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Yield reduction under climate warming varies
among wheat cultivars in South Africa
Aaron M. Shew 1✉, Jesse B. Tack2, Lawton L. Nalley3 & Petronella Chaminuka4

Understanding extreme weather impacts on staple crops such as wheat is vital for creating

adaptation strategies and increasing food security, especially in dryland cropping systems

across Southern Africa. This study analyses heat impacts on wheat using daily weather

information and a dryland wheat dataset for 71 cultivars across 17 locations in South Africa

from 1998 to 2014. We estimate temperature impacts on yields in extensive regression

models, finding that extreme heat drives wheat yield losses, with an additional 24 h of

exposure to temperatures above 30 °C associated with a 12.5% yield reduction. Results from

a uniform warming scenario of +1 °C show an average wheat yield reduction of 8.5%, which

increases to 18.4% and 28.5% under +2 and +3 °C scenarios. We also find evidence of

differences in heat effects across cultivars, which suggests warming impacts may be reduced

through the sharing of gene pools amongst wheat breeding programs.
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Understanding the potential impacts of heat extremes on
dryland wheat (Triticum aestivum) production is impor-
tant in developing climate change adaptation strategies

and recommendations for policymakers. Wheat is often produced
as a supplementary, dryland staple crop to maize in Southern
Africa (south of the equator), and in South Africa specifically.
Wheat production in South Africa could be particularly vulner-
able to extreme heat exposure given recent weather patterns1–4,
and this is only expected to continue under shifting climatic
patterns for the region4–6, creating formidable issues to main-
taining agricultural production2,7–10. As such, wheat yield
declines could present major challenges to producers and those
who rely on regional wheat production for food security.

Previous studies that investigate weather impacts, and specifi-
cally heat impacts, on wheat yields have primarily been conducted
in non-African settings, exist only in small experimental plots or
highly controlled chamber experiments, or rely on biophysical
crop models to simulate impacts where little or no in situ data
exists. Empirical studies of staples such as wheat in open-air field
trials are scarce over longer timeframes and for multiple loca-
tions, especially in Southern Africa3,9,11,12. Accordingly, this
study provides important information on extreme heat impacts
on in-field wheat yields using daily weather information, a multi-
temporal dryland wheat dataset with observations from across
South Africa, and extensive regression models. In addition, the
differential impacts of warming temperatures on different culti-
vars are investigated and discussed with emphasis on potential
avenues for producer adaptation in a warming world.

This study presents results for South African wheat production
that have implications for both agricultural adaptation to climate
change and food security7–10. Given their large domestic private
and public wheat breeding programs13–15, South African wheat
cultivars may represent one of the most up-to-date germplasm to
combat regional heat extremes and other production issues.
Compared to many countries in Southern Africa, South Africa
has a progressive agricultural sector, conducts extensive breeding
efforts, and tests cultivars in open field environments at many
locations across the heterogeneous growing regions of South
Africa14. As such, dryland wheat breeding programs in South
Africa provide cultivars within the country, and they distribute
improved seed technologies to other African countries where
both commercial and smallholder farmers may benefit16.
Improved seed genetics can be critical for adaptation to increas-
ing temperatures, which makes these breeding programs and
cultivar-level trials particularly important17–20.

Historically, South Africa has been the second largest wheat
producer (by area and production) in Sub-Saharan Africa behind
Ethiopia. In 1998 wheat acreage declined by 46% due to the
deregulation of the wheat market and abolishment of the fixed
pricing system by the wheat marketing board. Since 1998, South
Africa has been both an importer (typically of lower quality wheat
to blend with high quality domestic wheat) and an exporter,
predominately to other Southern African Development Com-
munity (SADC) members. The drought of 2015–2016 saw South
African wheat exports drop by over 76%21. The drought hit the
Western Cape the hardest as it is South Africa’s largest wheat
growing province and is dominated (>90%) by dryland produc-
tion22. Free State, the second largest wheat producing province, is
a mix of dryland and irrigated production (where dryland wheat
is the predominate method of production but irrigated wheat
accounts for more than 50% of the total yield). The relatively low
production of wheat across Southern Africa is principally because
of abiotic (drought and heat) and biotic (Russian wheat aphid,
yellow rust, stem rust, septoria and fusarium) stresses, which are
increasing in intensity and frequency under climate change14.
Previous literature has suggested that the estimated drier

conditions in South Africa could reduce wheat yields from 1.8%
to 4.3% annually1,23. Further, because of the anticipated drier
conditions it is predicted that irrigation usage in South Africa will
increase 6.4% a year through 2050 stressing the limited water
availability even further24,25.

