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Abstract: Due to the workforce shortage caused by the declining birth rate and aging population,
robotics is one of the solutions to replace humans and overcome this urgent problem. This paper
introduces a deep learning-based object detection algorithm for empty-dish recycling robots to
automatically recycle dishes in restaurants and canteens, etc. In detail, a lightweight object detection
model YOLO-GD (Ghost Net and Depthwise convolution) is proposed for detecting dishes in images
such as cups, chopsticks, bowls, towels, etc., and an image processing-based catch point calculation
is designed for extracting the catch point coordinates of the different-type dishes. The coordinates
are used to recycle the target dishes by controlling the robot arm. Jetson Nano is equipped on the
robot as a computer module, and the YOLO-GD model is also quantized by TensorRT for improving
the performance. The experimental results demonstrate that the YOLO-GD model is only 1/5 size
of the state-of-the-art model YOLOv4, and the mAP of YOLO-GD achieves 97.38%, 3.41% higher
than YOLOv4. After quantization, the YOLO-GD model decreases the inference time per image
from 207.92 ms to 32.75 ms, and the mAP is 97.42%, which is slightly higher than the model without
quantization. Through the proposed image processing method, the catch points of various types of
dishes are effectively extracted. The functions of empty-dish recycling are realized and will lead to
further development toward practical use.

Keywords: empty-dish recycling robot; deep learning; YOLO-GD; model quantification; catch points
extraction; hough transform

1. Introduction

Currently, a workforce shortage is accelerating due to the declining birth rate and
aging population of the world, which have brought heavy pressure on economic and social
development. We target the problem and design an automatic empty-dish recycling robot
for collecting empty dishes such as cups, bowls, chopsticks, towels et al., after breakfast,
lunch, or dinner in a restaurant, canteen, cafeteria, etc.

The global robot industry has entered a period of rapid development, and robots have
been widely used in various fields, such as factory automation [1], medical services [2],
search-and-rescue [3], automated kitchen [4,5], etc., gradually replacing humans to over-
come the problem of the workforce shortage. Yin et al. present a table cleaning and
inspection method using a Human Support Robot (HSR), which can be operated in a
typical food court setting. In addition, a lightweight deep convolution neural network
(DCNN) is proposed to recognize the food litter on top of the table [6]. The commercial
feeding assistant robot acquires food without feedback and moves to a pre-programmed
location to deliver the food. Candeias et al. use visual feedback to determine whether the
food is captured; thus, the food is effectively brought to the user’s mouth rather than to
a pre-programmed feeding location [7]. However, robots are less involved in the food
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service industry, especially in empty-dish recycling, which is still blank. Applying robots
to empty-dish recycling mainly faces the following challenges, for example, the complex
restaurant working environment and a wide variety of dishes randomly distributed on
the table.

With the rapid development of Artificial Intelligence (AI) technology, deep learning
technology has been widely used in various fields with excellent performance; the applica-
tion fields include those not only used in traditional fields such as automatic driving [8] and
agriculture harvest [9], but also in special fields such as cultural heritage protection [10,11].
The important step in the dish recycling process is detection. AI technology can achieve a
high level of accuracy for detection. This makes the object detection of variety and random
distribution of dishes on the table a reality.

Object detection algorithms require a large amount of computational overhead and
memory, making them difficult to deploy on embedded mobile devices. The optimal
object detection algorithm is to achieve the best trade-off between accuracy and speed.
Therefore, the trend in object detection algorithms is towards portable and efficient network
architectures that provide an acceptable performance for mobile devices.

Due to a large number of redundant operations in deep learning models [12,13], there
has been continuous research on lots of CNN compacting methods, which are proposed
recently, such as network pruning [14], model quantization [15], knowledge distillation [16],
and lightweight neural networks. Efficient neural network architecture design has a high
potential to build with fewer parameters and computational effort. Furthermore, many
classical and efficient lightweight convolutional neural networks have emerged, such as
MobileNet [17], ShuffleNet [18], GhostNet [19], etc.

We design a deep learning-based object detection algorithm YOLO-GD for empty-dish
recycling robots to detect the object dishes. Different image processing techniques are
chosen to compute the catch points for different-type dishes. Catch points are the place
of dishes, which are caught by robotic fingers for recycling the dishes. The detection
network is named YOLO-GD because it uses Ghost Net (G) and Depthwise (D) convolution.
The YOLO-GD chooses the lightweight Ghost Net to replace the backbone structure of
YOLOv4, and replaces the traditional convolution with depthwise separable convolution
and pointwise convolution, which effectively reduces the computational overhead of the
network. The catch points are used to control the robot arm to recycle the dishes and place
them in the recycling station. Furthermore, the YOLO-GD model is quantized by TensorRT
for Floating-point 16 bit (FP16) quantization and deployed on the robot computer module,
Jetson Nano.

The four major contributions of this paper are as follows:

• We design a lightweight dish detection model YOLO-GD for empty-dish recycling robots,
which significantly reduces parameter numbers and improves the detection accuracy.

• We design a dish catch point method to effectively extract the catch points of different
types of dishes. The catch points are used to recycle the dishes by controlling the
robot arm.

• We have realized the quantification of the lightweight dish detection model YOLO-GD
without losing accuracy and deploy it on the embedded mobile device, Jetson Nano.

• This paper also creates a dish dataset named Dish-20 (http://www.ihpc.se.ritsumei.
ac.jp/obidataset.html; accessed on 28 March 2022), which contains 506 images in
20 classes. It not only provides training data for object detection in this paper but also
helps in the field of empty-dish recycling automation.

