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Abstract

We describe an axiomatic extension to the Coq proof assjstan
that supports writing, reasoning about, and extractingérgrder,
dependently-typed programs witkide-effects Coq already in-
cludes a powerful functional language that supports deg@nd
types, but that language is limited to pure, total functiofke
key contribution of our extension, which we call Ynot, is the

added support for computations that may have effects such as

non-termination, accessing a mutable store, and throeatcii-
ing exceptions.

The axioms of Ynot form a small trusted computing base which
has been formally justified in our previous work on Hoare Type
Theory (HTT). We show how these axioms can be combined with
the powerful type and abstraction mechanisms of Coq to build
higher-level reasoning mechanisms which in turn can be tsed
build realistic, verified software components. To subséaatthis
claim, we describe here a representative series of modhis t
implement imperative finite maps, including support for ghtair-
order (effectful) iterator. The implementations rangarfreimple
(e.g., association lists) to complex (e.g., hash tables)share
a common interface which abstracts the implementationildeta
and ensures that the modules properly implement the finife ma
abstraction.

Categories and Subject Descriptors  F.3.1 Logics and Meanings
of Program$: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

Keywords Type Theory, Hoare Logic, Separation Logic, Monads

1. Introduction

Two main properties make type systems an effective andldeala
formal method. First, important classes of programmingrsrare
eliminated by statically enforcing the correct use of valui&econd,
types facilitate modular software development by servingec-
ifications of program components, while hiding the compdsen
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actual implementation. Implementations with the same tgrebe
interchanged, improving software development, reuse a&otii€
tion.

Mainstream type systems focus on relatively simple progert
that admit type inference and checking with little or no ihfrom
the programmer. Unfortunately, this leaves a number of gmtigs,
including data structure invariants and API protocols salé of
their reach, and also restricts the practical programmaajuires
that can be safely supported. For example, most simplyetjgre-
guages cannot safely allow low-level operations such ast@oi
arithmetic or explicit memory management.

Static verification can be somewhat extended by refiningstype
with annotations from more expressive logics, as impleetbim
ESC [26], IML [7], Spec# [2], Cyclone [21], Sage [14], DML [B2
Deputy [8] and Liquid types [40]. However, because of theaind
cidability of the annotation logics, these systems stillshrouble
automatically discharging all but the most shallow speaffans,
and do not provide alternatives to the programmer when the au
tomation fails, beyond run-time checks.

On the other hand, dependent type theories such as the Calcu-
lus of Inductive Constructions (implemented in the Coq pras
sistant), can provide very strong correctness assuranaeging
from simple type safety to full functional correctness, #sbme
property cannot be discharged automatically, the progranuan
provide the proof by hand.

Unfortunately, dependent type theories such as Coq, where
proofs are represented as language terms, make it diffecuitor-
porate computational effects. For example, a diverging terhich
can be assigned any type, could be presented as a “pro6fis,
which renders the theory inconsistent. As a result, mos tiipo-
ries limit computations to total, pure functions with ahgely no
side effects. For example, Coq excludes general recunsiotable
state, exceptions, 1/0 and concurrency. While some progriam
tasks, such as a compiler or a decision procedure, can baiform
lated as a pure, terminating function, most important tasksot.
Furthermore, even computations that can be cast as purtdiosic
need to use asymptotically efficient algorithms and mutalalie
structures (e.g., hash tables) to be practical.

In this paper, we present the syst&mot which is our proposal
for addressing the above shortcomings. Ynot starts withythe
theory of Coq, which already has good support for functiqgmat
gramming, inductive definitions, specifications, proofg] tactics,
and extends it with a new typ®T p A ¢ and the associated pro-
gramming constructors. IntuitivelgT classifies delayed, possibly
effectful computations, much the way that the 10-monadsifes
effectful computations in Haskell. The monadic separafamil-
itates a clean interaction between effects and pure Cogepre
ing the logical soundness of the combined system. Unlikekélhs
our monad is indexed not only by the return type of the compu-
tation, but also a precondition and postcondition, thusuram



Hoare Logic specifications in the type: When a computaticymd
STpAgqisrunin a heaph; satisfyingp ki, and it terminates, it
will produce a valuer of type A and result in a new hedp, such
that the predicate x h1 h2 holds. Computations can allocate, read,
write, and deallocate locations, throw and catch excegpfiamd
perform general recursion. Thus, Ynot makes it possible ritew
ML or Haskell-style programs and yet still be able to forma#a-
son about their values and effects.

Arranging Hoare-style specifications as monadic typessi¢ad
a very convenient formulation whereby the inference rulesctly
serve as monadic term constructors with specific operdtimtav-
ior. In such a setting, program verification becomes diebtethe
syntax of the program, which has several important consempse
First, there is no need for annotation burden in the form afsgh
state or auxiliary effectful code, which are often used inaks
style logics to expose intermediate program values andiamvs
and bring them into the scope of pre- and postconditions [37]

ifications may sometimes be too specific, as they describprtite
gram'’s result exactly, whereas one may care to specify amlyes
of the result’s properties.

Ynot differs from the above approaches in thaitomatically
extends Coq with selected monadic primitives. Of coursehae
proved in the previous work [33, 32, 38] that these axiomsalo n
cause unsoundness, and moreover, that the operationahtiesna
of Ynot respects th&T specifications. Ynot differs from most
of these systems in that it supports Hoare and Separatioit Log
reasoning for a higher-order, higher-typed language, e/vb#fect-
ful computations are themselves first-class values thaeaanbe
stored in references. Ynot differs from deep embeddingsazrel
Logic into Coq in that it can directly use Coq's purely fumctal
fragment for programming. For example, a deep embedding of a
language with higher-order functions must develop fronatetr
the type checking and reasoning rules about such functiomst,
on the other hand, immediately inherits all the purely-fioral

Second, a proof of any particular program component becomes primitives and their reasoning principles such as exteradity, in-

independent of the context in which the program appearstharsd
does not break when the program is considered in a largeextont
In most other languages, this kind wfodular soundnesis non-
trivial to achieve (if even possible), as argued for exanpgléeino
and Nelson [25]. In particular, it implies that one can blibdaries

of certified code, thus reusing both the code and its correctness

proof.

Third, the high-level structure of a proof for a stateful gmam
becomes easier, since at each program point there is onlpasie
sible proof step to consider. Of course, applying the step noa
be automatic, as we may need to supply witnesses for exadtent
quantifiers. However, uniqueness eliminates the need &tizeck-
ing, and leads to a particularly compact way to arrange \ave
ify the search process itself. In related verification systerok as
ESC[10], WHY [13], Spec#[2] or Sage [14], this would corresd
to verifying the verification condition generator — a stegttho the
best of our knowledge, none of the above systems undertake.

Another important property that is inherent in Coq, and thus
inherited by Ynot, is that types, propositions and proofs fast-
class objects, which one can abstract, compute with, anghasen
into aggregate structures. The programmer can thus impieghie
or her own verified algorithms for automation of certain measg
patterns [17] and scale the verification to programs of s&ali
size [27].

Many proposals for formal reasoning about stateful program
have been studied before, and even implemented in Cog. For ex
ample, Shao et al. [41, 35, 12], Benton and Zarfati [4] and diob
et al. [18] consider simple imperative or low-level langeagvith a
number of important features such as code pointers or caray,
and formalize deep embeddings of Hoare and Separation $.ogic
for such languages in Coq. Filliatre [13] presents a toolgemner-
ating verification conditions in the form of Coq propositsrbut
the programs supported by the tool do not admit higher-catler
stractions or pointer aliasing. Boulme [6] shallowly embeefine-

duction, primitive recursion, libraries of data types, feas, para-
metric polymorphism, existential types, quantificatioreovype
and predicateconstructors type equalities, etc. All of these, of
course, are irreplaceable as tools for structuring, maiyland
functorization of code and proofs.

Ynot also inherits Coq’s built-in support for inference gpés,
annotations and implicit parameters. When combined with th
monadic rules which we designed to avoid ghost state and aux-
iliary code, these lead to a programming style whose loakfael
is very close to the current practice of languages like Haske

The abstractions of Ynot are not only directly useful in pro-
gramming, but in definingewmonads for new Hoare Logics. For
example, we show how to define the morfafisep for specifica-
tions in the style of Separation Logic, directly in termsSdf, veri-
fying in Coq all the steps along the way. Separation Logisisally
taken as a foundation for modular reasoning about stateusS{T
monad shows that modularity can be achieved without stafitom
separation.