Shocks to South African wheat production via heat extremes
likely affect food security outcomes in South Africa and
throughout Southern Africa13,26. Even while wheat plays a
limited role in exports within Southern Africa, South African
demand for wheat impacts prices throughout the region
because it imports to meet demand for what it cannot
produce15,27. Thus, when the wheat supply within South Africa
decreases due to lack of production, the demand for wheat
beyond South African borders increases—likely raising wheat
prices regionally28,29. The Regional Network of Agricultural
Policy Institutes (ReNAPRI) began providing wheat market
outlooks as of 2015 because wheat consumption has risen for
more than a decade and production has remained stagnant27.
While maize remains the dominant staple, wheat has become
important as a supplementary staple food and regardless of
imports versus exports South Africa plays a strong role in
mediating the quality and price of wheat within the Southern
African context15. South African wheat has been bred for
quality characteristics, and the wheat that South Africa does
export typically ends up mixed with lower quality wheat to
improve overall food quality in surrounding countries,
including Lesotho, Eswatini, Botswana, and Zimbabwe, among
others.

Some have suggested that wheat yields must increase annually
by 0.86% to meet current and rising global wheat demand9, and
yields must improve despite the potentially negative con-
sequences of increasing temperatures and changing precipitation
patterns8,30–33. Meeting wheat demand in South Africa is made
even more difficult given the extreme temperatures and drought
that affect domestic agriculture throughout the country24,26,34. As
recently as 2014–2015, approximately 22% of people in South
Africa went without food35 because of extreme drought and
inadequate production of maize and wheat21. Such increases in
food insecurity were driven by rising grain prices, which were
more than 50% higher than non-drought years35. Other regions
in Southern Africa also experienced spikes in food insecurity due
to an extensive drought in 201521,22. This highlights the impor-
tant impacts of weather on agricultural production and subse-
quently on regional prices and food insecurity in Southern Africa.
In addition, there is a great need to address broader climate
change and food security issues in Southern Africa where 33% of
people are food insecure36,37, and climate change impacts may be
more substantial than in other areas due to persistent socio-
economic vulnerabilities4,18. Addressing these issues will require
concerted efforts to understand the impacts of extreme weather
and climate on agriculture, especially staple crops such as wheat,
and develop strategies for creating more resilient agricultural
production.

Weather and climate volatility are expected to increase in
Southern Africa with both warmer temperatures and dryer con-
ditions under global climate change4–6. Previous studies have
focused primarily on drought impacts due to the recent events
discussed above and their impacts on overall agricultural pro-
duction and people in South Africa13,34,36,38. Although these
drought events provide information on the economic and food
security effects of reduced food production, there are few regional
studies on the potential negative impacts of increasing tempera-
tures on agriculture, particularly wheat. Moreover, the pre-
cipitation projections under climate change for the Southern
Africa are much less certain than those for temperature
increases4,39,40, which makes them more challenging to link with
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future agricultural outcomes. Global climate models simulate
temperature increases between 2 °C and 6 °C in 2100 under dif-
ferent concentrations of CO2, and the Intergovernmental Panel
on Climate Change (IPCC) suggests the magnitude of land sur-
face temperature changes could be exacerbated in South Africa
with 3–4 °C by the mid-20th to late-20th century4,40,41. Thus,
understanding the impacts of such temperature increases on
wheat as a specific outcome of global and regional climate change
could shed light on pathways for agricultural adaptation and
resilience under future warming scenarios.

Motivated by the problems posed by warming for agriculture
in the South African context and the lack of in situ studies, we
concentrate our efforts on establishing the impacts of various
levels of temperature exposure on wheat yields and provide
important information on cultivar-level warming effects for
dryland wheat production in South Africa. Our study includes a
rich historical dataset with 18,881 open-air field trial observations
of dryland production in 17 locations across South Africa (Fig. 1,
Supplementary Table 1) and daily weather information (Supple-
mentary Table 2). Specifically, we use a sinusoidal interpolation of
daily maximum and minimum temperatures to calculate the daily
time of exposure within 5 °C intervals and sum the intervals
across growing seasons42,43. Maximum and minimum tempera-
tures and heat exposures for the Free State and Western Cape
provinces, which account for 99% of dryland wheat production in
South Africa44, can be found in Supplementary Fig. 1. Wheat
yields vary substantially across the 71 cultivars, 17 years from
1998 to 2014, and locations (Supplementary Fig. 2). Wheat yield
responses to heat are estimated across cultivars, years, and loca-
tions, and potential warming impacts on wheat are estimated for
uniform warming scenarios spanning +1 to +3 °C following
previous studies3,11,42,43,45. The results from these models provide
key insights on extreme temperature impacts on wheat in South
Africa based on expected warming for the region and outline
potential adaptation strategies for climate resilience in wheat
production and breeding.