The rest of the paper is organized as follows, Section 2 introduces the related work
about robotics applications, object detection, and model quantization deployed on em-
bedded devices. Section 3 gives a detailed explanation of deep learning-based object
detection, which is equipped with the empty-dish recycling robot, dish catch points ex-
traction, TensorRT quantization model, and deployment on embedded mobile devices.
Section 4 presents the results of the relevant model comparison, and the experimental re-
sults without and with model quantification, including detection accuracy, model weights,

http://www.ihpc.se.ritsumei.ac.jp/obidataset.html
http://www.ihpc.se.ritsumei.ac.jp/obidataset.html
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inference speed, etc. A discussion and future work are provided in Section 5. Finally,
Section 6 concludes the paper.

2. Related Work

The realization of automatic empty-dish recycling can effectively replace human
beings to complete the work and alleviate the problem of workforce shortage. This paper
aims to design an empty-dish recycling robot for realizing automatic empty-dish recycling.
However, high-accurate object detection for detecting the target dishes, and the catch
points’ calculation for controlling the robotic arm, are still important issues. Furthermore,
compacting the object detection model to the embedded robot is also a challenge in this
research. In this section, we review current related research work on robotics, object
detection algorithm, model quantization, and deploy it on embedded devices.

2.1. Research of Robotics

Fukuzawa et al. proposed a robotic system consisting of a robotic manipulator with
six degrees of freedom, a robotic hand capable to catch and suction operations, and a
3D camera for dish detection to perform the take-out operation of various dishes from
a commercial dishwasher [4]. Zhu et al. developed an automated dish tidying-up robot
mechanism for cleaning dishes in a self-service restaurant with a large number of dishes.
The dishes are placed on the conveyor belt by the guest, and the robot is mainly responsible
for the process of sorting and collecting the dishes [20]. Kawamura et al. designed a three-
degree freedom micro-hand consisting of a thin pneumatic rubber actuator generating
three degrees of freedom of motion. The micro-hand contracts in the longitudinal direction
and bends in any direction by changing the applied air pressure pattern to the artificial
muscles, which may be expected to be used in areas such as the flexible catch of a dish [21].
Kinugawa et al. have developed a new underactuated robotic hand for circular standard
dishes (square or other types of dishes are not considered), which is an important factor for
the realization of a fully automatic dishwashing system [22].

2.2. Object Detection

The object detection model based on deep learning is capable of achieving high-
speed object detection and object bounding box segmentation. These models are mainly
divided into two categories. One is the one-stage detection algorithm, including YOLO [23],
SSD [24], Retina Net [25], etc. Another is the two-stage detection algorithm, including
R-CNN [26], Fast R-CNN [27], Faster R-CNN [28], etc. YOLOv4 is widely adopted due to
its high speed, high accuracy, and relatively simple design [29].

YOLO predicts multiple BBox positions and classes at once, regards detection as a
regression problem, and combines the two stages of candidate area and detection, with
simple structure and fast detection speed [30]. A modified Tiny YOLOv2 is proposed
to recognize small objects such as the shuttlecock, and by modifying the loss function,
the detection speed of small objects is improved adaptively and applied to other tasks
of detecting small objects at high speed [31]. Zhang et al. proposed a state-of-the-art
lightweight detector, namely, CSL-YOLO. Through a lightweight convolution method Cross-
Stage Lightweight (CSL) Module, it generates redundant features from cheap operations
with excellent results [32]. TRC-YOLO is proposed by pruning the convolution kernel
of YOLOv4-tiny and introducing an expanded convolution layer in the residual module
of the network, which improves the model’s mean average precision (mAP) and real-
time detection speed [33]. A lightweight three-stage detection framework is composed
of a Coarse Region Proposal (CRP) module, the lightweight Railway Obstacle Detection
Network (RODNet), and the post-processing stage, to identify obstacles in the single
railway image [34].
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2.3. Quantification and Deployment

Hirose et al. simultaneously measured the input data and the distribution of values in
the middle layer during quantization with TensorRT, suppressing the deterioration of the
accuracy caused by quantization [35]. Jeong et al. proposed a parallelization approach to
maximize the throughput of a single deep learning application using GPUs and NPUs by
exploiting various types of parallelism in TensorRT [36]. Jeong et al. proposed a TensorRT-
based framework that supports various optimization parameters to accelerate deep learning
applications targeting Jetson with heterogeneous processors, including multithreading,
pipelining, buffer assignment, and network duplication [37]. Stäcker et al. analyzed two
representative object detection networks, which are deployed on edge AI platforms, and
observed a slight advantage in using TensorRT for convolutional layers and TorchScript
for fully connected layers. In terms of the optimized setup selection for deployment,
quantization significantly reduces the runtime while having only a small impact on the
detection performance [38].

A novel neural network based on the SSD framework, including a feature extractor
using the improved MobileNet and a lightweight module, is proposed for fast and low-cost
high-speed railway intrusion detection. It is deployed on the Jetson TX2 with quantization
by TensorRT, achieving 98.00% mAP, and has a 38.6 ms average processing time per
frame [39]. The advantage of YOLO has been proven in a wide range of applications [40,41],
while excellent real-time performance and fewer network parameters enable YOLO to be
applied in edge detection. Yue et al. proposed a deep learning-based empty-dish recycling
robot, using YOLOv4 as a detection network for the dish, FP16 quantization of the detection
model by TensorRT, and deployment on the Jetson Nano, with more than 96.00% high
accuracy on Precision, Recall, and F1 values, and an inference speed of 0.44 s for per image
were achieved. However, this method only detects dishes and does not extract catch points.
The inference time of the detection model does not meet the requirements of real-time
detection [42]. Wang et al. used the neural network YOLOv4 to detect dirty eggs and used
TensorRT to accelerate the detection process; the system was deployed on the Jetson Nano.
The method obtained an accuracy of 75.88% and achieved a speed of 2.3 frames per second
(FPS) [15].

