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Abstract
We describe an axiomatic extension to the Coq proof assistant,
that supports writing, reasoning about, and extracting higher-order,
dependently-typed programs withside-effects. Coq already in-
cludes a powerful functional language that supports dependent
types, but that language is limited to pure, total functions. The
key contribution of our extension, which we call Ynot, is the
added support for computations that may have effects such as
non-termination, accessing a mutable store, and throwing/catch-
ing exceptions.

The axioms of Ynot form a small trusted computing base which
has been formally justified in our previous work on Hoare Type
Theory (HTT). We show how these axioms can be combined with
the powerful type and abstraction mechanisms of Coq to build
higher-level reasoning mechanisms which in turn can be usedto
build realistic, verified software components. To substantiate this
claim, we describe here a representative series of modules that
implement imperative finite maps, including support for a higher-
order (effectful) iterator. The implementations range from simple
(e.g., association lists) to complex (e.g., hash tables) but share
a common interface which abstracts the implementation details
and ensures that the modules properly implement the finite map
abstraction.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

Keywords Type Theory, Hoare Logic, Separation Logic, Monads

1. Introduction
Two main properties make type systems an effective and scalable
formal method. First, important classes of programming errors are
eliminated by statically enforcing the correct use of values. Second,
types facilitate modular software development by serving as spec-
ifications of program components, while hiding the component’s
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actual implementation. Implementations with the same typecan be
interchanged, improving software development, reuse and evolu-
tion.

Mainstream type systems focus on relatively simple properties
that admit type inference and checking with little or no input from
the programmer. Unfortunately, this leaves a number of properties,
including data structure invariants and API protocols, outside of
their reach, and also restricts the practical programming features
that can be safely supported. For example, most simply-typed lan-
guages cannot safely allow low-level operations such as pointer
arithmetic or explicit memory management.

Static verification can be somewhat extended by refining types
with annotations from more expressive logics, as implemented in
ESC [26], JML [7], Spec# [2], Cyclone [21], Sage [14], DML [52],
Deputy [8] and Liquid types [40]. However, because of the unde-
cidability of the annotation logics, these systems still have trouble
automatically discharging all but the most shallow specifications,
and do not provide alternatives to the programmer when the au-
tomation fails, beyond run-time checks.

On the other hand, dependent type theories such as the Calcu-
lus of Inductive Constructions (implemented in the Coq proof as-
sistant), can provide very strong correctness assurances,ranging
from simple type safety to full functional correctness, andif some
property cannot be discharged automatically, the programmer can
provide the proof by hand.

Unfortunately, dependent type theories such as Coq, where
proofs are represented as language terms, make it difficult to incor-
porate computational effects. For example, a diverging term, which
can be assigned any type, could be presented as a “proof” ofFalse,
which renders the theory inconsistent. As a result, most type theo-
ries limit computations to total, pure functions with absolutely no
side effects. For example, Coq excludes general recursion,mutable
state, exceptions, I/O and concurrency. While some programming
tasks, such as a compiler or a decision procedure, can be formu-
lated as a pure, terminating function, most important taskscannot.
Furthermore, even computations that can be cast as pure functions
need to use asymptotically efficient algorithms and mutabledata
structures (e.g., hash tables) to be practical.

In this paper, we present the systemYnot, which is our proposal
for addressing the above shortcomings. Ynot starts with thetype
theory of Coq, which already has good support for functionalpro-
gramming, inductive definitions, specifications, proofs, and tactics,
and extends it with a new typeST p A q and the associated pro-
gramming constructors. Intuitively,ST classifies delayed, possibly
effectful computations, much the way that the IO-monad classifies
effectful computations in Haskell. The monadic separationfacil-
itates a clean interaction between effects and pure Coq, preserv-
ing the logical soundness of the combined system. Unlike Haskell,
our monad is indexed not only by the return type of the compu-
tation, but also a precondition and postcondition, thus capturing



Hoare Logic specifications in the type: When a computation oftype
ST p A q is run in a heaph1 satisfyingp h1, and it terminates, it
will produce a valuex of typeA and result in a new heaph2 such
that the predicateq x h1 h2 holds. Computations can allocate, read,
write, and deallocate locations, throw and catch exceptions, and
perform general recursion. Thus, Ynot makes it possible to write
ML or Haskell-style programs and yet still be able to formally rea-
son about their values and effects.

Arranging Hoare-style specifications as monadic types leads to
a very convenient formulation whereby the inference rules directly
serve as monadic term constructors with specific operational behav-
ior. In such a setting, program verification becomes directed by the
syntax of the program, which has several important consequences.
First, there is no need for annotation burden in the form of ghost
state or auxiliary effectful code, which are often used in Hoare-
style logics to expose intermediate program values and invariants
and bring them into the scope of pre- and postconditions [37].

Second, a proof of any particular program component becomes
independent of the context in which the program appears, andthus
does not break when the program is considered in a larger context.
In most other languages, this kind ofmodular soundnessis non-
trivial to achieve (if even possible), as argued for exampleby Leino
and Nelson [25]. In particular, it implies that one can buildlibraries
of certified code, thus reusing both the code and its correctness
proof.

Third, the high-level structure of a proof for a stateful program
becomes easier, since at each program point there is only onepos-
sible proof step to consider. Of course, applying the step may not
be automatic, as we may need to supply witnesses for existential
quantifiers. However, uniqueness eliminates the need for backtrack-
ing, and leads to a particularly compact way to arrange andver-
ify the search process itself. In related verification systems such as
ESC [10], WHY [13], Spec#[2] or Sage [14], this would correspond
to verifying the verification condition generator – a step that, to the
best of our knowledge, none of the above systems undertake.

Another important property that is inherent in Coq, and thus
inherited by Ynot, is that types, propositions and proofs are first-
class objects, which one can abstract, compute with, and compose
into aggregate structures. The programmer can thus implement his
or her own verified algorithms for automation of certain reasoning
patterns [17] and scale the verification to programs of realistic
size [27].

Many proposals for formal reasoning about stateful programs
have been studied before, and even implemented in Coq. For ex-
ample, Shao et al. [41, 35, 12], Benton and Zarfati [4] and Hobor
et al. [18] consider simple imperative or low-level languages with a
number of important features such as code pointers or concurrency,
and formalize deep embeddings of Hoare and Separation Logics
for such languages in Coq. Filliatre [13] presents a tool forgener-
ating verification conditions in the form of Coq propositions, but
the programs supported by the tool do not admit higher-orderab-
stractions or pointer aliasing. Boulme [6] shallowly embeds refine-
ment theory into Coq, where one can reason about the refinement
relation between two effectful programs, but does not seem to cur-
rently support adequate reasoning about pointer aliasing or local-
ity of state. Kleymann [23] shows a shallow embedding of Hoare
Logic in the related type theory of LEGO. Concoqtion by Fogarty
et al. [15] is an effectful language whose types embed Coq proposi-
tions so as to reason precisely about program values, but cannot cur-
rently support reasoning about program effects. Marti and Affeldt
in [29] present a deep embedding of Separation Logic in Coq, and
certify the verification procedures for it. Swierstra and Altenkirch
in [44] axiomatize Haskell monads for IO, state and concurrency
using purely functional specifications, but cannot currently reason
about programs with higher-order store. Moreover, functional spec-

ifications may sometimes be too specific, as they describe thepro-
gram’s result exactly, whereas one may care to specify only some
of the result’s properties.

Ynot differs from the above approaches in that itaxiomatically
extends Coq with selected monadic primitives. Of course, wehave
proved in the previous work [33, 32, 38] that these axioms do not
cause unsoundness, and moreover, that the operational semantics
of Ynot respects theST specifications. Ynot differs from most
of these systems in that it supports Hoare and Separation Logic
reasoning for a higher-order, higher-typed language, where effect-
ful computations are themselves first-class values that cane.g., be
stored in references. Ynot differs from deep embeddings of Hoare
Logic into Coq in that it can directly use Coq’s purely functional
fragment for programming. For example, a deep embedding of a
language with higher-order functions must develop from scratch
the type checking and reasoning rules about such functions.Ynot,
on the other hand, immediately inherits all the purely-functional
primitives and their reasoning principles such as extensionality, in-
duction, primitive recursion, libraries of data types, lemmas, para-
metric polymorphism, existential types, quantification over type
and predicateconstructors, type equalities, etc. All of these, of
course, are irreplaceable as tools for structuring, modularity and
functorization of code and proofs.