Results
Warming impacts on wheat yields. Temperature exposures
above 30 °C are associated with large wheat yield reductions
and contribute substantially to overall negative warming
impacts. An additional day (24 h) of exposure to temperatures
above 30 °C is associated with a 12.53% under a two-tailed test
(t(30)= 40.26, p= 0.000) yield reduction on average. Para-
meter estimates for the preferred regression model are reported
in Supplementary Table 3. The marginal effects of temperatures
are provided in Fig. 2, which illustrates both beneficial and
detrimental temperature exposures with similar patterns to
those in previous studies3,43. Yield reductions from tempera-
tures above 30 °C can be partially offset by yield increases
associated with moderately warm temperatures between 25 and
29 °C. To evaluate which effect dominates, we predict yield
impacts across a range of uniform temperature changes from
+1 to +3 °C. All scenarios suggest warming is associated with
net yield reductions (p < 0.01). The effects are nonlinear across
uniform warming scenarios with +1 °C showing an average
wheat yield reduction of 8.5% (Delta Method=−3.21, p=
0.001), which increases to 18.4% (Delta Method=−3.68, p=
0.000) and 28.5% (Delta Method=−4.16, p= 0.000) under +2
and +3 °C scenarios.. The average effect is a 9% per °C
reduction across the warming scenarios in Fig. 3.

Interactions between temperature and precipitation. Impor-
tantly, our inability to control for soil moisture could bias the
estimated effect of temperature exposure on wheat yields. While
we cannot address this concern directly, we can include inter-
actions between low-precipitation events during the season
with our measure of heat (temperatures above 30 °C) to see if
the estimated effect varies. For example, if we focus on low
precipitation years—when soil moisture is likely to be a concern
for wheat germination—and find the estimated coefficient on
heat to be substantially different than the estimate under our
preferred model, then this would suggest biased heat estimates.

South Africa
Main wheat producing provinces

Free state

Western cape

N

0 km

75 km from weather station
Weather station
Wheat trial site
Main wheat province

75 km 150 km

Fig. 1 Map of the wheat trial sites and weather station locations in South Africa. Free State and Western Cape provinces account for 73 and 99% of total
and dryland wheat production, respectively, in South Africa44. Note, one wheat trial site and weather station is in the Eastern Cape Province, and the trial
sites of Hopefield and Porterville appear as one location due to proximity. Created by A.M. Shew using QGIS 3.6.0-Noosa, under GNU General Public
License v2, 1991 (gnu.org/licenses/old-licenses/gpl-2.0.en.html).
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To investigate this, we allow the effect of temperatures above
30 °C to vary by interacting it with a dummy variable for pre-
cipitation outcomes below the 10th percentile of the rainfall
distribution for these data. The estimates indicate a slightly
higher heat effect in the low precipitation regimes as we would
expect but the interaction effect is not statistically significant
under a two-tailed test (t(30)= 0.79, p= 0.38), and the implied
warming estimates are similar to the ones for our preferred
model (Fig. 4).

More recent cultivars—higher yields, larger response to heat.
Our data include cultivars with commercial release dates span-
ning over two decades, and we find evidence of extensive het-
erogeneity across cultivars for both mean yields and the effects of
heat exposure. We test genotype × environment interactions to
measure the heterogeneity of heat effects across cultivars using a
varying-slope multilevel model where we allow the effect of
temperature exposures above 30 °C to vary across cultivars. We
restrict attention here to a subgroup of 47 cultivars that have
appeared in at least five trial years, and compare cultivar-specific
heat effects to both mean yields (the predicted yield under
average weather conditions) and the commercial release year
(Supplementary Table 5). We find that more recently released
cultivars have higher mean yields, with an annualized relative
gain of approximately 0.7% per year; however, more recent cul-
tivars have larger (i.e., more negative) heat effects (Fig. 5).
Importantly, this tradeoff is likely benefitting producers on
average as the ratio of the heat effect to mean yield is increasing
over time (i.e., becoming less negative). The trends are not sta-
tistically significant (p > 0.1), so while the heat effect to mean
yield tradeoff is insightful for potential long-term breeding it is
not conclusive. We find that a similar pattern of results emerges
when we focus just on the ten cultivars with the highest heat
ratios from Fig. 5c (Supplementary Fig. 3).