3. Object Detection System Embedded in Empty-Dish Recycling Robots
3.1. Overview of Empty-Dish Recycling Robot

Figure 1a shows the proposed empty-dish recycling robot, which consists of a robotic
body, robotic arms, cameras, robot fingers, and recycling stations. Figure 1 shows the
workflow of the empty-dish recycling robot. (a) Shows the initial state of the empty-dish
recycling robot after arriving at the food-receiving place. The dish detection model is
loaded in the process, waiting for the camera to take an image for detection. (b) Shows
the process of collecting images and detecting dishes, taking images by Intel RealSense
D435, detecting the dish by the proposed YOLO-GD, and calculating the catch points of
the different dish types by different image processing methods. (c) Shows the process of
the robot catching dishes. Through the dish category and catch points provided in (b), the
embedded control system controls the robotic arm to catch the dish. (d) Shows the process
of recycling the dish and putting it into the recycling station.

3.2. YOLO-GD Framework

To achieve high-speed and real-time dish detection, a lightweight detection network
YOLO-GD is proposed, as shown in Figure 2. The network mainly consists of three
parts: feature extraction, feature fusion, and result prediction. The purpose of network
development is to realize a high-accuracy network with low computation. YOLO-GD
adopts a lightweight feature extraction module; in addition, both the depthwise separable
convolution and pointwise convolution are used to replace the traditional convolution
operation, which effectively reduces the computational overhead of the network.
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In the feature extraction stage, Ghost Net [19,43] replaces the CSPDarknet53 [44]
module in the YOLOv4 network. Ghost Net aims to generate more feature maps with cheap
operations. The main operation generates Ghost feature maps by applying a series of linear
transformations based on original feature maps and extracting the required information
from the original features at a low overhead.

Figure 3 details each module in the Ghost Net. G_Bottleneck is mainly composed of
G_bottleneck, where s represents the stride size, and SE represents adding an SE Net [45]
module; “×” represents an iterative operation. G_bottleneck is mainly composed of a
Ghost module. As for the case where stride = 1, the first Ghost module is used to extend
the layer and increase the number of channels. The second Ghost module reduces the
number of channels to match the shortcut path. The input of the first Ghost module
and the output of the second Ghost module are connected in a shortcut. After the first
layer, batch normalization (BN) and Relu nonlinearity are used, and after the second layer,
only BN is used. As for the case where stride = 2, the shortcut path uses depthwise
separable convolution with stride = 2 for downsampling, and point convolution for
channel adjustment.

������

����	
��
����

����	
�����

�
����

������
����	�	
��

����	
������

(a) (b)

(c) (d)

Figure 1. Overview of empty-dish recycling robot. (a) Initial state, (b) detecting state, (c) catching
state, and (d) recycling state.
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Figure 3. Detailed explanation of feature extraction module.

In the feature fusion and result prediction stages, spatial pyramid pooling (SPP) is
inserted into the output of the network to extract the spatial feature information of different
sizes and increase the receptive field information of the network. SPP can improve the
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robustness of the model for spatial layout and object variability [46]. The calculation of the
SPP is as follows:

SPP = C( f 5×5MaxPool(F) + f 9×9MaxPool(F) + f 13×13MaxPool(F) + F). (1)

Among them, F means feature map, C means concatenate operation, f 5×5 means
5 × 5 filter, and MaxPool means max-pooling operation. The Path Aggregation Network
(PANet) [47] can fuse features between three different output network layers, as shown
in Figure 2. PANet obtains geometric detail information from the bottom network and
contour information from the top network, ensuring the rich semantic information of the
network and strengthening the feature extraction ability.

YOLOHead predicts the classes, confidence, and coordinate information of the dish
at the same time by setting the convolution operation of the number of filters. A detailed
explanation is shown in Figure 4.

CBL = Conv BN
Leaky

relu

YOLO Head =

Conv

Filter=75

Maxpool

5 × 5

SPP
Maxpool

9 × 9

Maxpool

13 × 13

=

CBR6 = Conv BN ReLU6

DCBR = DWConv BN ReLU6 CBR6

CDC

CDCDC

=

=

DCBR

DCBR

CBL CBL

DCBRCBL CBL CBL

Up

Down

= CBL Up sample

=

Down 

sample
DCBR

C
o
n

ca
te

n
at

e

Figure 4. Detailed explanation of feature fusion and result prediction module.

To reduce the overhead of the model in the feature fusion and result prediction stages,
all 3 × 3 convolution operations are replaced by 1 × 1 convolution, 3 × 3 depthwise
separable convolution, and 1 × 1 convolution [30].

3.3. Extraction of Catch Points

When extracting catch points in the whole image, mutual interference exists between
different classes. Therefore, we use the detection results and the coordinate information of
YOLO-GD to segment the target dish and extract the catch points. For different dish types,
we use different feature point extraction methods. The types are mainly divided into circle,
ellipse, square, and polygon.

• Circle:
Hough transform is used to detect the contours of the circle dish. The equation for a
circle in Cartesian coordinates is shown in Equation (2).

