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ABSTRACT To further improve the speed and accuracy of object detection, especially small targets and

occluded objects, a novel and efficient detector named YOLO-ACN is presented. The detector model is

inspired by the high detection accuracy and speed of YOLOv3, and it is improved by the addition of an

attention mechanism, a CIoU (complete intersection over union) loss function, Soft-NMS (non-maximum

suppression), and depthwise separable convolution. First, the attention mechanism is introduced in the

channel and spatial dimensions in each residual block to focus on small targets. Second, CIoU loss is adopted

to achieve accurate bounding box (BBox) regression. Besides, to filter out a more accurate BBox and avoid

deleting occluded objects in dense images, the CIoU is applied in the Soft-NMS, and the Gaussian model in

the Soft-NMS is employed to suppress the surrounding BBox. Third, to significantly reduce the parameters

and improve the detection speed, standard convolution is replaced by depthwise separable convolution, and

hard-swish activation function is utilized in deeper layers. On the MS COCO dataset and infrared pedestrian

dataset KAIST, the quantitative experimental results show that compared with other state-of-the-art models,

the proposed YOLO-ACN has high accuracy and speed in detecting small targets and occluded objects.

YOLO-ACN reaches a mAP50 (mean average precision) of 53.8% and an APs (average precision for small

objects) of 18.2% at a real-time speed of 22 ms on the MS COCO dataset, and the mAP for a single class

on the KAIST dataset even reaches over 80% on an NVIDIA Tesla K40.

INDEX TERMS CIoU loss, Soft-NMS, attention mechanism, YOLOv3, object detection

I. INTRODUCTION

Object detection utilizes computers and related algorithms to

find objects of certain target classes with precise localization

[1]. Real-time and accurate object detection can provide

good conditions for object tracking, behavior recognition,

scene understanding, and medical detection. In recent years,

significant improvements have been made in object detection

by using traditional and deep learning methodologies. How-

ever, few studies have focused on detecting small targets and

occluded objects. The detection accuracy and speed still need

to be further improved [2].

Small targets and occluded objects have a few effective

pixels, carry only several and incomplete features and are

largely submerged in noise and background clutter. After

multiple downsample and pooling operations, considerable

feature information will be lost. Therefore, the detection of

small targets and occluded objects faces significant chal-

lenges [3], e.g., long-distance pedestrians and traffic signs are

very small or even obstructed. However, the precision and

rapid detection of these small targets and occluded objects

is a prerequisite for ensuring the safety of unmanned driv-

ing. The analysis of remote sensing images requires precise

identification of object classes, including vehicles, ships, and

buildings. However, the objects are very small or occluded

by vegetation. In infrared images, the objects are not only

very small but also occluded by strong noise and background,

which makes the object features less obvious. Therefore, the

detection problem of small targets and occluded objects has

become an urgent problem to be solved in the civilian and

military fields.

Traditional object detection algorithms are based on slid-

ing windows to select candidate boxes, using Viola-Jones [4],

HOG (histogram of gradient) [5] and DPM (deformable part

model) [6] to extract features, and using SVM (support vector

machine) [7] classifier to classify the features. The traditional

algorithms need to design different feature descriptors for
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detecting different objects. Therefore, they have poor ro-

bustness and weak generalization ability. These algorithms

[5]–[10] require a large amount of calculation to generate

proposals, which leads to low detection precision and slow

detection speed [11].

With the emergence of deep learning, breakthrough

progress has been made in object detection, in terms of fea-

ture expression capability and time efficiency. Current state-

of-the-art object detection algorithms are mainly divided into

two categories: two-stage and one-stage detectors. The two-

stage detectors are represented by R-CNN [12]–[14], and

the one-stage detectors are represented by SSD (single shot

multibox detector) [15], [16] and YOLO [17]–[19]. These

milestone algorithms have achieved good detection results on

large datasets, e.g., PASCAL VOC [20], [21] and MS COCO

[22], [23]. As a representative one-stage object detection

algorithm, YOLOv3 has been widely adopted because of

the high speed and accuracy [24], and it directly uses a

more powerful network to extract the features and generate

regression BBox of the objects. Thus, the computational

cost reduces and the design are relatively simple. However,

when the background of object detection is complexity and

the objects scale and attitude is diversity, YOLOv3 cannot

detect small targets and occluded objects well, e.g., false

detection, missed detection, and repeated detection [25].

Recently, YOLOv4 [26] algorithm has received widespread

attention, which applies a great number of data enhancement

techniques. It remains to be analyzed how much data en-

hancement technology affects the results of detecting small

targets and occluded objects.

To focus on small targets and occluded objects, a detection

algorithm YOLO-ACN (attention, CIoU loss, and Soft-NMS)

based on YOLOv3 is proposed in this paper. First, in the net-

work design process, the attention mechanism is introduced

in the channel and spatial dimensions in each residual block.

Specifically, the efficient channel attention module is utilized

to realize the cross-channel interaction without dimensional-

ity reduction. The spatial attention module is used to obtain

the complementary feature information. The attention mech-

anism enables the network to pay more attention to the small

targets and occluded objects in an efficient way. In addition,

depthwise separable convolution [27], [28] is adopted instead

of standard convolution, and leaky ReLU [29] is replaced

with hard-swish [30] to reduce the parameters. Then, in the

model training process, the degree of overlap, the center point

distance, and the aspect ratio of the anchors between the

ground truth BBox and predicted BBox are considered as the

BBox regression CIoU loss [31], [32]. CIoU loss has faster

and more accurate regression during the training process,

and it also makes the detection algorithm friendlier to small

targets. Finally, when predicting the results, the Gaussian

model is employed to suppress the non-maximum value.

Combining the CIoU with the Soft-NMS [33] to filter out

BBox, deletions of occluded objects are avoided in dense

images to some extent.

The contributions of this paper are summarized as follows:

1. A novel one-stage object detection algorithm YOLO-

ACN is proposed to focus on small targets and occluded

objects. The algorithm contains depthwise separable convo-

lution, spatial and channel attention mechanisms, and hard-

swish activation function, leading to notable gains of average

precision (AP), average recall (AR), and speed.

2. Based on the Darknet in YOLOv3, a lightweight feature

extraction network is designed. In the feature extraction

network, to significantly reduce the parameters and improve

the detection speed, standard convolution is replaced by

depthwise separable convolution, the nonlinear operations of

batch normalization layer and activation layer are replaced by

convolution, and the hard-swish activation function is utilized

in deeper layers. At the same time, the attention mechanism

is introduced in the channel and spatial dimensions in each

residual block of the feature extraction network to focus on

small targets.

