
 Open access Book Chapter DOI:10.1007/3-540-44751-2_31

Yoda: An Accurate and Scalable Web-Based Recommendation System
— Source link

Cyrus Shahabi, Farnoush Banaei Kashani, Yi-Shin Chen, Dennis McLeod

Institutions: University of Southern California

Published on: 05 Sep 2001 - Cooperative Information Systems

Topics: Collaborative filtering, Yoda, Recommender system and Locality-sensitive hashing

Related papers:

 Implicit interest indicators

 Extending a Web Browser with client-side mining

System and method for behavioral model clustering in television usage, targeted advertising via model clustering, and
preference programming based on behavioral model clusters

 Personalized ontology for web search personalization

 User-profile based web page recommendation system and user-profile based web page recommendation method

Share this paper:

View more about this paper here: https://typeset.io/papers/yoda-an-accurate-and-scalable-web-based-recommendation-
2k13hkl9yl

https://typeset.io/
https://www.doi.org/10.1007/3-540-44751-2_31
https://typeset.io/papers/yoda-an-accurate-and-scalable-web-based-recommendation-2k13hkl9yl
https://typeset.io/authors/cyrus-shahabi-1xg2mgrq5c
https://typeset.io/authors/farnoush-banaei-kashani-8o6mmfx9g4
https://typeset.io/authors/yi-shin-chen-bpqgylvqza
https://typeset.io/authors/dennis-mcleod-3zhscz11gd
https://typeset.io/institutions/university-of-southern-california-255p3f56
https://typeset.io/conferences/cooperative-information-systems-1sliyscb
https://typeset.io/topics/collaborative-filtering-287u9x00
https://typeset.io/topics/yoda-19locfjq
https://typeset.io/topics/recommender-system-3179d5wg
https://typeset.io/topics/locality-sensitive-hashing-3sgz8t0y
https://typeset.io/papers/implicit-interest-indicators-gaasw2cksb
https://typeset.io/papers/extending-a-web-browser-with-client-side-mining-2r6zwxrtk0
https://typeset.io/papers/system-and-method-for-behavioral-model-clustering-in-2cznb5z8g7
https://typeset.io/papers/personalized-ontology-for-web-search-personalization-42t8ikosj8
https://typeset.io/papers/user-profile-based-web-page-recommendation-system-and-user-10p03b2ag3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/yoda-an-accurate-and-scalable-web-based-recommendation-2k13hkl9yl
https://twitter.com/intent/tweet?text=Yoda:%20An%20Accurate%20and%20Scalable%20Web-Based%20Recommendation%20System&url=https://typeset.io/papers/yoda-an-accurate-and-scalable-web-based-recommendation-2k13hkl9yl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/yoda-an-accurate-and-scalable-web-based-recommendation-2k13hkl9yl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/yoda-an-accurate-and-scalable-web-based-recommendation-2k13hkl9yl
https://typeset.io/papers/yoda-an-accurate-and-scalable-web-based-recommendation-2k13hkl9yl

Yoda: An Accurate and Scalable Web-based

Recommendation System?

Cyrus Shahabi, Farnoush Banaei-Kashani, Yi-Shin Chen, and Dennis McLeod

Department of Computer Science, Integrated Media Systems Center, University of

Southern California, Los Angeles, CA 90089-2561, USA
[shahabi, banaeika, yishinc, mcleod]@usc.edu

Abstract. Recommendation systems are applied to personalize and cus-
tomize the Web environment. We have developed a recommendation sys-

tem, termed Yoda, that is designed to support large-scale Web-based ap-

plications requiring highly accurate recommendations in real-time. With
Yoda, we introduce a hybrid approach that combines collaborative �lter-

ing (CF) and content-based querying to achieve higher accuracy. Yoda

is structured as a tunable model that is trained o�-line and employed
for real-time recommendation on-line. The on-line process bene�ts from

an optimized aggregation function with low complexity that allows real-

time weighted aggregation of the soft classi�cation of active users to pre-
de�ned recommendation sets. Leveraging on localized distribution of the

recommendable items, the same aggregation function is further optimized

for the o�-line process to reduce the time complexity of constructing the
pre-de�ned recommendation sets of the model. To make the o�-line pro-

cess scalable furthermore, we also propose a �ltering mechanism, FLSH,

that extends the Locality Sensitive Hashing technique by incorporating
a novel distance measure that satis�es speci�c requirements of our ap-

plication. Our end-to-end experiments show while Yoda's complexity is

low and remains constant as the number of users and/or items grow, its
accuracy surpasses that of the basic nearest-neighbor method by a wide

margin (in most cases more than 100%).