(x− a)2 + (y− b)2 = r2 (2)

where (a, b) is the center of the circle and r is the radius, which can also be expressed
as Equation (3).
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a = x− r cos θ

b = y− r sin θ
(3)

In the Cartesian xy coordinate system, all points on the same circle have the same
equation for the circle. They map to the same point in the abr coordinate system. In the
abr coordinate system, the number of points should have the total pixels of the circle.
By judging the number of points at each intersection in the abr coordinate system,
points greater than a threshold are considered a circle.
For the segmented circular dish images, grayscale images, canny edge detection [48],
and Gaussian filtering [49] are performed to extract the contours of the dish and
reduce the interference. Through Hough transform circle detection, the center point
coordinates, radius, and other information of the contour are extracted. The center
point coordinates of the circle are moved up by a distance of the radius and set as the
catch point [50].

• Ellipse:
In the Cartesian xy coordinate system, the maximum distance from any point to
the ellipse, the point with the smallest distance is the center of the ellipse, and the
smallest maximum distance is the length of the long axis of the ellipse. As shown in
Equation (4).

((x− p) cos θ + (y− q) sin θ)2

a2 +
(−(x− p) sin θ + (y− q) cos θ)2

b2 = 1 (4)

where (p, q) is the center of the ellipse, a and b are the major and minor axes of the
ellipse, respectively, and θ is the rotation angle.
For the elliptical dish, grayscale conversion and canny edge detection are used to
extract ellipse features. The disconnected contour lines are connected and their bound-
aries are smoothed by the closing operation in morphological processing [10]. The
contour finding method is used to find the contour points of the ellipse, and the ellipse
center, long axis, short axis, and rotation angle of the ellipse are extracted by ellipse
fitting in OpenCV.
In the segment elliptical dish image, the coordinates of the catch points are shown in
Equation (5).

x = p +
1
2

b cos θ

y = q +
1
2

b sin θ

(5)

• Square:
The straight-line equation is as follows:

x cos θ + y sin θ = ρ ρ ≤ 0, 0 ≤ θ ≤ π (6)

where ρ is the distance of the straight line to the original point and θ is the angle
between the straight line and the positive direction of the Cartesian coordinate x-axis.
The different points on the straight line are transformed in the polar coordinate plane
ρ-θ into a set of sinusoids intersecting at one point. Determine the two-dimensional
statistics on the polar coordinate plane and select the peak value. The peak value is
the parameter of a straight line in the image space, thus realizing the straight line
detection in the Cartesian coordinate.
We consider the intersection of the two lines, L1 and L2, in the Cartesian coordinate,
with L1 being defined by two distinct points, (x1, y1) and (x2, y2), and L2 being defined
by two distinct points, (x3, y3) and (x4, y4).
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cos α =
(~a ·~b)
|~a| ·

∣∣∣~b∣∣∣ (7)

where~a and~b are the vectors of L1 and L2, respectively, and α is the intersection angle
between L1 and L2.
The intersection P of L1 and L2 can be defined using determinants,

Px =

∣∣∣∣∣∣∣∣
∣∣∣∣x1 y1
x2 y2

∣∣∣∣ ∣∣∣∣x1 1
x2 1

∣∣∣∣∣∣∣∣x3 y3
x4 y4

∣∣∣∣ ∣∣∣∣x3 1
x4 1

∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 1
x2 1

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 1
x4 1

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣
∣∣∣∣∣∣∣∣

, Py =

∣∣∣∣∣∣∣∣
∣∣∣∣x1 y1
x2 y2

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 y3
x4 y4

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 1
x2 1

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 1
x4 1

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣
∣∣∣∣∣∣∣∣

. (8)

The determinants are written out as:

(Px, Py) =

(
(x1y2 − x2y1)(x3 − x4)− (x3y4 − x4y3)(x1 − x2)

(x1 − x2)(y3 − y4)− (x3 − x4)(y1 − y2)
,

(x1y2 − x2y1)(y3 − y4)− (x3y4 − x4y3)(y1 − y2)

(x1 − x2)(y3 − y4)− (x3 − x4)(y1 − y2)

) (9)

The edge features of the square dish are highlighted by grayscale conversion and
canny edge detection. The straight lines in the image are extracted using straight-line
detection with Hough transform [51], and the straight lines with angles around 90◦are
selected by calculating the angle of all the straight lines. The intersection points are
calculated for the retained straight lines, and the minimum circumscribed rectangle of
all intersection points is calculated. The catch point is the midpoint of one side of the
minimum circumscribed rectangle.

• Polygon:
For the irregular dish, grayscale conversion, Gaussian filtering, and binarization
conversion are performed to clarify the dish contours. The contour finding function in
OpenCV is applied for finding all connected contours and taking the maximum value
as the feature of the dish. All points in the contour are processed by the minimum
circumscribed rectangle, and the center point is extracted as the catch point.

3.4. Model Quantification and Deployment

TensorRT is a high-performance deep learning inference optimizer that provides low-
latency, high-throughput deployment inference for deep learning applications. TensorRT
supports INT8 and FP16 computation for accelerating inference by achieving an ideal
trade-off between reducing the computation and maintaining accuracy. TensorRT provides
only forward propagation, i.e., inference, and without an in-training process [35].

Figure 5 shows the steps of TensorRT to reconstruct and optimize the network structure,
which is mainly divided into two parts: model compression and hardware mapping. Model
compression eliminates useless output layers in the network by parsing the network model
for reducing computation. For the network vertical integration, the convolution, BN, and
Relu layer of the current mainstream neural network are merged into one layer. A horizontal
combined network means fusing layers whose inputs are the same tensor and perform the
same operation. For the concatenate layer, the input of the contact layer is directly sent to
the following operation, without performing the concatenate separately and calculating the
input. Furthermore, 32-bit floating-point operations are quantized to 16-bit floating-point
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operations or 8-bit integer operations. In hardware mapping, the kernel selects the best
pre-implemented algorithm based on different batch sizes and problem complexity and
uses streaming techniques in CUDA to maximize parallel operations [36,52].