Ynot also inherits Coq’s built-in support for inference of types,
annotations and implicit parameters. When combined with the
monadic rules which we designed to avoid ghost state and aux-
iliary code, these lead to a programming style whose look-and-feel
is very close to the current practice of languages like Haskell.

The abstractions of Ynot are not only directly useful in pro-
gramming, but in definingnewmonads for new Hoare Logics. For
example, we show how to define the monadSTsep for specifica-
tions in the style of Separation Logic, directly in terms ofST, veri-
fying in Coq all the steps along the way. Separation Logic is usually
taken as a foundation for modular reasoning about state, butourST
monad shows that modularity can be achieved without starting from
separation.

There will be no meta-theoretic proofs in the current paper;for
that we refer the interested reader to our previous work [33,32, 38].
The contribution of the current paper is to illustrate how the theory
is translated into practice. In particular:

• We describe the design of Ynot including the primitive terms
and their specifications, and show how they can be used to write
effectful code in a Haskell style.

• We show how the design supports automatic inference of prin-
cipal specifications for (loop-free) code, and eases the verification
burden through the use of syntax-directed lemmas and tactics.

•We show how a separation monad,STsep can be defined on top
of theST primitives and used to build and modularly verify higher-
order components.

•We describe a representative library of imperative, finite map im-
plementations and their common interface. The library includes
three implementations: association lists, hash-tables, and splay-
trees. The libraries support a higher-order operation for iterating
an effectful computation over the map, and reasoning about the
compound effects of the iterator. We also describe a verifiedmem-
oization library that we have constructed, based on the finite map
interface.

• We describe our prototype compiler that maps Ynot code to the
Glasgow Haskell Compiler’s intermediate language. The compiler
has been used to compile all of the sample code in our library.

The source code of our Coq development can be found at
http://www.eecs.harvard.edu/~greg/ynot. To clarify the
presentation and fit into the allotted space, the code presented here
is close, but not exactly the same as the library. In particular, we



have formatted the code using suggestive mathematical notation,
and omitted the proof scripts.

2. Basics of Ynot
We begin by showing some simple imperative Ynot code. The def-
initions below implement an imperative finite map using a refer-
ence to an (immutable) association list. They take advantage of
previously-defined key and list operations such ascmp, remove
andassoc which compare keys, remove key-value pairs from a list,
and look up the value associated with a key respectively.

Definition create := new empty kv list.

Definition insert r k v :=
` ← read r; write r ((k, v) :: (remove cmp k `)).

Definition delete r k :=
` ← read r; write r (remove cmp k `).

Definition lookup r k :=
` ← read r;
match option (assoc cmp k `)

(throw Failure)
(λv ⇒ ret v).

Definition destroy r := free r.

The code is written in a style similar to Haskell’s “do” notation.
In particular, the notation “x ← e1; e2” is short-hand (definable
in Coq) for “bind e1 (λx.e2)” and is used to construct sequential
compositions of primitive computations. In this case, the primitive
computations include effectful operations such asnew (for allo-
cating and initializing a reference),read andwrite (for accessing
the contents of a reference),free (for deallocating a reference), and
throw for throwing an exception. The other key primitives include
ret, which lifts a pure Coq value into the space of computations;fix,
which is used to construct recursive computations; andtry, which
is used to catch exceptions.

Also like Haskell, Ynot can automatically infer types for the
code. The types of effectful computations will in general beclassi-
fied by a monadic type constructST. However, unlike Haskell, the
ST monad is indexed by pre- and postconditions that summarize
when it is safe to run a computation, and what the effects of the
computation are on the world. For example, it is not safe to run the
read computation on a refx that has beenfree’d. In reality, this in-
ference only works for straightline code and so the specifications of
loops usingfix must be written explicitly. Nevertheless, the infer-
ence mechanisms make it relatively easy to write useful imperative
code, abstract over it, and reason about it.

In what follows, we describe more formally the basics of the
Ynot primitives, pre- and postconditions, our model of heaps, etc.
We then show how programmers can write code with explicit spec-
ifications and convince the type-checker, through explicitproofs,
that code respects a given interface. The rest of the paper shows
how, using these facilities and the abstraction mechanismsof Coq,
we can realize an abstract interface for finite maps that supports
not only this simple association list, but also more sophisticated
data structures, including hash tables and splay trees. We also con-
sider higher-order operations, such as a fold over the finitemap,
that supports effectful computations.

2.1 Formalism

The design of Ynot is a generalization of the well-known ideas
from type-and-effect systems [16] and their monadic counter-
parts [31, 46]. Our monadic typeSTp A q classifies programs that
return values of typeA, but that may also perform stateful side ef-
fects. The effect annotationsp andq take the role of a precondition
and a postcondition. They are drawn from higher-order logic, rather

than from any particular finitary algebraic structure, as usually the
case in simple type-and-effects. The expressiveness of higher-order
logic will allow us to very precisely track the stateful behavior of
programs. Of course, becausep andq maydependon run-time en-
tities like memory locations and exceptions, this precise tracking
essentially requires dependent types.

More formally, the signature of theST type constructor is as fol-
lows. To reduce clutter, here we use a more stylized mathematical
notation instead of the actual concrete syntax of Coq.

ST : pre→ ΠA:Type. post A→ Type

Here pre is the type of preconditions, andpost A is the type of
postconditions, where the postconditions also scopes overthe an-
swer that the computation returns.

pre := heap→ Prop post A := ans A→ heap→ heap→ Prop

The answer of a computation can either be a value (of some type
A) or an exception that the computation raised. We distinguish be-
tween these two cases using the typeans A and its two constructors:
Val : A→ ans A andExn : exn→ ans A.

Heaps are modeled as partial functions from locations to type
dynamic. Elements ofdynamic are records, packaging a type and
a value, thus abstracting the type. Modeling heaps this way allows
us to implement strong updates, whereby a location can pointto
values of varying types.

dynamic := {type:Type, val:type}
heap := loc→ option dynamic
empty : heap := λ`.None
update loc (h:heap)(r:loc)(v:A) : heap :=

λx:loc. if r ==x then Some {type=A, val=v} else h x

The typesloc and exn denote locations and exceptions, respec-
tively. For each type, we assume they are countably infinite and
support decidable equality. In a model, they can be treated as iso-
morphic to natural numbers.

As customary (e.g, in Separation Logic), preconditions are
unary relations over heaps, specifying the set of heaps in which
the program can execute without causing any memory errors such
as dereferencing a dangling pointer. Postconditions relate the an-
swer of a computation withboththe initial and ending heaps. Hoare
Logic postconditions usually range only over the ending state, but
formulations that range over both states are not uncommon, and
date back at least to the classical work on the Vienna Develop-
ment Method [22]. It is well-known that the latter obviates the
need forghostvariables, which scope over preconditionandpost-
condition and serve to relate the old with the new state. Ghost
variables are unwieldy in the presence of higher-order abstrac-
tion, because they either have too large a scope (usually global,
thus interfering with modularity) or else the user has to track their
scope and provide explicit instantiations. That is why we avoid
them by adopting binary postconditions. As an example, the code
“n ← read x; write x (n + 1); ret n” which increments a lo-
cationx and then returns the original value inx, can be given a
postcondition like the following:

λ(a:ans nat) (i f :heap). ∀n. i x = Some{type=nat, val=n} →
a = Valn ∧ f = update loc i x (n + 1)

The postcondition says that if in the initial memoryi the location
x maps to some natural numbern, then the answer returned by
the computation will be the valuen, and the final memory will be
equivalent to updating the initial memory at locationx with the
valuen+1. Note that we need the initial statei to correctly specify
the return value as well as the final state.