1 Introduction

The World Wide Web is emerging as an appropriate environment for busi-
ness transactions and user-organization interactions, because it is convenient,
fast, and cheap to use. Witness the enormous popularity of e-Commerce and
e-Government applications. However, since the Web is a collection of semi-
structured and structured information resources, Web users often su�er from
information overload. To remedy this problem, recommendation systems are ap-
propriate to personalize and customize the Web environment. Mass customiza-
tion of the Web facilitates access to the Web-based information resources and

? In the Proceedings of the Sixth International Conference on Cooperative Information

Systems , Trento, Italy , September 2001 c
 Springer-Verlag

II

realizes the full economic potential of the Web. Recommendation systems have
achieved widespread success in e-Commerce and e-Government applications.

Various statistical and knowledge discovery techniques have been proposed
and applied for recommendation systems. To date, collaborative �ltering (CF)

is the most successful approach employed in recommendation systems [5, 9]; it
is used in many of the real recommendation systems on the Web. Collaborative
�ltering works based on the assumption that if user x interests are similar to
user(s) y interests, the items preferred by y can be recommended to x. With
collaborative �ltering, the system strives to predict unknown interests of the
user based on similarity of the user interests with those of other users.

There are two fundamental challenges for CF-based recommendation sys-
tems. The �rst challenge is to improve the scalability of the system. For modern
e-Commerce applications such as eBay.comTM and Amazon.comTM, a recommen-
dation system should be able to provide recommendations in real-time while
the number of both users and items exceed millions. There are two families of
collaborative �ltering algorithms: memory-based algorithms [1,5], and model-

based algorithms [8,9]. With memory-based algoritms, the entire recommenda-
tion process is generally an on-line process. On the other hand, with model-
based algorithms recommendation is performed using an aggregated model.
Thus, the time-consuming part of the recommendation process is performed
o�-line, leaving the on-line process with reasonably low time complexity. Hence,
model-based approaches are preferred in large-scale applications, where millions
of recommendations are to be generated in real-time. The second challenge for
CF-based recommendation systems is to improve the accuracy of the recommen-
dations to be as e�cacious as possible. False recommendations, such as those
that miss recommendable items (termed false negatives), or those that include
non-recommendable items (termed false positives), seriously a�ect e�cacy of
the recommendation systems and must be avoided. Problems such as sparsity

and synonymy further complicate enhancement of the accuracy (see Section 2).
Accuracy is usually sacri�ced to achieve lower space and time complexity.

In this paper, we present our scalable and accurate CF-based recommenda-
tion system, termed Yoda, which is designed to support large-scale Web-based

applications requiring highly accurate recommendations in real-time.With Yoda,
we introduce a tunable model-based approach that can strike a compromise be-
tween scalability and accuracy based on the speci�c application requirements.
With our model, not only we optimize the on-line recommendation process,
but also we propose techniques to reduce time complexity of generating the
model during the o�-line process. During the online process, observing the prob-
able multi-nature behavior of each single user, �rst we softly classify an active
user based on typical patterns of users behaviors. Subsequently, we perform a
weighted aggregation on pre-de�ned recommendations associated to each class
of behaviors to generate the soft recommendations for the user. Applying an ac-
curate and tunable aggregated model, FM, and a customized similaritymeasure,
PPED, accurate classi�cation of users is performed in real-time [13]. To expedite
the aggregation step, we propose an optimized fuzzy aggregation function that

III

reduces time complexity of the aggregation fromO(kIk�kPk) to O(kIk) (where
I and P are the size of the item set and size of the property set associated with
each item, respectively).

On the other hand, with large-scale applications since both items presented
within the Web-site and user behaviors are changing rapidly, the model itself
must be updated/regenerated frequently, e.g. once a day. We apply the same
aggregation function to generate the pre-de�ned recommendations, cluster wish-
lists, for each class of users during the o�-line process. In this case, we view each
cluster wish-list as a sub-system. Hence, we can incorporate an optimized aggre-
gation algorithm proposed by Fagin [2] to further reduce the time complexity
of the aggregation function to O(kNk), where N is a small constant parameter
selected during system tuning. Furthermore, we take advantage of the localized
distribution of the items and propose an extended version of the LSH technique
[15], termed FLSH, to avoid considering the items that do not show su�cient
proximity to the required recommendations, while generating the cluster wish-
lists. The original LSH is appropriate for fast item retrieval (sublinear to kIk)
in high-dimensional spaces (large kPk), which makes it the optimum choice for
cluster wish-list generation. However, the distance measure used in LSH, Ham-
ming distance, does not satisfy requirements of our distance space. With FLSH,
we introduce and incorporate our own distance measure to customize LSH for
our application.

In sum, the major contribution of this paper is a novel content-based ranking
method for CF-based models that captures associations between items. Conse-
quently, our model considers both association between users - with collaborative
�ltering and items - with content-based �ltering; this is to address the synonym
problem of the pure CF-based approaches, and achieve higher accuracy even
very large-scale applications.