YOLO-GD

Optimized 

TensorRT

engine

Model Compression

Hardware Mapping

TensorRT

Dead layer 

removal

Vertical 

fusion

Horizontal 

fusion
Quantization

Layer to kernel 

mapping

Figure 5. TensorRT optimization steps.

The robot system employs the Jetson Nano [42] as the computation model, which does
not support the INT8 type data. Hence, the robot system uses TensorRT to quantify the
object detection model as FP16 type data.

4. Evaluation

In terms of evaluation, the operating system is Ubuntu 21.04, the CPU is an Intel Core
i9-10900 2.8GHz processor with 32GB RAM, the GPU is RTX 3080Ti, the CUDA version is
11.4, and the GPU acceleration library cuDNN is 8.2.4.

This paper uses transfer learning to train YOLO-GD. YOLO-GD loads the weights of
YOLO’s pre-trained VOC 07+12 dataset based on the Ghost Net as the backbone network.
The epochs are set to 400; the first 200 epochs freeze the feature extraction part of the
model to train the feature fusion and the resulting prediction layer of the model. The latter
200 epochs unfreeze the feature extraction part and train the model as a whole [53,54].

4.1. Dataset

This paper first creates a dish dataset, named Dish-20, which contains 506 images in
20 classes. In the experimentation, 409 images are used for training, 46 images are used for
validation, and 51 images are used for testing. Figure 6a shows an example of a dish image,
and (b) shows the definition of the 20 classes. The image size of the dataset is set as the
default size of YOLO-GD (416× 416).
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(a) (b)

Figure 6. Example of dish image and definition of classes. (a) An example of a dish image and (b) is
the definition of the 20 classes.
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4.2. Performance Indexes

Precision, Recall, F1, and mAP, have been used to evaluate and compare the dish
detection performance, which are listed in Equations (10)–(14), respectively.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

TP represents a positive sample correctly classified; FP represents a positive sample of
the misclassification; FN represents a negative sample of the misclassification [55]. Precision
and Recall respectively represent the proportion of the number of correctly predicted
samples to the total number of positive class predictions, and the positive class is predicted
as the number of positive class samples in the total number of positive samples.

F1 =
2× Precision× Recall

Presicion + Recall
(12)

The F1 score is obtained by taking the harmonic mean of Precision and Recall, namely
the reciprocal of the average of the reciprocal of Precision and the reciprocal of Recall [56].

AP = ∑
n
(Rn+1 − Rn)Pmax(Rn+1) (13)

The Precision–Recall curve (P − Rcurve) is derived from the relationship between
Precision and Recall. The Average Precision (AP) of all classes is the area of the region
surrounded by the curve and the axes. In practical applications, we do not directly calculate
the P− Rcurve but smooth the P− Rcurve. That is, for each point on the P− Rcurve, the
value of Precision takes the value of the largest Precision on the right side of the point, as
shown in Equation (13). Among them, Rn represents the Recall of the n-th value, and Pmax
represents the largest Precision value on the right side of the Recall value [57].

The mAP is obtained by averaging the AP of all classes (C) in the dataset, as shown in
Equation (14).

mAP =
1
C

C

∑
j

APj (14)

We also use the detection and evaluation indicators in COCO API, where the calcula-
tion of AP is different from that mentioned above. For a certain classification, the Recall
is equidistantly divided into eleven values [0.1, . . . , 0.9, 1], and the maximum Precision is
calculated for each Recall value, and then the average of these eleven Precision values is
AveragePrecision [53,57], as shown in Equation (15).

AP11 =
1

11 ∑
R∈{0.1,...,0.9,1}

Pmax(R) (15)

4.3. Experimental Results

To verify the performance of YOLO-GD, we analyze the test results of YOLOv4 and
YOLO-GD. In addition, the parameters, weights, and Floating-Point Operations (FLOPs)
of the two models are compared. Inference times and test results are also compared with
and without YOLO-GD quantization on the Jetson Nano.

4.3.1. Performance Validation of the YOLO-GD Model

AP and mAP are important indicators that reflect the detection accuracy of object
detection models. The larger the value of AP or mAP, the higher the accuracy of the
model. Figure 7a shows that the mAP of YOLOv4 is 93.97%, and (b) shows that the mAP
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of YOLO-GD achieves 97.38%, which is 3.41% higher than YOLOv4. It is also proven that
the overall performance of YOLO-GD is better than YOLOv4.

(a) YOLOv4 (b) YOLO-GD

Figure 7. AP and mAP of YOLOv4 and YOLO-GD. (a) Is the detection result of YOLOv4 and (b) is
the detection result of YOLO-GD.