The constructors of theST monad and their signatures are
given in Figure 1. As we pointed out previously, these are added
axiomatically to Coq, but we have proved in [33, 38] that it issound
to do so. These will be the only axioms of Ynot, and the rest of



ret : Πx:A. ST top A (λa i f. f = i ∧ a = Val x)

bind : ST p1 A q1 → (Πx:A. ST (p2 x) B (q2 x)) →
ST (λi. p1 i ∧ ∀x h. q1 (Val x) i h → p2 x h) B

(λa i f. ((∃x h. q1 (Val x) i h ∧ q2 x a h f) ∨
∃e. a = Exn e ∧ q1 (Exn e) i f)

do : ST p1 A q1 → ((∀i. p2 i → p1 i) ∧
∀a i f. p2 i → q1 a i f → q2 a i f) → ST p2 A q2

read : Πr:loc. ST (r ↪→A −) A (λa i f. f = i ∧
∀v:A. (r ↪→ v) i → a = Val v)

write : Πr:loc. Πv:A. ST (r ↪→ −) unit (λa i f. a = Val tt ∧
f = update loc i r v)

new : Πx:A. ST top loc (λa i f.∃r:loc. a = Val r ∧ i r = None ∧
f = update loc i r x)

free : Πr:loc. ST (r ↪→ −) unit (λa i f. a = Val tt ∧ f = free loc i r)

throw : Πx:Exn. ST top A (λa i f. f = i ∧ a = Exn x)

try : ST p1 A q1 → (Πx:A. ST (p2 x) B (q2 x)) →
(Πe:exn. ST (p3 e) B (q3 e)) →

ST (λi. p1 i ∧ (∀x h. q1 (Val x) i h → p2 x h) ∧
∀e h. q1 (Exn e) i h → p3 e h) B

(λa i f. (∃x h. q1 (Val x) i h ∧ q2 x a h f) ∨
∃e h. q1 (Exn e) i h ∧ q3 e a h f)

fix : (Πx:A. ST (p x) (B x) (q x) → Πx:A. ST (p x) (B x) (q x))
→ Πx:A. ST (p x) (B x) (q x)

with top := λh. True
x ↪→A v := λh:heap. h x = Some {type=A, val=v}
free loc (h:heap)(r:loc) : heap := λx:loc. if r ==x then None else h x

Figure 1. Signature ofST primitives.

the development presented in this paper is completely carried out
definitionally within Coq.

In Figure 1 and further in the text we take the customary no-
tational liberties. For example, we use infix notation forx ↪→A v

which is a predicate over heaps that holds of the heaph iff h con-
tains a locationx pointing tov:A. We also abbreviate its existential
abstraction overv with x ↪→A −, usex ↪→ −when abstracting over
both v andA, and simplyx ↪→ v whenA can be inferred from
the context. Similar abbreviations can be made in Coq as well, us-
ing definitions, implicit parameters, and notation declarations [30].
Thus, the example programs that we write in the rest of the paper
in our stylized notation and with abbreviations, remain very close
to the Coq implementation.

We next discuss the types from Figure 1. In English,ret is the
monadic unit (Haskell’sreturn). It takes a valuex:A and produces
a computation that immediately returnsx. The preconditiontop
allows this computation to be executed in any heap. The postcon-
dition λa i f. f = i ∧ a = Val x guarantees that the final heapf
equals the initial heapi and that the answera equalsx. The answer
tagVal differentiates values from exceptions, so the postcondition
also specifies thatret does not raise an exception. An interesting
point to note here is that the range type ofret may be viewed as a
somewhat stylized form of a Hoare rule for assignment ofx to the
variablea.

The bind constructor performs sequential composition. It is
higher-order, as it takes effectful computations as first-class values.
Givene1:ST p1 Aq1 ande2:Πx:A. ST (p2 x)B (q2 x), bind e1 e2

first executese1 to obtain the resultx:A, and then executese2 x.
Thus, it should not be surprising that the Ynot type forbind is very
closely related to the Hoare rule for sequential composition. How-
ever, there are significant differences as well, which we introduced
to facilitate inference. For example, the precondition of the com-

positionλi. p1 i ∧ ∀x h. q1 (Val x) i h → p2 x h, has a two-fold
purpose. First, it requires that(p1 i) holds so thate1 can execute
against the initial heap. Then, it requires that any return valuex:A
and anyh:heap that may have been obtained by the execution of
e1 – and which thus necessarily satisfyq1 (Val x) i h – must imply
(p2 x h), so thate2 x can subsequently execute against the heap
h. In most Hoare-style logics, the second conjunct is not partof
the precondition, but is made unnecessary by requiring thatq1 and
p2 are syntactically equal. We decided against this formulation be-
cause, in practice, it forces the programmer into a potentially bur-
densome task of convertingq1 andp2 into some syntactically equal
form before the sequential composition could even be formed.

The idea behind our rule is toinfer the specification of the se-
quential composition out of the specifications of the two compo-
nents. The inferred specification is then taken asprincipal, in the
sense that the system will use it whenever it needs to reason about
the composite program. That is why the pre and postconditions in
the typing rule must be as specific as possible. For example, the pre-
condition forbind basically only defines under which conditions
the preconditions ofe1 ande2 are met at appropriate points in the
sequential execution. The postcondition is principal in the similar
way, under the assumption that the whole composition terminates
(ST captures only partial correctness semantics). The postcondition
consists of two disjuncts that essentially describe the behavior of
the composition ife1 terminates with a value, and ife1 terminates
by raising an exception. In the first case, there exist a valuex:A and
an intermediate heaph, obtained after the execution ofe1, which
by typing of e1 must satisfyq1 (Val x) i h. If e2 terminates when
executed inh, then there also exists some final answera – either a
value or an exception – and some final heapf which, by the typing
of e2, must satisfyq2 x a h f . If e1 raises an exceptione, then the
execution ofe2 is not even attempted. The exception is returned as
the answer of the whole composition (conjuncta = Exn e), and
the final heapf is the one obtained after executinge1 (conjunct
q1 (Exn e) i f ).

The commandtry e e1 e2 is an exception-handling construct
which executese2 if e raises an exception, but instead of falling
through in casee returns a value,try actually proceeds with exe-
cutinge1. The utility of this monadic form oftry has been argued
by Benton and Kennedy [3] in compiler optimizations, where it fa-
cilitates code motion. We adopt this form for similar reasons, as
rearranging code in semantic-preserving way can sometimesmake
proofs about programs much easier.

Ynot also includes a constructfix for general recursion. The
result type offix is anST computation, which means that we treat
recursion (and hence non-termination) as an effect. This isessential
for soundness of the system, as it prevents the typechecker from
normalizing possibly diverging computations.

Example1. Consider the delete operation given earlier (without the
syntactic sugar, and with explicit declaration of argumenttypes):

Definition delete (r:loc) (k:key) :=
bind (read r)(λ`.write r (remove cmp k `)).

and assuming that typeskey, value, kvlist := list(key∗value), have
already been defined. The inferred type fordelete is rather involved
and is given by:

Πr:loc.Πk:key.
ST (λi. (∃v:kvlist. (r ↪→ v) i) ∧ ∀x h. h = i ∧

(∀v:kvlist. (r ↪→ v) i→ Val x = Val v)→ (r ↪→ −) h)
unit
(λa i f. (∃v:kvlist. (r ↪→ v) i) ∧

((∃x h. (h = i ∧ (∀v:kvlist. (r ↪→ v) i→ Val x = Val v)) ∧
a = Val tt ∧ f = update loc h r (remove cmp k x)) ∨

(∃e. a = Exn e ∧ f = i ∧
∀v:kvlist. (r ↪→ v) i→ Exn e = Val v)))



Of course, this is only one of many possible types, because there are
many ways to syntactically represent semantically equivalent pre-
and postconditions. Furthermore, a programmer may wish to not
only use a syntactically different specification, but one where the
precondition is stronger and/or the postcondition is weaker than the
principle specification we infer. This is the role of thedo primitive,
which corresponds to the rule of consequence in Hoare Logic.It
takes a computation of typeST p1 Aq1, and changes the type into
ST p2 Aq2, if a proof is explicitly provided as an argument ofdo

thatp1 can be strengthened intop2 andq1 can be weakened intoq2.
The idea is thatp2 andq2 may provide a more abstract specification
thanp1 andq1, and hide unwanted implementation details. Hence,
do is essential to information hiding.

Example2. It is possible to use Coq’s built-in “match” construct
to build conditional monadic expressions. However, then weare
forced to ensure that each branch of the conditional has the same
type (up to definitional equivalence) when usually, the pre-and
postconditions of the two branches differ. The user can avoid this
problem by coding her own match primitive which uses “do” to
coerce the branches to anST type with common pre- and post-
conditions. For example, the functionmatch option, used in the
definition of our association listlookup, can be coded as follows:

Program Definition
match option (x : option A) (c1 : ST p1 B q1)

(c2 : Πv:A.ST (p2 v) B (q2 v)) :
ST (λi. (x = None→ p1 i) ∧ ∀v. x = Some v → p2 v i) B

(λa i f. (x = None→ q1 a i f) ∧
∀v. x = Some v → q2 v a i f) :=

match xwith
| None⇒ do c1
| Some v ⇒ do (c2 v)
end.