Potential adaptation through breeding. The heat effect para-
meters (coefficients on 30 °C+ bins) exhibit a wide range of
heterogeneity across cultivars with the highest estimate approxi-
mately twice as large as the lowest (Fig. 5), which suggests
potential opportunities for adaption via selective breeding and
optimal cultivar selection. We use these estimates to simulate a
switch from the cultivar with the highest effect to the lowest,
quantified by the change in yield impacts for the alternative
warming scenarios. Results suggest that mild (~1 °C) warming
impacts are approximately 50% smaller for the more resilient
cultivar and significant reductions can still be achieved at higher
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Fig. 3 Wheat yield impacts by +1 to +3 °C warming scenarios. Impacts
are reported as the percentage change in mean yield relative to historical
climate. The graph displays the warming impacts under our preferred
model for uniform warming scenarios from +1 to +3 °C. Bars show 95%
confidence intervals using standard errors clustered by province-year for n
= 18,881 yield observations. Results from a uniform warming scenario of
+1 °C show an average wheat yield reduction of 8.5% (Delta Method=
−3.21, p= 0.001), which increases to 18.4% (Delta Method=−3.68, p=
0.000) and 28.5% (Delta Method=−4.16, p= 0.000) under +2 and +3 °
C scenarios.
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scenario across different regression-model specifications. The preferred
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errors clustered by province-year for n= 18,881 yield observations.
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Fig. 2 Marginal effects of temperature bins on wheat yields. The solid line
represents the change in mean log yield if the crop is exposed for one day
(24 h) to each 5 °C temperature bin. Dashed lines represent the 95%
confidence intervals using standard errors clustered by province-year.
These results follow similar patterns to those found in Schlenker and
Roberts (2009)43 wherein yields are relatively stable across temperature
bins prior to a marginal yield improvement at seemingly optimal
temperatures. When critical thresholds are reached, 30 °C in this case,
sharp yield reductions occur.
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warming scenarios. The impact reductions across the 1 to 3 °C
warming scenarios are 5.5, 11.5, and 17.6 percentage points,
respectively (Fig. 6).

Cultivar-specific differences could play a meaningful role in
helping policy-makers, wheat breeders, and agronomists further
support and develop more weather-resilient wheat in the face of
climate change. Accordingly, we found that recently introduced
cultivars have higher average yields but larger extreme heat effects

(Supplementary Table 5), which highlights a potential avenue for
breeding efforts in South Africa targeting warming impact
reductions. The five cultivars with the lowest heat effects above
30 °C (with release year in parentheses) were PAN3118 (2003),
PAN3144 (2007), SST124 (1987), SST399 (1999), and Tugela-Dn
(1992) with impacts between approximately −10 and −11
percent relative to the multi-variety average, while the highest
heat effects occurred for cultivars PAN3368 (2009), SST367
(1996), SST356 (2006), Limpopo (1994), and PAN3355 (2007)
with impacts between approximately −14.5% and −17%.
Importantly, all of these cultivars represent breeding efforts from
the three largest independent wheat breeders in South Africa.
These results enhance our understanding of how extreme
temperatures will impact dryland wheat yields under current
conditions and for future climate change scenarios, as well as the
potential for adaptation through breeding efforts.

Discussion
In recent years, the publically funded South African Agricultural
Research Council-Small Grains Institute (ARC-SGI) and the two
private South African wheat breeding programs (Pannar and
Sensako) have pursued improved pest resistance, grain yield, and
grain quality, e.g., milling and end-user standards15,46, which may
explain the yield gain tradeoff for higher heat impacts on yield.
Historically, South African wheat breeders have been most con-
strained by the strict quality (rheological and baking character-
istics) requirements needed to commercially release a cultivar.
Due to the complex genetic properties of wheat and its char-
acteristic self-pollination47,48, other factors such as heat tolerance
or water-use efficiency have potentially been overlooked as less
significant for meeting producers’ needs when compared to wheat
yield gains and meeting strict quality standards13. It is also pos-
sible that heat stress tolerance is less attainable because of
inadequate genetic information for these types of wheat traits in
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South Africa49,50. We find evidence of substantial differences in
heat effects across cultivars, which suggests the prospect of
reducing warming impacts through the potential sharing of gene
pools amongst existing wheat breeding programs, whether public
or private.

