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Synopsis

The yield stress of a magnetorheological suspension is calculated from two different approaches.
The first one is based on a mesoscopic description of the structure taking only into account the shape
anisotropy of the strained aggregates. The second one is based on a microscopic approach where the
interparticle forces, due to the application of the field, are calculated numerically by taking into
account the magnetostatics between the particles inside the aggregates. We show that the
macroscopic description well applies to suspensions of nonmagnetic particles in a ferrofluid and that
a layered structure, consisting of parallel slabs of magnetizable materials should have a yield stress
much higher than a structure made of cylindrical aggregates. On the other hand the microscopic
approach is appropriated for the description of suspensions of particles of high permeability. In this
case, the yield stress is mainly determined by the rupture between pairs of particles and,
consequently, it strongly increases with the angle between the line of centers of the pair undergoing
the rupture and the field. ©1997 The Society of Rheology.@S0148-6055~97!00203-4#

I. INTRODUCTION

Magnetorheological suspensions have received less attention than electrorheological
suspensions mainly because the weight and the space required by the coils to produce the
magnetic field was thought to be a severe restriction for practical applications. Further-
more the response time of the fluid is limited by the rising timet 5 L/R ~with L the
inductance andR the resistance of the coils! of the magnetic field which, in practice, is of
order 1021 to 1022 s. Nevertheless, just comparing the magnetostatic energy density
m0H

2
0 for H0 5 3000 Oe and the electrostatic energy densitye0E

2
0 for a field E0

5 3 kV/mm ~close to the breakdown field! it appears that the former is larger by an
order of magnitude. This is the first reason why yield stresses obtained with magne-
torheological~MR! fluids are much larger than those obtained with electrorheological
~ER! fluids. Yield stresses close to 100 kPa are obtained with magnetic suspensions
containing a powder of carbonyl iron~Weisset al., 1994!, whereas 15 kPa seems to be

a!Corresponding author.
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the maximum yield stress ever obtained with an ER fluid~Haveka, 1994!. Furthermore
these ER fluids are difficult to use commercially due to a too high power consumption. Of
course this argument based on stored energy in vacuum should be modified to account for
the storage capacity of the medium which is characterized by its dielectric constante for
ER suspensions or by its magnetic permeabilitym for MR suspensions. For instance the
electrostatic energy density will be:W 5 0.5e0e E2, wheree is the relative permittivity
of the suspension andE an average electric field. When the suspension is strained by a
quantityg, the energy will generally decrease due to forced nonalignment of the aggre-
gates with the external applied field. This will give rise to a restoring stress

t 5 2
]W

]g
5

e0E
2

2

]e

]g
. ~1!

The observation of this fundamental equation already tells us that it is change of
permittivity with the strain which gives the magnitude of the yield stress. The energy
stored in the suspension can change because some macroscopic aggregates are being
deformed or rotated in the field but also because of small motions at interparticle distance
scale. Obviously these two mechanisms are always present in MR or ER fluids but we are
going to study the two extreme situations and we shall show that we can find fluids which
follow quite well one or the other model. The first part of this article will be devoted to
a macroscopic model which generalizes the one recently proposed by Rosensweig~1995!.
The second part is based on a microscopic derivation which uses a multipolar develop-
ment of the magnetic~or electric! field in order to determine the permeability~or the
permittivity!. This derivation takes into account the microstructure and allows one to test
the validity of the macroscopic model in different situations.

II. MACROSCOPIC APPROACH

In this first approach to obtain the yield stress in ER or MR fluids we consider
macroscopic structures which are only characterized by their shape~stripes, cylinders,
ellipsoids...! and by their internal volume fraction. We ignore any internal structure inside
the aggregates, so the change of energy when the suspension is strained only comes from
shape effects and could be roughly approximated by the change of energy of a solid
rotating in the field. In the following we shall use the notations corresponding to MR
fluids but all results apply quite well for ER fluids when the relevant magnetic parameters
are replaced by their electrostatic counterparts. Actually it should even apply better to the
case of ER fluids where the metallic electrodes bring charges which fix the average
Maxwell field:E 5 V/d everywhere in the sample, whereas the modulation of the mag-
netization imposed by the intersection of the mesoscopic structure with the surface of the
sample gives rise to a modulation of the average field which is neglected in this approach.