There will be no meta-theoretic proofs in the current pafmer;
that we refer the interested reader to our previous work33338].
The contribution of the current paper is to illustrate hoe theory
is translated into practice. In particular:

o We describe the design of Ynot including the primitive terms
and their specifications, and show how they can be used te writ
effectful code in a Haskell style.

o We show how the design supports automatic inference of prin-
cipal specifications for (loop-free) code, and eases thificagion
burden through the use of syntax-directed lemmas and $actic

o We show how a separation mon&dsep can be defined on top

of theST primitives and used to build and modularly verify higher-
order components.

« We describe a representative library of imperative, finiggorim-
plementations and their common interface. The librarylideb

ment theory into Coqg, where one can reason about the refirementhree implementations: association lists, hash-tabled, splay-

relation between two effectful programs, but does not seeout-
rently support adequate reasoning about pointer aliasirigcal-
ity of state. Kleymann [23] shows a shallow embedding of doar
Logic in the related type theory of LEGO. Concogtion by Fagar
et al. [15] is an effectful language whose types embed Copgsie
tions so as to reason precisely about program values, babtanr-
rently support reasoning about program effects. Marti affdldt

in [29] present a deep embedding of Separation Logic in Codj, a
certify the verification procedures for it. Swierstra andefikirch

in [44] axiomatize Haskell monads for IO, state and conawye
using purely functional specifications, but cannot cutyergason
about programs with higher-order store. Moreover, fumzicpec-

trees. The libraries support a higher-order operation timating
an effectful computation over the map, and reasoning abwat t
compound effects of the iterator. We also describe a verifieth-
oization library that we have constructed, based on the=fimiap
interface.

o We describe our prototype compiler that maps Ynot code to the
Glasgow Haskell Compiler’s intermediate language. Thepitan
has been used to compile all of the sample code in our library.

The source code of our Coq development can be found at
http://www.eecs.harvard.edu/ ~greg/ynot. To clarify the
presentation and fit into the allotted space, the code preddrre
is close, but not exactly the same as the library. In padicule



have formatted the code using suggestive mathematicaliorota
and omitted the proof scripts.

2. Basics of Ynot

We begin by showing some simple imperative Ynot code. The def
initions below implement an imperative finite map using aref
ence to an (immutable) association list. They take advantfg
previously-defined key and list operations suchcag, remove
andassoc which compare keys, remove key-value pairs from a list,
and look up the value associated with a key respectively.

Definition create := new empty_kv_list.

Definition insert r kv :=

¢ «— read r; write r ((k,v) :: (remove cmp k {)).
Definition delete r k£ :=

¢ «— read r; write r (remove cmp k £).

Definition lookup r £ :=
{ — read r;
match_option (assoc cmp k £)
(throw Failure)
(Av = ret v).

Definition destroy r := free r.

The code is written in a style similar to Haskell’s “do” ndtat.
In particular, the notation < e1;e2” is short-hand (definable
in Coq) for “bind e1 (Az.e2)” and is used to construct sequential
compositions of primitive computations. In this case, thenfiive
computations include effectful operations suchnag (for allo-
cating and initializing a referencelkad andwrite (for accessing
the contents of a referencéee (for deallocating a reference), and
throw for throwing an exception. The other key primitives include
ret, which lifts a pure Coq value into the space of computatiérs;
which is used to construct recursive computations; apdwhich
is used to catch exceptions.

Also like Haskell, Ynot can automatically infer types foreth
code. The types of effectful computations will in generattassi-
fied by a monadic type construg®. However, unlike Haskell, the

ST monad is indexed by pre- and postconditions that summarize

when it is safe to run a computation, and what the effects f th
computation are on the world. For example, it is not safe tothe
read computation on a ref that has beefree’d. In reality, this in-
ference only works for straightline code and so the spetiifioa of
loops usingfix must be written explicitly. Nevertheless, the infer-
ence mechanisms make it relatively easy to write useful iatpe
code, abstract over it, and reason about it.

In what follows, we describe more formally the basics of the
Ynot primitives, pre- and postconditions, our model of feagic.
We then show how programmers can write code with explicitspe
ifications and convince the type-checker, through exppicitofs,
that code respects a given interface. The rest of the paperssh
how, using these facilities and the abstraction mechanifrt®qg,
we can realize an abstract interface for finite maps that@tpp
not only this simple association list, but also more soptastd
data structures, including hash tables and splay treesldt/&an-
sider higher-order operations, such as a fold over the finde,
that supports effectful computations.

2.1 Formalism

The design of Ynot is a generalization of the well-known &lea
from type-and-effect systems [16] and their monadic caunte
parts [31, 46]. Our monadic tyd&T p A g classifies programs that
return values of typed, but that may also perform stateful side ef-
fects. The effect annotatiopsandgq take the role of a precondition
and a postcondition. They are drawn from higher-order lagither

than from any particular finitary algebraic structure, asally the
case in simple type-and-effects. The expressiveness loéhigrder
logic will allow us to very precisely track the stateful betma of
programs. Of course, becaysandq may dependbn run-time en-
tities like memory locations and exceptions, this preciaeking
essentially requires dependent types.

More formally, the signature of tH&T type constructor is as fol-
lows. To reduce clutter, here we use a more stylized matheahat
notation instead of the actual concrete syntax of Coq.

ST : pre — ITA:Type. post A — Type

Here pre is the type of preconditions, angbst A is the type of
postconditions, where the postconditions also scopestheean-
swer that the computation returns.

pre := heap — Prop post A := ans A — heap — heap — Prop

The answer of a computation can either be a value (of some type
A) or an exception that the computation raised. We distirigbées
tween these two cases using the typeA and its two constructors:
Val: A — ans A andExn : exn — ans A.

Heaps are modeled as partial functions from locations te typ
dynamic. Elements oflynamic are records, packaging a type and
a value, thus abstracting the type. Modeling heaps this Ways
us to implement strong updates, whereby a location can point
values of varying types.

dynamic := {type:Type, val:type}
heap := loc — option dynamic
empty : heap := A\l. None
update_loc (h:heap)(r:loc)(v: A) : heap :=
Az:loc. if r ==z then Some {type=A, val=v} else hz

The typesloc and exn denote locations and exceptions, respec-
tively. For each type, we assume they are countably infinit a
support decidable equality. In a model, they can be treadsoa
morphic to natural numbers.

As customary (e.g, in Separation Logic), preconditions are
unary relations over heaps, specifying the set of heaps iohwh
the program can execute without causing any memory errats su
as dereferencing a dangling pointer. Postconditionserete an-
swer of a computation withoththe initial and ending heaps. Hoare
Logic postconditions usually range only over the endingestaut
formulations that range over both states are not uncommun, a
date back at least to the classical work on the Vienna Develop
ment Method [22]. It is well-known that the latter obviatdse t
need forghostvariables, which scope over preconditiand post-
condition and serve to relate the old with the new state. Ghos
variables are unwieldy in the presence of higher-orderrabst
tion, because they either have too large a scope (usualballo
thus interfering with modularity) or else the user has tokréneir
scope and provide explicit instantiations. That is why weidv
them by adopting binary postconditions. As an example, tuec
“n «— read x; write z (n + 1); ret n” which increments a lo-
cationz and then returns the original value in can be given a
postcondition like the following:

A(a:ansnat) (¢ f:heap).Vn.ix = Some{type=nat, val=n} —

a=Valn A f = update_lociz (n + 1)
The postcondition says that if in the initial memaryhe location
x maps to some natural number then the answer returned by
the computation will be the value, and the final memory will be
equivalent to updating the initial memory at locatiorwith the
valuen + 1. Note that we need the initial statéo correctly specify
the return value as well as the final state.