In Africa more generally, understanding the potential impacts
of warming temperatures and extreme weather on staple foods
such as wheat is critical for meeting current and future food-
security needs9 and has important implications for global climate
change, agrarian adaptation, plant breeding, and agricultural
policy18,19,24. Southern Africa will likely face tremendous chal-
lenges associated with global climate change, even if major
changes restrict warming to +2 °C. Given the findings in this
study, wheat breeding programs in South Africa may focus on
combining heat tolerant cultivars with the more recent higher
yielding cultivars in an attempt to provide wheat producers an
avenue to reduce the effects of global climate change. Moreover,
increased adoption of irrigated wheat could potentially help
maintain yields under warming scenarios in Southern Africa34,
but further research is warranted on this topic. Increasing tem-
peratures will require adaptation among many sectors of society
globally, but agriculture in rainfed Africa, and wheat production
specifically, could experience disproportionately more negative
effects of a warming climate than other regions8,10,11,51,52, which
makes the results from this study important. High levels of vul-
nerability, food insecurity, and a lack of access to improved seed
technologies with targeted heat resilience may inhibit the ability
of agrarian communities to adapt to weather volatility18,19,24,53,54.

A lack of empirical data for agriculture in many food insecure
countries, and in Southern Africa specifically, has led to the
predominance of biophysical crop model simulations to derive
climate change impacts1,2,8,55. Empirical studies such as this may
provide important and improved information for synergistic
analyses in biophysical crop models. In a meta-analysis, one
study8 found mean yield changes for wheat under climate change
to be –17% in Southern Africa by 2050. Importantly, these
findings, based primarily on projected and simulated crop out-
comes23, are reinforced by the findings in this study. Our results
more specifically suggest that wheat yields in South Africa may
not be as susceptible to increased temperatures and global climate
change as those in the broader Southern Africa context. Future
research may pair these results with those of others2,8,11,20,33,56 to
investigate opportunities to decrease heat impacts on wheat yields
in other regions of Southern Africa by supporting cultivar
development and distribution from South Africa throughout
Southern Africa. The results from this study could be synergistic
with biophysical crop growth models in examining global climate
change adaptation potential. Importantly, there are tradeoffs
between empirical estimations as in this study and biophysical
crop models. For an extensive discussion of this topic, see Lobell
and Asseng (2017)55 and Roberts et al. (2017)12.

Research on behavioral adaptation (e.g., optimal cultivar
selection) and technological innovation (e.g., targeted breeding
efforts) is critical for reducing warming and drought impacts on
wheat both at present and under global climate change57,58. Our
study was limited to wheat cultivars and weather patterns com-
monly found in South Africa and omits CO2, which may be
important for understanding tradeoffs in long-term climate
change impacts on biomass and yield. To our knowledge, the in-
field wheat dataset coalesced from regional sources and presented
herein is the largest in Southern Africa, but the results may not be
representative of other regions in Southern Africa depending on
where those cultivars have been developed. Collecting empirical
data across Southern Africa is particularly challenging given the
lack of repeated in-field measurements at similar locations and
through time, and without such repeated measurements it is

difficult to obtain the required in-sample variation necessary for
the extensive regression models employed in this study. More-
over, this study focused primarily on dryland wheat production,
but in fact, many farms in Southern Africa have some irrigation
capacity. Future work should investigate irrigation offsets in
production and explore potential adaptation strategies.

In summary, this work provides results for heat exposure
impacts on dryland wheat production in South Africa. Findings
suggest that large reductions in wheat yields occur when tem-
peratures exceed 30 °C and that warming impacts will increase
non-linearly under uniform warming scenarios. Our results
indicate that concentrated efforts should be made to integrate
traits that reduce heat effects into more recent cultivars to
maintain and improve opportunities to offset warming impacts.
This is of utmost importance if food security needs are to be met
in South Africa and the entire Southern Africa region. As sci-
entists, policy-makers, and agrarian communities strive to
address food insecurity, climate change impact information as
provided in this study could play a pivotal role in how adaptation
strategies are created and supported at the cultivar level.

Methods
Experimental design. Raw data used in the manuscript were collected by the
ARC-SGI of South Africa in open field test plots. The raw data include observed
dryland wheat yields matched by location with daily minimum and maximum
temperatures and total precipitation recorded during the growing season at near-by
weather stations. Weather station data were downloaded from NASA GSOD using
GSODR59. From the raw data, we only include wheat trial locations that have a
weather station within 75 km and at least five years of wheat field trials, and wheat
cultivars must appear in at least two trial years. It is possible that there are slight
differences in the weather station observations and the actual weather at wheat trial
locations, particularly with respect to precipitation. However, the weather station
observations in the study region appear representative based on climatic norms60

and are the best available data for capturing daily extremes. This results in 18,881
wheat yield observations from ARC-SGI spanning 17 locations and 71 cultivars
from 1998 to 2014.