Notice that the compound command has the pre- and postcondition
corresponding to the Hoare-rule for conditionals, but thatit is
necessary to coerce both commands to the common specification so
that Coq can type-check the code. Of course, oncematch option
is defined, we no longer have to worry about finding the weakest
common precondition and strongest common postcondition.

The definition given here uses under-scores for the proof obli-
gations of the two uses ofdo. The recent Russel extensions to Coq
allow us to omit proof obligations and fill them in after constructing
a definition [43]. In this case, once we have entered the definition of
match option, we are left with two obligations, which must show
that the two commands’ specifications can be weakened to the com-
mon interface, given the outcome of the test. The two obligations
are discharged with explicit proof scripts as follows:

Next Obligation. firstorder; discriminate. Qed.
Next Obligation.

split; try solve[firstorder].
intros x i m [H1 H2] H; split; try solve[intros; discriminate].
intros v0 t; injection t; intros []; auto.

Qed.

Example3. As a final example in this section, and one that is far
more typical in the code we have written, we can usedo to assign
our delete operation an explicit type with a much more readable
(though in this case weaker) specification than the principal one
inferred by Ynot:

Program Definition delete (r:loc) (k:key) :
ST (r ↪→kvlist −) unit

(λa i f. a = Val tt ∧
∀v:kvlist. (r ↪→ v) i→ (r ↪→ remove cmp k v) f)

:= do (`← read r; write r (remove cmp k `)) .

Next Obligation.
· · ·

Qed.

2.2 A Monad for Separation Logic

The weakened specification ofdelete from Example 3 is unfortu-
nately too weak. To see this, consider the scenario in which we
want to remove keys from two separate association lists, e.g.:

delete two(r1 r2:loc) (k1 k2:key) := delete r1 k1; delete r2 k2

Assume further thatr1 andr2 contain association lists and are not
aliased in the initial heap, that is(r1 ↪→kvlist −) i, (r2 ↪→kvlist −) i

and r1 6= r2. One may intuitively think that these assumptions
suffice to prove thatdelete two is safe, but that is not the case.
To verify delete two, Ynot will first combine the inference rule
for bind from Figure 1 with the specification ofdelete to infer the
precondition:

P = λi. (r1 ↪→ −) i ∧ ∀x h. (x = Val tt ∧ ∀v. (r1 ↪→ v) i→
(r1 ↪→ remove cmp k1 v) h)→ (r2 ↪→ −) h

Then it will require a proof thatP i is valid under the described
assumptions, which amounts to inferring the conclusion(r2 ↪→
−) h, from (r2 ↪→ −) i and the constraint that(r1 ↪→ v) i→ (r1 ↪→
remove cmp k1 v) h. Such inference cannot be made, of course, as
the constraint does not relateh andr2 in any way.

The problem, as already identified by the work on Separation
Logic [36] is that the weakened postcondition ofdelete describes
how locationr is changed, but forgets to specify that the rest of the
heap, disjoint from locationr, remains intact.

A stronger and appropriate specification fordelete can certainly
be written directly in theST monad. However, the illustrated prop-
erties of disjointness and heap invariance appear so often in practice
that it is better to introduce a general and uniform methodology for
dealing with them.

We therefore introduce a new monadSTsep to codify the
reasoning in Separation Logic. Informally, the idea is thate :
STsep p A q should hold iff whenevere is executed in a heapi]h,
wherei andh are disjoint andp i holds, then ife terminates, we are
left in a statef]h such thatq i f holds. That is, theh portion of the
state, which is not covered by the pre-condition, remains unaffected
by default. In Separation Logic, programs like this, which do not
touch the heap outside of what their precondition circumscribes,
are said to satisfy theframe property.

Fortunately, theSTsep monad can be defined in terms ofST
and doesnot need to be added axiomatically.

STsep : pre→ ΠA:Type. post A→ Type

STsep p A q = ST (p ∗ top) A (λa. p ( q a)

Here∗ is the well-known separating conjunction, andp ( q builds
a postcondition which essentially states thatq only describes how
to change the parts of the initial heap circumscribed byp.

P1 ∗ P2 = λh:heap.∃h1, h2. splits h h1 h2 ∧ P1 h1 ∧ P2 h2

P ( Q = λi m. ∀i1 h. P i1 → splits i i1 h→
∃m1. splits m m1 h ∧Q i1 m1

where
splits (h h1 h2:heap) := disjoint h1 h2 ∧ h = union h1 h2

union (h1 h2:heap) : heap :=
λx:loc.match h1 xwithNone⇒ h2 x | ⇒ h1 x end

disjoint (h1 h2:heap) := ∀x:loc. (x ↪→ −) h1 → h2 x = None

The definition ofSTsep therefore directly formalizes the intu-
ition behind separation logic and the frame property. In this sense,
it is closely related to the recent semantic models of Separation
Logic [5] in which the frame rule is “baked in” to the interpretation
of triples. The fact thatSTsep could be defined in terms ofST may
be surprising, because it shows that even in the large footprint se-
mantics ofST, Ynot programs do satisfy the frame property. The
inference rules ofST compute the weakest precondition that guar-
antees that the program is safe, meaning that the inferred precondi-
tion must basically represent the memory footprint of the program.



ret : Πx:A. STsep emp A (λa i f. f = i ∧ a = Val x)

bind : STsep p1 A q1 → (Πx:A. STsep (p2 x)B (q2 x)) →
STsep (λi. (p1 ∗ top) i ∧ ∀x h. (p1 ( q1 (Val x)) i h →

(p2 x ∗ top) h) B
(λa i f. ((∃x h. (p1 ( q1 (Val x)) i h ∧ (p2 x ( q2 x a) h f) ∨

∃e. a = Exn e ∧ (p1 ( q1 (Exn e)) i f)

do : STsep p1 A q1 → (∀i. p2 i → ∃h. (p1 ∗ this h) i ∧
∀a f. (q1 a ∗∗ delta(this h)) i f → q2 a i f) →

STsep p2 A q2

read : Πr:loc. STsep (r 7→A −) A (λa i f. f = i ∧
∀v:A. (r 7→ v) i → a = Val v)

write : Πr:loc. Πv:A. STsep (r 7→ −) unit (λa i f. (r 7→ v) f ∧ a = Val tt)

new : Πx:A. STsep emp loc (λa i f. ∃r:loc. a = Val r ∧ (r 7→ x) f)

free : Πr:loc. STsep (r 7→ −) unit (λa i f. a = Val tt ∧ emp f)

throw : Πx:Exn. STsep emp A (λa i f. f = i ∧ a = Exn x)

try : STsep p1 A q1 → (Πx:A. STsep (p2 x) B (q2 x)) →
(Πe:exn. STsep (p3 e) B (q3 e)) →

STsep (λi. (p1 ∗ top) i ∧
(∀x h. (p1 ( q1 (Val x)) i h → (p2 x ∗ top) h) ∧
∀e h. (p1 ( q1 (Exn e)) i h → (p3 e ∗ top) h) B

(λa i f. (∃x h. (p1 ( q1 (Val x)) i h ∧ (p2 x ( q2 x a) h f) ∨
∃e h. (p1 ( q1 (Exn e)) i h ∧ (p3 e ( q3 e a) h f)

fix : (Πx:A. STsep (p x) (B x) (q x) → Πx:A. STsep (p x) (B x) (q x))
→ Πx:A. STsep (p x) (B x) (q x)

where emp := λh. h = empty
x 7→A v := λh. h = update loc empty x v
this := λh1 h2. h1 = h2

delta P := λh1 h2. P h1 ∧ P h2

Q1∗∗Q2 := λi h.∃i1 i2 h1 h2. splits i i1 i2 ∧
splits h h1 h2 ∧ Q1 i1 h1 ∧ Q2 i2 h2

Figure 2. Signature ofSTsep primitives.

The only way in which the precondition can be changed, is bydo-
encapsulation and this can only strengthen the precondition. Thus,
in both of our monads, a memory operation cannot be performed
unless the access to the particular location is, intuitively, “granted
by the precondition”. This is, of course, the essence of the modular
nature of Separation Logic and of Ynot.

The next step in the definition is to re-type each of theST
primitives, so that they can be used in theSTsep monad. This can
be done in each case by an appeal to the rule of consequence, as
shown in our Coq implementation. Here, we only give the new
signatures in Figure 2.

