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Abstract: The real-time detection of banana bunches and stalks in banana orchards is a key technology
in the application of agricultural robots. The complex conditions of the orchard make accurate
detection a difficult task, and the light weight of the deep learning network is an application trend.
This study proposes and compares two improved YOLOv4 neural network detection models in a
banana orchard. One is the YOLO-Banana detection model, which analyzes banana characteristics
and network structure to prune the less important network layers; the other is the YOLO-Banana-l4
detection model, which, by adding a YOLO head layer to the pruned network structure, explores the
impact of a four-scale prediction structure on the pruning network. The results show that YOLO-
Banana and YOLO-Banana-l4 could reduce the network weight and shorten the detection time
compared with YOLOv4. Furthermore, YOLO-Banana detection model has the best performance,
with good detection accuracy for banana bunches and stalks in the natural environment. The average
precision (AP) values of the YOLO-Banana detection model on banana bunches and stalks are 98.4%
and 85.98%, and the mean average precision (mAP) of the detection model is 92.19%. The model
weight is reduced from 244 to 137 MB, and the detection time is shortened from 44.96 to 35.33 ms. In
short, the network is lightweight and has good real-time performance and application prospects in
intelligent management and automatic harvesting in the banana orchard.

Keywords: banana detection; stalk detection; improved YOLOv4; green fruit; orchard

1. Introduction

There are more than 130 countries in the world that cultivate bananas. In 2020, the
output of bananas in China was 11.113 million tons. Bananas are used as the main food in
some tropical regions because they are rich in vitamin A and fiber, and have high nutritional
value. At present, banana orchards are mainly managed by banana farmers. The harvesting
of bananas in the orchard also essentially relies on human labor [1]. Some mechanized
transportation equipment has been gradually put into use in the banana orchards, but it
still lags behind other fruits and vegetables in banana orchards in the research of intelligent
management and automatic picking. In the complex environment of banana orchards, fast
and accurate detection of banana bunches and stalks based on vision is the key task for the
intelligent management of banana orchards. It provides solutions for saving labor and time
costs, meeting high-quality fruit requirements, and reducing statistical errors. Therefore,
solving the problems caused by occlusion, uneven illumination, and other unpredictable
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factors in the natural environment is one of the tasks to achieve accurate detection [2]. At
the same time, a real-time and lightweight detection algorithm is also the key to promoting
the intelligent development of banana orchards.

In the past few decades, the research of machine vision in fruit and vegetable detection
has been rapidly updated with the development of artificial intelligence technology [3]. Be-
fore the explosion of deep learning, most fruit and vegetable detection methods were based
on traditional machine learning algorithms, which are mostly based on hand-designed fea-
tures (color [4,5], shape [6,7], texture [8,9], or fusion features [10,11], etc.) and appropriate
classifiers (Adboost [8], support vector machine [12], etc.) to locate the object region in the
image [13]. However, these methods often lack universality and robustness.

With the popularity of big data and the rapid development of GPUs, the application
of deep learning algorithms in visual detection is advancing by leaps and bounds. Deep
learning networks extract deeper features and have stronger learning ability. The deep
neural network structure is more complex than traditional machine learning algorithms,
the extracted features are more abstract, and the detection results have better generalization
capabilities. Deep learning methods strike a balance between accuracy and real-time
operation. Since LeCun proposed LeNet in 1998 [14], deep learning neural networks have
been gradually applied and promoted in object classification, image segmentation, and
object detection. In 2012, the emergence of AlexNet [15] pushed deep learning to the fore.
In a complex agricultural environment, deep neural networks provide useful tools for the
detection of fruits and vegetables. The classification network VGGNet was applied to the
detection of red dates [16] and kiwifruits [17], which improved detection performance by
increasing depth; Resnet has a deeper network but lower parameters than VGGNet. The
improved Resnet was discussed for apples [18], strawberries [19], waxberries [20], and
banana stalks [21]. The segmentation network solves the problem of image segmentation
at the pixel level, e.g., FCN and SegNet neural networks were compared in the detection
of grapevine cordon shape [22], and the Deeplabv3 series was used for multiple lychee
fruit-bearing branches [23] and banana stalk segmentation [24]. An improved FCN was
presented to detect the fruit center of guavas [25]. Compared with classification networks
and segmentation networks, there are more application examples of detection networks
in fruit and vegetable detection. The RCNN series are classical two-stage detectors that
are based on the candidate regions, which were exploited in the detection of tomatoes [26],
banana plants [27], and flowers [28]. An improved sweet pepper detection network DCNN
based on Faster RCNN was proposed [29]. MobileNet is a small and efficient CNN model
that offers a compromise between accuracy and latency. The authors of [30] used MobileNet
to detect Hass avocado, lemon, and apples compared with Faster RCNN. EfficientDet trades
off the speed and accuracy of the neural network; it was used by [31] to reconstruct the 3D
global mapping of the orchard. YOLO series, which will be introduced in the following
section, were used for cucumber internode length [32], kiwifruits [33], grapefruits [34],
grapes [35], banana bunches [36], and banana bunches and stalks [37]. At the same time,
improved networks based on YOLO series, namely MangoYOLO [38], YOLO-Tomato [39],
and YOLOMuskmelon [40], were proposed; beyond these, the improved YOLOv3 was
applied to detect the banana inflorescence axis [41] and an improved YOLOv5 method was
described for apple detection [42].