3. To achieve accurate bounding box (BBox) regression, the

GIoU loss of the YOLOv3 is replaced by CIoU loss in the

proposed detection model. Then, to filter out a more accurate

BBox and avoid deleting occluded objects in dense images,

the CIoU is applied in the Soft-NMS, and the Gaussian model

in the Soft-NMS is employed to suppress the surrounding

BBox.

II. RELATED WORK

In recent years, the object detection algorithm for an optimal

trade-off between precision and speed has been a popular

research topic [34]. Both the two-stage and one-stage detec-

tors have made great contributions to the improvement of the

efficient network and better methodology.

In 2014, R. Girshick et al. presented a pioneering two-

stage object detector R-CNN [12], which divided object

detection into two stages: generate proposals and predict

categories. Compared with the traditional techniques, R-

CNN significantly improved the performance. However, the

computation was not shared, leading to heavily duplicated

computation. Therefore, Fast R-CNN [13] was developed,

and it reduced the repeated calculation by mapping the rela-

tionship between the images and the feature extracted layers.

Based on Fast R-CNN, a novel method named Faster R-CNN

[14] was designed. In this method, a generator RPN (region

proposal network) was used to generate the proposals, and

the anchor was introduced to cope with the different sizes

of objects, such that detection accuracy and speed were

significantly improved.

To improve the performance of detecting small targets,

feature pyramid networks (FPNs) to predict in each layer

was constructed [35]. Then, in 2018, B. Singh et al. proposed

scale normalization for image pyramids (SNIP) [36], a train-

ing detector based on image pyramids, and solved the prob-

lem of extreme changes in the size of the detection dataset.

Although it could improve the effectiveness of the model,

the increase of computation was still obvious. To address

the problem that detection performance tends to degrade

with increasing the IoU thresholds, the multi-stage object
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FIGURE 1. The proposed YOLO-ACN network. YOLO-ACN uses a lightweight feature extraction network with attention mechanism in each residual block

to focus on small targets and occluded objects. Besides, in the CBH module, the hard-swish is applied as the activation function to decrease the
calculation load. In the post-processing stage, the Soft-NMS (non-maximum suppression) is combined with CIoU to obtain accurate bounding box.

detection architecture, Cascade R-CNN [37], is proposed.

Although the detection precision was improved, the network

became larger than others. K. He et al. presented Mask R-

CNN [38], adding a parallel branch for predicting the object

mask to complete the task of instance segmentation, and this

study also introduced ROI (region of interest) Align, using

the bilinear difference method, so that the precision of the

mask was improved. Mask R-CNN could achieve instance

segmentation, but the segmentation cost was high. These

two-stage object detection algorithms have higher accuracy,

but the time complexity is high. Thus, it is difficult to apply

to real-time detection systems.

To improve the speed of object detection, J. Redmon et al.

developed a real-time detector YOLO [17] in 2016, which

laid the foundation of the one-stage object detection. YOLO

predicted multiple BBox positions and classes at once, and it

regarded detection as a regression problem to truly achieve

end-to-end detection. However, the detection accuracy of

YOLO was low. Using a regression-based idea similar to

YOLO and drawing on the method of anchoring in Faster R-

CNN, W. Liu et al. introduced the SSD [15] algorithm, and it

effectively solved the shortcomings of YOLO in the detection

of small targets. Inspired by the anchor strategy used in SSD,

YOLOv2 [18] was proposed by using k-means clustering to

calculate the size of BBox, deleting the fully connected layer

and the last pooling layer. YOLOv2 effectively balanced the

detection speed and detection precision, which was better

than SSD. However, YOLOv2 used the features obtained

in the last convolution layer to detect objects, which lost

much information. Thus, it was difficult to detect some small

objects. Therefore, an improved YOLO version, YOLOv3

[19], was presented. It contained multiple residual blocks,

which could reduce the problem of gradient disappearance.

Unlike YOLOv2, YOLOv3 divided 9 anchors into 3 different

scales. Moreover, it also used feature fusion and upsampled

methods to detect more fine-grained features and improve

the detection precision of small objects. However, the per-

formance of YOLOv3 decreased with the increase of the

intersection over union (IoU) [39], and it did not fit well

with the ground truth BBox. In 2020, A. Bochkovskiy et

al. used CSP-Darknet (cross stage partial) [26] as the back-

bone network in YOLOv4 to further improve the detection

accuracy and speed, and added a SPP block to improve the

size of the receptive field. The FPN was replaced by PANet

VOLUME XX, 2020 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046515, IEEE Access

Yongjun Li et al.: YOLO-ACN: Focusing on small target and occluded object detection

Channel 

Attention module

Spatial

Attention module

NL,3*3 DW

F

F1 F2

Input 

feature maps 

1*1

Conv

Output

 feature maps

FIGURE 2. The overview of the residual block with the attention mechanism. The module has two sequential sub-modules: channel and spatial. The

attention modules are added after the depthwise (DW) separable convolution, and the intermediate feature map is adaptively refined through every

residual block of deep networks.

(path aggregation network) for multichannel feature fusion.

Although the detection precision was improved for small

objects, the problem of detecting occluded objects was not

considered. YOLOv4 was much larger than YOLOv3, which

increased deployment costs and reduced training speed.

In general, since the one-stage object detection models do

not require to generate proposals, the positioning proposals

task is redefined as a regression task, where the structure

is simple, the computational efficiency is high, and end-to-

end training can be conveniently carried out, as regression

task directly generates the category probability and position

coordinate values of the objects. However, the lack of im-

age preprocessing mechanism can easily lead to inaccurate

extraction of proposal regions, and the high-level features

fail to capture fine-grained descriptions of small targets and

occluded objects.

The lack of an image preprocessing mechanism for one-

stage object detection leads to inaccurate extraction of can-

didate regions, which affects the detection of small targets

and occluded objects. Recently, the attention mechanism

has been demonstrated to offer great potential in improv-

ing the performance of object detection. M. Jaderberg [40]

proposed a spatial transformer to realize the spatial attention

mechanism, and the spatial information in the images could

be transformed accordingly to extract the key information.

The channel attention mechanism was presented by J. Hu et

al. [41], in which the importance among the channels was

calculated through two fully connected layers to filter out

the unimportant channel values. F. Wang et al. introduced a

residual attention network [42] which was designed specif-

ically for detection. The spatial and channel mechanisms

were built by superposing residual attention modules. S. Woo

et al. developed the convolutional block attention module

(CBAM) [43] to multiply feature maps along the channel

and spatial attention mechanisms. The CBAM also has a

wide applicability to other networks. Due to its intuitiveness,

versatility, and interpretability, the attention mechanism has

received extensive attention in the field of object detection

and shown significant potential.