The energy of a body of permeabilityms introduced in a medium of permeability
m f in the presence of a fieldH0 is given by~Landau and Lifschitz!:

W5 2
1

2
E
vs

~ms2mf!H.H0dVa , ~2!

whereH is the new field in the presence of the aggregate andVa the volume of the
aggregate. If we callm the increment of the magnetic moment obtained by replacing the
initial medium of permeabilitym f by the one of permeabilityms Eq. ~2! becomes:

W5 2
1

2
m.H0 . ~3!
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The shear force per unit surfacet is given by the derivative of the energy:

t 5
Fy

S
5 2

1

S

]W

]y
5 2

1

V

]W

]g
,

whereg 5 y/d is the strain andV the volume of the sample. Then taking the energy
from ~3! we obtain

t 5
1

2V
H0

]mz

]g
. ~4!

In Eq. ~4! mz is the component of the magnetic moment of the sample along the direction
of the external field

A. Ellipsoidal aggregates

Rheological models are usually based on ellipsoidal aggregates~Shulmanet al., 1986,
Halseyet al., 1992! because the magnetization is constant inside an ellipsoid placed in a
constant external field. The components of the magnetic moment in the frame
(Ox8,y8,z8) of an ellipsoidal aggregate with a main axis of lengthd and a small axis of
lengthb are, respectively,~Landau and Lifschitz!:

ma
i

5 aiH0 cosu and ma
'

5 2a'H0 sinu,

with

ai 5
~ms2mf!Va

11ms*ni

and

a' 5
~ms2mf!Va

11ms*n'
.

In this formulau represents the angle between the main axis of the aggregate~along
Oz8! and the fieldH0 aligned alongOz; the quantitiesa i and a' are the magnetic
polarizabilities along the main axes of the ellipsoid andni andn' are the demagnetiza-
tion factors of an ellipsoid given by:

ni 5
12e2

2e3 FlogS11e

12eD22eG,
with

e5 A12~b2/d2! and n' 5 ~12ni!/2.

Finally, ms* 5 (ms /m f )21 represents the relative difference of permeability between
the aggregate and the suspending medium andVa the volume of the ellipsoidal aggregate.
In order to obtain the energy we need the component of the magnetic dipole of the
aggregate along the directionz of the field:

ma
z 5 ~ms2mf!H0S cos2 u

11ms*ni

1
sin2 u

11ms*n'
DVa . ~5!
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If we assume that the aggregates do not interact with each other, the total magnetic
moment of the sample will bemz 5 Nama

z , with Na the number of ellipsoidal aggre-
gates. Introducing the internal volume fractionFa inside the aggregates and the initial
average volume fractionF we shall have, using~4!:

t 5
1

2

F

Fa
H0

]~ma
z/Va!

]g
. ~6!

The strain is related to the angleu by g 5 tgu. So replacingma
z/Va by ~5! yields:

t

mfH0
2 5

1

2

F

Fa
ms*

]

]g S 1

~11g2!~11ms*ni!
1

g2

~11g2!~11ms*n'!
D. ~7!

This expression does not take into account the striction of the aggregate during the strain.
This can be done by noting that for an angleu the length of the major axis becomes
d8 5 d/cosu, with cosu 5 1/(11g2)1/2. The invariance of the volume involvesb8
5 b(cosu)1/2 and the demagnetization factor which is a function of the ratiob8/d8 will
become a function ofb(cosu)3/2/d.
The stress versus the strain with and without striction is shown in Fig. 1 for a ratio
b/d 5 0.1, an average volume fractionF 5 0.3, and an internal volume fractionFa
5 0.64; this value is motivated by the assumption that the ellipsoids are aggregates of
randomly closed spherical aggregates. We see that the effect of striction can be neglected.