Aiming at practical applications, this study compares the proposed YOLO-Banana
network and YOLO-Banana-l4 network to seek a faster lightweight detection structure,
to achieve real-time detection of banana bunches and stalks in banana orchards, while
maintaining accuracy. Compared with the previous work, the main aim of this study is
to optimize the model structure, reduce the detection time, and reduce the weight file
according to the growth characteristics of banana bunches and stalks and the specific
environment of the banana orchard, which will help to develop solutions for fruit detection
and yield estimation in the banana orchard.
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2. Materials and Methods
2.1. Image Acquisition

Considering the impact of the camera’s angle of view and occlusion on the detection
performance, banana images were collected from multiple angles during the image col-
lection process. Under natural illumination conditions, images were collected from two
banana orchards. In total, 388, 178, and 134 valid banana images were acquired at the
banana plantation of Guangdong Academy of Agricultural Sciences on 9 August 2018
(sunny), 19 November 2018 (cloudy), and 16 March 2019 (overcast), and 464 valid banana
images were acquired at Nansha banana plantation in Guangzhou on 27 October 2019
(sunny). This study focused on the detection of banana bunches and stalks in the complex
natural environment, rather than distinguishing banana species. The capture device was a
color digital camera (Canon sx610hs), the camera resolution was 2048 × 1536 pixels, the
exposure mode was set to automatic exposure, the shooting distance was approximately
800~1200 mm when capturing, and the images were saved in JPG format. In the banana
images, the banana bunches and stalks in the growth period were green, and the banana
fingers pointed upward and curved in clusters. A labeling tool called Colabeler was used
to label the banana bunches and stalks in the images. Each banana bunch and stalk in the
images was manually labeled and checked twice to ensure accuracy. After the labeling
was completed, an Extensible Markup Language (XML) file containing the information
of the bunches and stalks and the position of the boundary rectangle was generated. Fi-
nally, we converted the label file into a txt file as the input. During training, the data
set was randomly divided into training, validation, and test sets, whose sizes were 835,
209, and 120, respectively. In each image, there were usually one to three banana trees.
Compared with the banana bunches, the bounding box of the banana stalks was much
smaller. Since the banana stalk is connected to the pseudo-stem, and the texture is very
close to the pseudo-stem, the detection of the stalks was more difficult than that of banana
bunches. However, the detection of banana stalks is the key to intelligent harvesting, and
the detection of banana bunches is an important indicator for growth management and
yield estimation. Therefore, the accurate labeling of the banana bunches and stalks is an
important prerequisite for accurate detection. We used Visual Studio 2019 to implement
the algorithm on a laptop with Intel (R) Core (TM) i7—9750H @2.6 GHz 2.59 GHz, 16.0 GB
RAM, NVIDIA GeForce RTX 2070 with Max-Q Design.

