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ABSTRACT

We present YOGY a web-based resource for ortho-

logous proteins from nine eukaryotic organisms:

Homo sapiens, Mus musculus, Rattus norvegicus,

Arabidopsis thaliana, Drosophila melanogaster,
Caenorhabditis elegans, Plasmodium falciparum,

Schizosaccharomyces pombe and Saccharomyces

cerevisiae. Using a gene name from any of these

organisms as a query, this database provides com-

prehensive, combined information on orthologs

in other species using data from five independ-

ent resources: KOGs, Inparanoid, HomoloGene,

OrthoMCL and a table of curated fission and budd-
ing yeast orthologs. Associated Gene Ontology

(GO) terms of orthologs can also be retrieved for

functional inference. Integrating these different and

complementary datasets provides a straightforward

tool to identify known and predicted orthologs of

proteins from a variety of species. This resource

should be useful for bench scientists looking for

functional clues for their genes of interest as well
as for curators looking for information that can be

transferred based on orthology and for rapidly iden-

tifying the relevant GO terms as an aid to literature

curation. YOGY is accessible online at http://www.

sanger.ac.uk/PostGenomics/S_pombe/YOGY/.

INTRODUCTION

It is common practice to obtain useful clues about the func-
tion and evolution of a protein of interest by identifying
homologous proteins in other organisms (1–3). There are
three types of homology with biological relevance (4). Ortho-
logy is most useful for insight into related gene functions as
it arises from a common protein in an ancestral organism

rather than from gene duplication (paralogy) or horizontal
transfer of genes (xenology).

Several methods are available to identify orthologous pro-
teins in different organisms. KOGs [euKaryotic Orthologous
Groups; Ref. (5)] is a homology database derived from seven
eukaryotic genomes, which uses the principle of BLAST best
hits between three proteins from different organisms (6,7);
since many eukaryotic proteins contain multiple domains,
some common modules are masked (5). Inparanoid contains
26 datasets from 23 eukaryotic organisms; it can distinguish
true homologs (orthologs and in-paralogs) from out-paralogs
that arose from gene duplications prior to the divergence of
two species (8–10). HomoloGene is a system for automated
detection of homologs among the annotated proteins of 18
eukaryotic genomes; it is integrated with other databases at
the NCBI including PubMed, Entrez and GEO (11). A recent
addition to orthology resources is OrthoMCL, which can
group orthologs from multiple genomes into a single cluster
[currently 55 organisms; Refs (12,13)]. Finally, a curated
list of orthologs between Schizosaccharomyces pombe
(fission yeast) and Saccharomyces cerevisiae (budding
yeast) is also available. This dataset has been compiled by
inspecting multiple alignments and clusters of protein
families on a protein-by-protein basis, taking into account
experimental evidence, domain organization, protein length
and species distribution (14).

These various homology resources have different advant-
ages and complement each other. For example, no method
is optimal for both specificity and coverage; assessing the
results from multiple resources can thus increase confidence
in orthology calls. Ortholog identification and subsequent
extraction of relevant functional data on a gene by gene
basis can be time consuming and confusing, owing to a
lack of integration of the various resources. We have
designed a web server called YOGY (eukarYotic OrtholoGY)
that integrates results from the homology databases described
above. Information from all these data sources is stored in
a combined database to ease the search for and interpreta-
tion of orthologs. Gene Ontology [GO; Ref. (15)] annotations
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supported by manual evidence codes are included to provide
functional insight into uncharacterized proteins. All of
this information can be searched with a web interface in a
single step.

IMPLEMENTATION

YOGY is implemented in a MySQL relational database
running on a UNIX server. Data for the external resources
have been downloaded from the associated FTP and websites
for import into our database (Supplementary Data). The data
model has been validated to identify and remove potential
problems such as many-to-many relationships. It uses Perl
scripts together with the Perl DBI module for file import.
For queries, we have designed a web interface using the
CGI module of Perl, hosted on an Apache server. The Perl
GD graphics module is used for bar charts.

Genes and proteins from the following nine organisms
can be searched using gene names or systematic identifiers
from the corresponding Model Organism Database (MOD),
Ensembl (16), NCBI (11) or UniProt (17): Homo sapiens,
Mus musculus (18), Rattus norvegicus (19), Arabidopsis
thaliana (20), Drosophila melanogaster (21), Caenorhabditis
elegans (22), Plasmodium falciparum (23), S.pombe (23), and
S.cerevisiae (24). Where possible, identifiers from the appro-
priate MOD are shown throughout the output so that proteins
from the five data sources can be evaluated for consistency;
this is useful as the different homology resources use identi-
fiers from a variety of databases. Because of the ambiguity
of many identifiers, legacy naming systems and revisions
to gene structures and gene complements, it is not always
possible to be certain whether some apparent differences in
orthology calls are, in fact, equivalent proteins. Whilst we
have made every effort to map these identifiers automatically
using resources from the MOD, the International Protein
Index (25), UniProt (17) and the NCBI Entrez Gene database
(11), any discrepancies should be checked manually by the
user. It is possible to use incomplete names with a wild-
card option, providing a list of genes and one-line descrip-
tions for further search.