Actually this model is only valid in the limit of low volume fractions. For higher
volume fractions it is more appropriated to consider a mean field theory where each
ellipsoid is immersed in the average medium of volume fractionF and of permeability
m~F!. In this case we can take, instead of the external fieldH0 the field H
5 H0 /m(F). The same relation as~7! will hold but the field which normalizes the
stress is the average fieldH instead ofH0 and in the relative permeabilityms* we have
to replacem f by the average permeability of the suspension:

mm* 5
ms~Fa!

m~F!
21.

Keeping the same normalization as in~7! for the stress we have:

t

mFH
2 5

1

2

F

Fa

m~F!

mf
mm*

]

]g S 1

~11g2!~11mm*ni!
1

g2

~11g2!~11mm*n'!
D. ~8!

The relation between the permeability of the suspension and the volume fraction is
unknown, but we have shown~Volkovaet al., 1996! that a mean field theory, such as the
Maxwell-Garnet~1904! theory, well represents this dependence at least for suspensions
of non magnetic particles in a ferrofluid. In this case we have:

m~F!

mf
5

112bF

12bF

where

b 5
a21

a12
with a 5

mp

m f
, ~9!
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wheremp is the particles permeability. For suspensions with particles of high permeabil-
ity in a nonmagnetic fluid we haveb > 1 and for suspensions of nonmagnetic particles,
in a high permeability ferrofluid we haveb > 20.5. Of course the relation~9! normally
applies to a random medium but we shall assume that the permeability does not change
drastically when the suspension is structured by the magnetic field.

The relation~9! can also be used to obtain the internal permeability of the aggregate:
ms(Fa). Then with the help of Eqs.~7! and ~9! or ~8! and ~9! we can predict the
stress-strain relation. In Fig. 1 the lower curve~solid line! is obtained from Eq.~8! for an
average volume fractionF 5 0.3 andb 5 20.5. We see that, compared to the upper
curves where each aggregate is considered alone in the external field, the mean field
approach gives a much lower value of the stresses. This is quite understandable since at
high volume fraction the fieldsH and H0 are quite different. If we take
H 5 H0/m(F) with m~F! 5 0.609 in the l.h.s. of Eq.~8!, the difference persists but is
much lower.

Another approach consists of considering a network of aggregates and calculating the
change of energy when this network is strained. This approach has been used recently

FIG. 1. Normalized stress vs strain for ellipsoidal aggregates of internal volume fractionFa 5 0.64. The
average volume fraction isF 5 0.3 anda 5 mp /m f 5 0. — - — - — Eq. ~7! with aspect ratiob/a 5 0.1;
striction not included. ——— Eq.~7! with aspect ratiob/a:0.1; striction included. —— Eq.~8!: with aspect
ratio b/a 5 0.1. H is now the average field inside the sample.
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~Rosensweig, 1995! for a layered structure. Actually, depending on the volume fraction,
we can observe structures formed of isolated cylinders or labyrinthine structures which
transform into well aligned stripes in the presence of a flow~Bossiset al., 1994, Grasselli
et al., 1994, Liuet al., 1994!.

B. Stripes and cylinders

We have generalized the model presented by Rosensweig who has only considered the
stress coming from the torque and we have also extended it to the case of a lattice of
cylinders. This model has been presented elsewhere~Lemaireet al., 1996! and, for com-
pleteness, the main steps are summarized in Appendix A.
The analytic result for the normalized stress is:

t

mfH
2 5 2

1

2
~ms* !2

2g

~11g2!2
Fs~12Fs!

Cs1ms* ~12Fs!
, with Fs 5

F

Fa
~10!

andCs 5 1 for stripes orCs 5 2 for cylinders. The minus sign expresses the fact that it
is a restoring stress; in the following we shall consider the absolute value. The maximum
of the stress relatively to the strain is obtained for]t/dg 5 0 which givesgc 5 )/3.