2.2. YOLO Series and Previous Work

YOLO series are one-stage detection algorithms and have a faster detection speed
compared with two-stage algorithms such as R-CNN series, which are representative
networks based on candidate regions. YOLO series solve object detection as a regression
task, directly calculating the input image and outputting the class and corresponding
positioning. The direct source of the YOLO series of algorithms is the sliding window
technology, which converts the detection problem into an image classification problem.
Our previous work [12] also performed single-scale and multi-scale detection of banana
fruits based on the sliding window technology, as shown in Figure 1a,b. Since sliding
windows of different sizes and proportions need to be set, a large amount of calculation
is generated, and the detection time cost is high. A YOLO series algorithm changes the
sliding window to directly divide the original image into non-overlapping grids. Each grid
is responsible for the detection of the object whose center is in the grid, and predicts the
bounding box of all the objects contained in the grid at one time, the confidence of location,
and the probability vector of all categories. The YOLO series includes v1 to v5. The model
has been improved in terms of input, network depth, backbone, neck, head, and output
scale. The learning ability has been gradually enhanced, and the detection performance
has been continuously improved. The model structure parameters are shown in Table 1. In
the previous work [36], YOLOv4 was applied in banana orchards. As shown in Figure 1c,
YOLOv4 has achieved accurate detection in banana orchards, especially for small objects.
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Figure 1. Previous detection works in banana orchards: (a) single-scale detection, (b) multi-scale
detection, (c) YOLOv4.

Table 1. Parameters of YOLO series.

Model Input
(Resolution) Layers Backbone Neck Bounding Boxes

in Each Grid
Prediction

(Resolution)

YOLOv1 448 × 448 24 Darknet19 – 2 13 × 13
YOLOv2 448 × 448 32 Darknet19 – 5 13 × 13
YOLOv3 416 × 416 106 Darknet53 FPN 9 13 × 13, 26 × 26, 52 × 52
YOLOv4 608 × 608 161 CSPDarknet53 FPN + PAN 9 19 × 19, 38 × 38, 76 × 76
YOLOv5 608 × 608 – CSPDarknet53 FPN + PAN 9 19 × 19, 38 × 38, 76 × 76

2.3. Improvement Based on YOLOv4

The previous work [36] has verified that YOLOv4 has high detection accuracy in
banana orchards. In this study, we aimed to enlarge the detection objects to banana stalks,
and, at the same time, to improve the detection speed and make the network lightweight
based on the previous results. In the detection of banana bunches and stalks, we simplified
the network structure of YOLOv4, pruned unnecessary network structures, and removed
redundant layers. The detection speed was finally improved on the basis of ensuring the
detection accuracy, so as to realize the light weight of the network and the improvement of
the detection speed, and to ensure the real-time performance.

This study proposes two improved models, the YOLO-Banana model and YOLO-
Banana-l4 model, as shown in Figures 2 and 3. In the figures, the yellow module CBM
(Convolutional + Batch Normalization + Mish) represents the convolution operation of
Batch Normalization and the Mish activation function. The Mish activation function is
used in the backbone part of the network to improve the accuracy of the network; in
other parts of the network, the activation function still chooses the traditional Leaky ReLu
function. The green module CBL (Convolutional + Batch Normalization + Leaky ReLu)
represents the convolution operation of Batch Normalization and the Leaky ReLu activation
function. The blue module represents the CSP structure, and CSPn contains n Res units,
as shown in Figure 4. The orange module is the Concat operation, which corresponds to
the route operation in the config file, which represents tensor splicing and expands the
dimensions of the two tensors. The purple module represents the up-sampling operation,
which implements FPN through up-sampling and then implements PAN through down-
sampling through convolution operation to form a neck structure. The YOLO-Banana
model keeps the backbone structure of YOLOv4, removes the SPP module, and simplifies
the convolution numbers in the neck structure. In the YOLO-Banana model, the backbone
is the CSPDarknet53 model, the neck structure is a FPN + PAN structure with 11 CBL
modules, and the head part is the classic YOLO prediction part. In the head structure, the
YOLO-Banana model has three scales. Each scale predicts three anchor boxes, with 7 values
per anchor [4 box coordinates + 1 object confidence + 2 class confidences]. Therefore, the
dimension of each scale is 21.
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Figure 2. The detection flowchart of banana bunches and stalks based on YOLO-Banana. Figure 2. The detection flowchart of banana bunches and stalks based on YOLO-Banana.