2 Related Work

Recommendation systems are designed either based on content-based �ltering

or collaborative �ltering. Content-based �ltering approaches are derived from
the concepts introduced by the Information Retrieval (IR) community. Content-
based �ltering systems are usually criticized for two weaknesses, content lim-

itation (e.g., IR methods can only be applied to a few kinds of content) and
over-specialization. The collaborative �ltering (CF) approach remedies these
two problems. Typically, CF-based recommendation systems do not use the ac-
tual content of the items to evaluate them for recommendation. Moreover, since
other user pro�les are also considered, user can explore new items which are in
terms with avoiding the over-specialization problem. The nearest-neighbor algo-
rithm is the earliest CF-based algorithm used in recommendation systems [5].
With this algorithm, the similarity between users is evaluated based on their
rating data, and the recommendation is generated considering the items visited
by nearest neighbors of the user. In its original form, CF-base recommendations

IV

su�er from the problems of, scalability, sparsity, and synonymy (i.e., latent
association between items is not considered for recommendations.)

In order to alleviate or even eliminate these problems, more recently, re-
searchers introduced a variety of di�erent techniques into collaborative �lter-
ing systems, such as content analysis [4] for avoiding the synonymy and spar-
sity problems, categorization [7] to alleviate the synonymy and sparsity prob-
lems, bayesian network [9, 8] for lightening the scalability problem, clustering [9]
to lessen sparsity and scalability problems, and Singular Value Decomposition
(SVD) [6, 10] to ease all three problems to a certain limit.

With Yoda, we introduce an integrated model which brings together the
advantages of model based, clustering, content analysis, and CF approaches. As
a result, we reduce the time complexity through model based and clustering
approaches, alleviate the synonymy problem with content analysis method, and
address the sparsity problem by implicit identi�cation of the users interests [11,
12].

3 Overview

The objective of a Web-based recommendation system can be stated as follows:

Problem Statement Suppose I = fij\i" is an itemg is the set of items pre-
sented in a Web-site, termed the item-set of the Web-site, and x is a user

interactively navigating the Web-site. The recommendation problem is de�ned

to �nd a ranked list of the items Ix, termed wish-list, in which items in Ix are
ranked based on x interests.

To provide a wish-list for a user, generally a CF-based recommendation sys-
tem goes through 2 steps/phases:

1. User Classi�cation: During this phase, data about user interests are acquired
and employed to classify the user.

2. Ranking the Items: In this phase, the predicted user interests are applied
to rank and order the items in the item-set to provide the �nal wish-list for
the user.

To illustrate the processing
ow of Yoda, consider Figure 1. Suppose music
CDs are the items presented by a given web-site. For a music CD, for instance
proximity to various styles of music such as Classic, Rock, Pop, etc. can be
considered as di�erent properties of the item. Yoda is to provide each active
user of the site with purchase recommendations that are compatible with the
style(s) of music the user likes. To generate the recommendations, during an o�-
line process Yoda uses fuzzy terms such as Low, Medium, and High to evaluate
correspondence of each CD with a de�ned set of properties, e.g. fRock, Pop,
Indie, Heavy-Metal, Jazzg. For example, a CD can be labeled with Rock =
High, Pop = Low, Indie = Low, Heavy-Metal= Medium, and Jazz = Low. Also,

V

Cluster

Favorite

PVs

Cluster

Centroid

Item

Database

Cluster

Yoda

Clusters

$$$

User Navigation

Soft

Classification

(PPED)

A List of

Similarity

Values

User

Yoda
User Wish-List

Offline Process

Cluster

Wish-Lists

Cluster 1 Wish-List

Cluster 2 Wish-List

Cluster n Wish-List

Fig. 1. Architecture of Yoda

during the o�-line process, Yoda identi�es similar groups of users by clustering
user sessions from a training set, and learns typical pattern of users interests
in each cluster, termed favorite property values (favorite PVs) of the cluster,
by taking vote among items browsed by users belonging to the cluster. For
instance, favorite PVs of a cluster can be Rock = High, Pop = Low, Indie =
Medium, Heavy-Metal= High, and Jazz = Low. Then, Yoda applies favorite
PVs of each cluster as a measure to rank items in the item-set and predict a
list of recommendations, termed wish-list, for each cluster. Later, during the on-
line recommendation process �rst an active user is softly classi�ed with clusters
of users based on his/her partial navigation pattern. Thereafter, Yoda uses the
classi�cation factors to generate the �nal wish-list for the active user by weighted
aggregation of the cluster wish-lists. Items in the user wish-list are now ranked
based on preferences of the corresponding user.