Separation Logic requires a separate rule – theframe rule– to
make explicit logical inferences with the frame property. In the
STsep monad, that role is ascribed to the constructordo, whose
type now encodes not only the rule of consequence, but the frame
rule as well. For example, in order to weakenSTsep p1 Aq1 into
STsep p2 Aq2, we now require showing that there exists a subheap
h which remains invariant across the computation. Ifh is restricted
to beempty, then we recover the oldST rule of consequence.

The important point, however, is that switching fromST to
STsep does not require adding extra inference rules and constructs,
and the programs inSTsep retain the same general shape and oper-
ational behavior as theirST counterparts (though the specifications
and correctness proofs may change).
Example4. The proper type fordelete in theSTsep monad is

delete (r:loc) (k:key) :
STsep (r 7→kvlist −) unit

(λa i f. a = Val tt ∧
∀v:kvlist. (r 7→ v) i→ (r 7→ remove cmp k v) f)

This differs from Example 3 only in that↪→ is replaced by the more
precise points-to relation7→. That suffices to type checkdelete two
as well.
Program Definition delete two (r1 r2:loc) (k1 k2:key) :

STsep (r1 7→kvlist − ∗ r2 7→kvlist −) unit
(λa i f. a = Val tt ∧
∀v1 v2. ((r1 7→ v1) ∗ (r2 7→ v2)) i→
((r1 7→ remove cmp k1 v1) ∗ (r2 7→ remove cmp k2 v2)) f)

:= do (delete k1 v1; delete k2 v2) .

2.3 Verification

The inference rules from Figures 1 and 2 may look rather unwieldy
at first sight, especially when compared to rules in Hoare or Sep-
aration Logic. This is just as well; we do not intend to use the
rules manually in verification, but to infer the principle specifica-
tion of monadic programs (up to loop invariants). In this sense,
Ynot is really more closely related to predicate transformers [11]
than to Hoare Logic. The annotation inference essentiallycompiles
the program into a Coq proposition whose validity implies the pro-
gram’s correctness, thereby reducing verification to theorem prov-
ing in Coq. This principal proposition may be rather large and dif-
ficult to tackle directly. A useful simplifying strategy is to divide
it into a set of smaller verification conditions, which are easier to
prove.

In this process, Ynot exploits the property that the principal
proposition inherits the structure of the program it is generated
from. Consider a program of the formbind (read x) e, where
e : Πy:A.STsep (p2 y) B (q2 y) is arbitrary, and suppose we want
to coerce this program into the typeSTsep p1 B q1. The inference
rules from Figure 2 would require a proof obligation of the form

∀i:heap. p1 i→
verifies i (bind pre (read pre A x) (read post A x) p2)

(bind post (read pre A x) (read post A x) p2 q2)
q1

Hereverifies abbreviates part of the obligation in theSTsep typing
rule fordo; that is:

verifies (i:heap) (p:pre) (q r:post B) : Prop :=
∃h. (p ∗ this h) i ∧ ∀ a f. (q a ∗∗ delta(this h)) i f → r a i f

andbind pre, bind post, read pre, read post abbreviate theSTsep
pre and postcondition forbind andread; e.g.,bind pre p1 q1 p2 =
λi. (p1 ∗ top) i ∧ ∀x f. (p1 ( q1 (Val x)) i f → (p2 x ∗ top) f), and
analogously forbind post, read pre andread post.

One possible way to discharge this obligation is simply to un-
fold the abbreviations and attempt the proof directly. But,knowing
that the corresponding program isbind (read x) e, a simpler strat-
egy is as follows. First show that the read itself is safe; that is,
p1 i → (x ↪→A v) i holds for somev. Then show thate v is safe to
execute in the heapi, that isp1 i → verifies i (p2 v) (q2 v) q1. This
strategy can be codified andverified in the form of a lemma. We
generalize with respect to the heapi, and make the hypothesisp1 i
implicit (since it persists across the subgoals) to obtain:

Lemma eval bind read :
∀x:loc, v:A, p2:A→pre, q2:A→post B, i:heap, r:post B.

(x ↪→A v) i→ verifies i (p2 v) (q2 v) r →
verifies i (bind pre (read pre A x) (read post A x) p2)

(bind post (read pre A x) (read post A x) p2 q2) r

We have proved similar lemmas for all possible interactionsof
STsep commands, and wrapped them into a tacticnextvc that
pattern matches against the current proof state, and automatically
chooses the appropriate lemma to apply. Thenextvc tactic emits the
immediate verification condition for the first effectful command in
the proof state, and advances the proof state to the next command.
This basically corresponds to symbolically evaluating theoriginal
programin the logic itself, discharging the verification conditions
in the order of appearance.



Record FiniteMap (K V : Type)
(cmp : Π(k1 k2 : K). {k1 = k2} + {k1 6= k2}) : Type := {

T : Type

model : Type := list (K ∗ V)

rep : T → model → heap → Prop

valid : T → heap → Prop := λt h.∃m. rep t m h

permutes : ∀t:T. ∀m1 m2:model. ∀h:heap.
rep t m1 h → (Permutation m1 m2 ↔ rep t m2 h)

distinct : ∀t:T. ∀m:model. ∀h:heap. rep t m h → distinct keys m

rep precise : ∀t:T . precise (valid t)

create : STsep emp T
(λa i f.∃t:T. a = Val t ∧ rep t nil f)

destroy : Πt:T. STsep (valid t) unit(λa i f. a = Val tt ∧ emp f)

insert : Πt:T. Πk:K. Πv:V.
STsep (valid t) unit (λa i f. a = Val tt ∧

∀m:model. rep t m i → rep t ((k, v)::(remove cmp k m)) f)

lookup : Πt:T. Πk:K.

STsep (valid t) V (λa i f.∀m. rep t m i → rep t m f ∧
((∃v:V. a = Val v ∧ assoc cmp k m = Some v) ∨

(a = Exn Failure ∧ assoc cmp k m = None)))
delete : Πt:T. Πk:K.

STsep (valid t) unit (λa i f. a = Val tt ∧
∀m:model. rep t m i → rep t (remove cmp k m) f)

}.

Figure 3. Interface for a Finite Map

In most related systems like PCC [34], ESC [26], Spec# [2],
Sage [14] or WHY [13], the generator is an external program that is
usually not verified itself. This is not to say that external generators
have not been verified before. For example, several such projects
have been carried out in HOL [19] and Isabelle [50, 49]. The latter
implement the verifier in the internal language of the prover, and
then extract a corresponding ML program which can be compiled
and executed to produce the verification conditions. Our proposal
seems much more direct and requires a smaller trusted computing
base. Because condition generation is carried out by applying a
lemma internally in Coq, we do not need to rely on the correctness
of external tools for compiling the generator code, or for translating
the generated conditions back into Coq for discharging.

3. Interfaces and Modules
Thus far, we have seen how Ynot makes it possible to write impera-
tive code in the style of Haskell, how principal specifications are in-
ferred, how those specifications can be explicitly weakenedby the
programmer, and howSTsep can be used to achieve separation-
style, small-footprint specifications. In this section, weconsider
how these mechanisms can be combined with Coq’s abstraction
mechanisms to implement (first-class) abstract data types (ADTs).

We begin by considering an interface for imperative finite maps
(Figure 3) which is intended to abstract implementation details.
Usually, an interface for an ADT consists of an abstract typeand
type signatures for a set of operations over that type. Theseare
conveniently packaged together in Coq as a dependent recordtype,
or alternatively as a module. Here, we chose to use a record type,
because then our ADT modules can be first-class.

In the setting of Ynot, the type signatures of ADT operations
can capture not only types, but of course, specifications. However, it
is important to make sure that the signatures are suitably abstract so
that they admit different implementations. Therefore, in addition to
abstracting an implementation typeT, the interface abstracts over
a representation predicaterep which associates an implementation
value of typeT to an idealized modelm in a given state. Here,

we have chosen to model finite maps asfunctionalassociation lists,
but effectively quotient the lists through the predicatespermutes
anddistinct so that they behave like finite maps.distinct keys is a
predicate that holds if association lists do not have redundant keys.
That is, in model, the order of the elements in the association list is
immaterial, and we demand that keys occur at most once.

In the case of theimperativeassociation list implementation,T
will be instantiated with the concrete typeloc and therep predicate
can be defined so that:

rep t m h := ∃m′. distinct keys m′ ∧ Permutation m m′ ∧
(t 7→ m′) h

But of course, a different implementation will choose different
definitions forT andrep as we show in Section 3.1 below.