On the basis of YOLO-Banana, the feature map generated by the second residual
module in the backbone network was extracted. The size of the feature map was 152 × 152,
and the tensor and dimension were merged with the third up-sampled feature map in
the neck structure to convey the target information in more detail; then, the fused feature
map was down-sampled through the convolution operation. Thereby adding a head layer,
the head part became 4 layers, so it was called the YOLO-Banana-l4 model. The YOLO-
Banana-l4 model has four scales in the head part, and each scale has 21 dimensions. The
purpose was to observe the impact on detection performance by extracting a larger range
of image features. Figure 3 describes the dimensions and meaning of the 4-layer layers of
the YOLO-Banana-l4 model.
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Figure 3. The detection flowchart of banana bunches and stalks based on YOLO-Banana-l4. Figure 3. The detection flowchart of banana bunches and stalks based on YOLO-Banana-l4.
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During training, all models use the same data set and hyperparameters. According
to YOLO official advice, this study set the maximum number of iterations to 6000, batch
to 64, subdivision to 16, and momentum to 0.949. The decay was set to 0.0005, and the
initial value of the learning rate was set to 0.001. The steps were 3200 and 3600, and the
corresponding scales were 0.1 and 0.1. If there was an object in the grid, only the bounding
box with the largest IOU of ground truth was selected to be responsible for predicting the
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target, and other bounding boxes considered that there was no object. According to the
class information predicted by each grid and the confidence information predicted by the
bounding box, the class confidence of each box was calculated, and the score included an
estimate of the accuracy of the class and the box, traversing the results of candidate boxes
of all grids. The boxes whose confidence was less than the threshold were filtered out firstly,
and then all boxes were sorted according to the confidence, and the bounding boxes with
low scores were further filtered and removed by DIOU_nms, thereby obtaining a class of
detection results. The banana bunches and stalks were processed to obtain the detection
results of each class.

3. Results and Discussion
3.1. Model Evaluation

As the model structure had been changed, the official pre-weights of YOLOv4 were
no longer applicable. Therefore, the YOLO-Banana model and YOLO-Banana-l4 model
started training without pre-weighting, and after every 100 iterations, they were saved
and updated to the latest weight file to use as pre-weights when training resumed after a
training interruption. At the same time, the weight file of each 1000 iterations was saved
as the training result, which was used to compare and analyze the training process of the
YOLO-Banana model, YOLO-Banana-l4 model, and YOLOv4 model. The input resolution
of the three models was 608 × 608, and the number of iterations was set to 6000. The
training time is shown in Table 2. Compared with YOLOv4, YOLO-Banana’s pruning of
the model shortens the training time, and the four-layer head structure in YOLO-Banana-l4
increases the training time under the same input and number of iterations.

Table 2. Training time of different models.

Model Iteration Input (Resolution) Training Time (h)

YOLOv4 6000 608 × 608 26.6
YOLO-Banana 6000 608 × 608 21.2

YOLO-Banana-l4 6000 608 × 608 24.1

The training loss curves of the three detection models are shown in Figure 5. Compared
with YOLOv4, which started to converge after 330 iterations, YOLO-Banana started to
converge after 400 iterations, while YOLO-Banana-l4 added a head layer so that the model
could extract object features earlier and converged after 150 iterations. The loss of the three
models gradually stabilized after 3500 iterations. It can be seen from the figure that the
loss of YOLO-Banana is higher than the loss of YOLOv4 before stabilization, and the loss
after stabilization is between YOLOv4 and YOLO-Banana-l4; although YOLO-Banana-l4
converges early, the decline rate of loss is the slowest, and the loss is higher than that of
YOLO-Banana after 1300 iterations. From the trends of the convergence curve, the three
models learned the object features well, and all the loss values after stabilization were less
than 1, which shows that the models can be used in detection, similar to the literature [33].

Agronomy 2022, 12, 391 7 of 16 
 

 

CBM AddCBM CBM CBM
Concat

One Res unit (n-1) 
Res units

CBM  
Figure 4. CSPn structure. 

3. Results and Discussion 
3.1. Model Evaluation 

As the model structure had been changed, the official pre-weights of YOLOv4 were 
no longer applicable. Therefore, the YOLO-Banana model and YOLO-Banana-l4 model 
started training without pre-weighting, and after every 100 iterations, they were saved 
and updated to the latest weight file to use as pre-weights when training resumed after a 
training interruption. At the same time, the weight file of each 1000 iterations was saved 
as the training result, which was used to compare and analyze the training process of the 
YOLO-Banana model, YOLO-Banana-l4 model, and YOLOv4 model. The input resolution 
of the three models was 608 × 608, and the number of iterations was set to 6000. The train-
ing time is shown in Table 2. Compared with YOLOv4, YOLO-Banana’s pruning of the 
model shortens the training time, and the four-layer head structure in YOLO-Banana-l4 
increases the training time under the same input and number of iterations. 