In this model the demagnetization is taken into account only in average since it is the
average fieldH and not the external fieldH0 which normalizes the stress. The demag-
netization factor is known for periodic stripes with zero inclination relatively to the field
~Cebers, 1995!. A calculation could likely be done taking into account the inclination of
the aggregates, if we assume that the magnetization is constant throughout the stripe—
which in turn implies that the tangential field varies from place to place. It is not sure that
it is a better approximation and we shall see in Sec. III that the agreement is already good
without considering this dependence.

In Fig. 2 he have plottedt/mH2 versus the strain for the three cases we have seen. We
have taken an average volume fractionF 5 30% andFa 5 64% for the internal vol-
ume fraction of the aggregates. We have useda 5 mp /m f 5 0 which would correspond
to the case of magnetic holes (mp 5 1) in a ferrofluid of infinite permeability. In this
case the internal permeability given by~9! for F 5 Fa 5 64% andb 5 20.5 is
ms /m f 5 0.273. The solid curve and the dash-dotted line correspond to the ellipsoidal
aggregates@Eq. ~8!# and to cylindrical aggregates, respectively. They are not very differ-
ent which is quite expected due to their similar shape. On the other hand the upper curve,
obtained for a slab structure, predicts a yield stress approximately three times higher than
for cylindrical or ellipsoidal aggregates.

III. MICROSCOPIC DERIVATION OF THE YIELD STRESS

In a microscopic derivation of the yield stress we have to know the precise position of
each particle in the suspension and also the way they will move when the suspension is
strained. This calculation can be done either by a finite element method~Davis, 1992! or
by a multipolar expansion~Chenet al., 1991, Clercx and Bossis 1993, 1995! This last
method, although limited to linear media, is more powerful. For any configuration of the
particles the total dipole moment per unit volume can be calculated by solving a set of
linear equations:

ba3H 5 C•m. ~11!

In Eq. ~11! a is the radius of the particles andb is defined in Eq.~9!. If we use a
periodic lattice withN particles located in a unit cell, thenH is the average field inside
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the unit cell~here a 3N vector!, C is a 3N33N matrix which depends on the relative

positions of the particles inside the unit cell, andm the 3N vector defining the dipolar
moment of each particle. For particles of high permeability or permittivity~in practice
a 5 mp /m f . 5!, the dipolar approximation becomes very poor and we need to use a
multipolar development of the potential of the magnetic~or electric field!. In this case the
matrix C takes into account the short range multipolar interactions; it is obtained by a
partial inversion of the set of equations containing the multipoles of order larger than one
~Clerex and Bossis, 1993!. Once the dipole moment of a unit cell for a given strain,
denoted bym~g!, is known, the stress is obtained from the derivative of the energy, cf.
Eq. ~4!, whereH0 must be replaced byH, the average field. In a previous investigation
we have used this approach to obtain the yield stresses of different lattices relatively to
the volume fraction and toa~Clercx and Bossis, 1995!. We are going to use the same
method to test the applicability of the macroscopic model derived in the first section. This
test has been carried out for structures of cylinders and stripes, both for low and high
values ofa. For the low values we have takena 5 0 anda 5 0.135 This last value
corresponds to a suspension of nonmagnetic spheres in a ferrofluid. For the high values

FIG. 2. Normalized stress versus strain for different models of aggregates of internal volume fractionFa
5 0.64. The average volume fraction isF 5 0.3 anda 5 0. —— Eq.~8!: ellipsoidal aggregates aspect ratio
0.1,— - — - Cylindrical aggregates: Eq.~10! with Cs 5 2, ——— Stripes: Eq.~15! with Cs 5 1.
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we have takena 5 10, a 5 38, anda 5 50. These values are representative of the
permeability for steel bearing balls at intermediate values of the magnetic field.