With the improvement of detection accuracy of small tar-

gets and occluded objects, many fields can be beneficial, such

as unmanned driving, remote sensing images, infrared image

analysis and many other fields that include small targets and

occluded objects. Therefore, this paper proposes the YOLO-

ACN detection framework with an attention mechanism,

CIoU loss, and improved Soft-NMS. This algorithm intro-

duces the channel and spatial attention mechanisms in each

residual block, which can extract the key information by su-

perimposing the attention perception features. To overcome

the impact of the increasing IoU on the prediction boxes in

YOLOv3, the overlap area, the center point distance, and the

aspect ratio of the anchor between the ground truth BBox

and predicted BBox are adopted in the CIoU loss. Therefore,

the prediction boxes and the ground truth BBox are more

consistent. The CIoU takes into account the diagonal distance

and the center point distance of the smallest BBox, which

is composed of two bounding boxes, which is also added to

the threshold selection of Soft-NMS. Moreover, the Gaussian

model is employed to suppress the surrounding BBox. In ad-

dition, in order to significantly reduce the number of weights

and computational costs thus incurred so as to improve the

speed of the model, the standard convolution is replaced by

the depthwise separation convolution and hard-swish is used

in the network.

III. PROPOSED METHOD

A. YOLO-ACN NETWORK

The entire detection architecture proposed in this paper is

shown in Figure 1. The network mainly consists of three

parts: feature extraction, feature fusion, and forecast result.

First, the images are input through multiresidual blocks to

extract features. The CBH represents the convolution, batch

normalization [44], and hard-swish layer. Hard-swish can

reduce the parameters and speed up the detection process.

The attention mechanism is introduced in the residual blocks

to extract the features and semantic information of small
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FIGURE 3. The efficient channel attention module. Given the aggregated
features obtained by max pooling and average pooling with fully
connected layer, the efficient channel attention generates channel

weights by sigmoid function.

objects. Then, in the stage of feature fusion, feature maps

with different sizes are obtained in the residual blocks, and

the feature maps obtained by upsampling are concatenated to

obtain feature maps with different sizes of receptive fields.

After the concatenation layer, three feature maps of different

sizes are obtained: 52×52, 26×26, and 13×13. Finally, the

prediction results on feature maps are carried out to obtain

the information of predicted BBox of different sizes, object

categories, and confidence. The improved Soft-NMS algo-

rithm retains the predicted BBox of other objects and simul-

taneously removes the overlapped BBox with the same object

to obtain the final prediction. In addition, the performance of

loss function is improved to increase the convergence speed

during model training.

In the extracting path of residual blocks with attention

mechanism, each residual block has repeated convolutional

blocks consisting of 1×1 conv, 3×3 depthwise separable

conv, 1×1 conv. Within the residual block, the input feature

map feeds into the sequence of operations mentioned above,

which produce the output feature maps. After each residual

block, the dimension of the input is reduced by half and the

number of the feature maps is doubled. Then, the feature

maps with sizes of 52×52, 26×26, and 13×13 can be ob-

tained. The feature extraction network utilizes a lightweight

convolutional neural network which has fewer network pa-

rameters and better real-time performance than Darknet and

ResNet. In the feature fusion, the feature maps obtained by

downsampling and upsampling are combined through the

concatenate operation to obtain the feature maps of different

sizes. Finally, a 1×1 convolutional layer is adopted to predict

three different sizes of feature maps, and the final prediction

results are obtained by the improved Soft-NMS.

B. RESIDUAL BLOCK WITH THE ATTENTION

MECHANISM

The attention mechanism can make the neural network focus

on the shallow layers feature maps, and allocate computing

resources to more important features. Unlike YOLOv3, the

attention mechanism is introduced in the residual blocks in

the feature extraction stage. In [40]–[42], different attention

mechanisms are used to extract the features. In the residual

blocks, the channel and the spatial attention mechanisms

are combined to introduce the attention mechanism in two

Input 

feature maps

F

Left:Max pooling

Right:Average pooling

Conv layer Sigmoid function

Spatial attention module

FIGURE 4. The effective spatial attention module. The input feature

maps utilize the max pooling operation and the average pooling
operation, then forward them to a convolution layer to aggregate the
spatial information.

dimensions to guide where the network should pay attention,

and then a higher weight is assigned to improve the ability of

expressing small objects. The structure of the residual block

extended by developing the attention mechanism is shown in

Figure 2.

In Figure 2, the input feature maps go through a convolu-

tion layer with a kernel size of 1×1 and a convolution layer

with a kernel size of 3×3 to obtain the feature maps F . First,

the channel attention mechanism is introduced on the feature

maps F . The channels relationship among the features is

employed to generate the channel attention feature maps, and

a weighted operation is performed on the feature maps F to

obtain the channel feature maps F1. Then, the relationship

among the spatial features is used to complement the feature

information and obtain the spatial feature maps F2. Finally,

a weighted operation is performed on the input feature maps

and spatial feature maps F2 to obtain the output feature

maps. The efficient channel attention and spatial attention

modules are shown in Figure 3 and 4 respectively.

In Figure 3, to effectively calculate the attention feature

maps among the channels, the channel information of the

feature maps are obtained by the maximum pooling op-

eration MaxPool(F ) and the average pooling operation

AvgPool(F ) for the input feature maps F , F ∈ RC×H×W.

C represents the number of channels, and H and W represent

the size of the feature map. Then, the two obtained feature

maps are put into the fully connected layer to generate the

channel weights and capture the nonlinear cross-channel

interaction information without dimensionality reduction. In

the improved channel module based on [43] and [45], the two

fully connected layers do not perform dimension reduction

by ratio r but keep the dimensions to better capture all inter-

channel measurement dependencies. The calculation of the

channel attention module can be given by Eq.:

MC (F ) = δ (C1Dk (AvgPool (F ) +MaxPool (F )))

= δ
(

C1Dk

(

F c
avg + F c

max

))

(1)

where δ is the activation function, C1Dk represents the 1-

dimensional convolution, k represents adjacent channels of

F , and k is set to 5, which means in fully connected layers,

the second Fully Connected (FC) layer can perceive 5 chan-

nels in the first FC layer. F c
avg and F c

max represent the feature

maps obtained after the average pooling and max pooling

VOLUME XX, 2020 5
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FIGURE 5. Three different ways of overlap between two bounding boxes
with the exactly same IoU values, but different GIoU values.

operation in the channel attention module respectively, and

c means the channel dimension.

