
maximize the yield of the system. We do not see significant yield
improvement in the JPEG benchmarks because it is made up of lot
of parallel paths of same critical path delay. This topology reduced
the yield of the system. Also, our algorithm is able to find optimal
yield effectively. Thus, dynamic programming can be used to solve
problems of task allocation and select configuration of processors.

We also see that if we assign tasks to the processors with the
highest yield, then the total latency of the system becomes more
than 3 times the ASAP time. This condition may not be accept-
able. Hence, budgeting is required to assign tasks to configurable
processors.

6. CONCLUSION

Due to increasing concern of WID variation, designers have to
choose configurations of processing cores that maximize yield of
the system while not affecting performance and throughput con-
straints. In this paper, we present variation-aware system-level
task allocation and configuration selection on reconfigurable multi-
processor systems. We prove the problem is NP-hard and present
an optimal pseudo-polynomial algorithm on SP graphs. We focus
on streaming applications and use FPGA for implementing config-
urable Leon-based multi-core systems. We also experiments E3S
benchmark on multicore systems. Results show that the proposed

254

Table 3: Leon Processor configurations. NRWIN represents
number of register windows. MLat and LDelay represent mul-
tiplier latency cycles, and load delay cycles, respectively. The
three numbers in the cache configuration represents associativ-
ity, the number of blocks, and the line size in bytes in order.

NRWIN | I-Cache | D-Cache | MLat | LDelay
Cl1 8 2-8-32 1-8-16 1 1
Cc2 16 4-4-32 2-4-16 1 1
C3 8 4-4-32 4-4-16 5 2
C4 6 2-4-32 2-4-32 5 2
C5 10 2-16-32 2-8-16 4 1

solution could result in significant improvement in timing yield by
exploiting extra slack on tasks.

7. REFERENCES

[1]1 C.Zhang, F. Vahid, and W. Najjar, “A highly configurable cache architecture for
embedded systems,” in Int. Symp. on Computer Architecture, 2003, pp.
136-146.
L. Wehmeyer, M. K. Jain, S. Steinke, P. Marwedel, and M. Balakrishnan,
“Analysis of the influence of register file size on energy consumption, code size,
and execution time,” IEEE Trans. Computer-Aided Design of Integrated
Circuits, pp. 1329-1337, Nov. 2001.
J. Cong, G. Han, and W. Jiang, “Synthesis of an application-specific soft
microprocessor system,” in ACM FPGA 07, 2007.
F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Synthesis of
application-specific heterogeneous multiprocessor architectures using
extensible processors,” in IEEE VLSID, 2005.
X. Liang and D. Brooks, “Mitigating the impact of process variations on
processor register files and execution units,” in MICRO, 2006, pp. 504-514.
F. Wang, X. Wu, and Y. Xie, “Variability-driven module selection with joint
design time optimization and post-silicon tuning,” in IEEE ASPDAC, 2008.
F. Weng, C. A. Nicopoulos, X. Wu, Y. Xie, and V. Narayanan, “Variation-aware
task allocation and scheduling for mpsoc,” in IEEE ICCAD, 2007.
J. Jung and T. Kim, “Timing variation-aware high-level synthesis,” in [EEE
ICCAD, 2007.
S. G. Duvall, “Statistical circuit modelling and optimizations,” in Intl.
Workshop Statistical Metrology, June 2000, pp. 56-63.
P. Sedcole and P. Y. K. Cheung, “Parametric yield in fpgas due to within-die
delay variations: A quantitative analysis,” in ACM FPGA, 2007.
X. Liang and D. Brooks, “Microarchitecture parameter selection to optimize
system performance under process variation,” in IJEEE ICCAD, 2006.
S. Ghiasi, K. Nguyen, E. Bozorgzadeh, and M. Sarrafzadeh, “On computation
and resource management in networked embedded systems,” in /PDPS, 2003.
R. P. Dick, “Embedded systems synthesis benchmarks suite (e3s).” [Online].
Available: http://www.ece.northwestern.edu/~dickrp/e3s
“Leon open-source processor.” [Online]. Available:
http://www.embedded- kernel-track.org/2004/papers.html

[2]

(3]

[4

[5]
(6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]