Table 2. Training time of different models. 

Model Iteration Input (Resolution) Training Time (h) 
YOLOv4 6000 608 × 608 26.6 

YOLO-Banana 6000 608 × 608 21.2 
YOLO-Banana-l4 6000 608 × 608 24.1 

The training loss curves of the three detection models are shown in Figure 5. Com-
pared with YOLOv4, which started to converge after 330 iterations, YOLO-Banana started 
to converge after 400 iterations, while YOLO-Banana-l4 added a head layer so that the 
model could extract object features earlier and converged after 150 iterations. The loss of 
the three models gradually stabilized after 3500 iterations. It can be seen from the figure 
that the loss of YOLO-Banana is higher than the loss of YOLOv4 before stabilization, and 
the loss after stabilization is between YOLOv4 and YOLO-Banana-l4; although YOLO-
Banana-l4 converges early, the decline rate of loss is the slowest, and the loss is higher 
than that of YOLO-Banana after 1300 iterations. From the trends of the convergence curve, 
the three models learned the object features well, and all the loss values after stabilization 
were less than 1, which shows that the models can be used in detection, similar to the 
literature [33]. 

 
Figure 5. Training loss curves of different models. 

Lo
ss

 v
al

ue

Figure 5. Training loss curves of different models.



Agronomy 2022, 12, 391 8 of 16

We evaluate the training results and compare the AP values of the three detection
models on banana bunches and stalks, and the mAP values of the entire model for all
detection classes [33]. The two calculation formulas are (1) and (2):

AP =
∫ 1

0
P(R)dR (1)

mAP =
1
n

n

∑
i=1

APi (2)

where P and R refer to the precision and recall of the detection model, respectively, and the
calculation formulas are (3) and (4):

P =
TP

TP + FP
× 100% (3)

R =
TP

TP + FN
× 100% (4)

Among them, TP, FP, and FN are the abbreviations of True Positive, False Positive,
and False Negative.

The YOLO-Banana model, YOLO-Banana-l4 model, and YOLOv4 model were used
to verify the detection of banana bunches and stalks in the validation set. The evaluation
results are shown in Table 3. As can be seen from the table, the AP values of YOLO-Banana
for banana bunches and stalks are 98.4% and 85.98%, respectively, which are 1.16% and
2.1% lower than those of YOLOv4 (99.55% and 87.82%), and the mAP of YOLO-Banana
(92.19%) is 0.84% lower than that of YOLOv4 (93.69%). The AP values of YOLO-Banana-l4
for banana bunches and stalks are 96.84% and 82.68%, which are 2.72% and 5.85% lower
than those of YOLOv4. The mAP of YOLO-Banana-l4 model is 89.76%, which is 4.19%
lower than that of YOLOv4. At the same time, the AP value of the banana bunches detected
by the three detection models is significantly higher than that of the stalks. This is because
the stalk size is much smaller and the texture is closer to the petiole, compared to banana
bunches, so it is more difficult to detect banana stalks. Comparing the number of layers and
weight file sizes of the three models, the YOLO-Banana network has a depth of 134 layers
and the weight file is 137 MB, and the YOLO-Banana-l4 network has a depth of 147 layers
and the weight file is 138 MB. The two models reduced the number of layers and reduced
the model weight by nearly half compared to YOLOv4 (161 layers and 244 MB).

Table 3. Performance comparison of the model with different models.

Model
AP

mAP (%) Layer Weight (MB)
Banana (%) Stalk (%)

YOLOv4 99.55 87.82 93.69 161 244
YOLO-Banana 98.4 85.98 92.19 134 137

YOLO-Banana-l4 96.84 82.68 89.76 147 138

Based on the above results and overall analysis, the YOLO-Banana model can save
training time and reduce model weight while ensuring detection accuracy; the YOLO-
Banana-l4 model realizes weight reduction, but, due to the addition of a head layer, the
training time is not significantly reduced, and the AP value of the stalks is reduced, which
affects the detection accuracy of the entire model. We further discuss the detection results
of the two improved models in the test set and compare them with the YOLOv4 model to
analyze the most suitable detection model in the banana orchard.
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3.2. Detection Results under Different Illumination

We detected banana bunches and stalks under different illumination conditions, com-
pared the two improved models with YOLOv4, and analyzed the detection performance of
the three models.