4 System Design

In this section, we provide a detailed description of Yoda's components. Since
phase I is performed based on our previous work [12, 13], here we elaborate more
on phase II of Yoda.

4.1 Phase I - User Classi�cation

Yoda uses the client-side tracking mechanism we proposed in [12] to capture
view-time, hit-count, and sequence of visiting the web-pages that particularly
provide information about the items presented within a web-site. These features
are applied to infer users interests in items. To analyze these features and infer
the user interests, Yoda employs a
exible and accurate model we introduced
in [13], the Feature Matrices (FM) model. FM is a set of variable-order hyper-
cube data structures that can represent various aggregated access features with

VI

any required precision. With FM, we can model access patterns of both a single
user, and a cluster of users. Here, Yoda uses FM to model the access patterns of
the active users individually and the aggregated access pattern of each cluster of
users from the training data. Yoda also applies a version of the similaritymeasure
we proposed in [13], Projected Pure Euclidean Distance (PPED), to evaluate the
similarity of a user access/interest pattern to a cluster access/interest pattern
modeled by FM. PPED allows highly accurate classi�cation of the users' partial
interest patterns. Since essentially PPED is a dissimilarity measure, here we use
a slightly di�erent version of PPED to quantify similarity of user u to cluster k,
Suk:

Suk = MaxDistance � TPPED(u; k) 0 � Suk � MaxDistance

whereMaxDistance is a constant parameter that is selected as the upper bound
for distance, and Truncated PPED (TPPED) is de�ned as follows:

TPPED(u; k) =

�
PPED(u; k) if PPED(u; k) � MaxDistance

MaxDistance if PPED(u; k) > MaxDistance

Thus, by computing Suki
, Yoda can quantify the similarity of user u interests

to the interest pattern of each cluster ki and softly classify user interests to
typical interest patterns within the web-site. During the item ranking process
(see Section 4.2), Yoda uses Suki

as the the weight factor for aggregating wish-list
of cluster ki into the �nal user wish-list.

4.2 Phase II - Ranking the Items

In this section, �rst we formallyde�ne some terms. Second, we explain the o�-line
process through which the cluster wish-lists are constructed. Third, we describe
how user wish-list is generated during the on-line process. Finally, we explain a
�ltering mechanism to optimize the time complexity of generating cluster wish-
lists.

De�ning Terms Here, we de�ne the notions of property, item, and user/cluster
wish-list. An item is an instance of product, service, etc. that is presented in a
web-site. The set of items presented in a web-site comprise the item-set, I, of the
web-site. Items are described by their properties, which are abstract perceptual
features. For example, for a music CD as an item, \styles" of the music (such
as Classic, Rock and Pop) and \ratings" of this CD by di�erent critics can
be considered as properties of the item. Since properties are perceptual we use
fuzzy-sets to evaluate properties [14].

De�nition If ' = ffl j fl is a fuzzy set, and 8l 2 N � f1g fl > fl�1g and

P = fp j p is a propertyg, then an item i 2 I is de�ned as:

i = f(p; ~pi) j p 2 P; ~pi 2 'g

VII

Example Suppose item K is de�ned as: f (Pop, high), (Rock, low), (Critic-
A, good), (Critic-C, neutral)g. It represents that the style of this item is very

similar to \Pop" and only a little similar to \Rock". Moreover, it also describes

the opinions of two critics.

De�nition A wish-list, Ix, for user/cluster x is de�ned as:

Ix = f(i; vx(i))ji 2 I; vx(i) 2 [0; 1]g

where the preference value vx(i) measures the probability of x being interested

in the item i.

Generating Cluster Wish-lists (o�-line process) Yoda represents the ag-
gregated interests of the users in each cluster by a set of property values (PVs),
termed favorite PVs of the cluster. Each favorite PV identi�es likelihood of the
cluster being interested in a speci�c property of the items. Favorite PVs of each
cluster are extracted by applying a voting procedure to the set of items visited
by the users of a cluster, termed the browse-list of the cluster, as follows:

De�nition User browse-list, bu, and cluster browse-list, Bk, are de�ned as:

bu = fi j i 2 I;\i" is visited by u 2 Ug

Bk =
[
u2k

bu

where U is the training set of users. The voting procedure extracts the favorite

PV, Fp(k), corresponding to property p for cluster k as follows1:

Cp;f (k) = kfi j i 2 Bk; ~pi = fgk

Fp(k) = fmaxff j f 2 ';Cp;f (k) = max
8f 0

2'

fCp;f 0 (k)gg

Example Suppose the browse-list of cluster K is fCD-A, CD-B, CD-G, CD-K,
CD-Y, CD-Zg, and the values of property \Rock" for the corresponding CDs are

f (CD-A, high), (CD-B, high), (CD-G, low), (CD-K, medium), (CD-Y, high),

(CD-Z, high) g. Because \high" has the maximum vote, the favorite PV of
cluster K, FRock(K), is \high".