GO terms annotated to the identified orthologs can also be
retrieved. Only associations using experimental and curator
validated evidence codes are included. The option to show
GO terms is switched off by default due to the increased
time required to download GO data. Options are provided
to display GO terms in separate tables at the end of each
resource, or in a single table at the end of the output.

The output is provided in a tabulated HTML format
(Figure 1). The first table contains general information for
the protein of interest including description and links to the
corresponding MOD and the UniProt database, if this
accession number is available. For S.pombe, links to gene
expression profiles during the cell cycle [C; Ref. (26)],
eiotic differentiation [M; Ref. (27)] and stress conditions
[S; Ref. (28)] are also provided. The data sources which
provide positive orthology results for the gene of interest
are then specified with links to the corresponding outputs.

The orthology results are presented in a standard output
format for each dataset. At the top is information about
the query protein cluster(s), followed by a list of available

orthologs ordered by organism together with links to the
ortholog resource (Figure 1B–E). Links to UniProt are
also provided if the accession number is available. Below,
each data source is mentioned in the order given in the
output page.

For KOGs, the summary table starts with the unique KOG
name together with a link to the website. The next column
displays a bar chart of the ortholog numbers for each
organism, revealing the phylogenetic pattern for the KOGs
(Figure 1B). This chart also provides a link to a list of
other KOGs that share the same phylogenetic pattern,
which provides insight into gene preservation and loss in
different lineages. The summary table also indicates the
functional classification, with a link to other KOGs in this
classification, and a one-line description for the KOG. The
orthologs are displayed in a list below the summary table,
together with links for each protein or domain to the corres-
ponding KOG cluster alignments and to the relevant protein
page at NCBI (Figure 1B).

For Inparanoid, we have excluded orthologs from largely
unannotated organisms, which are not in the other homology
resources; this reduces the output page to 18 organisms
(20 databases, as both mouse and rat include two datasets).
The bar chart on top shows the phylogenetic pattern for the
orthologs (Figure 1C). The list underneath shows the ortho-
logs for the query protein, links to the Inparanoid protein
clusters for each organism, the Inparanoid score and a link
to the protein page in the corresponding MOD (Figure 1C).
Inparanoid uses a sophisticated methodology to distinguish
between in- and out-paralogs (8); we have downloaded the
tables from the Inparanoid website and present these pre-
calculated datasets on the YOGY website.

For HomoloGene, the summary at the top provides a link
to the query protein cluster at NCBI and a phylogenetic bar
chart. Each ortholog is then presented by organism with
links to the relevant NCBI pages.

For OrthoMCL, we have again excluded orthologs from
largely unannotated organisms and prokaryotes (except
Escherichia coli, which is also included in Inparanoid) redu-
cing the output to 24 organisms. The summary table includes
a link to the OrthoMCL cluster and a phylogenetic bar chart
(Figure 1D). This table is followed by a list of orthologs in
the cluster with a link to the original protein sequence used
for clustering and a link to the relevant MOD (Figure 1D).
For some of the less well-characterized yeasts, which have
no MOD, a link is provided to either the ‘Yeast Gene
Order Browser’ or Génolevures that both provide graphical
representations of conserved genome location (29,30).

For the curated yeast ortholog dataset, only fission and
budding yeast proteins are included. The output provides
the lists of orthologs together with links to the S.pombe
GeneDB (23)and SGD (24) databases (Figure 1E).

If selected, either multiple tables or one table at the end
provide a summary for all GO terms found for the query pro-
tein and its orthologs. This includes the term name, the aspect
(P: Biological Process; C: Cellular Component and F:
Molecular Function), the evidence codes, and the correspond-
ing organisms together with the accession numbers of ortho-
logs containing the GO term for each organism (Figure 1F).
GO terms with the evidence code ‘Inferred from Electronic
Annotation’(IEA) are not included as these have not
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Figure 1. An example of the output of YOGY for the S.pombe protein Cdc22, which shows: (A) the summary table, (B) part of the KOGs table, (C) part of the
Inparanoid table, (D) part of the OrthoMCL table, (E) the curated yeast ortholog table and (F) part of the table of associated GO terms for Inparanoid orthologs.
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been assessed by an annotator, and tend to be to higher level
terms.

In the future, we plan to make further changes to improve
the display and integration of the different orthology reso-
urces. In the longer term, GO annotations will be represented
on the GO tree structure, which will allow for the rapid iden-
tification of redundant and non-overlapping annotations from
the various model organisms.

CONCLUSION

The described integrated database together with the accom-
panying search site provides a straightforward resource to
identify orthologs from all specialized databases that are cur-
rently most useful; these ortholog databases have been built
using different methods that complement each other, and
the integrated results give a rich picture of orthology based
on combined evidence from the independent resources. The
GO annotations of orthologs can provide additional evidence
on orthology and help to infer functional information for
genes with limited annotation. This resource will be regularly
updated to include the latest information from the independ-
ent data sources.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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