There were 163 banana bunches and 141 stalks in the 120 banana images in the test
set. In sunny conditions, including sunny front-light and sunny backlight environments,
62 images contained 80 banana bunches and 65 stalks; in cloudy conditions, 58 images
contained 83 banana bunches and 76 stalks. YOLO-Banana, YOLO-Banana-l4, and YOLOv4
were applied in sunny and cloudy environments, and the numbers of correctly detected,
falsely detected, and missed objects were counted, as shown in Table 4. The illumination
of sunny conditions is higher than that of cloudy days, and the object features are easier
to capture, but excessively bright light will lead to features becoming blurred. At the
same time, the illumination of the sunny front-light and sunny backlight environment
is also different. The illumination of cloudy conditions is more uniform than that of
sunny conditions, but insufficient brightness also makes detection difficult. Therefore,
whether a model can achieve robust detection under different illumination conditions
is an important indicator to measure the quality of the model. It can be seen from the
table that the detection results of banana bunches and stalks for the three models are
generally good, regardless of whether it is sunny or cloudy. The detection accuracy of
banana bunches is generally higher than that of stalks. This is related to the difference in
size and texture. In contrast, the detection results of YOLO-Banana and YOLOv4 are close,
slightly lower than YOLOv4; the detection results of YOLO-Banana-l4 are essentially the
lowest. Comparing the detection results of banana bunches and stalks in sunny and cloudy
conditions, respectively, the correct detection rate is very close, indicating that the improved
models are robust to changes in illumination. It is easy to find that the missed detection
rate of banana bunches and stalks is higher than the false detection rate. This is because the
small-sized banana bunches or small-sized stalks are affected by occlusion, which easily
leads to missed detection. The occlusion problem will be explained in further detail below.
When the size of the banana bunches and stalks was large, falsely detected cases were rare.
The performance of the three models was different. For example, when the stalk and the
petiole were close, YOLO-Banana-l4 misjudged the petiole as the stalk, as shown in Figure 6.
Regarding missed detection, YOLO-Banana-l4 has the highest missed detection rate for the
stalks. Let us give an example to illustrate. For instance, in the sunny conditions shown in
Figure 7 and the cloudy conditions in Figure 8. YOLOv4 and YOLO-Banana could detect
banana bunches and stalks correctly, and YOLO-Banana-l4 could accurately detect banana
bunches, but the stalks were missed, which occurred more frequently in the detection of
small-sized stalks. In the Pisang Mas Musa (AA Group) banana detection results with
strong light and fewer banana fingers, the missed detection rate of the three models was
higher, as shown in Figure 9. Since the banana finger was very similar to the background,
it was difficult to detect, even with the human eye. In the detection of the three models,
YOLOv4 missed the stalk on the left, YOLO-Banana missed the fruit stalk on the right,
and YOLO- Banana-l4 only detected one banana bunch and missed the right-hand banana
bunch and two stalks.
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Table 4. The detection results of the three methods under different illuminations.

Illumination Object Model Count
Correctly Detected Falsely Detected Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Sunny

Banana
YOLOv4 80 79 98.75 0 0 1 1.25

YOLO-Banana 80 79 98.75 0 0 1 1.25
YOLO-Banana-l4 80 78 97.5 0 0 2 2.5

Stalk
YOLOv4 65 59 90.77 1 1.54 6 9.23

YOLO-Banana 65 58 89.23 2 3.08 7 10.77
YOLO-Banana-l4 65 57 87.69 1 1.54 8 12.31

Cloudy

Banana
YOLOv4 83 83 100 0 0 0 0

YOLO-Banana 83 82 98.8 0 0 1 1.2
YOLO-Banana-l4 83 79 95.18 0 0 4 4.82

Stalk
YOLOv4 76 69 90.79 1 1.32 7 9.21

YOLO-Banana 76 69 90.79 2 2.63 7 9.21
YOLO-Banana-l4 76 65 85.53 4 5.26 11 14.74
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Figure 9. Examples of missed detection of the three models: (a) YOLOv4 missed the left stalk;
(b) YOLO-Banana missed the right talk; (c) YOLO-Banana-l4 missed the left banana bunch and the
right bunch with its stalk.