A. Comparison with the macroscopic approach for a<1

We have first considered a simple cubic lattice of chains~cf. Cl Fig. 3! with particles
which move affinely in a simple shear flow:Vy 5 ġz. Each chain is assimilated to a
cylinder. Then the results obtained by the microscopic approach are compared to the
prediction of the macroscopic theory for cylinders. We have carried out this comparison
for two values ofa 5 mp /m f , namelya 5 0 anda 5 0.135. We have taken for the

FIG. 3. Different structures studied. The corresponding yield stresses are reported in Table I. The thick neck
between the spheres indicate the points of rupture when the begin to shear. In P1d these points are not shown
since the rupture will happen after the chain is completely extended forgc 5 A(16a2/h2)21. Note the
difference of rupture points between C2S and C2S8; in this last case the altitude of each particle will remain
constant contrarily to C2S.
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apparent volume fraction inside the aggregates appearing in Eq.~10! the fraction corre-
sponding to a chain of spheres in a cylinder of same radius,Fa 5 2/3. The stress versus
strain curves are shown in Fig. 4 fora 5 0.135 andF 5 0.4. The solid curve is the
result of the numerical calculation and the dash-dotted curve the prediction of Eq.~10!. It
appears that the critical straingc corresponding to the maximum of the curve is too large
in the macroscopic model~)/3 instead of 0.3!; this is likely due to the fact that in the
microscopic model the distance between the centers of the particles increases during the
strain which makes the force fall off for smaller strains than in the macroscopic model
where the interparticle distance does not appear. Nevertheless, the agreement for the
maximum stress is remarkably good taking into account that we have no free parameter.
This is not accidental as we can see in Fig. 5 where we have compared the yield stress—
which is the maximum of the stress-strain curve—predicted by the two models fora
5 0 anda 5 0.135. It appears that for these two values ofa the agreement between the
two models is quite good: in the worst case fora 5 0.135 andF 5 0.5 the disagree-
ment is less than 20%. It is interesting to note that we have an optimum volume fraction
for the yield stress, which is around 30%.

A similar comparison between macroscopic and microscopic models is presented in

FIG. 4. Comparison between microscopic and continuum models for cylinders witha 5 0.135 and an average
volume fractionF 5 0.4 —— microscopic model: cubic network of chains,— - — - continuum model for
cylinders withFa 5 2/3.
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Fig. 6 for a layered structure. In the microscopic model the stripes are formed by two~cf.
P2 Fig. 3! or four planes of particles having an internal volume fractionFa 5 p/6
corresponding to a simple cubic packing. The distance between the stripes is fixed by the
knowledge of the average volume fraction. The solid curve in Fig. 6 represents the result
of the numerical simulation fora 5 0.135 andF 5 0.1, whereas the dashed curve is
obtained from Eq.~10! with Cs 5 2. The agreement is fair for the yield stress but we still
have a critical deformation which is lower in the microscopic model. In this figure we
have also shown the result predicted by Rosensweig where the stress is taken from the
torque on the structure. We can see~dash-dotted line! that this approach overestimates the
critical strain ~which is obtained foru 5 45° or g 5 1! and underestimates the yield
stress. We have checked that the dependence of the yield stress on the volume fraction
was also fairly represented by Eq.~10! for the slab structure.

At this stage we could conclude that Eq.~10! is able to describe quantitatively the
dependence of the yield stress on the volume fraction for different structures. This is still
to be verified for high values of the control parametera.

B. Test of the macroscopic approach for a @ 1

For high values ofa, the short range interactions between particles become more and
more important and we do not expect that a global macroscopic approach based on shape

FIG. 5. Normalized yield stress versus volume fraction. Comparison between microscopic and continuum
models for a structure made of cylindrical aggregates.
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anisotropy of aggregates could be able to represent the evolution of the yield stress with
the volume fraction. This is well illustrated in Fig. 7 where we compare fora 5 50 the
normalized yield stress for a cubic array of chains of spheres with the macroscopic
approach based on cylinders. Whereas the microscopic derivation~dots! gives a stress
which increases linearly with the volume fraction, we obtain, with the macroscopic ap-
proach, values which are far too small and furthermore which saturate with the volume
fraction ~squares!. Nevertheless, it is interesting to note that if we take only into account
the dipoles in the microscopic derivation, then the prediction~triangles! is very close to
the values obtained by the macroscopic approach. This is consistent with the fact that
dipolar interactions are long ranged and not sensitive to the small changes of distance
between the surfaces of the particles. The importance of short range multipolar interac-
tions for the calculation of the yield stress whena @ 1 is well known but what we want
to emphasize here is the role played by the rupture of contacts between particles, com-
pared to the role played by the shape anisotropy of aggregates. In order to understand this
point we have compared the yield stress obtained for a slab structure where the stripes are
formed of single planes of spheres with inside each plane a cubic packing. These stripes
can be strained either parallel or perpendicularly to their own plane. We have plotted the
microscopic model predictions forF 5 0.2 anda 5 38 in Fig. 8. We can see that the