The constructors of th€T monad and their signatures are
given in Figure 1. As we pointed out previously, these aresddd
axiomatically to Coq, but we have proved in [33, 38] that &dsind
to do so. These will be the only axioms of Ynot, and the rest of



ret : IIz:A. ST top A (Aaif. f =i Aa=Valz)

bind : ST p1 A q1 — (IIx:A.ST (p2 z) B (g2 x)) —
ST (XNi. p1i AVah.qi (Valz)ih — poxh)B
(Xaif.((3zh. g1 (Valz)ih Agaxzahf)V
Je. a = Exne A g1 (Exne)i f)

do:STp1 Aqr — ((Vi.p2i — p1i) A
Vaif.p2i—qraif —qgzaif)—STp2Ag

read : IIr:loc. ST (r <=4 —) A (Xaif. f=iA
VuiA. (r — v)i — a = Valv)

write : IIr:loc. [Tv:A. ST (r < —) unit (Aa ¢ f. a = Valtt A
f = update_locirv)

new : ITz:A. ST top loc (Aai f.3r:loc. a = Valr A ir = None A
f = update_locir x)

free : IIr:loc. ST (r < —) unit (Aai f.a = Valtt A f = free_locir)
throw : TIz:Exn. ST top A (Aai f. f =i Aa = Exnz)

try : ST p1 A g1 — (IIx:A.ST (p2z) B (g2 z)) —
(ITe:exn. ST (p3 e) B (g3 e)) —
ST (Mi.p1i A (Vo h.q1 (Valz)ih — paxh) A
Veh.q1 (Exne)ih — pseh) B
(Maif.(3zh.qu (Valz)ih Agazah f)V
Jeh.q1 (Exne)ih Agzeah f)

fix : (Mz:A.ST (pz) (Bz) (qz) — Mx:A. ST (pz) (Bx) (gx))
— [a:A.ST (px) (Bz) (q)

with top := Ah. True
x <4 v := Ah:heap. h x = Some {type=A, val=v}
free_loc (h:heap)(r:loc) : heap := Axz:loc. if r ==z then None else h x

Figure 1. Signature oST primitives.

the development presented in this paper is completelyethoit
definitionally within Coq.

In Figure 1 and further in the text we take the customary no-
tational liberties. For example, we use infix notation for— 4 v
which is a predicate over heaps that holds of the He#p h con-
tains a location: pointing tov: A. We also abbreviate its existential
abstraction over with z — 4 —, usex — — when abstracting over
both v and A, and simplyz — v when A can be inferred from
the context. Similar abbreviations can be made in Coq as usll
ing definitions, implicit parameters, and notation dediare [30].
Thus, the example programs that we write in the rest of thempap
in our stylized notation and with abbreviations, remainyvelose
to the Coq implementation.

We next discuss the types from Figure 1. In Engligh,is the
monadic unit (Haskell'seturn). It takes a value:: A and produces
a computation that immediately returms The preconditiontop
allows this computation to be executed in any heap. The postc
dition Aa i f. f = i A a = Valz guarantees that the final hegp
equals the initial heapand that the answerequalsz. The answer
tag Val differentiates values from exceptions, so the postcaoliti
also specifies thatet does not raise an exception. An interesting
point to note here is that the range typeref may be viewed as a
somewhat stylized form of a Hoare rule for assignment td the
variablea.

The bind constructor performs sequential composition. It is
higher-order, as it takes effectful computations as filsssvalues.
Givene;:ST p1 Aqi andea:IIx:A. ST (p2 ) B (g2 x), bind e1 e2
first executes; to obtain the result: A, and then executes .
Thus, it should not be surprising that the Ynot typelford is very
closely related to the Hoare rule for sequential compasitidow-
ever, there are significant differences as well, which wediced
to facilitate inference. For example, the preconditionhef tom-

position A\i.p1 ¢ A Vz h.q1 (Valz)ih — p2z h, has a two-fold
purpose. First, it requires thép, 7) holds so that; can execute
against the initial heap. Then, it requires that any ret@lnex: A

and anyh:heap that may have been obtained by the execution of
e1 —and which thus necessarily satigfy(Val ) i h — must imply

(p2x h), so thates x can subsequently execute against the heap
h. In most Hoare-style logics, the second conjunct is not part
the precondition, but is made unnecessary by requiringgthanhd

p2 are syntactically equal. We decided against this formuorfaltie-
cause, in practice, it forces the programmer into a potintiar-
densome task of converting andp- into some syntactically equal
form before the sequential composition could even be formed

The idea behind our rule is tofer the specification of the se-
quential composition out of the specifications of the two pom
nents. The inferred specification is then takerpascipal, in the
sense that the system will use it whenever it needs to redsmart a
the composite program. That is why the pre and postconditiion
the typing rule must be as specific as possible. For exanfy@dere-
condition forbind basically only defines under which conditions
the preconditions of; andes are met at appropriate points in the
sequential execution. The postcondition is principal i@ similar
way, under the assumption that the whole composition teatem
(ST captures only partial correctness semantics). The paditoamm
consists of two disjuncts that essentially describe theatieh of
the composition if; terminates with a value, anddfi terminates
by raising an exception. In the first case, there exist a valdeand
an intermediate heap, obtained after the execution ef, which
by typing of e; must satisfyg: (Valz) i h. If ez terminates when
executed irk, then there also exists some final answereither a
value or an exception — and some final hgaphich, by the typing
of e2, must satisfygz za h f. If e; raises an exceptios, then the
execution ofe; is not even attempted. The exception is returned as
the answer of the whole composition (conjuact= Exn ¢), and
the final heapf is the one obtained after executiag (conjunct
q1 (Exne)i f).

The commandtry ee; ex is an exception-handling construct
which executes: if e raises an exception, but instead of falling
through in case returns a valuetry actually proceeds with exe-
cutinge;. The utility of this monadic form ofry has been argued
by Benton and Kennedy [3] in compiler optimizations, wherfai
cilitates code motion. We adopt this form for similar reasoas
rearranging code in semantic-preserving way can sometinage
proofs about programs much easier.

Ynot also includes a construéix for general recursion. The
result type offix is anST computation, which means that we treat
recursion (and hence non-termination) as an effect. Tleisgential
for soundness of the system, as it prevents the typecheaker f
normalizing possibly diverging computations.

Examplel. Consider the delete operation given earlier (without the
syntactic sugar, and with explicit declaration of arguntgpes):

Definition delete (r:loc) (k:key) :=
bind (read r)(A\l.write r (remove cmp k £)).

and assuming that typésy, value, kvlist := list(key=value), have
already been defined. The inferred typedelete is rather involved
and is given by:

IIr:loc. I1k:key.
ST (Ai. (Fuekvlist. (r — v) i) AVzh.h =4 A
(Vu:kvlist. (r — v) i — Valz = Valv) — (r — —) h)
unit
(Aai f. (Fu:kvlist. (r — v) i) A
((3z h. (h =i A (Vokvlist. (r — v) 3 — Valaz = Valv)) A
a = Valtt A f = update_loc hr (removecmpk z)) V
(Je.a=ExneA f=1iA
Vu:kvlist. (r < v) i — Exne = Valv)))



Of course, this is only one of many possible types, becasse tre
many ways to syntactically represent semantically eqgeitapre-
and postconditions. Furthermore, a programmer may wishoto n
only use a syntactically different specification, but onesvehthe
precondition is stronger and/or the postcondition is wettkan the
principle specification we infer. This is the role of tte primitive,
which corresponds to the rule of consequence in Hoare Ldigic.
takes a computation of tyd&T p; A ¢1, and changes the type into
ST p2 A g2, if a proof is explicitly provided as an argument @6
thatp; can be strengthened inpg andg; can be weakened intg.
The idea is thap. andg. may provide a more abstract specification
thanp; andgq:, and hide unwanted implementation details. Hence,
do is essential to information hiding.

Example2. It is possible to use Coqg’s built-imiatch” construct
to build conditional monadic expressions. However, thenane
forced to ensure that each branch of the conditional hasatime s
type (up to definitional equivalence) when usually, the pred
postconditions of the two branches differ. The user candatios
problem by coding her own match primitive which use®™ to
coerce the branches to &1 type with common pre- and post-
conditions. For example, the functionatch_option, used in the
definition of our association lisbokup, can be coded as follows:

Program Definition
match_option (z : option A) (¢1 : STp1 Bqi1)

(c2 : Tv:A.ST (p2v) B(g2v)) :

ST (Mi. (x = None — p1 %) A Vv.x = Somev — pavi) B
(Aai f.(x = None — g1 ai f) A
Vv.z = Some v — qavaif) =

match z with
| None = docy -
| Some v = do(c2v) -
end.