In Figure 4, to calculate the attention feature maps between

spatial AvgPool(F ) and MaxPool(F ) that are adopted to

aggregate the channel information for the input feature maps,

two features of 2D F s
avg ∈ R1×H×W and F s

max ∈ R1×H×W

are generated respectively. After the convolution layer with

a 7×7 convolution kernel is used to generate the spatial

attention feature maps, the places that need to be emphasized

or suppressed are encoded. The specific calculation of the

spatial attention module can be expressed as Eq.:

Ms (F ) = δ
(

f7×7 (AvgPool (F ) ;MaxPool (F ))
)

= δ
(

f7×7
(

F s
avg;F

s
max

))

(2)

where δ is the activation function and f7×7 represents the

convolution operation with a kernel size of 7×7. F s
avg and

F s
max represent the feature maps obtained after the average

pooling and max pooling operation in the spatial attention

module respectively, and s represents the spatial dimension.

In addition, the standard convolution operation is applied

in the residual blocks in YOLOv3, whereas in YOLO-ACN

the depthwise separable convolution is adopted to separate

one kernel into two. The depthwise separable convolution op-

eration can map the correlation between spatial and channel

dimensions to obtain a multichannel dimension, which can

significantly reduce the computation cost of the convolution

layer and improve the operation speed of the convolution

layer. In the previous attention module, a 3×3 or 5×5 convolu-

tion kernel is adopted, but in the improved attention module,

the 3×3 or 5×5 convolution is separated as 1×1 and 3×3

or 1×1 and 5×5 to realize the different channels using the

different convolution kernels. With the attention mechanism

and the depthwise separable convolution introduced in the

residual blocks, the network can enhance the ability of fea-

ture expression in a specific region without increasing the

computation. Thus, the performance of the object detection

process is further improved.

C. HARD SWISH ACTIVATION FUNCTION

The leaky ReLU is applied as the activation function in

YOLOv3 and [7], [24]–[26]. However, it is a monotonic and

linear function, and its difference is zero. Since the leaky

ReLU cannot maintain a negative value, most neurons are

d

c

FIGURE 6. CIoU loss for bounding box regression, where c is the
diagonal length of the smallest enclosing box covering two boxes,
d = ρ

(

b, bgt
)

is the distance of central points of two boxes.

not updated. To avoid this problem, Google Brain performs

swish [46] to directly replace the leaky ReLU. It has been

experimentally demonstrated that swish works better than

leaky ReLU, and does not need to modify the network

architecture and the initialization. The swish function can be

defined as Eq.:

swish = x · σ (βx) (3)

where σ(x) represents the sigmoid activation function and

β can be either a constant or a trainable hyperparameter.

However, the largest problem of the swish is that it is compu-

tationally intensive.

The hard-swish is first adopted in MobileNetV3 [30],

which is based on the swish. The hard-swish function is non-

monotonic and smooth. The nonmonotonic property helps

to keep a small negative value, so that the gradient of

the network is stabilized. The smooth function has a good

generalization ability and effective optimization ability of

the experiment results, which can improve the quality of

the results. Compared with the swish function, the amount

of calculation is relatively small. The hard-swish can be

represented as Eq.:

h−swish =
x (ReLU6 (x+ 3))

6
(4)

where ReLU6 imposes an upper limit of 6 on the basis of

ReLU; then ReLU6 is shifted three units to the left and is

finally divided by 6 to obtain a curve similar to the sigmoid

function. This function is used to replace the sigmoid func-

tion in the swish function, then, the hard-swish function is

obtained.

The hard-swish can make the boundary value harder,

which can also benefit the network to activate the small

targets and occluded objects features so that the objects

can be detected. In the proposed method, the hard-swish is

selected as the activation, the shallow layers are still kept

unchanged as leaky ReLU and the hard-swish is only adopted

in the deeper layers as in [30]. If all model parameters are

kept and the activation function in the YOLO-ACN model is

modified as the hard-swish activation function, the speed is

faster by avoiding the exponential operation and the accuracy

for small objects is higher.
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TABLE 1. The value of each parameter of the loss function.

Parameter Value

IoU threshold 0.15
cls loss gain 37.4

cls BCELoss positive weight 1.0
obj loss gain 64.3

obj BCELoss positive weight 1.0

D. LOSS FUNCTIONN

In [5], [11]–[14], the IoU is applied to calculate the inter-

section ratio of the BBox. However, the IoU has nothing to

do with the location of the objects, and it cannot reflect how

the two objects overlap. To address the problem, YOLOv3

applies the GIoU [47] to replace the IoU.

There are three ways to overlap the BBox in Figure 5.

The IoU values are same in three overlap ways, IoU(a)=
IoU(b) = IoU(c) = 0.33, whereas GIoU values are differ-

ent, Figure 5 explains how the object BBox may overlap.

GIoU(a) = 0.3, GIoU(b) = 0.24, and GIoU(c) =−0.1. If

the direction of alignment between the predicted BBox and

the ground truth BBox is better, the GIoU value is higher.

If the BBox A and B are not properly aligned, the area of

BBox C will increase and the GIoU value will decrease. The

expression of GIoU can be written as Eq.:

GIoU(A,B) =
A ∩B

A ∪B
−

C − (A ∪B)

C
(5)

where C is the area of the largest rectangle contained by

the two boxes, and A and B represent the areas of any two

overlapping BBox.

YOLOv3 adopts GIoU loss as the regression of the BBox,

which considers both the overlap area and the scale to

make the detection model have a higher detection accuracy.

However, when the predicted and ground truth BBox have

a good alignment direction, the GIoU also has the problem

that the IoU will diverge during the calculation process. The

CIoU [31], [32] loss considers the overlap area, the central

point distance, and the aspect ratio of the BBox. Compared

with GIoU, CIoU makes the prediction boxes converge more

quickly. Therefore, this paper uses the CIoU loss as the

regression of the BBox. The formulation of CIoU loss can

be given as Eq.:

LossCIoU = 1−IoU +RDIoU + αν (6)

RDIoU =
ρ2 (b, bgt)

c2
(7)

where IoU means the intersection over union of the BBox,

RDIoU represents the distance between the center points of

the two bounding boxes b and bgt, c represents the diagonal

distance of the smallest rectangle formed by the two bound-

ing boxes, α is a weight function, and ν is used to measure

the similarity of aspect ratios. The intuitive diagram is shown

in Figure 6.