FIG. 6. Normalized stress vs strain. Comparison between microscopic and continuum models for stripes with
a 5 0.135 and an average volume fractionF 5 0.1. —— Microscopic model, ——— Macroscopic model
@Eq. ~10! with Cs 5 1#, - — - Macroscopic model from Rosensveig~1995!.
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difference of behavior between the two directions of shear is quite negligible; similar
results are found withf 5 0.5 anda 5 38 where the yield stresses are, respectively,
t i
y/mH2 5 4.77 andt'

y /mH2 5 4.84 with the same critical straingc 5 0.08. In oppo-
sition the macroscopic model would give zero stresses for the direction of strain parallel
to the stripes since, from a macroscopic point of view, the shape of a stripe of infinite
length does not change if it is sheared in its own plane. It is then clear that a macroscopic
model is completely unable to predict the yield stress at high values ofa.

Actually for high values ofa, not only do we need to use the microscopic derivation
with a multipolar development, but we also need to know how the ruptures will occur
during the strain of the aggregates. To illustrate this last point let us consider two struc-
tures with the same average volume fractionf 5 0.2. The first one is made of individual
monolayers of simple cubic array of spheres~structure P1!, and the second one is made
of distorted planes of particles~P1d, Fig. 3!: each column in they-z plane is made in
such a way that it can be strained without the need to break a contact between two
particles, at least as long as the strain is less thangc 5 A(16a2/h2)21, which corre-
sponds to the complete extension of the column. The yield stress calculated for these two
structures with the same values ofa andF is dramatically different as can be seen by

FIG. 7. Normalized yield stress vs volume fraction fora 5 50. ~ddd! Full microscopic model for cubic
lattices of chains.~mmm! Microscopic model with only dipolar interactions.~jjj! Macroscopic model for
cylindrical aggregates.
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comparing Figs. 8 and 9. In the standard model the separation of the particles occurs from
the beginning but the tangential magnetic force grows proportionally to sinu } g, so the
maximum of the tangential force does not occur when the separation of spheres begins
but at higher strain~cf. Fig. 8!. On the contrary in the second structural model the force
on the structure remains low as long as the particles slide on each other and remain in
contact. When all the spheres become aligned,~at g 5 0.808 in our particular case with
h 5 28/9! the chain has to be broken and the component of the magnetic force which
opposes the straining force is proportional to cos2 u sinu. This is why we have this large
jump in the stress needed to break the structure. The yield stress shown by the arrow in
Fig. 10 requires a careful calculation of the change of energy above the breaking strain in
order to get good accuracy on its derivative which is the yield stress. We see that its value
is seven times larger than in the standard model~Fig. 8! for the same density and the
samea. Of course this zig-zag structure P1d is quite arbitrary but it allows one to
understand the importance of the angle between the direction of the field and the line of
centers of a pair of particles which are separating. Actually we expect that, in real

FIG. 8. Microscopic model for the normalized yield stress of a layered structure formed of simple cubic planes
with a 5 38 andF 5 0.2. ~ddd! Strain parallel to the orientation of stripes.~jjj! Strain perpendicular to
the orientation of stripes.
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aggregates, the ruptures between pairs of particles can occur at any angle between zero
and a critical angle of about 45° and not only at the low angles predicted by the standard
model.