Notice that the compound command has the pre- and postaondit
corresponding to the Hoare-rule for conditionals, but tiat
necessary to coerce both commands to the common speciiisatio
that Coq can type-check the code. Of course, angech_option

2.2 A Monad for Separation Logic

The weakened specification délete from Example 3 is unfortu-
nately too weak. To see this, consider the scenario in whieh w
want to remove keys from two separate association lists, e.g

delete_two(71 72:loc) (k1 k2:key) := delete r1 k1; delete ra ko

Assume further that; andr, contain association lists and are not
aliased in the initial heap, that {81 — st —) %, (r2 —kuiist —) &
andr; # r2. One may intuitively think that these assumptions
suffice to prove thatlelete_two is safe, but that is not the case.
To verify delete_two, Ynot will first combine the inference rule
for bind from Figure 1 with the specification afelete to infer the
precondition:

P =X\i.(r1 = =)iAVzh. (z = Valtt AVo. (r, —v)i—

(r1 < removecmpkiv)h) — (ro — —)h
Then it will require a proof that i is valid under the described
assumptions, which amounts to inferring the conclusign —
—) h, from (ro — —) 4 and the constraint that,; — v)i — (r1 —
remove cmp k1 v) h. Such inference cannot be made, of course, as
the constraint does not relatieandrs in any way.

The problem, as already identified by the work on Separation
Logic [36] is that the weakened postconditiondaiete describes
how locationr is changed, but forgets to specify that the rest of the
heap, disjoint from location, remains intact.

A stronger and appropriate specification defete can certainly
be written directly in th&&T monad. However, the illustrated prop-
erties of disjointness and heap invariance appear so offgactice
that it is better to introduce a general and uniform methoglipfor
dealing with them.

We therefore introduce a new mon&Isep to codify the
reasoning in Separation Logic. Informally, the idea is that
STsep p A ¢ should hold iff whenevee is executed in a heajp h,
wherei andh are disjoint ang 7 holds, then ife terminates, we are
leftin a statef wh such thaty i f holds. That s, thé portion of the
state, which is not covered by the pre-condition, remairadfanted

is defined, we no longer have to worry about finding the weakest by default. In Separation Logic, programs like this, whiahrbt

common precondition and strongest common postcondition.

The definition given here uses under-scores for the proaf obl
gations of the two uses db. The recent Russel extensions to Coq
allow us to omit proof obligations and fill them in after cansting
a definition [43]. In this case, once we have entered the diefinf
match_option, we are left with two obligations, which must show
that the two commands’ specifications can be weakened t@the ¢
mon interface, given the outcome of the test. The two ohbgat
are discharged with explicit proof scripts as follows:

Next Obligation. firstorder; discriminate. Qed.

Next Obligation.
split; try solve[firstorder].
intros x i m [H1 H2] H; split; try solve[intros; discriminate].
intros v0 t; injection t; intros []; auto.

Qed.

Example3. As a final example in this section, and one that is far
more typical in the code we have written, we can dsdo assign
our delete operation an explicit type with a much more readable
(though in this case weaker) specification than the princdpe
inferred by Ynot:

Program Definition delete (r:loc) (k:key) :
ST (r —pulist —) unit
(Aai f.a = Valtt A
Vu:kvlist. (r < v) i — (r < removecmp k) f)
:= do (¢ < read r; write r (remove cmp k £)) _.

Next Obligation.

Qed.

touch the heap outside of what their precondition circuibse
are said to satisfy thizame property

Fortunately, the&STsep monad can be defined in terms &T
and doesiot need to be added axiomatically.

STsep : pre — I1A:Type. post A — Type
STseppAq=ST (p+*top) A(Aa.p —qa)

Herex is the well-known separating conjunction, gnd- ¢ builds
a postcondition which essentially states thamnly describes how
to change the parts of the initial heap circumscribeg by

P1 * Po = Ah:heap. 3h1, ha.splitsh h1 ha A P1 h1 A P2 ho

P —oQ=MXim.Vi1 h. Piy — splitsii; h —

dmq.splitsmmi h A Qi1 m1

where

splits (h h1 ha:heap) := disjoint h1 ha A h = union h1 ho

union (hy ha:heap) : heap :=
Az:loc. match hq x with None = haz | - = hi zend

disjoint (h1 ho:heap) := Vz:loc. (x < —) h1 — ho z = None
The definition of STsep therefore directly formalizes the intu-
ition behind separation logic and the frame property. Is #&nse,
it is closely related to the recent semantic models of Seipara
Logic [5] in which the frame rule is “baked in” to the interpagion
of triples. The fact tha Tsep could be defined in terms & may
be surprising, because it shows that even in the large fiootpe-
mantics ofST, Ynot programs do satisfy the frame property. The
inference rules o6 T compute the weakest precondition that guar-
antees that the program is safe, meaning that the inferembpdi-
tion must basically represent the memory footprint of thegpam.



ret : IIz:A. STsepemp A (Xai f. f =4 A a = Valz)

bind : STsep p1 Aq1 — (IIz:A.STsep (p2 ) B (g2 z)) —
STsep (Ai. (p1 *top) i AVz h. (p1 —o q1 (Valz))ih —
(p2 z x top) h) B
Aai f.((Fzh. (p1r — q1 (Valz))ih A (p2x — g2za)h f)V
Je. a = Exne A (p1 —o ¢q1 (Exne))i f)

do : STsepp1 Aqi — (Vi.pai — Th.(p1 * thish)i A
Va f.(q1 a *delta(thish))i f — goaif) —
STsepp2 Ag2

read : IIr:loc. STsep (r —a —) A(Xai f. f =i A
VuiA. (r — v)i — a = Valv)

write : IIr:loc. ITv: A. STsep (7 +— —) unit (Aai f. (r — v) f A a = Valtt)

new : IIz:A. STsepemploc (Aa i f. 3r:loc. a = Valr A (r — z) f)

free : IIr:loc. STsep (r — —) unit (Aa i f. a = Valtt A emp f)

throw : ITz:Exn. STsepemp A (Aai f. f =i A a = Exnz)

try : STsepp1 Aqi — (Ilz:A.STsep (p2 ) B (g2 z)) —
(ITe:exn. STsep (p3 €) B (g3 e)) —
STsep (Ai. (p1 * top) i A
(Vz h.(p1 —o q1 (Valz))ih — (p2 x * top) h) A
Veh.(p1 — q1 (Exne))ih — (p3 e *top) h) B
(Mai f.(3xzh.(p1 — q1 (Valz))ih A (p2x —og2za)h f)V
Jeh. (p1 — q1 (Exne))ih A (pse —o g3ea)h f)

fix : (Ix:A.STsep (pz) (Bz)(qz) — Iz:A.STsep (pz) (Bx) (qz))
— Ilx:A.STsep (px) (Bx) (gx)

where emp = Ah.h = empty
T A v = Ah.h = update_locempty = v
this = Ah1 ha.hy = ho
delta P = Ahi ha. Phi A Phso
Q1%Q2 = At h.3i1 i2 hy ha.splitsi iy ia A

splitsh h1 ha A Q141 h1 A Q2 iz ha

Figure 2. Signature o6Tsep primitives.

The only way in which the precondition can be changed, iddsy
encapsulation and this can only strengthen the precondifibus,

This differs from Example 3 only in that- is replaced by the more
precise points-to relation>. That suffices to type cheelelete_two
as well.
Program Definition delete_two (r1 r2:loc) (k1 ka2:key) :
STsep (71 —kvlist — * T2 —kylist —) Unit
(Aai f.a = Valtt A
Y va. ((7’1 — v1) * (7’2 — vz)) 7 —
((r1 > removecmp k1 v1) * (r2 +— removecmp k2 v2)) f)
:= do (delete k1 v1;delete ko v2) _.

2.3 Verification

The inference rules from Figures 1 and 2 may look rather uidwie
at first sight, especially when compared to rules in Hoareep-S
aration Logic. This is just as well; we do not intend to use the
rules manually in verification, but to infer the principleesifica-
tion of monadic programs (up to loop invariants). In thissen
Ynot is really more closely related to predicate transfasél]
than to Hoare Logic. The annotation inference essentialiypiles
the program into a Coq proposition whose validity implies fino-
gram'’s correctness, thereby reducing verification to theoprov-
ing in Cog. This principal proposition may be rather largd dif-
ficult to tackle directly. A useful simplifying strategy is tivide
it into a set of smaller verification conditions, which aresiea to
prove.