The interfaces for the operations use therep predicate to specify
the effect of the operation on the abstract type in terms of the model.
For example, when weinsert key k with valuev into a finite map
t, then if t represents the functional association listm on input,
then on output,t represents the list(k, v) :: (remove cmp k m). If
we thenlookup k, we can prove that we will get the valuev back
as a result, and all of the reasoning can be done in terms of the
simple functional model. For all intents and purposes, clients of the
FiniteMap interface can reason as if the implementation is a simple
reference to this functional model, when in fact, the implementation
can have drastically different internals.

When we move to interfaces such as this one, the use of the sep-
aration monadSTsep becomes crucial. Recall that if we attempt to
useST, then to get sufficiently strong post-conditions, we must re-
veal which locations arenot affected by a command. The easiest
way to do this is to express the output heap as a function of thein-
put heap, but doing so tends to reveal implementation details. Com-
bining an abstract predicate, such asrep, with the small-footprint
abstraction ofSTsep ensures that these details can remain safely
hidden behind the interface, and yet clients can still effectively rea-
son about state that is not “owned” by the abstraction.

Finally, our interface for finite maps requires a proof that therep
predicate isprecisethrough therep precise component. A heap-
predicateP is precise when for all heapsh, if P holds of some
subheap ofh, then that subheap is uniquely determined [37]. More
formally,

precise P = ∀h, h1, m1, h2, m2.
splits h h1 m1 → splits h h2 m2 →

P h1 → P h2 → h1 = h2 ∧m1 = m2

Precision is important for making inferences about the equality of
heaps and values. For example, if we know that(x 7→ v1) h1 and
(x 7→ v2) h2, andh1, h2 are both subheaps ofh, then we should
be able to conclude thath1 = h2 and correspondingly,v1 = v2.
This property is basically a more concrete statement of the fact that
x 7→ − is a precise predicate. We have found in practice, clients of
our finite map structures will need to make similar inferences about
the heap occupied by the finite map. Exposing the property that rep
is precise makes such inferences possible, while at the sametime
manages to keep the actual implementation ofrep hidden.

In summary, the fact that a Coq dependent record type allows
us to abstract over types, predicates, and terms makes it easy to
capture true ADT interfaces in a uniform fashion. The use ofSTsep
in conjunction with an abstract representation predicate in terms of
an idealized model is crucial for achieving natural, yet workable
specifications.

3.1 An Alternative Implementation: Hashtables

We can easily build an implementation of theFiniteMap interface
using the association list operations defined at the beginning of Sec-
tion 2. In this section, we describe a more interesting implementa-
tion we have constructed, namely a hash table. Our library also in-



cludes an implementation based on splay-trees, but space precludes
a detailed discussion of both, so we focus on the hash tables.

Our hash table module is a functor that is parametrized by the
key and value types, hash and comparison functions for keys,and
a natural numbern wheren > 0. The tables are represented using
an array of pointers ton buckets, where the buckets are themselves
implemented as finite maps. Thus, the hash table functor alsoab-
stracts over aFiniteMap module, which can be instantiated with,
for instance, the association list module, our splay-tree module, or
even a nested hash-table. Therefore, theHashTableFunctor has an
interface that looks like this:

HashTableFunctor :
Π(K V : Type)(hash : K→ nat)

(cmp : Π(k1 k2:K), {k1 = k2}+ {k1 6= k2})
(Bucket : FiniteMap K Vcmp)
(len : nat)(lengt0 : len > 0). FiniteMap K Vcmp

Within the body of the functor definition, we represent the
abstract typeT as an array oflen locations, each of which points to
aBucket.T value. In Ynot, an array of lengthlen is treated similar
to a function fromnat to loc, with the guarantee that each location
is distinct. Thus, to read or write an array element, a programmer
can simply use pointer arithmetic to get at the appropriate location,
and then use the location read and write primitives. Of course,
the programmer must be able to prove that the location is in the
footprint of the computation in order to perform the read or write.
The proof must include a deduction that the pointer arithmetic used
to obtain the location is in bounds for the array. The actual code for
the various operations is relatively simple. For example, the code
for insert is as follows:

Program Definition insert (arr : array len) (k:K) (v:V) :=
let p := array plus arr ((hash k)mod len) in

do (bucket← read p ;
Bucket.insert bucketk v) .

The code begins by calculating a pointerp to the appropriate bucket
using thehash function and pointer arithmetic on the array. We then
dereference the pointer to get abucketelement of typeBucket. T.
Finally, we invoke theBucket.insert operation to insert the key and
value into thebucket.

To verify that the code meets theFiniteMap interface, we must
choose an appropriate definition forrep. We say a bucketbj is a
valid bucket with respect to an indexj, modelm and heaph when:

1. ∃mj ,Bucket.rep bj mj h, and

2. ∀(k, v) ∈ mj , (k, v) ∈ m ∧ (hash k)mod len = j, and

3. ∀(k, v) ∈ m, (hash k)mod len = j implies(k, v) ∈ mj .

That is, the bucket includes all and only the elements of the global
modelm whose keys map via thehash function to the indexj.

We say that an indexj is avalid index with respect to an array
arr , modelm, and heaph when:

valid index arr m j h :=
∃bj , (array plus arr j 7→ bj ∗ valid bucket bj m j)h

In English, each index of the array points to a valid bucket with
respect to the model and the index. Finally, we say that an array
arr represents an association listm in heaph when:

(valid index arr m 0 ∗ · · · ∗ valid index arr m (len − 1)) h

This iterated separating conjunction can be coded in Coq with the
use of an inductively defined predicate as follows:

Fixpoint iter sep (n:nat)(P :nat→heap→Prop) {struct n} :=
match n with
| 0 ⇒ emp
| S m⇒ (P m) ∗ (iter sep m P )

end.

and thus for the hash-table implementation, we define:

rep arr m h := distinct keys m ∧ iter sep len (valid index arr m) h

Given this definition forrep, the proofs that the operations meet
their specifications are relatively straightforward, if tedious, and we
refer the reader to the implementation for details. We do remark that
the proof scripts are relatively large when compared to the code, in
spite of our simplification tactics described in Section 2.3, and a li-
brary of tactics for reasoning about the separation connectives. The
entire hash table implementation (BucketHashMap.v) consists of
about 1200 lines (including comments and white-space). Of this,
only about 300 lines are the actual definitions that make up the
code; the rest consists of lemmas and proof scripts. Although we
hope that some day, the proof burden will be much lower, we also
believe that sophisticated invariants such asrep are far beyond what
state-of-the-art decision procedures can synthesize or prove auto-
matically.

4. Iterators
Figure 3 presents our basic finite map interface. In this section
we discuss how to extend it with an iteratorfold, which applies
a computationc to each key and value pair in the map. In our case,
the fold method must abstract over the return type ofc as well
as itsprecondition and postconditionso that we can capture the
effectful behavior of the iteration. Without abstraction over types
and predicates, it would not be possible to support such a general,
higher-order operation.

To motivate the development, imagine that we want to imple-
ment a genericcopy function that copies a collection of keys and
values from one finite map implementation to another. Such a func-
tion would have the following type:

copy (F G : FiniteMap K Vcmp) (t : F. T) :
STsep (F. valid t) (G. T)

(λa i f. ∃t′ : G.T. a = Val t′ ∧
∀m:F.model. F. rep t m i→

(F. rep t m ∗ G. rep t′ m) f)

It takes two possibly different finite map implementationsF and
G (say, one can be an implemented with hash tables, and the
other with splay trees), and a pointert:F. T to the map of kindF.
The function returns a pointer to theG copy. The postcondition
guarantees that the input map is semantically preserved (i.e., t
points into a memory that implements the same mapm in both
the initial and the ending heap), that theG copy also implements
the same mapm, and that the two copies occupy disjoint chunks of
memory.

Given an appropriate definition forfold, we should be able to
implement thecopy procedure as follows:

Definition copy (F G : FiniteMap K V cmp) (t : F. T) :=
t′ ← G. create ;
F. fold t tt (λk v b. G. insert t′ k v) ;
ret t′.

Notice that to writecopy as above,fold has to be able to take
an effectful computationG. insert and iterate it across the finite
map. But in order to conclude that at the end of thefold, we have
produced a copy of the original map, we need the specificationof
fold to capture theaggregateeffect of applying the computation
to each key and value pair. Of course, the interface forfold needs
to be sufficiently abstract that we can efficiently realize itfor the
different implementations.