The same kind of behavior can be obtained more simply by studying the force on a
pair of spheres. This force can be written~Klingenberg 1990!

f 5 S ar D 4@~2 f i2 f'! cos2 u er1 fG sin 2ueu#, ~12!

wheref i , f' , and fG are functions of the separation between the two spheres and of the
permeability ratioa. These functions are calculated by a multipolar development; they
are equal to unity in the dipolar approximation.

If the pair of particles is rotating, the spheres remain in contact and the radial force
coming from the field is equilibrated by the mechanical contact force, so it is only the
x component of the tangential force on the pair of particle which will resist the strain, that
is to say:

fx 5 Sar D4fG sin 2u cosu for g , gc . ~13!

FIG. 9. Normalized yield stress for the structure P1d shown in Fig. 3. The jump corresponds to the rupture of
the chains.
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If we assume that forg . gc the particles will separate, then the mechanical contact
force disappears and we recover the parallel component of the force. Actually, when
a @ 1 the functionf i is much larger thanf' or fG so we can write for the tangential
force f x :

fx 5 Sar D42 f i sinu cos2 u for g . gc . ~14!

The difference in the values off i and f' or fG explains the discontinuity which is
observed in Fig. 9. Of course, in effect the yield stress will be limited by the saturation of
the magnetization for MR fluids or by dielectric breakdown or conductivity effects for
ER fluids. Furthermore due to averaging on different microscopic structures, a stress-
strain curve as the one represented in Fig. 9 is not observed in usual MR or ER fluids.
Nevertheless, it is possible to observe it on a model of MR fluid based on chains of steel
spheres. In Fig. 10 we show the stress calculated from the tangential force on a rotating
pair of spheres@cf. Eq. ~13!# for a volume fractionF 5 0.2 assuming that the force on
a couple of spheres is representative for the restoring force on a chain~dots!. On the same
graph~solid squares! we have plotted the yield stress@obtained from thex component of

FIG. 10. Jump of stress vs the angle where the rupture of the contact between the two spheres occurs.~ddd!
Yield stress associated to the torque on a pair of spheres.~jjj! Yield stress associated with the rupture after
a rotation of a given angle.
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the force in Eq.~12!# corresponding to the separation of a pair of spheres after they have
rotated up to the angleu 5 arc tg(g). The difference between the two curves for a given
angle corresponds to the jump of stress due to the separation of the two spheres after the
period of rotation. Of course this two sphere model only reproduces, semiquantitatively
the more realistic structure we have discussed above, but it helps to predict the order of
magnitude of this jump as a function of the strain.

We have done several calculations of the stress-strain relation for different values ofa
and different structures. Some of these results are presented in Table I for the normalized
yield stress corresponding toa 5 38 and two values of the volume fraction:F 5 0.2
and F 5 0.4. The missing values forF 5 0.4, correspond to structures where the
spheres would overlap at this density; the accuracy of the values given in this table is
better than 1% and corresponds to the use of 30 to 40 multipolar orders. There are two
things which are worth noting: first, the value of the yield stress depends only slightly on
the structure and second it grows proportionally to the volume fraction; But these features
are only true because in these structures, the rupture of the contacts occurs between pairs
of particles whose line of centers is in the direction of the applied field. The two last
columns correspond to the other situation where the rupture also occurs between pairs of
particles whose line of center is not aligned with the electric field. For the structure P1d,
this is the situation described previously where the rupture occurs atg 5 0.808 for an
initial distanceh 5 28/9. The last column corresponds to another situation with double
chains~C2S8, Fig. 3! where the particles are supposed to move along the velocity lines;
then the rupture, instead of occurring only between pairs of particles aligned with the
field ~as in C2S!, also occurs between the particles whose line of center makes an angle
of 60° with the direction of the field. We still note the large increase in yield stress
compared to the classical mode of rupture of C2S where all the ruptures between pairs
occur at a low angle. Such a scenario of rupture has already been studied~Gulley and
Tao, 1993! but in a dipolar approximation which did not allow to see this kind of effect.
The rupture of links which are not aligned with the field will not happen if other possi-
bilities of motion exist as in C2S but it can be the only way to strain the structure in more
compact aggregates. It appears than the condition of the rupture of contacts between
particles is quite important to determine the yield stress. In the absence of a model giving
this information about the rate of rupture of pairs of particles as well as their orientation
relatively to the field it is still quite difficult to predict the yield stress fora @ 1.