Based on the CIoU loss, the loss function in this work

consists of regression BBox loss, confidence loss and class

loss. Therefore, the total loss function can be computed as

Eq.:

Loss

= LossCIoU + Lossobj + Losscls

= 1− IoU +
ρ2 (b, bgt)

c2
+ αν

−

S2

∑

i=0

B
∑

j=0

I
obj
ij [ĉi log (ci) + (1−ĉi) log (1−ci)]

− γnoobj

S2

∑

i=0

B
∑

j=0

I
noobj
ij [ĉi log (ci) + (1−ĉi) log (1−ci)]

−

S2

∑

i=0

I
obj
ij

∑

c∈classes

[p̂i (c) log (pi (c))

+ (1−p̂i (c)) log (1−pi (c))] (8)

where LossCIoU is the improvement in the loss function and

we have defined it in (6). The inclusion problem of the ground

truth BBox and the predicted BBox is solved by calculating

the Euclidean distance between the boxes, and the detection

of occluded objects between the overlapping frames is more

accurate. Lossobj is the confidence loss, which is represented

by cross-entropy. Regardless of whether the anchor box

contains the objects, the confidence loss will be calculated.

Therefore, the confidence loss consists of two parts: I
obj
ij

and I
noobj
ij represent whether the j-th box in the i-th grid

contains objects or not. Losscls means the loss of the object

category, and the loss is also calculated by cross-entropy.

When the j-th anchor box of the i-th grid is responsible for

touching a real object, the resulting BBox will calculate the

class loss. γnoobj means that the confidence of no object in

the grid is also weighted, and there will be a lower prediction

confidence penalty. Similar to the loss function in YOLOv3,

the value γnoobj is still 0.5. The other loss function parameter

values are shown in Table 1. By adding the loss functions

to the constructed network, the convergence speed of the

BBox during model training is effectively improved, and the

accuracy of model detection is improved.

E. IMPROVEMENT OF NON MAXIMUM SUPRESSIONE

In the prediction stage, NMS is widely adopted in [31]–[36]

to solve the problem of multiple repeated prediction boxes

around the object. The YOLOv3 also applies the IoU value

as the main idea of NMS to choose the BBox. Based on the

manually set threshold, the candidate boxes with the highest

confidence are kept, but those boxes with the low confidence

are deleted. However, the uncertainty of manually setting the

threshold and deleting the low-confidence candidate box will

ignore the occluded objects. The Soft-NMS [48] algorithm

solves the shortcomings of the NMS. When multiple pre-

dicted bounding boxes appear around the detection object,

the confidence of the predicted BBox is reduced to keep the

occlusion objects with low confidence. The Gaussian penalty

function is utilized to reduce the confidence. In addition,
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FIGURE 7. Graphs of training and testing results on the MS COCO dataset. The first three columns are the bounding boxes loss (measured by GIoU),

confidence loss and class loss in the training dataset and validation dataset. The remaining four curves represent common evaluation indicators for
object detection task, and they are P (precision), R (recall), mAP (mean average precision), and F1 (balanced score).

the center point distance and the aspect ratios are added to

the NMS threshold selection to further improve the Soft-

NMS algorithm, which has a better suppression effect on the

predicted boxes and more focus on the occluded objects. The

calculation can be described as the Eq.:

Si =

{

Si, IoU−RCIoU (M, bi) > Nt

Si
1

2πσ2 e
−

CIoU(M,bi)
2

2σ2 , IoU−RCIoU (M, bi) > Nt

(9)

where Si represents the score of the current box, RCIoU

means CIoU loss, which considers the overlap degree and

the distance of the center point, bi represents the predicted

BBox of each category, M is the BBox with the largest

score, and Nt represents the threshold for screening the two

overlapping boxes, which is set to 0.3. The greater the overlap

degree of the predicted BBox bi and the selected BBox

M is, the stronger the suppression effect, and the smaller

the updated confidence Si. The smaller the overlap of the

predicted frame bi and the selected frame M is, the weaker

the inhibition, and the greater the updated confidence Si.

Therefore, the predicted frames of other objects are retained

and the predicted frames overlapped by the same object are

discarded. Generally speaking, this method not only effec-

tively improves the detection accuracy of the model but also

solves the occlusion problem.

IV. EXPERIMENTAL ANALYSIS

The experiments using the MS COCO [22], [23], [49],

KAIST [50], [51], and Campus Video Datasets demonstrate

the YOLO-ACN’s ability to improve detection accuracy and

speed of small targets and occluded objects over conventional

and related models. Training and deployment of models

are performed using a server equipped with Intel XeonE5-

26031.8GH CPU and NVIDIA Tesla K40 12GB GPU card

with a 2880 CUDA parallel processing core. All models are

trained on 2 GPU cards Cross Fire.

A. MS COCO DATASET

The MS COCO dataset [49] is the most widely applied public

object detection dataset, which contains 80 categories and

more than 330k images, including 200k labeled images and

500k labeled objects. Because the MS COCO dataset con-

tains many categories and images, which is widely adopted in

the object detection task, and because it also contains many

small targets and occluded objects, the MS COCO dataset

is chosen to train the model. The split method of the object

size is the same as that of the detection evaluation of the

COCO dataset. Specifically, when the area of an object is

less than 322, it is considered as a small object, about 41%,

when the area of the object is greater than 322 and less

than 962, it is considered as a medium-sized object, about

43%, and 24% objects with an area greater than 962 are

considered as large objects. Adam optimizer is adopted to

train the proposed network. Generally, for the MS COCO

dataset, the size of the images is randomly cropped to 416 ×

416, and the IoU threshold is set to 0.15. Data augmentation

is used to overcome the over-fitting by artificially increasing

the training samples with class-preserving transformations,
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FIGURE 8. YOLO-ACN test results on the validation set of MS COCO 2014. When the first batch training is completed, these images are randomly

selected for testing. From the test results, although only one batch is completed, most objects can be detected, especially small targets and occluded
objects.

(a) (b) (c) (d)

FIGURE 9. Comparison of the detection results of YOLOv3 (the top row) and YOLO-ACN (the bottom row) on typical images on the test set of MS COCO
2017. The detection result of the large size object in the (a) are similar, and the small objects can also be detected well with the proposed YOLO-ACN

network, e.g., the long-distance person in (b); the kites and cars in (c); the cups and laptops in (d).

such that each image is rotated by 1.98 and the saturation is

increased by 1.5%. The initial learning rate is 0.00579 and

learning rate decay of 0.01 every 5 epochs with a mini-batch

size of 16. A weight decay of 0.000484 and a momentum of

0.937 are used.