Cluster-Yoda is the module that evaluates vk(i), preference value of an item i

for cluster k. To compute vk(i), cluster-Yoda employs a fuzzy aggregation func-
tion to measure and quantify the similarity between favorite PVs of the cluster
k and speci�c property values associated with the item i. We use an optimized
aggregation function with a triangular norm, which satis�es conservation, mono-

tonicity, commutativity, and associativity requirements for data aggregation [2].
Here, we formally de�ne the aggregation function used to compute vk(i):

1 \fmax" is the fuzzy max function.

VIII

De�nition First, properties are grouped based on their corresponding values
in favorite PVs of the cluster k:

Gf (k) = fp j f 2 '; p 2 P; Fp(k) = fg

then, the preference value vk(i) for item i is computed as:

Ek;f (i) = f � fmaxf~pi j p 2 Gf (k)g

vk(i) = fmaxfEk;f (i) j 8f 2 'g

Example Suppose properties are grouped as Gmedium(K) = fVocal, Sound-

trackg, Ghigh(K) =fRock, Popg, and Glow(K) =fClassicg, and the item i is
de�ned as f (Rock, low), (Pop, low), (Vocal, low), (Soundtrack, high), (Clas-

sic, medium)g. According to the equations above, the preference value vK(i) =

fmax f (high � low), (medium � high), (low � low) g = (medium � high) =

0.75.

Basically, this aggregation function partitions the properties into k'k di�er-
ent subgroups according to the favorite PVs of the cluster k. Subsequently, the
system maintains a list of maximum property values for all subgroups. Finally,
the system computes the preferences of all items in the cluster wish-list by it-
erating through all subgroups. As compared to a naive weighted aggregation
function with time complexity O(kPk � kIk), the complexity of the proposed
aggregation function is O(k'k � kIk) = O(kIk), where k'k is a small constant
number.

To reduce the time complexity of generating the cluster wish-lists further,
we apply a cut-o� point to the cluster wish-lists. Each cut wish-list includes the
N best-ranked items according to their preference values for the corresponding
cluster. In [2], Fagin has proposed an optimized algorithm, the A0 algorithm,
to retrieve N best items from a collection of subsets of items with time com-
plexity proportional to N rather than total number of items. Here, by taking
the subgroups of items (as described above) as the subsets, the A0 algorithm
can be incorporated into the cluster-Yoda2. Applying the A0 algorithm to gen-
erate a cluster wish-list with cut-o� point N , we reduce the time complexity to
O(k'k � kNk) = O(kNk), where kNk � kIk.

Generating User Wish-lists (on-line process) During the on-line recom-
mendation process, user-Yoda, which is an aggregation module similar to the
cluster-Yoda, aggregates the cluster wish-lists to generate the �nal resolved user
wish-list for the active user u. User-Yoda applies a fuzzy aggregation function
to compute the preference value vu(i) of each item i (i 2

S
8k Ik) for the user u

based on similarity Suk of user u to clusters k (where i 2 Ik).

2 Since our aggregation function is in triangular norm form, it satis�es the require-

ments of the A0 algorithm.

IX

De�nition First, clusters are grouped based on their similarity to the user u
as follows3:

Gf (u) = fk j f 2 '; Suk = fg

then, the preference value vu(i) for item i is computed as:

Eu;f (i) = f � fmaxfvi(k) j k 2 Gf (u)g

vi(u) = fmaxfEu;f (i) j 8f 2 'g

Filtering Mechanism Cluster-Yoda generates a cluster wish-list based on the
favorite PVs of the cluster. The large size of the item-set renders our approach
to o�-line ranking practically time complex. Therefore, we have to incorporate a
mechanism into the cluster-Yoda to target the set of items that more probably
contribute towards higher preference values.

The item-set in large-scale applications is a high-dimensional database. In
[16], it is demonstrated that all index structures degrade to a linear search for
su�ciently high dimensions. On the other hand, we observe that items com-
prising the item-set are locally distributed; a property that can be exploited to
reduce time complexity of the item selection for the cut cluster wish-lists. We
extend the Locality Sensitive Hashing (LSH) algorithm proposed in [15] to hash
items into hash buckets preserving the locality in storage. This algorithm has
sublinear dependency on the item-set size, even when the item-set is a high-
dimensional database. However, a fuzzy feature space bears the property that
the higher fuzzy terms (i.e. fl1 > fl2 , then fl1 is higher) show more proximity to
the solution space as opposed to the lower fuzzy terms. Thus, we have developed
a novel fuzzy distance measure as opposed to the Hamming distance measure
used by [15] to consider this property. We term the locality sensitive hashing
algorithm customized for our application as Fuzzy Locality Sensitive Hashing

(FLSH). FLSH reduces the potential solution space of the problem stated be-
low, so that the aggregation function of the cluster. Yoda achieves the ideal
solution with lower time complexity:

Problem Statement Find the N nearest neighbors for favorite PVs of cluster

k, Vk :

Vk = f(p;Fp(k)) j p�Pg

from the item-set I, where kIk =M � N .