The yield and weather data vary substantially in-sample, which supports robust
estimation of wheat yield responses to extreme and average weather conditions
(Supplementary Tables 1, 2; Supplementary Figs. 1 and 2). The growing season for
each location-year-cultivar is defined by the planting and harvest dates, and
typically span mid-May to late October. Planting and flowering dates are observed,
not estimated. Flowering is defined as the day at which 50 percent flowering occurs.
Harvest dates are not observed and thus inferred using a rule of 30 days after the
observed flowering date, which provided consistent results with other alternatives
discussed in the robustness checks below. Phenological information were collected
by both ARC staff and wheat producers based on a field observation conducted
once per weekday for ARC run stations and daily for producer fields. The
temperature bins are calculated from maximum and minimum temperatures using
a sinusoidal interpolation of temperature exposure within each day and span 5 °C
intervals. Total days (24 h) spent within intervals for the entire season are summed
into eight temperature exposure bins. All negative temperatures are summed into a
single bin, as well as all temperatures above 30 °C. Notably, exposures greater than
30 °C occur substantially more in the Free State compared to the Western Cape.

Statistical analysis. The preferred regression model specifies log wheat yield as a
function of location, cultivar, and year fixed effects, as well as a quadratic poly-
nomial for cumulative precipitation and the eight temperature bins mentioned
above61. The weather variables are seasonal aggregates from the observed planting
date to the inferred harvest date. The highest temperature bin of >30 °C represents
exposures known to negatively affect wheat yields62–64. Average exposures across
bins are provided for the two main dryland wheat-growing provinces, the Free
State and Western Cape, in Supplementary Fig. 1. We considered simplified models
that include linear and quadratic trends instead of year fixed effects, or (alter-
natively) omitting the temperature bins in favor of average temperatures, and
found that they substantially reduced model performance (Supplementary Tables 3,
4). In addition, we considered extensions of the model that added pre-season
precipitation (30 days before planting), or (alternatively) a cubic polynomial for in-
season precipitation instead of a quadratic, and found that they also did not
improve model performance. The preferred model is specified in Eq. (1):

yijt ¼ αi þ αj þ αt þ β1pijt þ β2p
2
ijt þ

X8

k¼1

δkBinijkt þ εijt ; ð1Þ

where yijt is log yield for cultivar i in location j in year t. Fixed effects (α) are
included separately for cultivars, locations, and years. The weather variables
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include a quadratic polynomial effect for cumulative precipitation pijt and the
nonlinear effect of weather across temperature bins Binijkt.

There is likely a large amount of spatial correlation among the error terms of
the model across cultivars in the same location, as well as across locations more
generally. One could cluster standard errors by year to account for all spatial
correlations, however there are 17 years in the data which is a questionably small
number of clusters65,66. Instead we cluster errors by year-province as there are only
two provinces in the data, Western Cape and the Free State, and their boundaries
are several hundred kilometers apart. This method accounts for correlations among
the regressors which can also bias standard errors. Cameron and Miller (2015)65

report the variance inflation factor in their equation 6 as 1+ ρx ρu (N – 1), where
N is the cluster size, ρu is the within-cluster correlation of the regression errors, and
ρx is the within-cluster correlation of the regressor. Note that spatial correlation of
the regressors can bias regression standard errors downward even if the errors are
only slightly correlated. Just under their equation 6, Cameron and Miller (2015)65

cite a study in which the correlation of the errors was small at 0.03 but the inflation
factor was 13 because the regressors were highly correlated.

To better investigate the role that spatial correlation is playing in this analysis,
Moran’s I was calculated for each year in the data for both the log yield
observations and the regression errors from the preferred model above. The
averages of the Moran’s I across years is presented in Table 1. The distance of 1 km
captures the within-trial correlations, whereas the distances 100, 500, and 1000 km
capture broader groupings. Positive correlation exists in the log yield data and it is
highest within-trial as expected. The correlation remains positive as distance
increases but dilutes to its smallest value at 1000 km. The regression purges much
of the correlation from the data as indicated by the Moran’s I for the errors,
although some remains. As noted above, the clustered errors may still produce an
adjustment by increasing the variances compared with classical Ordinary Least
Squares which does not account for correlations. For example, the standard error
on our measure of heat (the >30 °C bin) is 0.0196 under clustering but 0.00433
without clustering (i.e., robust standard errors). This suggests an inflation factor of
approximately 20 which is quite large and important for adequately representing
the statistical uncertainty in our warming impacts.