3.3. Detection Results under Different Occlusion Conditions

Banana bunches at close distances are larger in size, and the occluded area ratio is
generally not too high, while bunches at far distances have a smaller field of view and
are easily occluded by other banana bunches, branches, or dead leaves in front, and the
occluded area ratio is also high. The size of the stalk is small, the growth position is
high, and the cover of dead leaves is also common. In order to evaluate the detection
performance of the improved model under different occlusion conditions, it was divided
into slight occlusion and severe occlusion according to the degree of occlusion. In reality,
considering the important role of short-range targets in production, when the occlusion
area exceeds 20% of the banana bunch or stalk, it is considered to be a serious occlusion
situation. In the test set, there were 50 banana bunches and 46 stalks in the case of slight
occlusion, and 19 banana bunches and 13 stalks in the case of severe occlusion. If the
occlusion is too serious, the banana bunches and stalks that are difficult to see even by
the human eye will be regarded as the background, which has no semantic information
meaning for the model. We tested the three models under different occlusion conditions
and counted the results of correctly detected, falsely detected, and missed objects, as shown
in Table 5.

Table 5. The detection results of the three methods under different occlusion conditions.

Occlusion Object Model Count
Correctly Detected Falsely Detected Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Slight

Banana
YOLOv4 50 50 100 0 0 0 0

YOLO-Banana 50 50 100 0 0 0 0
YOLO-Banana-l4 50 50 100 0 0 0 0

Stalk
YOLOv4 46 40 86.96 1 2.17 3 6.52

YOLO-Banana 46 42 91.3 2 4.35 4 8.7
YOLO-Banana-l4 46 39 84.78 2 4.35 5 10.87

Severe

Banana
YOLOv4 19 18 94.74 0 0 1 5.26

YOLO-Banana 19 17 89.47 0 0 2 10.53
YOLO-Banana-l4 19 13 68.42 0 0 6 31.58

Stalk
YOLOv4 13 10 76.92 0 0 6 46.15

YOLO-Banana 13 9 69.23 0 0 4 30.77
YOLO-Banana-l4 13 8 61.53 0 0 6 46.15

It can be found from the table that the three models showed high detection capabilities
for banana bunches when slightly occluded, and the detection results of the stalks were
obviously not as high as the correct rate of banana bunch detection. Among them, the
correct rate of YOLO-Banana was the highest, followed by YOLOv4, and finally YOLO-
Banana-l4. When severely occluded, YOLOv4 had the highest accuracy in detecting bunches
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and stalks, followed by YOLO-Banana, and finally YOLO-Banana-l4. Similarly, banana
bunches had a higher accuracy rate than stalks under severe occlusion conditions. We
illustrate three examples of different model detection results under slight occlusion and
severe occlusion conditions. As shown in Figures 10 and 11, YOLO-Banana could achieve
the same detection effect as YOLOv4 at both degrees, while YOLO-Banana-l4 model was
prone to missed detection. It should be noted here that when the occlusion was severe, the
false detection rates of the three models were all 0. This is because the far-distance banana
bunches and stalks are more likely to lead to missed detection when the occlusion area
increases. As shown in Figure 12, the small-sized banana bunch and stalk on the left-hand
side of the figure were seriously blocked by branches and leaves. YOLOv4 detected the
stalk and missed the banana bunch; YOLO-Banana successfully detected the fruit and fruit
shaft, while YOLO-Banana-l4 missed the left stalk and only detected a part of the banana
bunch in the left.
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that of stalks. Illumination has little effect on the detection model, while the degree of
occlusion has a significant impact on it. The missed detection rate of banana bunches and
stalks is higher than the false detection rate due to the influence of small-sized objects,
occlusion, or banana variety. Regarding the detection results of the two improved models
proposed in this study in different environments, the detection results of YOLO-Banana are
similar to those of YOLOv4 and show better performance than YOLO-Banana-l4.

3.4. Confidence and Detection TIME

Finally, the average confidence and average detection time of the three models in the
test set are compared, as shown in Table 6. YOLOv4 has the highest average detection
confidence for banana bunches and stalks, respectively 0.96 and 0.91, followed by YOLO-
Banana (0.94 and 0.89), and finally YOLO-Banana-l4 (0.92 and 0.88). It is worth mentioning
that the detection confidence of small-sized objects is generally lower than that of close-
distance objects. In terms of detection time, the average time for YOLO-Banana to detect a
single image is 35.33ms, which is 21.42% less than YOLOv4 (44.96ms), and the average time
for YOLO-Banana-l4 to detect a single image is 38.19 ms, which is 15.06% less than YOLOv4.