In this process, Ynot exploits the property that the priatip
proposition inherits the structure of the program it is gatex
from. Consider a program of the forsind (read z) e, Where
e : Iy:A.STsep (p2y) B (¢2 y) is arbitrary, and suppose we want
to coerce this program into the tyS@sep p1 B ¢1. The inference
rules from Figure 2 would require a proof obligation of thenfio

Vi:heap.p1 i —
verifies ¢ (bind_pre (read_pre A z) (read_post A ) p2)
(bind_post (read_pre A x) (read_post A ) p2 ¢2)
q1

Hereverifies abbreviates part of the obligation in tB&sep typing
rule fordo; that is:

verifies (i:heap) (p:pre) (q r:post B) : Prop :=
Jh. (pxthish)i AVa f. (gaxdelta(thish))i f — raif

in both of our monads, a memory operation cannot be performed andbind_pre, bind_post, read_pre, read_post abbreviate the&sTsep

unless the access to the particular location is, intuigjvegranted
by the precondition”. This is, of course, the essence of thdutar
nature of Separation Logic and of Ynot.

The next step in the definition is to re-type each of 8k
primitives, so that they can be used in 8i€sep monad. This can

pre and postcondition fdsind andread; e.g.,bind_pre p1 g1 p2 =
Xi. (p1 * top)i AVz f.(p1 —o q1 (Valz))i f — (p2x = top) f), and
analogously fobind_post, read_pre andread_post.

One possible way to discharge this obligation is simply te un
fold the abbreviations and attempt the proof directly. Bagwing

be done in each case by an appeal to the rule of consequence, aat the corresponding programtd (read z) e, a simpler strat-
shown in our Coq implementation. Here, we only give the new €9y is as follows. First show that the read itself is safet tha

signatures in Figure 2.

Separation Logic requires a separate rule —fthme rule— to
make explicit logical inferences with the frame property.the
STsep monad, that role is ascribed to the construetor whose
type now encodes not only the rule of consequence, but theefra
rule as well. For example, in order to weak&Msep p1 A g1 into

STsep p2 A g2, we now require showing that there exists a subheap

h which remains invariant across the computatior. i$ restricted
to beempty, then we recover the olfIT rule of consequence.
The important point, however, is that switching frdsT to

STsep does not require adding extra inference rules and construct
and the programs i Tsep retain the same general shape and oper-

ational behavior as the®T counterparts (though the specifications
and correctness proofs may change).
Exampled. The proper type fodelete in the STsep monad is
delete (r:loc) (k:key) :
STsep (7 —kvlist —) unit
(Aai f.a = Valtt A
Vu:kvlist. (r — v) i — (r — removecmp k) f)

p1i — (z <4 v)i holds for somea. Then show that v is safe to
execute in the heap that isp; i — verifies i (p2v) (g2 v) 1. This
strategy can be codified anerifiedin the form of a lemma. We
generalize with respect to the hea@mnd make the hypothesis i
implicit (since it persists across the subgoals) to obtain:

Lemma eval_bind_read :
Vz:loc,v: A, p2: A—pre, go: A—post B, i:heap, r:post B.
(z — 4 v) i — verifiesi (p2 v) (g2 v) T —
verifies ¢ (bind_pre (read_pre A z) (read_post A z) p2)
(bind_post (read_pre A x) (read_post A z) p2 q2) r

We have proved similar lemmas for all possible interactiohs
STsep commands, and wrapped them into a tactéxtvc that
pattern matches against the current proof state, and atitatha
chooses the appropriate lemmato apply. iéevc tactic emits the
immediate verification condition for the first effectful camand in
the proof state, and advances the proof state to the next aathm
This basically corresponds to symbolically evaluating ahiginal
programin the logic itself discharging the verification conditions
in the order of appearance.



Record FiniteMap (KV : Type)
(cmp : TI(k1 k2 : K). {k1 = ka} + {k1 # k2}) : Type :={
T : Type
model : Type := list (K * V)
rep : T — model — heap — Prop

valid : T — heap — Prop := At h.Im.reptmh

permutes : V¢:T. Vm mo:model. Vh:heap.
reptmy1 h — (Permutation my ma < reptma h)

distinct : V¢:T. Vm:model. Vh:heap. rept m h — distinct_keys m
rep_precise : Vt:T . precise (valid t)

create : STsep emp T
(Mat f.3t:T.a = Valt A reptnil f)

destroy : I1¢:T. STsep (valid t) unit(Aa i f. a = Valtt A emp f)

insert : IT¢:T. ITk:K. TTv:V.
STsep (valid t) unit (Aa i f.a = Valtt A
Vm:model.rept mi — rept ((k,v)::(removecmp km)) f)

lookup : ITt:T. ITk:K.
STsep (validt)V (Xai f.Vm.rept mi — reptm f A
((3v:V.a = Valv A assoccmp k' m = Some v) V
(@ = Exn Failure A assoccmp k m = None)))
delete : IT¢:T. ITk:K.
STsep (valid t) unit (Aa i f.a = Valtt A
Vm:model.rept mi — rept (removecmp km) f)

Figure 3. Interface for a Finite Map

In most related systems like PCC [34], ESC [26], Spec# [2],

Sage [14] or WHY [13], the generator is an external prograauith
usually not verified itself. This is not to say that externahgrators
have not been verified before. For example, several suclkeqisoj
have been carried out in HOL [19] and Isabelle [50, 49]. Thieta
implement the verifier in the internal language of the prpaad
then extract a corresponding ML program which can be compile
and executed to produce the verification conditions. Oupgsal
seems much more direct and requires a smaller trusted comgput
base. Because condition generation is carried out by appli
lemma internally in Coq, we do not need to rely on the corressn
of external tools for compiling the generator code, or fansiating
the generated conditions back into Coq for discharging.

3. Interfaces and Modules

Thus far, we have seen how Ynot makes it possible to write ierpe
tive code in the style of Haskell, how principal specificagare in-
ferred, how those specifications can be explicitly weakdnethe
programmer, and hoBTsep can be used to achieve separation-
style, small-footprint specifications. In this section, a@nsider

how these mechanisms can be combined with Cog’s abstraction

mechanisms to implement (first-class) abstract data type3'§).

We begin by considering an interface for imperative finitgoma
(Figure 3) which is intended to abstract implementatioraitiet
Usually, an interface for an ADT consists of an abstract tygpe
type signatures for a set of operations over that type. These
conveniently packaged together in Coq as a dependent rgqued
or alternatively as a module. Here, we chose to use a recpg] ty
because then our ADT modules can be first-class.

In the setting of Ynot, the type signatures of ADT operations

can capture not only types, but of course, specificationaidder, it

is important to make sure that the signatures are suitalslyadi so
that they admit different implementations. Therefore,ddition to
abstracting an implementation tyfe the interface abstracts over
a representation predicatep which associates an implementation
value of typeT to an idealized modetn in a given state. Here,

we have chosen to model finite mapdasctionalassociation lists,
but effectively quotient the lists through the predicapesmutes
anddistinct so that they behave like finite map8stinct_keys is a
predicate that holds if association lists do not have redohkeys.
That is, in model, the order of the elements in the associdigois
immaterial, and we demand that keys occur at most once.

In the case of thamperativeassociation list implementatiof,
will be instantiated with the concrete typee and therep predicate
can be defined so that:

reptmh := Im/. distinct_keysm’ A Permutation m m’ A

(t—m')h
But of course, a different implementation will choose diffiet
definitions forT andrep as we show in Section 3.1 below.

The interfaces for the operations use téyepredicate to specify
the effect of the operation on the abstract type in termseofiibdel.

For example, when winsert key k with valuew into a finite map

t, then if ¢t represents the functional association fiston input,

then on outputt represents the list, v) :: (remove cmp km). If

we thenlookup k, we can prove that we will get the valueback

as a result, and all of the reasoning can be done in terms of the
simple functional model. For all intents and purposesntief the
FiniteMap interface can reason as if the implementation is a simple
reference to this functional model, when in fact, the impatation

can have drastically different internals.