First, Yoda hashes the items in the item-set I using the LSH algorithm.
Each item i 2 I is embedded into a Hamming cube H

d
0

, where d
0 = fmax � d

represents the number of dimensions for the Hamming cube, fmax is the highest

3 Numerical Suk values are converted to fuzzy equivalents. See [14] for details of the

conversion procedure.

X

value of the fuzzy terms in ', and d = kPk. This procedure transforms each
item i into a binary vector zi. The LSH algorithm is described as follows [15]:
choose l subsets Q1,...,Qj,...,Qh of f 1,...,d0 g; let zjQj

denote the projection of
vector z on the coordinate set Qj; the hash function is de�ned as gj(z) = zjQj

.
The locality sensitive hash function maps the binary representation of the item
i into the bucket gj(zi). This pre-processing achieves a localized distribution of
the item-set I into the hash buckets.

After inserting the items into the hash buckets, Yoda can retrieve the N

nearest items to Vk by visiting the hash buckets one-by-one until the N required
items are found. We de�ne a fuzzy distance measure to determine the optimum
order of visiting the hash buckets based on their distance from Vk, starting from
the closest bucket. Here, we formally de�ne our fuzzy distance measure.

Rock=L

Rock=H

Rock=M

Pop=L

Pop=H

Pop=M

Indie=L

Indie=M

Indie=H

H-Met=L

H-Met=H

H-Met=M

Jazz=L

Jazz=H

Jazz=M

Start

Fig. 2. Filtering Mechanism - Example Schematic Diagram

De�nition Set L of all pairs of the properties and their corresponding fuzzy

values that need to be searched is de�ned as:

L = f(p; ~p) j p�P; ~p � Fp(k)g

There is a one-to-one relationship between elements of L, ei, and the hash
buckets. To select the next bucket in each step, distance of the bucket centroid

�j from Vk, D(�j; Vk), is measured as:

Sk(p) =

�
fminf~p j 8(p; ~p) 2 Lg 9(p; ~p) 2 L
0 otherwise

D(�j; Vk) =
P

p2P
[w(Sk(p))� Sk(p) � �j(p)]

where the weight w(fl) for fuzzy term fl is de�ned so that w(fl) > d�w(fl�1),

and �j(p) is the value for property p in bucket centroid �j. The closest bucket is

selected for the next step. During transition between bucket i and bucket i+1,

L is updated according to the following rule:

L L� feig (8i > 0)
where

ei =

�
(p; fl+1) ei�1 = (p; fl < fmax(')) and i > 1

(p; fmaxf~p j 8(p; ~p) 2 Lg) otherwise

Figure 2, illustrates an example search path according to FLSH retrieval
algorithm. The transition diagram is generated based on the favorite PVs of the
cluster k de�ned as: FRock(k) = High, FPop(k) = Low, FIndie(k) = Medium,
FHeavy�Metal(k) = High, FJazz(k) = Low, where P = fRock, Pop, Indie, Heavy-
Metal, Jazzg, and ' = fLow, Medium, Highg.

XI

5 Performance Evaluation

We performed an end-to-end simulation to compare accuracy and scalability of
Yoda with the basic nearest-neighbor (BNN) method [10]. In this simulation
framework, both Yoda and BNN are implemented in JavaTM, on top of Mi-
crosoft TM Access 2000. We used a MicrosoftTM NT 4.0 personal computer with
a PentiumTM II 233MHz processor to run our experiments.

5.1 Experimental Methodology

In order to generate synthetic data for evaluation purposes, we propose a para-
metric algorithm to simulate various benchmarks (see Table 1). First, the bench-
mark method generates K clusters. Each cluster comprises a browse-list, a list
of favorite PVs, and a pattern of navigation as the cluster centroid. Every item
in the cluster browse-list is assigned a rating value to be used by BNN. For each
cluster, the algorithm then randomly generates S=K users. Each user has a cur-
rent browse-list, bu, and an expected browse-list, eu, that are both constructed
around the centroid of cluster k with 30% noise.