Table 6. Comparison of the confidence and the detection time of the three models.

Model
Average Confidence

Time (ms)
Banana Stalk

YOLOv4 0.96 0.91 44.96
YOLO-Banana 0.94 0.89 35.33

YOLO-Banana-l4 0.92 0.88 38.19

According to the analysis of the results in the validation set and the test set, compared
to the detection ability of the YOLOv4 model in banana gardens, the YOLO-Banana model
can meet the high accuracy requirements of detection while reducing the layers and the
weight of the model and saving the model training time and detection time. Compared
with the YOLO-Banana model, the improvement of the YOLO-Banana-l4 model in terms of
weight reduction and time saving is weaker. It also proves that the four-layer design does
not significantly improve the detection effect of the YOLO series in banana orchards, and it
also provides a reference for the improvement of YOLOv4 networks in other orchards. At
present, the lightweight network structure is an application trend in intelligent agriculture.
Without losing a large amount of recognition accuracy, the YOLO-Banana model has faster
detection speed and takes up less storage space, which has practical significance for the
intelligent detection of banana orchards.

3.5. Discussion

From the above results, the YOLO-Banana model reduces the detection time and
model weight of YOLOv4 under the premise of ensuring accuracy. Compared with our
previous works [12] and [36], this study extends the detection object to banana bunches
and stalks and improves the performance of the detection model. We further compare
the detection results of YOLOv4 and YOLO-Banana with other detection networks [37]
and [41] for banana bunches and stalks, as shown in Table 7. The banana bunch detection
rates of YOLOv4 and YOLO-Banana are higher than those in [37] and [41]. The banana
stalk detection rates of YOLOv4 and YOLO-Banana are lower than that in [37], which is
because we limit the banana stalk area to only contain the stalk, and [37] defines a much
larger area for the stalks, which reduces the detection difficulty. In terms of detection time,
the detection time in [41] is 240 ms, and [37] does not specify the detection time. It can be
seen from the comparison that the model proposed in this study achieves good results in
terms of detection accuracy and detection time, as well as the setting of the detection area.
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Table 7. Comparison of the detection results by different models.

Model Hardware Platform
AP

mAP (%) Time (ms)
Banana (%) Stalk (%)

YOLOv4 IntelI CoITM) i7—9750H @2.6 GHz 2.59GHz, 16.0 GB
RAM, NVIDIA GeForce RTX 2070 with Max-Q Design

99.55 87.82 93.69 44.96

YOLO-Banana 98.4 85.98 92.19 35.33

YOLOv3 [37] 2 GeForce RTX 2080 GPUIntIR) Xeon(R) CPU E5-2620 v4
@2.10GHz 2.10 GHz(2 processors) 88 98 93 unknown

Improved YOLOv3 [41] i7-7700K processor, memory 16G,2,400 MHz; video card
GTX1080Ti 11G 94 undetected – 240

4. Conclusions

The real-time detection of banana bunches and stalks is an important part of the
intelligent management and automatic harvesting of the banana orchard. In this study, two
improved models, YOLO-Banana and YOLO-Banana-l4, are proposed based on YOLOv4.
Through the comparative analysis of the results in the processes of training, verification, and
testing, the following conclusions can be summarized. (1) We found a faster, lightweight
detection model with 134 layers in the YOLO-Banana network model with a weight of
137MB. The AP values for banana bunch and stalk detection were 98.4% and 85.98%, and
the model’s mAP was 92.19%. The average detection time of a single image was 35.33ms.
(2) The YOLO-Banana-l4 model reduced the weight and the detection time compared to the
YOLOv4 model, but it was not selected finally because the detection accuracy was lower
than that of the YOLO-Banana model. (3) In banana orchard detection, the texture and the
size of banana bunches is more obvious than that of the stalk; for this reason, the correct
detection rate of banana bunches is greater than that of the stalks. Small-sized bunches and
stalks, the degree of occlusion, and the banana variety are several details worth considering
in the detection task. The improved model proposed in this study is robust to illumination
and shows satisfactory detection performance in different occlusion environments. In the
future work, the banana bunches’ and stalks’ locations will be realized on the basis of the
detection model, and the real coordinates will be obtained to provide information for the
management of the banana orchard. Furthermore, the detection of different species of
bananas will be conducted by collecting more banana images.
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