When we move to interfaces such as this one, the use of the sep-
aration mona& Tsep becomes crucial. Recall that if we attempt to
useST, then to get sufficiently strong post-conditions, we must re
veal which locations areot affected by a command. The easiest
way to do this is to express the output heap as a function dhthe
put heap, but doing so tends to reveal implementation de@dm-
bining an abstract predicate, suchras, with the small-footprint
abstraction ofSTsep ensures that these details can remain safely
hidden behind the interface, and yet clients can still éffety rea-
son about state that is not “owned” by the abstraction.

Finally, our interface for finite maps requires a proof thetrep
predicate isprecisethrough therep_precise component. A heap-
predicateP is precise when for all heaps, if P holds of some
subheap of, then that subheap is uniquely determined [37]. More
formally,

precise P = Vh, h1,m1, ha, mo.
splitsh h1 m1 — splitsh ha ma —
Phy — Pho — hy = hao Ami1 = m2

Precision is important for making inferences about the kiguaf
heaps and values. For example, if we know that- v;) h; and

(z — w2) ha, andhq, hy are both subheaps @&f, then we should

be able to conclude that; = h, and correspondinglyy; = wvo.
This property is basically a more concrete statement ofdbethat

x — — iS a precise predicate. We have found in practice, clients of
our finite map structures will need to make similar inferenalout

the heap occupied by the finite map. Exposing the property¢ba

is precise makes such inferences possible, while at the Sarae
manages to keep the actual implementatiorepfhidden.

In summary, the fact that a Coq dependent record type allows
us to abstract over types, predicates, and terms makesyitt@as
capture true ADT interfaces in a uniform fashion. The us&Tdep
in conjunction with an abstract representation prediaaterims of
an idealized model is crucial for achieving natural, yet kedne
specifications.

3.1 An Alternative Implementation: Hashtables

We can easily build an implementation of thmiteMap interface
using the association list operations defined at the begiwifi Sec-
tion 2. In this section, we describe a more interesting immeleta-
tion we have constructed, namely a hash table. Our libracy iat



cludes an implementation based on splay-trees, but spackiges
a detailed discussion of both, so we focus on the hash tables.

Given this definition forrep, the proofs that the operations meet
their specifications are relatively straightforward, dius, and we

Our hash table module is a functor that is parametrized by the refer the reader to the implementation for details. We daarirthat

key and value types, hash and comparison functions for leey,
a natural number wheren > 0. The tables are represented using
an array of pointers ta buckets, where the buckets are themselves
implemented as finite maps. Thus, the hash table functoradlso
stracts over &initeMap module, which can be instantiated with,
for instance, the association list module, our splay-treeute, or
even a nested hash-table. Therefore Hhsh TableFunctor has an
interface that looks like this:
HashTableFunctor :
II(K V : Type)(hash : K — nat)

(emp : TI(k koK), {k1 = ko } + {k1 # ka})

(Bucket : FiniteMap KV cmp)

(len : nat)(lengtO : len > 0). FiniteMap KV cmp

Within the body of the functor definition, we represent the
abstract typd as an array ofen locations, each of which points to
aBucket. T value. In Ynot, an array of lengtlen is treated similar
to a function fromnat to loc, with the guarantee that each location
is distinct. Thus, to read or write an array element, a prognar
can simply use pointer arithmetic to get at the appropriatation,
and then use the location read and write primitives. Of agurs
the programmer must be able to prove that the location isen th
footprint of the computation in order to perform the read oitev
The proof must include a deduction that the pointer aritieneted
to obtain the location is in bounds for the array. The actadedor
the various operations is relatively simple. For exampie, code
for insert is as follows:

Program Definition insert (arr: arraylen) (k:K) (v:V) :=
let p := array_plus arr ((hash k) modlen) in
do (bucket < read p;
Bucket.insert bucketk v) _ .

The code begins by calculating a poingeo the appropriate bucket
using thehash function and pointer arithmetic on the array. We then
dereference the pointer to gebacketelement of typeBucket. T.
Finally, we invoke théBucket.insert operation to insert the key and
value into thebucket

To verify that the code meets tliéniteMap interface, we must
choose an appropriate definition fap. We say a bucked; is a
valid_bucket with respect to an index modelm and heagp when:

1. 3m, Bucket.rep b; m; h, and

2.V(k,v) € mj, (k,v) € m A (hash k) modlen = j, and

3. V(k,v) € m, (hash k) mod len = j implies (k, v) € m;.

That is, the bucket includes all and only the elements of thiead
modelm whose keys map via theash function to the index;.

We say that an index is avalid_index with respect to an array
arr, modelm, and heaph when:
valid_index arr m j h :=
3b;, (array_plus arrj — b; * valid_bucket bj m j) h

In English, each index of the array points to a valid buckahwi
respect to the model and the index. Finally, we say that ayarr
arr represents an association listin heaph when:

(valid_index arr m 0 % --- % valid_index arr m (len — 1)) h

This iterated separating conjunction can be coded in Colg tivét
use of an inductively defined predicate as follows:
Fixpoint iter_sep (n:nat)(P:nat—heap—Prop) {structn} :=
match n with
|0 = emp
| Sm = (Pm) « (iter_sep m P)
end.
and thus for the hash-table implementation, we define:

rep arr m h := distinct_keysm A iter_sep len (valid_index arr m) h

the proof scripts are relatively large when compared to tuecin
spite of our simplification tactics described in Section 213 a li-
brary of tactics for reasoning about the separation coivesctThe
entire hash table implementatioBucketHashMap.v) consists of
about 1200 lines (including comments and white-space).h3f t
only about 300 lines are the actual definitions that make ep th
code; the rest consists of lemmas and proof scripts. Althoug
hope that some day, the proof burden will be much lower, we als
believe that sophisticated invariants suclepsare far beyond what
state-of-the-art decision procedures can synthesizeowepauto-
matically.

4. |terators

Figure 3 presents our basic finite map interface. In thisicect
we discuss how to extend it with an iteratid, which applies

a computatiort to each key and value pair in the map. In our case,
the fold method must abstract over the return typecads well

as itsprecondition and postconditioro that we can capture the
effectful behavior of the iteration. Without abstractioveo types
and predicates, it would not be possible to support such argkn
higher-order operation.

To motivate the development, imagine that we want to imple-
ment a genericopy function that copies a collection of keys and
values from one finite map implementation to another. Sucime-f
tion would have the following type:

copy (F G : FiniteMapKVcmp) (¢t : F. T) :
STsep (F.valid t) (G.T)
(Aai f.3t': G.T.a=Valt' A
Vm:F.model. F.reptmi —
(F.reptm = G.rept' m) f)

It takes two possibly different finite map implementatidh&nd
G (say, one can be an implemented with hash tables, and the
other with splay trees), and a pointeF. T to the map of kindF.
The function returns a pointer to the copy. The postcondition
guarantees that the input map is semantically preserved {i.
points into a memory that implements the same majn both
the initial and the ending heap), that tGecopy also implements
the same map, and that the two copies occupy disjoint chunks of
memory.

Given an appropriate definition fdold, we should be able to
implement thecopy procedure as follows:

Definition copy (F G : FiniteMapKVecmp) (¢t : F. T) :=
t' «— G.create;

F.fold ¢t tt (\kvb. G.insert ’ k v);
ret t/.

Notice that to writecopy as abovefold has to be able to take
an effectful computatiorG. insert and iterate it across the finite
map. But in order to conclude that at the end of fiblé, we have
produced a copy of the original map, we need the specification
fold to capture theaggregateeffect of applying the computation
to each key and value pair. Of course, the interfacedht needs
to be sufficiently abstract that we can efficiently realizéoitthe
different implementations.

Furthermore, it is desirable for the specification to préay
changes to the map during iteration. While iterators thahgle the
map are possible, there are situations that cause mostrimapta-
tions to break. For example, if a key is deleted from the mamdu
iteration, should its associated value be passed to thedatigm?
More subtly, in the context of the splay-tree iterator, &igmoper-
ation can re-arrange the tree, making it difficult to traclevehthe
iterator should look for the next key and value. To avoid ¢hes-



nundrums, collection libraries, such as those found in,Jtt@mpt
to rule out modifications to the collection during iteratidaut are
forced to do so through a run-time check. This is usually acco
plished by stamping the collection with a version numbet tha
incremented each time the collection is changed. If thatiterde-
tects a version mis-match, it will throw an exception. Faareple,
Java collections throw th@oncurrentModificationException
when they detect a version mis-match.