Figure 7 shows the change in the common performance

evaluation indicators during the training process. The first

three columns in Figure 7 are the BBox loss (measured

by GIoU), confidence loss and class loss in the training

dataset and validation dataset. Loss plays an important role

in the training process, as it reflects the relation between

the true value and the predicted value. The smaller the loss
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(a)  YOLOv3                                                                                                               (b)  YOLO-ACN

FIGURE 10. Comparison results of object occlusion problem. (a) the detection result of the YOLOv3, (b) the detection result of the YOLO-ACN. The tie

which occluded by the arm can be detected with the proposed YOLO-ACN network, whereas the YOLOv3 cannot detect it.

is, the closer the predicted value is to the true value and

the better the performance of the model. The loss curves

show that the three types of loss values gradually decrease

and become stable with the increasing number of epochs,

which mean that the proposed method produces better model

parameters when optimizing the neural network. The last two

columns are precision, recall, mean average precision (mAP),

and F1. These four indicators can measure the performance

of the model in the classification problem. The higher the

value is, the higher the detection accuracy of the model.

With the indicators stabilized, one batch in the dataset is

tested with the training model, and the results are shown

in Figure 8. Except for the long-distance “airplane” in the

file COCO_val2014_0000000543203.jpg, which is missed

because of insufficient training epochs, the proposed model

detects almost all labeled objects (large or small) in the orig-

inal image. The large objects include microwaves, couches,

dogs, and motorcycles, while the small objects include ties,

airplanes, clocks, and cups. The test results intuitively show

the overall precision and the practicability of the object

detection network designed in this paper.

COCO API can extract the file information labeled on the

MS COCO dataset, e.g., BBox parameters, the area size of

objects, object number and other information in the images.

The COCO API is employed to evaluate the performance

of the training model. Thus, COCO API is applied to test

5000 images in Test 2017 under the MS COCO dataset. The

test results are shown in Table 2. The three aspects of the

IoU, area, and maximum number of objects are analyzed to

calculate the average precision and average recall. First, the

AP by 10 IoU thresholds of 0.50:0.05:0.95 is averaged, and

separate IoU calculations are performed when IoU = 0.50
and IoU=0.75. The AP value is higher when IoU=0.50.

Then, the AP and the AR are calculated by different detection

areas (small or medium or large) of objects. With the increase

of the area, the AP and the AR are more accurate. Finally,

the AP is calculated by different maximum numbers (1, 10,

and 100) of objects detected in each image. The greater

the number of object is, the higher the precision. These

TABLE 2. Test results on COCO API. By computing AP (average
precision) and AR (average recall) based on different IoU values, area

sizes, and the number of objects contained in the images to test the
performance of the YOLO-ACN.

IoU Area maxDets AP AR

0.50:0.95 all 100 0.313 -
0.50 all 100 0.498 -
0.75 all 100 0.303 -

0.50:0.95 small 100 0.182 -
0.50:0.95 medium 100 0.321 -
0.50:0.95 large 100 0.372 -
0.50:0.95 all 1 - 0.243
0.50:0.95 all 10 - 0.475
0.50:0.95 all 100 - 0.541
0.50:0.95 small 100 - 0.363
0.50:0.95 medium 100 - 0.601
0.50:0.95 large 100 - 0.783

evaluation indicators validate that the performance of the

proposed model is better.

Moreover, the detection results of YOLO-ACN are also

compared with those of YOLOv3. The specific comparison

results are shown in Figure 9. In this figure four test images

are selected from nine representative images in the test set

of MS COCO 2017. The image (a) shows that the detection

accuracy of the proposed YOLO-ACN for detecting a large

single object in the image is similar to that of YOLOv3.

In image (b) and (c), YOLOv3 detects three small persons,

but the proposed model detects four small persons, and the

proposed model can detect kites in (c). In image (d) when

there are multiple objects in dense images, the proposed

model can detect small object laptops. The results prove that

YOLO-ACN obtains better detection results for small objects

through a more accurate design.

In addition, for the occlusion problem, the Soft-NMS [33]

algorithm is improved in forecasting the final results, and the

Gaussian model is introduced to suppress the surrounding

BBox instead of deleting them, and the overlap area, the

center point distance, and the aspect ratio between the ground

truth BBox and the predicted BBox are added to the Soft-

NMS. As the metric of the BBox improved, a more suitable
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FIGURE 11. The training results of multispectral images. These curves represent GIoU loss, Object loss, Classification loss, P-R (Precision and Recall),
and mAP-F1 (mean Average Precision and F1-score) respectively.

TABLE 3. Quantitative comparison of YOLO-ACN and the other state-of-the-art object detectors. The results are reported in terms of mAP percentage
and times on the test set of MS COCO 2014.

Method Backbone AP AP50 AP75 APS APM APL Time/ms

RFCN ResNet-50 32.1 51.9 33.1 14.2 33.3 50.7 170
Faster R-CNN ResNet-101 34.7 55.5 36.7 13.5 38.1 52.0 420

D-FCN In-ResNet 37.5 58.0 - 19.4 40.1 52.5 85
Mask R-CNN ResNeXt 39.8 62.3 43.3 22.1 43.2 51.2 400

YOLOv2 DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5 25
SSD513 ResNet101 31.2 50.4 33.3 10.2 31.5 49.8 125

RetinaNet ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2 90
YOLOv3 DarkNet-53 31.6 55.3 32.1 17.2 33.8 40.1 29
YOLOv4 CSPDarknet53 36.1 54.7 38.9 17.3 40.6 50.4 43

YOLO-ACN Our Method 31.8 53.8 30.3 18.2 32.1 37.2 22

TABLE 4. Comparison of the accuracy of different object detectors on the KAIST dataset.

Method Backbone AP AR mAP F1 Time/ms Parameters/M Weight Size/MB

YOLOv3 DarkNet-53 73.5 76.9 79.6 74.8 25 61.5 246.4
YOLOv4 CSPDarkNet 76.9 75.8 81.0 76.3 37 63.9 256.3

YOLO-ACN Our Method 76.2 87.9 82.3 81.6 20 47.4 177.6

BBox is selected. It is proved in the experiments that the

improvement of the Soft-NMS algorithm effectively solves

the deficiencies of the original YOLOv3 detection model for

the detection of occluded objects.

Figure 10 shows the comparison results with YOLOv3.

Figure 10 (a) shows the detection results of YOLOv3. The

left person and the tie can be detected, and the right person

can be detected, but the tie is not detected by the NMS

algorithm, which deletes the BBox with lower confidence.

Figure 10 (b) shows the detection results of the YOLO-ACN.