Furthermore, it is desirable for the specification to prevent any
changes to the map during iteration. While iterators that change the
map are possible, there are situations that cause most implementa-
tions to break. For example, if a key is deleted from the map during
iteration, should its associated value be passed to the computation?
More subtly, in the context of the splay-tree iterator, a lookup oper-
ation can re-arrange the tree, making it difficult to track where the
iterator should look for the next key and value. To avoid these co-



nundrums, collection libraries, such as those found in Java, attempt
to rule out modifications to the collection during iteration, but are
forced to do so through a run-time check. This is usually accom-
plished by stamping the collection with a version number that is
incremented each time the collection is changed. If the iterator de-
tects a version mis-match, it will throw an exception. For example,
Java collections throw theConcurrentModificationException
when they detect a version mis-match.

In Ynot, we do not need time-stamps or run-time checks to
ensure the correctness of the iterator as the conflicts are simply
ruled out by the specification. Here then is our specificationof fold.

fold (t:T) (b:B)
(c : Πk:K. Πv:V.Πb′:B. STsep (P k v b′) B (Q k v b′)) :

STsep (λi:heap. ∃m:model. (rep t m ∗
(λh.∀m′. Permutation m m′ → fold pre P Q m′ b h)) i)

B
(λa i f. ∃m:model. ∃h:heap.

(rep t m ∗ (λi′. fold pre P Q m b i′ ∧ h = i′)) i ∧
(rep t m ∗ fold post Q m b a h) f)

The precondition requires that the initial heap can be splitinto the
portion belonging to the map (which thus satisfiesrep tm) and
some stateh that is owned by the computationc. The portionh
must satisfy an inductive predicatefold pre, defined below. Intu-
itively, fold pre characterizes a chain of heapsh=h1, h2, . . . , hn,
wherehj is the result of running the computationc in statehj−1

on thejth key-value pair. Additionally,hj−1 must satisfyP , and
hj will satisfy Q as required by the specification ofc. Notice that
fold is parametric inP andQ so that any computationc (that does
not access the map) can be supplied for iteration. Also, notethat
the order that the keys and values are presented to the computation
is non-deterministic: an implementation is free to presentthem in
any order that is a permutation of the model.

The postcondition also uses an inductive predicatefold post
(defined below) that effectively calculates the final state in the se-
quenceh=h1, h2, . . . , hn described above. The postcondition also
ensures that the model of the original map is preserved, asrep tm.
We do not factor out byPermutation mm′ in the postcondition as
we only care to specify that a model for the output heap exists.

Finally, we present the predicatesfold pre andfold post which
“iterate in the logic” the precondition and postconditionP andQ
of c, to capture the requirements thatfold makes on the state owned
by c.

Fixpoint fold pre (P :K→V→B→pre) (Q:K→V→B→post B)
(m:model) (b:B) (h:heap){struct m} : Prop :=

match mwith
| nil⇒ >
| ((k, v)::m′)⇒ P k v b h∧
∀f :heap. ∀a:B. Q k v b (Val a) h f → fold pre P Q m′ a f

end.

The predicate is defined by primitive recursion on the structure of
the modelm. Whenm is the empty list,c will not be executed
at all, so we impose no preconditions on its state (proposition>).
Whenm contains a key-value pair(k, v), c will be executed at least
once, and hence its state should satisfyP k v bh. If we get a valuea
and heapf out of the execution ofc, we are guaranteed they satisfy
Qk v b (Val a). But then this needs to guarantee we can iteratec
over the remaining part of the finite map, and thus we must show
it implies fold pre P Qm′ a f . In essence, this is a generalization
of the precondition for binary sequential composition ton-ary
sequential composition, wheren is determined by the length of the
modelm.

Similarly, the predicatefold post iterates in the logic the post-
conditionQ:

Fixpoint fold post (Q:K→V→B→post B) (m:model) (b:B)
(a:ans B) (i f :heap) {struct m} : Prop :=

matchm with
| nil⇒ i = f ∧ a = Val b
| ((k, v)::m′)⇒ (∃b′:B.∃h:heap. Q k v b (Val b′) i h ∧

fold post Q m′ b′ a h f) ∨
(∃e:exn, a = Exn e ∧Q k v b a i f)

end.

Notice how it allows the client to reason about the iterationand
the state of the finite map even ifc throws an exception. Again,
this predicate generalizes the postcondition of a binary sequential
composition to ann-ary case.

We can now show an implementation of an iterator for the
specific instance of hash tables. We do note here that we have
implemented a similar iterator for association lists and splay trees
as well, to confirm that the specification we give above is general
enough to support at least three different implementations.

For the purposes of specification of the loop invariants (which
we omit here, but present in the Coq implementation), the hash
table iterator is split into three functions as follows. First we have
a function fold bucketn which takes an index into the array of
bucket pointers and folds the function over the bucket with the
particular index. We make the same assumptions as in Section3.1.
For example,arr is an array oflen locations, each of which points
to aBucket, keys have typeK, values have typeV, etc.
Program Definition
fold bucketn (arr : array len) (j:nat) (pf:j < len) (b:B)

(c:Πk:K. Πv:V.Πb:B. STsep (P k v b) B (Q k v b)) :=
do (bucket ← array plus arr j ;

Bucket. fold bucket b c) .

The next function isfold bucketndown. It traverses the bucket ar-
ray up to the indexj, calling fold bucketn over each bucket en-
countered. The traversal is implemented via Coq’s primitive recur-
sion on the indexj. Notice the use of Coq wildcards to avoid writ-
ing the proofs within the program that the bucket indices arewithin
bound.
Fixpoint fold bucketndown (arr : array len) (j:nat) (pf:j < len) (b:B)

(c:Πk:K. Πv:V.Πb′:B. STsep (P k v b′) B (Q k v b′)) :=
match j with
| 0 ⇒ do (ret b)
| S k ⇒ do (r ← fold bucketndown arr k b c ;

fold bucketn arr k r c)
end.

Finally, the actual implementation offold is simply a wrapper,
immediately callingfold bucketndown, passing the size of the
bucket array along.

Program Definition
fold (arr : array len) (b:B)

(c : Πk:K.Πv:V.Πb′:B. STsep (P k v b′) B (Q k v b′)) :=
do (fold bucketndown arr len b c) .

5. Memoization
We close our examples by discussing an interesting use ofdepen-
dentfinite maps, namely verified memoization. A dependent finite
map has the same interface as the one given in Figure 3, exceptthat
the value typeV can depend upon a key as in:

Record DepFiniteMap (K : Type) (cmp : · · · ) (V :K→ Type) := {
T : Type
model : Type := list ({k : K, v : V k})
· · ·
insert : Πt:T.Πk:K. Πv:(V k). STsep · · ·
lookup : Πt:T.Πk:K.STsep (valid t) (V k) (· · · )
· · ·
}.



Somewhat surprisingly, our code for all three finite-map implemen-
tations easily generalizes to this more expressive interface, and our
implementation supports this. The advantage of a dependentfinite
map is that we can use it to approximate (and thus memoize) a
function. Given a functionF : Πk:K. V k, we can use a subset
type for the value of the finite map,λk:K. {x:V k | F k = x}.
For example, the following Ynot code is intended to compute
the nth Fibonnaci number. LetMemopad be the type of finite
maps that can only store Fibonnaci numbers, i.e.Memopad =
DepFiniteMap nat cmp (λk. {x:nat | ffib k = x}), whereffib is a
functional specification of the Fibonnaci function. The following
code is lifted from one of our example memoization files and com-
putes thenth Fibonnaci number:

Fixpoint ifib mem(n : nat)(mem:Memopad)(t : mem.T){struct n}
: STsep (mem. valid t)({x : nat | ffib n = x})

(λ a i f. mem. valid t f ∧ ∃v. a = Val v) :=
let ifib rec := λk. applyd t (ifib mem k mem t) in
match n with
| 0 ⇒ do (ret 0)
| S k ⇒ matchk with
| 0 ⇒ do (ret 1)
| S j ⇒ do (n1 ← ifib rec k ;

n2 ← ifib rec j ;
ret (n1 + n2))

end
end.

Definition ifib(n : nat)
: STsep emp ({x : nat | ffib n = x})

(λ a i f.emp f ∧ ∃v. a = Val v) :=
call mem (ifib mem n) (size := 1 + n).

The entry pointifib simply invokes a memoization library,call mem.
Thecall mem operation builds a memo table, which is a dependent
finite map of typeMemopad intended to associaten to ffib n. The
memo table is passed to theifib mem function so that it can be
used to cut-off re-computation. In particular, theapplyd function
first tries to find a value associated withk in the tablet. Failing
that, it invokes the recursive computationifib mem k and caches
as well as returns the result. Finally,call mem will deallocate the
memo table after the computation is complete. If the memoization
library is constructed with the hash table functor, then in principle,
the computation should run in time proportional ton.