Tables 1 and 2 show the experimental results of YOLOv4 and YOLO-GD, respectively.
The results of YOLO-GD are significantly better than YOLOv4. Some classes of results
have improved the accuracy with few errors; for example, the F1 value of “Chopsticks-one”
is increased from 0.93 to 1.00, the Recall is increased from 87.50% to 100%, and the AP is
increased from 87.50% to 100%. The F1 value of "Fish-dish" is increased from 0.96 to 0.98, the
Recall is increased from 96.30% to 100%, the Precision is increased from 96.30% to 96.43%,
and the AP is increased from 95.06% to 99.74%. The F1 value of "Rice-bowl" is increased
from 0.98 to 1.00, Recall is increased from 95.24% to 100%, and AP is increased from 95.24%
to 100%. The F1 value of "Spoon" is increased from 0.84 to 0.98, Recall is increased from
78.57% to 95.24%, Precision is increased from 89.19% to 100%, and AP is increased from
78.06% to 95.24%. The F1 value of "Square-bowl" is increased from 0.91 to 0.96, Recall is
increased from 83.33% to 100%, Precision is decreased from 100% to 92.31%, AP is increased
from 83.33% to 100%. The F1 value of "Waster-paper" is increased from 0.78 to 0.94, the
Recall is increased from 78.38% to 91.89%, the Precision is increased from 78.38% to 97.14%,
and the AP is increased from 75.65% to 89.88%. The F1 value of "Water-cup" is increased
from 0.95 to 0.97, Recall is increased from 91.18% to 94.12%, Precision is increased from
98.41% to 100%, and AP is increased from 90.45% to 94.12%. The F1 value of "Wine-cup" is
increased from 0.95 to 0.99, and Recall is increased from 90.54% to 98.65%. AP is increased
from 90.54% to 98.65%.

However, the accuracy of some classes is decreased: the F1 value of “Chopsticks-two”
is decreased from 0.91 to 0.89, the Recall is decreased from 87.04% to 81.48%, the Precision
is increased from 95.92% to 97.78%, and the AP is decreased from 86.57% to 81.28%. The
F1 value of “Paper” is decreased from 1.00 to 0.96, the Recall is decreased from 100% to
92.86%, and the AP is decreased from 100% to 92.86%.

Among the twenty classes, eight classes improve, two classes decrease, and the re-
maining classes are unchanged. The Precision of “Chopsticks-two” increased by 1.86%,
but the Recall decreased by 5.56%, indicating that some of "Chopsticks-two" are predicted
to other classes. This leads to a decrease in F1 and AP values. There are various shapes
of “Paper”, forming a single class with multiple shapes, which leads to a decrease in the
accuracy of recognition. The results demonstrate that YOLO-GD is better than YOLOv4 in
the detection of the dish.
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Table 1. Test results of different dish classes in YOLOv4.

Category F1 Recall Precision AP

Chopsticks-cover 1.00 100.00% 100.00% 100.00%
Chopsticks-one 0.93 87.50% 100.00% 87.50%
Chopsticks-two 0.91 87.04% 95.92% 86.57%
Coffee 1.00 100.00% 100.00% 100.00%
Coffee-cup 1.00 100.00% 100.00% 100.00%
Coffee-dish 1.00 100.00% 100.00% 100.00%
Cup 0.99 98.78% 98.78% 98.72%
Fish-dish 0.96 96.30% 96.30% 95.06%
Paper 1.00 100.00% 100.00% 100.00%
Rice-bowl 0.98 95.24% 100.00% 95.24%
Soup-bowl 1.00 100.00% 100.00% 100.00%
Spoon 0.84 78.57% 89.19% 78.06%
Square-bowl 0.91 83.33% 100.00% 83.33%
Tea-cup 1.00 100.00% 99.05% 99.99%
Tea-dish 1.00 100.00% 100.00% 100.00%
Towel 0.99 98.18% 100.00% 98.18%
Towel-dish 1.00 100.00% 100.00% 100.00%
Waster-paper 0.78 78.38% 78.38% 75.65%
Water-cup 0.95 91.18% 98.41% 90.45%
Wine-cup 0.95 90.54% 100.00% 90.54%

Table 2. Test results of different dish classes in YOLO-GD.

Category F1 Recall Precision AP

Chopsticks-cover 1.00 100.00% 100.00% 100.00%
Chopsticks-one 1.00 100.00% 100.00% 100.00%
Chopsticks-two 0.89 81.48% 97.78% 81.28%
Coffee 1.00 100.00% 100.00% 100.00%
Coffee-cup 1.00 100.00% 100.00% 100.00%
Coffee-dish 1.00 100.00% 100.00% 100.00%
Cup 0.99 98.78% 98.78% 98.69%
Fish-dish 0.98 100.00% 96.43% 99.74%
Paper 0.96 92.86% 100.00% 92.86%
Rice-bowl 1.00 100.00% 100.00% 100.00%
Soup-bowl 1.00 100.00% 100.00% 100.00%
Spoon 0.98 95.24% 100.00% 95.24%
Square-bowl 0.96 100.00% 92.31% 100.00%
Tea-cup 0.99 99.04% 99.04% 99.04%
Tea-dish 1.00 100.00% 100.00% 100.00%
Towel 0.99 98.18% 100.00% 98.18%
Towel-dish 1.00 100.00% 100.00% 100.00%
Waster-paper 0.94 91.89% 97.14% 89.88%
Water-cup 0.97 94.12% 100.00% 94.12%
Wine-cup 0.99 98.65% 100.00% 98.65%

The COCO API is employed to evaluate the performance of the training model.
The performance of YOLO-GD is tested by calculating AP11 (Average Precision) and
AR (Average Recall) based on different IoU values, area sizes, and the number of objects
contained in the image. The AP11 is averaged according to the 10 IoU thresholds of 0.50 to
0.95 (the step is 0.50), and the AP calculation is performed when IoU = 0.50 and IoU = 0.75,
respectively. AP11 and AR are calculated by different detection areas (Small or Medium, or
Large) of the object. AR is calculated by the different maximum number of objects detected
in each image (1, 10, and 20).