The two persons and their ties can be detected accurately by

the improved Soft-NMS that retains the occluded objects.

For further quantitative evaluation of the YOLO-ACN per-

formance, the comparisons with some state-of-the-art mod-

els are performed. Table 3 shows that the one-stage object

detection detectors have a lower detection accuracy and

faster detection speed compared with the two-stage object

detection detectors, consistent with [15]–[17]. The detection

accuracy of YOLO-ACN is similar to that of the two-stage

detection detector Faster R-CNN, but its speed is nearly

20 times faster. Compared with the classic one-stage object

detection detector SSD513, the precision of YOLO-ACN is

2.9 higher and the speed is 5 times faster. Compared with

YOLOv2, the overall AP increased by 10.2, and the APs

increased by 13.2. Compared with YOLOv3, the proposed

model has a detection accuracy of 18.2% on small targets

due to the introduction of the attention mechanism and CIoU

loss, which is 1% higher than that of YOLOv3. Since the

proposed model combines the Soft-NMS with CIoU and

uses the depthwise separate convolution and the hard-swish

activation functions, the speed is also increased by 7 ms.

Compared with YOLO-ACN, YOLOv4 achieves higher AP,

but it dramatically lowers the inference speed, making it

infeasible for real-time application. Specially, YOLO-ACN

has a 1% improvement in the detection accuracy of small

targets, and nearly twice as fast in speed. The purpose of this

paper is to pay more attention to small targets and occluded

targets while maintaining the real-time detection speed of

one-stage object detection. In the experimental results of our

platform, we obtain relatively good experimental results in

terms of accuracy and speed.
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(a) (b) (c) (d) (e)

FIGURE 12. Pedestrian detection results of YOLOv3, YOLOv4, and YOLO-ACN on the KAIST dataset. The first two columns (a) and (b) are the test result
of YOLOv3 and YOLO-ACN on the visible light images (Since the test results of YOLOv4 on the three visible light images are the same as those of

YOLO-ACN, only the results of YOLO-ACN on them are given). The last three columns (c), (d), and (e) is the test result of YOLOv3, YOLOv4, and
YOLO-ACN on the corresponding infrared images.

B. KAIST DATASET

Pedestrian detection, as an active research field in computer

vision, plays an important role in surveillance, tracking sys-

tems [52], and pedestrian safety [38]. However, most of the

existing pedestrian detectors are based on colorful images

[6], [7] and are unable to obtain useful information at night

when the light intensity and contrast are poor; thus the

precision of pedestrian detection is limited. KAIST [50],

[51] is a commonly adopted pedestrian detection dataset,

and it consists of visible light-infrared image pairs. In the

infrared images, because the background occludes the pedes-

trian object, the network extracts only a few features; it is

difficult for the model to detect the objects as well as small

targets. Therefore, The KAIST dataset is selected to verify

the detection performance of the model.

First, the infrared images containing the pedestrian and the

corresponding visible light images in the KAIST dataset are

selected. Then, the selected KAIST dataset is input into the

object detection model to train. Before training, the initial

performance of the network is reset; the GIoU loss gain is

3.54; the class loss gain is 37.4; the confidence loss gain is

64.5; the IoU threshold value is 0.15; and the learning rate is

0.00579, which gradually decreases with the training batch

size of 16.

To obtain better detection results, the model is further

trained on the KAIST dataset based on the detection model

trained under the MS COCO dataset, and the training results

of each batch are visually analyzed, as shown in Figure 11.

When the training epochs reach 100, the GIoU loss, confi-

dence loss, and class loss in the multispectral images training

and testing gradually decrease with the training epoch and

finally tend to stabilize, indicating that the predicted results

of the proposed training model gradually approach the true

results. At the same time, the precision rate P and the recall

rate R of the model are being improved with the increase

of the training batches, and the values of F1-score and the

accuracy mAP are also increasing. The final accuracy mAP

even reaches over 80%.

Table 4 lists the comparative results of three methods on

the KAIST dataset. Compared with YOLOv3, the proposed

algorithm YOLO-ACN improves the performance with gains

of 3.67% AP, 14.3% AR, 3.39% mAP, and 9.1% F1. Con-

trasted with YOLOv4, the average precision (AP) is similar,

but the other evaluation metrics bring amazing performance

gains, e.g., 15.96% AR, 1.6% mAP, and 6.94% F1. Moreover,

the processing time of YOLO-ACN is an average of 22 ms

with batch=1, about 80% of YOLOv3, and about 60% of

YOLOv4. As seen, on the evaluation indicators of mAP and

F1, the YOLO-ACN method achieves the best results among

the three methods. The standard YOLOv3 and YOLOv4

parameters are more than 61 million and 64 million, and

the weight size both have reached over 200MB; whereas

YOLO-ACN reduces the parameters by 22%, and the weight

size is also reduced by nearly 30%. The fewer parameters

have greatly reduced the model volume, and the smaller

weight size is suitable for deployment on devices with limited

computing power. Given the feature that the objects con-

tained in the KAIST infrared image dataset are blocked by

the background, YOLO-ACN can better pay attention to the

small pedestrians that are occluded in the image. The main

contributions for these encouraging results are as follows:

the attention mechanism extracts accurate features of objects;

the CIoU loss achieves precise regression of BBox. Also the

CIoU is applied in the Soft-NMS; the Gaussian model in the

Soft-NMS is employed to suppress the surrounding BBox.

After training, the test results of YOLO-ACN are com-
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(c)(b)(a)

FIGURE 13. Video detection results of some typical frames. (a) Results of YOLOv3. (b) Results of YOLOv4. (c) Results of YOLO-ACN. Compared with
YOLOv3 and YOLOv4, YOLO-ACN has an amazing performance on small targets and occluded objects detection, for example, the cell phone in the first

image of the column (c), the person beside the tree in the second image, and the skateboard in the third image.

pared with those of YOLOv3 and YOLOv4. Figure 12 shows

three visible light images and the corresponding infrared

images that are selected to test YOLOv3, YOLOv4, and

YOLO-ACN. From column (a), we can see that YOLOv3

can basically detect the existence of pedestrian targets with

the exception of the long-distance pedestrian object in the

second image of column (a). However, the object is covered

by strong noise and low-contrast background in the infrared

images from column (c). The missed detection is serious for

this reason. For example, one pedestrian is not detected in

the second image of column (c), and the two pedestrians in

the third image are missed. From column (d), we find that

YOLOv4 can detect the existence of pedestrian targets in the

infrared images, except the two pedestrians that are too close

in the third image. The detection results of the YOLO-ACN

in column (b) of the visible light images and column (e) of

the infrared images represent that the detection accuracy of

both visible light and infrared images are relatively high,

especially the occluded pedestrian in the third images of

column (b) and column (e), and the long-distance small

targets in the second image of column (b) can be detected

correctly. Comparing the results, due to the occlusion of

the background in the infrared images, the features carried

by the pedestrian are just a few, so it is hard to extract

the effective features of pedestrians. However, by improv-

ing the attention mechanism, loss function, and Soft-NMS

algorithm, the proposed model has good detection results

in small targets and occluded objects which all carry a few

pixels and features. Thus, the proposed model has not only a

good detection effect on pedestrians in visible light but also a

higher accuracy than YOLOv3 in the detection of pedestrians

in infrared images. Contrasted with YOLOv4, the test results

of the visible light images are similar, but the performances

of YOLO-CAN in the infrared images are amazing.