Notice that the return type ofifib n guarantees that a return value
must beffib n through the use of a dependent type. Yet the proof
that the code is well-typed (i.e., respects the specification) is trivial.
This is because the hard parts of the proof were localized into the
correctness of the finite map implementations.

6. Compiling Ynot
We have developed a compiler for Ynot that produces object code
compatible with GHC-compiled Haskell modules. The compiler
works in three stages. First, code is extracted from Coq using a
small Coq extension that eliminates functors and modules and nor-
malizes all of the CiC terms. Second, the CiC terms are read in
to the Ynot compiler and lowered to an explicitly-phased interme-
diate language. In the second stage, we eliminate proof terms and
compile away inductives and pattern matching. Finally, we gener-
ate a set of GHC internal core language terms and compile them
using the GHC code generator. Compiling through GHC’s internal
language allows us to ignore the surface syntax and type system
of Haskell, while still getting the benefits of GHC’s optimizer and
run-time system1. In addition, since many Ynot terms have com-
putationally irrelevant sub-terms, the laziness of Haskell is a bene-
fit [9].

1 Many of the Ynot terms cannot be typed by GHC’s internal type system,
since GHC’s type system is too weak, but so far this has not been a problem.

The Coq system already has a code extraction mechanism [28].
However, the Haskell extraction, which we wanted to use bothfor
improved performance and a more advanced run-time system, isn’t
able to handle the entire Coq language. Also, we are eager to do ex-
periments with much more aggressive optimization and code elim-
ination techniques, and we needed an intermediate representation
that preserves all of the Ynot typing information. The Ynot com-
piler is still in the early stages of development, and is one area of
future work.

7. Related work
Extended static and dynamic checking. An alternative to start-
ing with a dependent type theory is to start with a standard ef-
fectful programming language, and attempt to retrofit facilities
for expressing models, specifications, dependency, refinement, and
proofs. For example, JML [7] and Spec# [2] extend Java and C# re-
spectively with support for Hoare-style pre- and postconditions as
well as object invariants and other features used to capturesafety
and correctness requirements of code. Then an automated SMT-
style prover is used to try to discharge proof obligations and es-
tablish that the code meets its specification. While there have been
great advances in automated prover technology over the pastfew
years, these systems still have trouble discharging all butthe most
“shallow” specifications such as array bound checks and NULL-
pointer checks. In contrast, dependent type theories make it possi-
ble to utilize automated deduction techniques, but when they fall
short, also allow the programmer to construct explicit proofs of
“deep” properties of programs. We claim that, for programs where
deep reasoning matters, programmers will play an integral role in
co-developing models, specifications, programs, and proofs.

Furthermore, the modeling and specification languages usedby
JML and Spec# are too weak to support a truly modular develop-
ment of programs and specifications. For example, neither language
has the expressive power to write and prove correct a principal
specification for a higher-order iterator, such as ourfold construct.

A related approach to refinements is the “design-by-contract”
idea, recently implemented by Sage [14] and Deputy [8]. Here, pro-
grammers write boolean expressions as pre- and postconditions that
are intended to be executed at run-time. Program analysis can op-
timize the run-time checks away, but in practice the overhead may
still be significant. A more important issue is that the contracts must
only contain benign effects in order to safely optimize themaway
without changing the behavior of the program. This becomes par-
ticularly important in the presence of concurrency, when contracts
must avoid deadlock and racing over shared data. However, ifwe
enforce that the boolean functions are benign according to some
syntactic or typing criteria, then in practice, we cannot always use
existing or efficient code for the contract. As a simple example,
consider a splay-tree lookup which happens to re-balance the tree:
The effects are benign (because eliminating the lookup is safe) but
this seems to demand a deep proof.

Dependent types for programming. There is another emerging
class of projects that are attempting to retrofit dependent typing to
effectful programming languages based on indexed or phase-split
dependent types. Notable examples include DML [52] and more
recent ATS [51], Omega [42], Concoqtion [15], RSP1 [48] and Liq-
uid Types [40]. These systems have a strong separation between the
programming language (which may include effects) and the spec-
ification languages (which do not). For example, in Concoqtion,
the programming language is based on OCaml, but the specifica-
tion language is based on Coq. Coq terms can be used to index
ML type constructors that classify values, so it becomes possible,
for instance, to use the types to capture correctness requirements.
However, neither of these systems can use indexed types to suit-



ably capture and reason about effects themselves (e.g., updates to a
mutable store.) Thus, while programmers can write effectful code,
they can only reason completely about the pure subset.

Higher-order Hoare Logics, models, and implementations. There
are a number of recent extensions of Hoare and Separation Logic
to higher-order functional languages. Honda et al. [20] give a total
correctness logic for PCF with references, and Krishnaswami et
al. [24] formalize higher-order Separation Logic for a higher-order
language and prove the correctness of a subject-observer pattern.
Weber [47] implements a first-order separation logic for a simple
while-language in Isabelle/HOL and verifies an in-place list rever-
sal algorithm. Preoteasa [39] implements a first-order separation
logic in PVS for a language with recursive procedures and proves
the soundness of the frame rule. Varming and Birkedal [45] imple-
ment in Isabelle a higher-order Separation Logic for an imperative
language with simple procedures and prove the correctness of Ch-
eney’s copying garbage collector. None of the above languages
considers the higher-order features such as polymorphism,quan-
tification over constructors and type equalities, that we consider in
Ynot. Yet as we have shown here, these are essential for modularity
and realistic programming.

The approaches also differ from Ynot in the treatment of pro-
grams with errors (e.g., a dereference of a dangling pointer). They
usually start with the universal domain of programs, out of which
specifications carve subsets, according to the pre- and postcondi-
tion. But, since erring programs are part of the universal domain,
the semantics has to make provisions for their treatment. This is not
so in Ynot where well-typed programs do not produce errors, and
thus errors do not show up during verification.

Another related approach is the refinement calculus [1] which
has recently been adapted to Coq [6]. Here, correctness is estab-
lished by showing that one program refines another: the abstract
program serves as specification for the concrete one. In Ynot, spec-
ifications are types, rather than refinement relations, and thus the
same distinction from above applies. Another key difference is that
the refinement semantics directly interprets programs as predicate
transformers in Coq. Therefore, the approach does not scaleto
include general higher-order functions, nor higher-orderstore [6,
Sections 6.5-6.6].

Allowing for these features is the main reason why we imple-
mented Ynot as an axiomatic extension, rather than a definition
within type theory. Of course, then we needed to show that it is
sound to do so [33, 38].

8. Summary and future work
Ynot is a dependently typed programming language that safely
extends Coq with stateful side-effects and a way to reason about
them via a version of Hoare and Separation Logic.

Unlike in many other Hoare-style logics, in the partial correct-
ness specifications are types, which leads to a distinctive and con-
cise style of use whereby programming, specification and verifica-
tion are all integrated and inter-dependent. The first example of in-
tegration is that our inference rules for partial correctness double as
programming primitives in the monadic style of Haskell: monadic
bind corresponds to sequential composition, monadicreturn to the
rule of assignment, monadicdo combines the rules of consequence
and frame.

The biggest advantage brought by the integration is that pro-
grams, types, predicates and proofs can allabstract overother pro-
grams, types, predicates and proofs, which facilitates information
hiding, codeand proofreuse, and modularity in general. These ab-
straction features already existed in pure type theories, but to date
were not reconciled with effects.

We illustrated the modularity features of Ynot by implementing
a certified library for mutable data structures such as association
lists, hash tables and splay trees, which are all instances of the finite
map interface, and can freely be interchanged in the clientsof the
finite maps. We illustrated that Ynot can support the programming
with and reasoning about important higher-order stateful patterns
such as shared local state (e.g., the state storing the finitemap is
shared by the methods, but its details are hidden from the clients),
higher-order iterators, and memoization. All of these essentially
rely on the ability to write code that is polymorphic in types, but
also in pre and postconditions.

In the most immediate future work, we plan to extend Ynot with
other kinds of side effects, such as I/O, concurrency, higher-order
control flow, and foreign functions. We also hope to improve sup-
port for equational reasoning about computations, and to provide
better automation support for discharging verification conditions.
Finally, we plan to further improve on the quality of the codegen-
erated by the Ynot compiler.
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