Tables 3 and 4 show that for Small detection areas, the AP11 and AR values are−1.000,
which means the relevant dish is not detected in the Small detection area. The AP11 and
AR of the Large detection area are higher than those of the Medium detection area. The
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dish works well in the Large detection area, indicating that the anchor box of YOLO-GD
should be adjusted to increase the detection area of a small area. As the maximum number
of detected objects increases from 1 to 10, the AP11 and AR values increase significantly,
but when the maximum number of detected objects increases from 10 to 20, the AP11
and AR values remain unchanged. This demonstrates that when the model detects each
image, the maximum number of detections for each dish does not exceed 10. The values of
YOLO-GD are higher than those of YOLOv4. These evaluation indicators validate that the
performance of the YOLO-GD model is better.

A relevant parameters comparison of YOLOv4 and YOLO-GD is shown in Table 5.
The weights, parameters, and FLOPs of YOLO-GD are significantly lower than YOLOv4.
The weight of YOLO-GD is 45.80 MB, which is 82.12% lower than YOLOv4 (256.20 MB);
the number of parameters is 11.17 M, which is 82.50% lower than YOLOv4 (63.84 M);
the FLOPs is 6.61 G, which is 88.69% lower than YOLOv4 (58.43 G). It is proven that the
YOLO-GD model is only 1/5 the size of the YOLOv4 model, which is more lightweight.

Table 3. Results on YOLOv4 using COCO API.

IoU Area maxDets AP11 AR

0.50:0.95 All 20 0.726 -
0.50 All 20 0.936 -
0.75 All 20 0.884 -

0.50:0.95 Small 20 −1.000 -
0.50:0.95 Medium 20 0.706 -
0.50:0.95 Large 20 0.753 -
0.50:0.95 All 1 - 0.566
0.50:0.95 All 10 - 0.762
0.50:0.95 All 20 - 0.762
0.50:0.95 Small 20 - −1.000
0.50:0.95 Medium 20 - 0.732
0.50:0.95 Large 20 - 0.787

Table 4. Results on YOLO-GD using COCO API.

IoU Area maxDets AP11 AR

0.50:0.95 All 20 0.753 -
0.50 All 20 0.970 -
0.75 All 20 0.907 -

0.50:0.95 Small 20 −1.000 -
0.50:0.95 Medium 20 0.709 -
0.50:0.95 Large 20 0.766 -
0.50:0.95 All 1 - 0.588
0.50:0.95 All 10 - 0.788
0.50:0.95 All 20 - 0.788
0.50:0.95 Small 20 - −1.000
0.50:0.95 Medium 20 - 0.734
0.50:0.95 Large 20 - 0.795

Table 5. Comparison of parameters between YOLOv4 and YOLO-GD.

Model Weights Parameters FLOPs

YOLOv4 256.20 MB 63.84 M 58.43 G
YOLO-GD 45.80 MB 11.17 M 6.61 G

4.3.2. YOLO-GD Quantification, Deployment, and Result Analysis

We deploy the YOLO-GD dish detection model on the robot control system, the Jetson
Nano. Table 6 shows the per-image inference time and FPS on the Jetson Nano without
and with quantization. The per-image inference time is the average inference time of
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49 images. Under normal circumstances, the per-image inference time of the YOLO-GD
model on the Jetson Nano is 207.92 ms and the FPS is 4.81. With FP16 quantization using
TensorRT, the per-image inference time is 32.75 ms, and the FPS is 30.53. After quantization,
the per-image inference time is decreased by 84.25%, which meets the real-time detection
requirements.

Table 6. Comparison of YOLO-GD inference times without and with quantification on Jetson Nano.

Model FPS Inference Time per Image

Unquantized model 4.81 207.92 ms
Quantified model 30.53 32.75 ms

Figure 8 shows the quantified YOLO-GD results with an mAP of 97.42%, which is
slightly higher than the model without quantization. The overall detection accuracy of
YOLO-GD does not decrease with quantization, while the detection speed per image
increased by 84.25%, which proves the feasibility of the quantization method.

Figure 8. AP and mAP of YOLO-GD on Jetson Nano with quantification by FP16.

Tables 2 and 7 show that the results without and with quantified YOLO-GD and the
results of “Chopsticks-two” are increased as a whole, but the Precision and F1 values of
“Chopsticks-one” are decreased, and the AP value of “Waster-paper” is decreased by 0.07%.
The Recall, AP, and F1 values in “Water-cup” are also decreased, and the Recall and AP
values in “Wine-cup” are decreased. Figure 7 shows that the mAP value of YOLO-GD with
quantization is 97.42%, which is higher than without quantization. It is proven that after
YOLO-GD is quantized by TensorRT’s FP16, the detection accuracy remains unchanged.

The results of YOLO-GD using COCO API without and with quantification are shown
in Tables 4 and 8. AP11 value decrease by 0.006, AP11 decrease by 0.004 when IoU = 0.75,
AP11 decrease by 0.007 when the detection area is Large, and AR decrease by 0.007 when
maximum number of objects detected is 1. AR decreases by 0.008 when the detection area
is Large and the maximum number of objects detected are 10 and 20.
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Table 7. Test results of YOLO-GD quantization model on different dish classes.

Category F1 Recall Precision AP

Chopsticks-cover 1.00 100.00% 100.00% 100.00%
Chopsticks-one 0.97 100.00% 94.12% 100.00%
Chopsticks-two 0.91 85.19% 97.87% 84.99%
Coffee 1.00 100.00% 100.00% 100.00%
Coffee-cup 1.00 100.00% 100.00% 100.00%
Coffee-dish 1.00 100.00% 100.00% 100.00%
Cup 0.99 98.78% 98.78% 98.68%
Fish-dish 0.98 100.00% 96.43% 99.74%
Paper 0.96 92.86% 100.00% 92.86%
Rice-bowl 1.00 100.00% 100.00% 100.00%
Soup-bowl 1.00 100.00% 100.00% 100.00%
Spoon 0.98 95.24% 100.00% 95.24%
Square-bowl 0.96 100.00% 92.31% 100.00%
Tea-cup 0.99 99.04% 99.04% 99.04%
Tea-dish 1.00 100.00% 100.00% 100.00%
Towel 0.99 98.18% 100.00% 98.18%
Towel-dish 1.00 100.00% 100.00% 100.00%
Waster-paper 0.94 91.89% 97.14% 89.81%
Water-cup 0.96 92.65% 100.00% 92.65%
Wine-cup 0.99 97.30% 100.00% 97.30%

Table 8. Results of the YOLO-GD with quantization using COCO API.