Parameter De�nition

d Number of properties (kPk)
M Number of items in the item-set (kIk)

S Number of user sessions used for analysis

Lmin Minimum size of user browse-lists
Lmax Maximum size of user browse-lists

	 Number of fuzzy terms (k'k)

K Number of clusters
N The cut-o� point

Table 1. Benchmarking Parameters

Subsequently, each item in bu is assigned a rating value based on the original
rating value in cluster k. Next, the algorithm generates PVs for each item i

based on the favorite PVs of the cluster that has the highest rating for item i,
say cluster k0. The higher is the rating of item i in cluster k0, the more similar are
PVs of i to favorite PVs of cluster k0. The rating values and PVs are represented
by fuzzy terms. We use Yoda and BNN to construct wish-list Iu for each user u
and compare the wish-list with eu to evaluate the accuracy of these systems.

5.2 Experimental Results

We conducted several sets of experiments to compare Yoda with BNN. In these
experiments, we observed a signi�cant margin of improvement over BNN in
matching the user expectations for various settings. Moreover, it is shown that
performance of Yoda is independent of the number of users.

XII

The results shown for each set of experiments are averaged over many runs,
where each run is executed with di�erent seeds for the random generator func-
tions. The coe�cient of variance of these runs is smaller than 5%, which shows
our results are independent of the speci�c run.

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of User

P
r
o
c
e
s
s
i
n
g

T
i
m
e

(
m
i
l
l
i
s
e
c
o
n
d
s
/
u
s
e
r
)

Yoda Nearest Neighbor Method

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1000 5000

Number of Items

H
a

rm
o

n
ic

 M
e

a
n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Im
p

ro
v

e
m

e
n

t

Nearest Neighbor Method Yoda Improvement

a. Number of Users - Processing Time b. Number of Items - Accuracy

Fig. 3. Impacts of number of users on processing time and number of items on accuracy

In Figure 3, we compare performances of Yoda and BNN. The benchmark
settings of these experiments, K, Lmin, Lmax, d, N , and 	 are �xed at 18, 25,
30, 10, 150, 10, respectively. M in Figure 3.a is 5000 and S in Figure 3.b is 500.
X-axis of Figure 3.a is S varying from 500 to 4000, and X-axis of Figure 3.b
is M . Y-axis of Figure 3.a is the system processing time for each user, and Y-
axis of Figure 3.b depicts the Harmonic mean computed by Equation 1, and
improvement computed by Equation 2.

Harmonic Mean(Precision;Recall) =
2

1

Precision
+ 1

Recall

(1)

Improvement(Y oda;BBN) =
(Y oda� BBN)

BBN
(2)

Figure 3.a veri�es that Yoda is scalable. As the number of users grow, the
system processing time of Yoda remains unchanged while the processing time of
BBN increases linearly. This is because Yoda is a model-based recommendation
system. Figure 3.b indicates that Yoda always outperforms BNN in accuracy.
Although performances of both systems decrease as the number of items grow,
the margin of improvement between Yoda and BNN expands. We attribute this
improvement to the incorporation of content-based �ltering into the Yoda in-
frastructure.

With Figure 4, we demonstrate impacts of N in accuracy and processing time
of the two systems. The benchmark settings of these experiments, K, S, M , d,
Lmin, Lmax, and 	 are �xed at 18, 1000, 5000, 5, 25, 30, and 10, respectively.
X-axis is N varying from 50 to 250. Y-axis of Figure 4.a depicts the Harmonic
mean and improvement, and the Y-axis of Figure 4.b is the system processing
time.

XIII

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250

Cut-off Point

H
a

rm
o

n
ic

 M
e

a
n

0%

20%

40%

60%

80%

100%

120%

Im
p

ro
v
e
m

e
n

t

Nearest Neighbor Method Yoda Improvement

0

100

200

300

400

500

600

50 100 150 200 250

Cut-off Point

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
il

li
s

e
c

o
n

d
s

/u
s

e
r)

Nearest Neighbor Method Yoda

a. Cut-o� Point - Accuracy b. Cut-o� Point - Processing Time

Fig. 4. Impacts of cut-o� point on accuracy and processing time

In Figure 4.a, accuracy of both Yoda and BNN improves as N grows because
more items are considered in the wish-list. However, the margin of improvement
between Yoda and BNN grows as the cut-o� point is increased. Again, applying
content-based �ltering to retrieve the recommendable items enables Yoda to
identify more items similar to the items in the user browse-list. In Figure 4.b, as
the cut-o� point increases processing time of Yoda grows while processing time
of BNN remains una�ected. This observation shows that based on the size of
the required wish-list, Yoda searches only a subset of the item-set to generate
the wish-lists while with BNN, regardless of the size of the wish-lists, the entire
item-set is processed.