In Ynot, we do not need time-stamps or run-time checks to
ensure the correctness of the iterator as the conflicts arplysi
ruled out by the specification. Here then is our specificadidiold.

fold (t:T) (b:B)
(c: Ik:K. TTv:V. 1I6': B.STsep (P kvd’') B(Qkvb')) :
STsep (Ai:heap. 3m:model. (rep t m *
(Ah.Vm/. Permutation mm’ — fold_pre PQm’ bh)) 7)
B
(Aai f. Im:model. 3 h:heap.
(reptm = (Ai'.fold_pre PQmbi’ ANh=14")) i A
(rep t m * fold_post @ mbah) f)

The precondition requires that the initial heap can be gplitthe
portion belonging to the map (which thus satisfregtm) and
some staté that is owned by the computatian The portionh
must satisfy an inductive predicafeld_pre, defined below. Intu-
itively, fold_pre characterizes a chain of heapsh1, ho, .. ., hn,
whereh; is the result of running the computatierin stateh;_
on thej" key-value pair. Additionallyf;—1 must satisfyP, and
h; will satisfy @ as required by the specification @afNotice that
fold is parametric inP and@ so that any computation(that does
not access the map) can be supplied for iteration. Also, thate
the order that the keys and values are presented to the catigput
is non-deterministic: an implementation is free to preskam in
any order that is a permutation of the model.

The postcondition also uses an inductive predidaté_post
(defined below) that effectively calculates the final statéhie se-
quencehi=hi, ha, . .., h, described above. The postcondition also
ensures that the model of the original map is preservegspasmn.
We do not factor out byPermutation m m’ in the postcondition as
we only care to specify that a model for the output heap exists

Finally, we present the predicatisd_pre andfold_post which
“iterate in the logic” the precondition and postconditiBhand Q
of ¢, to capture the requirements tiiakd makes on the state owned
by c.

Fixpoint fold_pre (P:K—V— B—pre) (Q:K—V—B—post B)
(m:model) (b:B) (h:heap){struct m} : Prop :=
match m with
|nil = T
| ((k,v):m/) = PkvbhA
Vf:heap.Va:B.Qkvb(Vala) h f — fold_pre PQm/ a f
end.

The predicate is defined by primitive recursion on the stmecof
the modelm. Whenm is the empty listc will not be executed
at all, so we impose no preconditions on its state (propwsifi).
Whenm contains a key-value pa(k, v), c will be executed at least
once, and hence its state should satBfyv b h. If we get a value
and heapy out of the execution of, we are guaranteed they satisfy
Q kvb(Vala). But then this needs to guarantee we can itetate

over the remaining part of the finite map, and thus we must show

it implies fold_pre P Q m’ a f. In essence, this is a generalization
of the precondition for binary sequential composition rteary
sequential composition, whereis determined by the length of the
modelm.

Similarly, the predicatéold_post iterates in the logic the post-
condition@Q:
Fixpoint fold_post (Q:K—V— B—post B) (m:model) (b:B)
(a:ans B) (i f:heap) {struct m} : Prop :=
matchm with
| nil=14i=fAa=Valb
| (kyv)::m/) = (3V':B. Ih:heap. Qkvb (Valb' )i h A
fold_post Qm/' ¥ ah f) V
(Ferexn,a = Exne AQkuvbaif)
end.

Notice how it allows the client to reason about the iteratiom
the state of the finite map even dfthrows an exception. Again,
this predicate generalizes the postcondition of a binagyeetial
composition to am-ary case.

We can now show an implementation of an iterator for the
specific instance of hash tables. We do note here that we have
implemented a similar iterator for association lists anldsprees
as well, to confirm that the specification we give above is gane
enough to support at least three different implementations

For the purposes of specification of the loop invariants ¢whi
we omit here, but present in the Coq implementation), thér has
table iterator is split into three functions as follows.dtiwe have
a function fold_bucketn which takes an index into the array of
bucket pointers and folds the function over the bucket wiith t
particular index. We make the same assumptions as in Sektion
For examplearr is an array ofen locations, each of which points
to aBucket, keys have typ&, values have typ¥, etc.

Program Definition
fold_bucketn (arr:arraylen) (j:nat) (pf:j < len) (b:B)
(c:ITk:K. TIv:V.IIb: B. STsep (P kvb) B (Qkvb)) :=
do (bucket « array_plus arr j;
Bucket. fold bucketbc) _ .

The next function igold_bucketndown. It traverses the bucket ar-
ray up to the indeyj, calling fold_bucketn over each bucket en-
countered. The traversal is implemented via Coq’s primitacur-
sion on the indey. Notice the use of Coq wildcards to avoid writ-
ing the proofs within the program that the bucket indicesndtkin
bound.
Fixpoint fold_bucketndown (arr:arraylen) (j:nat) (pf:j < len) (b:B
(c:ITk:K. Tv:V. 11V : B.STsep (P kv b') B (Qkvb')) :=
match j with
|0 = do(retd)
| Sk = do(r « fold_bucketndown arr k _bc;
fold_bucketnarrk _rc) _
end.

Finally, the actual implementation dbld is simply a wrapper,
immediately callingfold_bucketndown, passing the size of the
bucket array along.

Program Definition
fold (arr:arraylen) (b:B)
(c: Mk:K.Tv:V. 116 : B. STsep (P kvb') B(Qkvb')) :=
do (fold_bucketndown arr len _bc) _ .

5. Memoization

We close our examples by discussing an interesting usiepén-
dentfinite maps, namely verified memoization. A dependent finite
map has the same interface as the one given in Figure 3, ekegpt
the value typd/ can depend upon a key as in:
Record DepFiniteMap (K: Type) (cmp:---) (V:K — Type) := {
T : Type
model : Type := list ({k : K,v : Vk})

insert : I1¢:T. ITk:K. TTv:(V k). STsep - - -
lookup : IT¢: T. ITk:K. STsep (validt) (V&) (---)



Somewhat surprisingly, our code for all three finite-maplengen- The Coq system already has a code extraction mechanism [28].
tations easily generalizes to this more expressive interfand our  However, the Haskell extraction, which we wanted to use fath
implementation supports this. The advantage of a deperitétet improved performance and a more advanced run-time syssett, i
map is that we can use it to approximate (and thus memoize) apje to handle the entire Coq language. Also, we are eagerdg-d
Iungtlf%r:.ﬂ?elv\cle;uae fgp(t:f!:llgﬁlit:e Irlnkag\kVKk {‘;V.eviaT %sg zisg?set periments with much more aggressive optimization and ctide e

yp o o ination techniques, and we needed an intermediate repagieen

For example, the following Ynot code is intended to compute oS .
the n'" Fibonnaci number. LeMemopad be the type of finite  (hat preserves all of the Ynot typing information. The Ynotre
maps that can only store Fibonnaci numbers, ilemopad — piler is still in the early stages of development, and is orez af

DepFiniteMap nat cmp (\k.{z:nat | ffibk = =x}), whereffib is a future work.
functional specification of the Fibonnaci function. Theldaling
code is lifted from one of our example memoization files ana-co 7. Related work

putes thex*" Fibonnaci number:

Fixpoint ifib_mem(n : nat)(mem:Memopad)(t : mem. T){struct n}
: STsep (mem.validt)({z : nat | fibn = x})

Extended static and dynamic checking. An alternative to start-
ing with a dependent type theory is to start with a standard ef