Heterogeneous cultivar-level temperature effects are investigated to assess the
potential for climate change adaptation via cultivar selection. The preferred
specification was modified to account for differences in cultivar effects using the
following multilevel model66 specified in Eq. (2):

yijt ¼ αi þ αj þ αt þ β1pijt þ β2p
2
ijt þ

X8

k¼1

δkBinijkt þ uiBinij8t þ εijt ; ð2Þ

where we extend the preferred model to include a random slope (ui) across
cultivars for the highest temperature bin (30 °C+). Note that the fixed effects from
the preferred model are include here as dummy variables in the fixed portion of the
multilevel model. The only random effect in the multilevel model is for the effect of
the >30 °C bin.

Warming impacts are based on uniform changes in the daily temperature data.
For example, we use the observed (historical) daily minimum and maximum
temperatures and increase them by 1 °C and then re-calculate the growing season
bins for all locations and years3,43,45. Averaging these across years and locations
then provides a shifted climate to simulate yield change based on the initial
regression model parameters and yield estimates. The impacts are calculated as
100 e Bin 1�Bin 0ð Þδ � 1

� �
where Bin is a vector of the temperature bins for shifted (1)

and baseline (0) climate. The same steps are repeated for the 2 and 3 °C warming
scenarios as well. Estimates from the regression in Supplementary Table 3 are used
for δ. The point estimation for warming scenarios relies on the Delta Method of
asymptotic approximation for large samples as implemented via the nlcom
command in Stata version 16.

Robustness checks. The first robustness check we consider is replacing the
temperature bins with a quadratic specification of seasonal average temperatures.
Interestingly, a two-tailed joint test under this model implies that temperatures do
not have a statistically significant effect on yields (F(2,30)= 0.57, p= 0.5716),
thereby suggesting that seasonal averages cannot capture yield reductions asso-
ciated with heat above 30 °C as in our preferred model. The seasonal average model
generates misleadingly small warming impacts (Supplementary Fig. 4).

Next we investigate the appropriateness of the equally spaced five degree
exposure bins by examining three alternatives: (i) bins of length three degrees, (ii)
bins of length five degrees but with a threshold of 29 °C and, separately, (iii) a
threshold of 31 °C. We find that all three alternatives produce similar marginal

effects of temperatures and warming impacts as our preferred model
(Supplementary Figs. 5 and 6).

Under our preferred model the parameters for precipitation and precipitation
squared are statistically significant for a two-tailed joint test (F(2,30)= 9.43, p=
0.0007). We find that the yield effects of precipitation are not trivial as a one
standard deviation reduction in cumulative rainfall below the average level is
associated with a 9.6% yield reduction. To more directly investigate the
differentiated impacts of drought and heat, the precipitation component was
modified to include the quadratic function (as in the preferred model) along with
an indicator variable that takes on a value of “1” when cumulative precipitation is
below the 10th percentile of all observed rainfall data. This indicator captures low
rainfall conditions likely associated with droughts, and findings suggest the effect of
10th percentile rainfall is an 18% yield reduction (Delta Method=−2.95, p=
0.003). The inclusion of the additional low-rainfall control variable produced
similar marginal effects of temperatures and warming impacts as our preferred
model (Supplementary Figs. 7 and 8). In addition, we consider controlling for the
seasonal variation of precipitation as in Rowhani et al. (2011)67, but found a similar
pattern of results for the temperature and warming effects (Supplementary Figs. 8
and 9). Thus, the high temperature effect and precipitation effect seem well
differentiated from each other, likely due to the location and year fixed effects that
control for (among other things) locations with a more drought-prone climate and
widespread droughts across locations within years.

It is essential that cultivars in the data experience sufficient heat exposure to
capture the temperature effects, especially when we estimate the cultivar-specific
heat effects. Within the sample, every cultivar was exposed to temperatures above
30 °C ranging from 4 to 115 h. Not every cultivar was exposed to temperatures
above 30 °C at every location, but cultivars with no exposure above 30 °C at every
location account for less than 10 percent of observations. Nonetheless, as a
robustness check for the warming impact estimates we drop cultivar-years not
experiencing exposures above 30 °C and re-estimate the model. We find similar
marginal effects of temperatures and warming impacts as our preferred model
(Supplementary Figs. 9 and 10).