6 Conclusions and Future Work

In this paper, we described a recommendation system, termed Yoda, that is de-
signed to support large-scale web-based applications requiring highly accurate
recommendations in real-time. Our end-to-end experiments show while Yoda
scales as the number of users and/or items grow, it achieves up to 120% higher
accuracy as compared to the basic nearest-neighbor method. We intend to ex-
tend this study in several ways. First, we would like to run more experiments
with real data to verify our results and to compare with other approaches. Sec-
ond, we want to incorporate the content-based �ltering mechanism into the user
classi�cation phase. Finally, our aggregation function is de�ned in the domain
of the original fuzzy logic theory, fuzzy type-I. However, recently Karnik et al.
[17] introduced fuzzy type-II to incorporate uncertainty in computation.

Acknowledgments

We are grateful for the assistance given by Jabed Faruque in conducting some
experiments and for Amol Ghoting's helpful suggestions in improving the FLSH
�ltering mechanism. This research has been funded in part by NSF grants
EEC-9529152 (IMSC ERC) and ITR-0082826, NASA/JPL contract nr. 961518,
DARPA and USAF under agreement nr. F30602-99-1-0524, and unrestricted
cash/equipment gifts from NCR, IBM, Intel and SUN.

XIV

References

1. Sarwar B., G. Karypis, J. Konstan, and J. Riedl: Analysis of Recommendation Algo-

rithms for E-Commerce, Proceedings of E-Commerce Coneference, 17-20 October,

Minneapolis, Minnesota, 2000.
2. Fagin R.: Combining Fuzzy Information from Multiple Systems, Proceedings of

Fifteenth ACM Symposyum on Principles of Database Systems, Montreal, pp. 216-

226, 1996.
3. Shahabi C., and Y. Chen: E�cient Support of Soft Query in Image Retrieval Sys-

tems, Proceedings of SSGRR 2000 Computer and eBusiness Conference, Rome,

Italy, Aguest, 2000.
4. Balabanovi M., and Y. Shoham: Fab, content-based, collaborative recommendation,

Communications of the ACM, Vol 40(3), pp. 66-72, 1997.
5. Resnick P., N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl: GroupLens, An Open

Architecture for Collaborative Filtering of Netnews, Proceedings of ACM conference

on Cumputer-Supported Cooperative Work, Chapel Hill, NC, pp. 175-186, 1994.
6. Sarwar B., G. Karypis, J. Konstan, and J.Riedl: Analysis of Recommendation Al-

gorithms for e-Commerce, Proceedings of ACM e-Commerce 2000 Conference, Min-

neapolis, MN, 2000.
7. Good N., J. Schafer, J. Konstan, A. Borchers, B. Sarwar, J. Herlocker, and J. Riedl:

Combining Collaborative Filtering with Personal Agents for Better Recommenda-
tions, Proceedings of the 1999 Conference of the American Association of Arti�cal

Intelligence, pp. 439-446, 1999.
8. Kitts B., David Freed, and Martin Vrieze: Cross-sell, a fast promotion-tunable

customer-item recommendation method based on conditionally independent proba-
bilities, Proceedings of the sixth ACM SIGKDD international conference on Knowl-

edge discovery and data mining, Boston, MA, pp. 437-446, August, 2000.
9. Breese J., D. Heckerman, and C. Kadie: Empirical Analysis of Predictive Algo-

rithms for Collaborative Filtering, Proceedings of the Fourteenth Conference on

Uncertainty in Arti�cial Intelligence, Madison, WI, pp. 43-52, July, 1998.
10. Sarwar B., G. Karypis, J. Konstan, and J.Riedl: Application of Dimensionality

Reduction in Recommender System { A Case Study, ACM WebKDD 2000 Web
Mining for e-Commerce Workshop, 2000.

11. Konstan, J., B. Miller, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl: Applying

Collaborative Filtering to Usenet News, Communications of the ACM (40) 3, 1997.
12. Shahabi C., A.M. Zarkesh, J. Adibi, and V. Shah: Knowledge Discovery from Users

Web Page Navigation, Proceedings of the IEEE RIDE97 Workshop, April, 1997.
13. Shahabi C., F. Banaei-Kashani, J. Faruque, and A. Faisal: Feature Matrices: A

Model for E�cient and Anonymous Web Usage Mining , EC-Web 2001, Germany,

September 2001
14. Shahabi C., and Y. Chen: A Uni�ed FrameWork to Incorporate Soft Query into

Image Retrieval Systems , International Conference on Enterprise Information Sys-

tems, Setubal, Portugal, July 2001
15. Gionis A., P. Indyk, and R. Motwani: Similarity search in high dimensions via

hashing, Proceedings of the 25th International Conference on Very Large Databases,

Edinburgh, Scotland, 1999.
16. Weber R., H. Schek and S. Blott: A quantitative analysis and performance study

for Similarity Search Methods in High Dimensional Spaces, Proceedings of the 24th

International Conference on Very Large Data bases, 1999.
17. Karnik N., and J. Mendel: Operations on Type-2 Fuzzy Sets, International Journal

on Fuzzy Sets and Systems, 2000.