IV. CONCLUSION

The comparison of the macroscopic and microscopic approaches has shown that a
macroscopic approach based on the anisotropy of shape of the aggregates is only valid for
low values ofa. The analytic equation@Eq. ~10!# can be used to model the yield stress of

TABLE I. Yield stress~t/m H2! with a 5 38 for different structures and different modes of rupture: C1—
Lattice of simple chains with a square basis, affine trajectories; C2S—Lattice of shifted double chains with a
square basis, nonaffine trajectories; P2—Simple cubic planes with a width of 2 particles~4a!, affine trajectories;
P4—Simple cubic planes with a width of 4 particles~8a!, affine trajectories; P2S—Planes made with shifted
double chains@width ~21A3!a#, affine trajectories; P1d—Planes made with distorted simple chains, nonaffine
trajectories; C2S8—Same lattice as C2S but with affine trajectories.

Structure C1 C2S P2 P4 P2s P1d C2S8

f 5 0.2 1.92 1.90 1.96 1.90 1.85 14.8 5.43
f 5 0.4 3.79 3.87 3.80 3.66
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systems based on nonmagnetic particles in a ferrofluid. It predicts a maximum of the
yield stress with the volume fraction and also that a layered structure would give a yield
stress approximately two times larger than a structure based on cylindrical or ellipsoidal
aggregates.

For high values ofa this macroscopic approach represents quite well the results we
can obtain from the microscopic approach in a dipolar approximation. When the value of
a is high, it is well known that the multipolar approach is necessary, but we have
emphasized in this work that the rupture of contacts between pairs of particles and, above
all, the orientation of the line of centers of these particles relatively to the field are the
main quantities which will determine the value of the yield stress. The yield stress
predicted for ruptures occurring at strains of order one can be an order of magnitude
larger than the one predicted by the standard model where the rupture takes place at very
low strain. The elaboration of a model which could take into account the dynamics of the
deformation and rupture of aggregates in a shear is beyond the scope of this article but it
should be possible along these lines to have a correct description of the rheology of ER
and MR fluids.
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APPENDIX: DERIVATION OF THE YIELD STRESS FOR STRIPES AND
CYLINDERS

We start from the general relation Eq.~4! with the magnetizationMz 5 mz /V
5 m0xzzH, whereH 5 H0 /(11xzz) is the average field inside the suspension and

xzz is the component of the average susceptibility tensor on the axis of the external field.
Then, taking the derivative relatively to the strain we obtain:

t 5
1

2
m0H

2
]xzz

]g
, ~A1!

with

xzz5 xi cos
2 u1x' sin2 u. ~A2!

Due to the continuity of the tangential field we have, either for stripes or for cylinders:

xi 5 Fsxs1~12Fs!xf . ~A3!

In Eq. ~A3! the volume fractionFs represents the part of the space occupied by the
aggregates. This should not be confused with the internal volume fraction of the aggre-
gates:Fa ~we have:Fs 5 F/Fa!.

For a slab structure, the perpendicular componentx' is obtained in the same way as
the capacity of a layered composite structure:

1

11x'

5
Fs

11xs
1
12Fs

11xf
or m'

* 5
ms*Fs

11ms* ~12Fs!
. ~A4!

In the case of cylinders we neglect end effects and replace them by an assembly of disks
with two dimensional electrostatics. In this case the 2D Maxwell Garnet theory gives:
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m'

mf
21

m'

mf
11

5 Fs

ms

mf
21

ms

mf
11

or m'
* 5

2ms*Fs

21ms* ~12Fs!
, with m'

* 5
m'

m f
21. ~A5!

Taking into account that tg(u) 5 g we have the stress from A1 to A3 with the use of A4
for the slab structure and of A5 for the structure based on cylinders.
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