We also consider whether allowing the temperature and precipitation effects to
vary within season affects the warming impacts. We separate the growing season
into three stages: (i) planting to 20 days before flowering to capture the vegetative
stage, (ii) 20 days before to 10 days after the flowering date to capture the flowering
stage, and (iii) 10 days after flowering to the end of season to capture the grain-
filling stage. We then re-estimate the model including stage-specific measures of
the precipitation and temperature variables, and find that warming impacts are
very similar to those from our preferred model approach (Supplementary Fig. 11).

Next, we analyze whether cultivars developed from specific breeders provide
differential heat effects by interacting the temperature bin variable for exposures
above 30 °C with dummy variables for each of the three breeders represented in our
data: Pannar, Sensako, and the South African ARC-SGI. A two-sided joint test of
these interactions suggest that the heat effects do differ across breeders for n=
18,629 yield observations with breeder information (F(2,30)= 6.68, p= 0.004),
however the magnitude of the differences are small and the warming impacts are
similar across all three breeders (Supplementary Figs. 12 and 13). We also consider
whether heat effects differ across the spring, facultative, and winter wheat cultivars
represented in the data using the same dummy variable approach. A two-sided
joint test suggests a lack of statistical significance for these differences (F(2,30)=
2.20, p= 0.128), and the temperature and warming effects are similar across all
three types (Supplementary Figs. 13 and 14).

Another robustness check interacts the temperature bin variable for exposures
above 30 °C with a continuous variable for the year that each cultivar was publicly
released. The in-sample release years span 1984–2012 and we again find a lack of
statistical significance for the interaction with a two-tailed test (t(30)= 0.53, p=
0.471) coupled with similar temperature and warming effects (Supplementary
Figs. 13 and 15).

The robustness of weather station data was tested by including all available
weather stations within 200 km (regardless of missing data) for every wheat trial
location using distance-weighting (1/distance2) of the weather observations at the
location-year-day level. This increased the number of field trial sites to 32 (some
were dropped before because of missing weather data) and the number of unique
weather stations to 107. The number of stations matched to a particular site ranged
from 12 to 30. We then re-estimate the model using these alternative data and find
that the temperature and warming effects are similar to the preferred model
(Supplementary Figs. 16 and 17). It is also possible that this distance-weighted
interpolation approach is overly simplistic, thereby introducing measurement error
that can bias estimates. This type of error would likely affect precipitation more
than temperature due to its more localized nature, so we replace our measure of
rainfall with that of the gridded Climate Hazards group Infrared Precipitation with
Stations (CHIRPS) dataset68. We re-estimate the model and find that the
temperature and warming effects are again similar to the preferred model
(Supplementary Figs. 16 and 17).

Some studies have shown that wheat maturity occurs more quickly under heat
stress62,69. Thus, to test our assumption of a flowering-to-harvest time of 30 days at
each location-year, we use this expanded weather station data and re-calculate the
temperature bins for a shorter 20 day maturity period. We define the optimal
maturity length by running separate regressions of log yield on the weather
covariates for each location-year in the data. Each iteration produces two measures

Table 1 Moran’s I (MI) spatial autocorrelation for log yield
and regression errors.

Data MI-1 km MI-100 km MI-500 km MI-1000 km

Log yield 0.34404 0.319946 0.157958 0.097185
Regression errors 0.178149 0.138631 0.058130 0.026231
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of R-squared, one for each of the two maturity lengths, and the higher one is used
for that location-year. We find that 30 days is optimal for approximately 2/3 of the
location-years (Supplementary Fig. 18). A regression of the improvement in R-
squared from varying the maturity length on the occurrence of temperatures above
30 °C suggests that a one percent increase in heat occurrence only improves model
fit by approximately 0.001 percent. In addition, we find that optimizing the
maturity lengths by location-year produces similar temperature and warming
effects as the preferred model (Supplementary Figs. 16 and 17).

Expanding the weather data also provides an opportunity to consider the
potential effects of shifting planting dates. Producers may adapt to increasing heat
stress by planting earlier to avoid critical periods of heat exposure. To test the
implications of this adaptation, warming impacts were simulated based on the
initial temperature impacts with different weather variables created by planting
date shifts at 7 and 14 days earlier with fixed (days-to-flowering and days-to-
harvest) season lengths. For +1 °C, shifting planting dates to 14 days earlier
provides approximately one percent reduction in the warming impact on yields,
while for +3 °C a 14 day earlier planting date may reduce impacts by about four
percent (Supplementary Fig. 19).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during this study are available in the
Harvard Dataverse repository, https://doi.org/10.7910/DVN/8Y6Q7F.

Code availability
The codes used for statistical analysis in this study are available in the wheatcultivars_
heat_zaf repository on Github, https://github.com/amshew/wheatcultivars_heat_zaf.
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