IoU Area maxDets AP11 AR

0.50:0.95 All 20 0.747 -
0.50 All 20 0.970 -
0.75 All 20 0.903 -

0.50:0.95 Small 20 −1.000 -
0.50:0.95 Medium 20 0.709 -
0.50:0.95 Large 20 0.759 -
0.50:0.95 All 1 - 0.581
0.50:0.95 All 10 - 0.780
0.50:0.95 All 20 - 0.780
0.50:0.95 Small 20 - −1.000
0.50:0.95 Medium 20 - 0.735
0.50:0.95 Large 20 - 0.787

4.4. Extraction Results of Catch Points

Figure 9 shows the experimental results of the dish image extraction from the dishes’
detection to the catch points calculation. (a) and (d) are the taken dish images. (b) is the
detection result of (a). The result demonstrates that “Towel” has not been recognized,
and “Waster-paper” in “Cup” and “Spoon” in “Square-bowl” have low detection accuracy,
mainly because the two dishes put together affects the detection accuracy. (c) is the catch
point extraction image of (a), the catch point of “Chopsticks-one” is not positioned at the
center, and the catch point of “Towel-dish” is slightly off the edge. (e) is the detection result
of (d), and all the detection results are above 95%; (f) is the catch point of (d) to extract the
image, and the catch point of “Wine-cup” on the left has an error in extraction because the
class is a transparent object. In the process of image processing, the lower edge of the dish
is fitted into a circle, which causes the catch point to shift to the lower edge.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Example of dish detection and catch point extraction. (a) Is one of Dish’s images, (b) is the
detection result of (a), and (c) is the catch point extraction image of (a). (d) Is one of Dish’s images, (e)
is the detection result of (d), and (f) is the catch point extraction image of (d).

The robotic fingers that catch the dish are pneumatic fingers, which expand the fingers
by pneumatic force to clamp the dish. The catch point does not affect the catch of the dish
within a certain error. During the field testing, the method achieves high accuracy, proving
the effectiveness of the catch point extraction method proposed in this paper.

5. Discussion and Future Work

When the confidence score is set to 0.5 and the IoU is set to 0.5, the mAP value of
YOLO-GD is 97.38%, which is 3.41% higher than YOLOv4. The weight of YOLO-GD is
only 45.80 MB, the parameter is 11.17 M, and the FLOPs is 6.61 G, which is 1/5 of YOLOv4.
After TensorRT’s FP16 quantization and deployment on the Jetson Nano, the inference time
per image is 32.75 ms and reaches 30.53 FPS, and the inference speed is 8.4 times higher
than without quantization. Moreover, the mAP with quantization is 97.42%, which is 0.04%
higher than without quantization. In addition, the power consumption of the Jetson Nano
is only 5–10 W, which meets the requirements of low power consumption for robots.

In the detection process of YOLO-GD, some dishes could not be recognized effectively
because of the variety of dishes and the intersection of placement. For example, “Towel” in
Figure 9b is not recognized, failing to extract its catch point. In the process of extracting the
catch points, the location of the dish contour and other information are misjudged in the
image processing of the catch point extraction because the environment such as the light
has a significant impact on the image. For example, the “Wine-cup” in Figure 9f locates the
catch point at the bottom contour position.

In future work, the YOLO-GD model is further compressed using pruning techniques
to make it more lightweight. The catch point extraction method is optimized to ensure a
more accurate extraction of the catch points. The Intel RealSense Depth Camera D435’s
depth images and video images are used to capture the height information of the dish catch
point and feed the detailed information of the catch point in a three-dimensional space to
the robot. In addition, we will design new algorithms to optimize the order of the catch
dishes.
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6. Conclusions

This article introduces a deep learning-based object detection algorithm YOLO-GD
for empty-dish recycling robots. The object detection model algorithm YOLO-GD is based
on YOLOv4. By replacing the backbone structure with a lightweight Ghost Net, as well as
replacing the traditional convolution with depthwise separable convolution and pointwise
convolution in the stage of feature fusion and result prediction, a lightweight one-stage
detection model YOLO-GD is formed. According to the detection results of the dish,
a different image processing is performed to extract the catch points. The coordinate
information of the catch point is transmitted to the robot, and the robotic arm is used to
catch the dish. To improve the detection speed, TensorRT is used to quantify the object
detection model YOLO-GD as FP16 and is deployed on the robot control system, Jetson
Nano. The experimental results demonstrate that the object detection algorithm is only
1/5 of YOLOv4, and the mAP value is 97.38%, which is 3.41% higher than the 93.97% of
YOLOv4. After YOLO-GD quantization, the inference time per image is decreased from
207.92 ms to 32.75 ms, and the mAP is increased from 97.38% to 97.42%. Although there is a
certain error in the extraction of the catch point coordinates, it meets the error requirements
of the robotic finger. In summary, the system can effectively detect the dish and extract the
catch point, which has far-reaching significance for the empty-dish recycling robot.
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