C. VIDEO DATASET

To test the real-time performance and generalization ability

of the proposed model, a Campus Video Dataset is made by

ourselves. The 5 videos on campus are randomly collected

and the effective images of the collected videos are inter-

cepted, and their resolution are 1920×1080. Then the im-

ages are labeled with LabelImg. Finally, an object detection

dataset is prepared.

The Campus Video Dataset is employed to train the de-

tection model YOLO-ACN, and then the training results are

obtained. Compared with YOLOv3, the results are analyzed

from the aspect of detection speed and detection accuracy. In

terms of detection speed, for a video of 155 s, the YOLOv3

takes 320.255 s about 14 fps on the device utilized in the

experiment, and YOLO-ACN takes 280.047 s, approximately

VOLUME XX, 2020 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046515, IEEE Access

Yongjun Li et al.: YOLO-ACN: Focusing on small target and occluded object detection

TABLE 5. Ablation study of detection precision on the test set of
PASCAL VOC.

Channel
attention

Spatial
attention

CIoU
loss

Soft-NMS AP AR mAP50 F1

√ √ √

51 54 50.2 51.8
√ √ √

41.8 59.6 52.1 49.1
√ √

51.6 53.8 51.3 52.1
√ √ √

55.6 56.3 54.2 55.9
√ √ √

55.5 55.8 54.5 55.5
√ √ √ √

55.8 56.7 55.7 56.2

16 fps. For the detection accuracy, each frame of the detected

video is obtained. Then, the detection results of the same

frame are compared. The following frames of images are se-

lected from the obtained 4491 frame images. The comparison

results are shown in Figure 13. (a) and (b) show that the test

results of YOLOv3 and YOLOv4. Compared with the test

results of YOLO-ACN in (c), the small object cell phone

in the first line and the skateboard in the third line can be

detected only by YOLO-ACN; the person who is occluded by

the trees in the second line can be detected by YOLOv4 and

YOLO-ACN. The results demonstrate that the performance

of the proposed model in detecting small targets and occluded

objects in the video is also better than that of YOLOv3 and

YOLOv4.

D. ABLATION STUDY

The quantitative ablation experiments on the PASCAL VOC

[20], [21] dataset are conducted to study the impact of

the proposed method for the experimental results. PASCAL

VOC containing 20 classes, is also a widely used dataset

in the object detection. The train and validation datasets of

VOC2007 and VOC2012 are utilized for training and the

test of VOC2007 is apply for testing. In the ablation study,

the four factors of the channel attention, special attention,

CIoU loss, and Soft NMS are considered. The impact of the

detection accuracy is compared, and the experimental results

are shown in Table 5. The two aspects of hard-swish and

depthwise separable convolution are used to compare the

impact of the detection speed, and experimental results are

shown in Table 6.

On our experimental platform, 100 epochs of training

are conducted and other parameters are unchanged. For the

detection accuracy, when the channel attention mechanism is

not added, other improved methods are retained. Similarly,

the spatial attention mechanism, the CIoU loss, or Soft-

NMS are not added to study the influence of these different

methods. From the average detection accuracy, the attention

mechanism affects the detection accuracy of the model,

which increases from 51.3% to 55.7%, an increase of 4.4%,

so compared with the CIoU and Soft-NMS algorithm which

improves the model by about 1%, the attention mechanism

has a major impact on the precision improvement of model

detection. These four algorithms are indispensable for the

improvement of overall accuracy.

For the detection speed of the model, the improvement

TABLE 6. Ablation study of detection speed.

hard-
swish

depth separable
convolution

Speed(ms) NMS total

√

26.1 2.0 28.2
√

25.8 1.8 27.6
√ √

22.2 1.9 24.1

method of the model used for precision only focusing on the

activation function hard-swish and the depthwise separable

convolution are maintained, respectively. Table 6 shows the

detection speed of the model, and the speed of the Soft-

NMS postprocessing. Both factors have improved the overall

detection speed of the model.

Although the epochs in training sets as 100, there is still

a little increase in training results, but the overall trend is

stable. From the training results of these 100 epochs, the

attention mechanism, CIoU loss, and improved Soft-NMS

algorithm increase the detection accuracy of the entire model,

and the depthwise separable convolution and hard-swish

algorithm boost the detection speed of the entire model.

Therefore, the ablation experiment shows that the overall

performance of the model has been improved on the basis

of the improvement.

V. CONCLUSION

Inspired by the YOLOv3 and convolution block attention

module. In this paper, a one-stage detection model YOLO-

ACN is proposed by developing a lightweight network with

the attention mechanism, improving the measurement of

BBox, introducing the CIoU loss function, and optimizing

the Soft-NMS. The detection accuracy and speed of small

targets and occluded objects are further increased in this

method. The MS COCO dataset is used to train, validate,

and test the model YOLO-ACN. Experiment results show

that the precision of the YOLO-ACN is similar to Faster

R-CNN which is a two-stage detection algorithm, but the

detection speed has a significant improvement. The detection

accuracy is 2.9 times higher than that of the classic one-

stage object detection algorithm SSD513, and the speed

is 5 times faster. Compared with YOLOv3, the detection

accuracy is similar, and the detection speed is slightly faster,

but the proposed model achieves promising performance in

detecting small targets and occluded objects. The mAP for

small targets reaches 18.2%, so the accuracy is better than

that of YOLOv3. To further verify the detection performance

and robustness of the proposed YOLO-ACN, visible light

and infrared images of the KAIST dataset and a self-built

Campus Video Datasets are adopted. The detection results are

compared with YOLOv3, further verifying the universality

and efficiency of the YOLO-ACN in detecting small targets

and occluded objects.
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