(Aai f. mem.valid ¢ f A 3v.a = Valv) := fectful programming language, and attempt to retrofit faed
let ifib_rec := M. applyd ¢ (ifib_mem k mem t) in for expressing models, specifications, dependency, reéngrand
match n with proofs. For example, JML [7] and Spec# [2] extend Java anceE# r
|0 = do(ret0)._ spectively with support for Hoare-style pre- and postctods as
| Sk = matchk with well as object invariants and other features used to casafiety
|0 = do(retl)_ and correctness requirements of code. Then an automated SMT
|Sj = do(n1 «— ifibreck; style prover is used to try to discharge proof obligationd as-

ng < ifib_recj;

tablish that the code meets its specification. While theve heen
ret (n1 4+ n2)) -

great advances in automated prover technology over thefg@ast

emfnd years, these systems still have trouble discharging aliHgimost
“shallow” specifications such as array bound checks and NULL
Definition ifib(n : nat) pointer checks. In contrast, dependent type theories nigdassi-
: STsep emp ({z : nat | fibn = z}) ble to utilize automated deduction techniques, but whep fake
(Aai femp f AJv.a = Valv) := short, also allow the programmer to construct explicit fsoof
call_mem _ (ifib_memn) (size := 1 +n). “deep” properties of programs. We claim that, for progranhere
The entry pointfib simply invokes a memoization libramall_mem. ~ deep reasoning matters, programmers will play an integialin
Thecall_mem operation builds a memo table, which is a dependent co-developing models, specifications, programs, and proof
finite map of typeMemopad intended to associateto ffib n. The Furthermore, the modeling and specification languages sed
memo table is passed to thféb_mem function so that it can be ~ JML and Spec# are too weak to support a truly modular develop-
used to cut-off re-computation. In particular, theplyd function ment of programs and specifications. For example, neithguiage
first tries to find a value associated within the tablet. Failing has the expressive power to write and prove correct a pahcip
that, it invokes the recursive computatiéfib_mem k and caches specification for a higher-order iterator, such asfold construct.
as well as returns the result. Finaltgll_mem will deallocate the A related approach to refinements is the “design-by-cotitrac
memo table after the computation is complete. If the mentioiza ~ idea, recently implemented by Sage [14] and Deputy [8]. Hee
library is constructed with the hash table functor, thenringiple, grammers write boolean expressions as pre- and postammslttiat
the computation should run in time proportionakto are intended to be executed at run-time. Program analysisga

Notice that the return type dfib n guarantees that a return value ~ timize the run-time checks away, but in practice the oveitimeay
must beffib . through the use of a dependent type. Yet the proof still be significant. A more important issue is that the caats must

that the code is well-typed (i.e., respects the specifichtiotrivial. only contain benign effects in order to safely optimize thenay
This is because the hard parts of the proof were localizeitive without changing the behavior of the program. This beconzes p
correctness of the finite map implementations. ticularly important in the presence of concurrency, whenti@xts

must avoid deadlock and racing over shared data. However if
6. Compiling Ynot enforce_ that th(_e boo_Iea_n functic_)ns are_benign accordingioes

syntactic or typing criteria, then in practice, we canneiajs use
We have developed a compiler for Ynot that produces objedt co  existing or efficient code for the contract. As a simple ex&mnp
compatible with GHC-compiled Haskell modules. The compile consider a splay-tree lookup which happens to re-balareede:
works in three stages. First, code is extracted from Coqguain  The effects are benign (because eliminating the lookupfe sat

small Coq extension that eliminates functors and moduldshan this seems to demand a deep proof.

malizes all of the CiC terms. Second, the CiC terms are read in

to the Ynot compiler and lowered to an explicitly-phaseeinte- Dependent types for programming. There is another emerging
diate language. In the second stage, we eliminate proofstard class of projects that are attempting to retrofit dependgming to
compile away inductives and pattern matching. Finally, weeg- effectful programming languages based on indexed or pplite-

ate a set of GHC internal core language terms and compile themdependent types. Notable examples include DML [52] and more
using the GHC code generator. Compiling through GHC's irabr ~ recent ATS [51], Omega [42], Concogtion [15], RSP1 [48] aig} L
language allows us to ignore the surface syntax and typersyst Uid Types [40]. These systems have a strong separation detive

of Haskell, while still getting the benefits of GHC's optireizand programming language (which may include effects) and tlee-sp
run-time systerh In addition, since many Ynot terms have com- ification languages (which do not). For example, in Concoqti
putationally irrelevant sub-terms, the laziness of Hdskel bene- the programming language is based on OCaml, but the specifica
fit [9]. tion language is based on Coq. Coq terms can be used to index
ML type constructors that classify values, so it becomesiptes
1Many of the Ynot terms cannot be typed by GHC's internal tyystem, for instance, to use the types to capture correctness esgeitts.

since GHC's type system is too weak, but so far this has nat ageoblem. However, neither of these systems can use indexed typestio su



ably capture and reason about effects themselves (e.@tast a
mutable store.) Thus, while programmers can write effécide,
they can only reason completely about the pure subset.

Higher-order Hoare Logics, models, and implementations. There
are a number of recent extensions of Hoare and Separatido Log
to higher-order functional languages. Honda et al. [20¢ givtotal
correctness logic for PCF with references, and Krishnasvwem
al. [24] formalize higher-order Separation Logic for a leglorder
language and prove the correctness of a subject-obseriterrpa
Weber [47] implements a first-order separation logic forrapde
while-language in Isabelle/HOL and verifies an in-placerkser-
sal algorithm. Preoteasa [39] implements a first-order retion
logic in PVS for a language with recursive procedures andgso
the soundness of the frame rule. Varming and Birkedal [4®)ém
ment in Isabelle a higher-order Separation Logic for an irabee
language with simple procedures and prove the correctrigdk-o
eney’s copying garbage collector. None of the above lanegiag
considers the higher-order features such as polymorptisiam-
tification over constructors and type equalities, that wesater in
Ynot. Yet as we have shown here, these are essential for aitgiul
and realistic programming.

The approaches also differ from Ynot in the treatment of pro-
grams with errors (e.g., a dereference of a dangling pgiritéey
usually start with the universal domain of programs, out bfalu
specifications carve subsets, according to the pre- andqudit
tion. But, since erring programs are part of the universahaio,
the semantics has to make provisions for their treatmer.i¥ not
so in Ynot where well-typed programs do not produce errard, a
thus errors do not show up during verification.

Another related approach is the refinement calculus [1] kvhic
has recently been adapted to Coq [6]. Here, correctnesdab-es
lished by showing that one program refines another: the adistr
program serves as specification for the concrete one. In,¥pet-
ifications are types, rather than refinement relations, hod the
same distinction from above applies. Another key diffeeeisahat
the refinement semantics directly interprets programs edigate
transformers in Cog. Therefore, the approach does not soale
include general higher-order functions, nor higher-orstere [6,
Sections 6.5-6.6].

Allowing for these features is the main reason why we imple-
mented Ynot as an axiomatic extension, rather than a definiti
within type theory. Of course, then we needed to show that it i
sound to do so [33, 38].

8. Summary and future work

Ynot is a dependently typed programming language that ysafel
extends Coq with stateful side-effects and a way to reasontab
them via a version of Hoare and Separation Logic.

Unlike in many other Hoare-style logics, in the partial ewtr
ness specifications are types, which leads to a distinctidecan-
cise style of use whereby programming, specification anificar
tion are all integrated and inter-dependent. The first exawifin-
tegration is that our inference rules for partial correstn@ouble as
programming primitives in the monadic style of Haskell: radit
bind corresponds to sequential composition, monaeliarn to the
rule of assignment, monadilo combines the rules of consequence
and frame.

The biggest advantage brought by the integration is that pro
grams, types, predicates and proofs camlditract overother pro-
grams, types, predicates and proofs, which facilitatesriétion
hiding, codeand proofreuse, and modularity in general. These ab-
straction features already existed in pure type theorigstcdbdate
were not reconciled with effects.

We illustrated the modularity features of Ynot by impleniegt
a certified library for mutable data structures such as association
lists, hash tables and splay trees, which are all instarfaie finite
map interface, and can freely be interchanged in the cliefntise
finite maps. We illustrated that Ynot can support the prognamg
with and reasoning about important higher-order statedtilepns
such as shared local state (e.g., the state storing the firifeis
shared by the methods, but its details are hidden from tleatsl),
higher-order iterators, and memoization. All of these etally
rely on the ability to write code that is polymorphic in typdmsit
also in pre and postconditions.

In the most immediate future work, we plan to extend Ynot with
other kinds of side effects, such as 1/0, concurrency, highder
control flow, and foreign functions. We also hope to improup-s
port for equational reasoning about computations, and dwige
better automation support for discharging verificationditions.
Finally, we plan to further improve on the quality of the cagim-
erated by the Ynot compiler.
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