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Abstract: Background: We directly compared the mammography image processing results obtained
with the help of the YOLOv4 convolutional neural network (CNN) model versus those obtained
with the help of the NCA-based nested contours algorithm model. Method: We used 1080 images
to train the YOLOV4, plus 100 images with proven breast cancer (BC) and 100 images with proven
absence of BC to test both models. Results: the rates of true-positive, false-positive and false-negative
outcomes were 60, 10 and 40, respectively, for YOLOv4, and 93, 63 and 7, respectively, for NCA.
The sensitivities for the YOLOv4 and the NCA were comparable to each other for star-like lesions,
masses with unclear borders, round- or oval-shaped masses with clear borders and partly visualized
masses. On the contrary, the NCA was superior to the YOLOvV4 in the case of asymmetric density
and of changes invisible on the dense parenchyma background. Radiologists changed their earlier
decisions in six cases per 100 for NCA. YOLOV4 outputs did not influence the radiologists” decisions.
Conclusions: in our set, NCA clinically significantly surpasses YOLOv4.

Keywords: mammography; breast cancer; nested contours algorithm; convolutional neural net-
work; YOLOv4

1. Introduction

Breast cancer (BC) still remains the one of the most important problems in global
oncology, and in 2018 it shared the first incidence rate place with lung cancer (11.6%
of all malignancies), despite the lower mortality (6.6% of all cancer-related deaths). At
the same time, BC is the most frequently diagnosed malignancy in women (24.2% of all
malignancies) associated with the largest cancer-related mortality (15.0%) [1]. The latter
requires the development of strategies to decrease BC-related mortality, among which is
early BC detection via the help of the population-wide mammographic screening programs.
It was shown that a regular (every 1-2 years) invitation for mammography screening in
women 50-69 years old (of which only 60% invited actually underwent the mammography)
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was associated with a 25% reduction of BC-related mortality risk (relative risk (RR): 0.75;
95% with confidence interval (CI): 0.69-0.81). In women of this age group who actually
performed the mammography, the reduction was 38% (RR: 0.62; 95% CI: 0.56-0.69) [2].
However, in women aged 40-44 and 45-49, BC-related mortality risk reduction was less
pronounced, and the Working Group on the Assessment of BC Screening of the International
Agency for Research on Cancer (IARC) decided that the strength of the evidence that such
screening reduces BC-related mortality is only limited [3].

The latter phenomenon is apparently due to the high prevalence of the dense breast
parenchyma (C-D types according to the American College of Radiology (ACR) 2013)
that lowers the sensitivity of the mammography to 50.0-68.1% (compared to 85.7-88.8%
for the fatty breast parenchyma ACR A) [4,5]. At the same time, it was shown that
the dense parenchyma may be associated with the increased RR in BC diagnosis (4.6,
95% CI: 1.7-12.6—in premenopausal women and 3.9, 95% CI: 2.6-5.8—in postmenopausal
women). This is not surprising, because the dense breast is usually associated with the fibro-
cystic disease, of which the proliferative forms are the obligatory pre-cancer or associated
with the other precancerous conditions [6].

One more problem in practical mammography is the difficulty to identify visually the
small and atypical BC appearances, and these BC types are usually missed and diagnosed
later in a more advanced stage that worsens the prognosis.

To overcome these problems, different approaches are being developed. One of the
approaches corresponds to the mammography image processing by the computer-aided
detection (CAD) systems of various designs.

At present, the machine learning and deep learning-based methods for image pro-
cessing are the most interesting methods for CAD design [7,8]. Machine learning methods
with supervised learning allow creating models that recognize various lesion types in
mammography images. Deep learning (DL) networks have the potential to be used in
the automated screening, staging of diseases, predicting the treatment effect, and disease
outcome [9,10]. CAD systems based on machine learning methods such as support vector
machine, naive Bayes, random forest, and logistic regression [11-13] usually depend on the
handcrafted feature extraction step and are commonly used for breast cancer detection and
classification. These methods show good accuracy (80-95%), but the false-positive error
rate in the proposed systems is very high, and the scientific community is paying more
attention to approaches that will reduce this rate [14].

To obtain the best results, it is often necessary to take into account the specific radiomic
features of the analyzed image. This is especially important for the X-ray images that have
a summation character significantly complicating both detection and discrimination of the
region of interest (ROI). Therefore, the approaches giving the good outcomes using the
images of another modality (e.g., computed tomography) may not preserve them on the
X-ray images.

Prior to the advent of DL, feature extraction was often manual and required knowledge
from domain experts. In contrast, DL relies on neural networks to automatically learn
effective feature representations via a nonlinear transformation of primitive data features,
such as word vectors and picture pixels [15]. These DL-based algorithms are not trained
to detect and classify anomalous lesions by inputting information about their shape, size,
structure, and other characteristics. They are self-trained and consider various lesion
parameters using a large image database for the training [16].

One of the most sophisticated DL networks is the convolutional neural network (CNN).
CNN is a type of multilayer perceptron using the convolution operations. The works [17-19]
show that CNN-based CAD systems for breast lesion detection and recognition achieve
higher performance on the selected sets than conventional machine learning methods.
YOLOV4 represents the CNN-based one—stage detector, which shows good accuracy in
detecting lesions on a mammogram [20-23] with the accuracy in the range 80-95% in
different databases (CBIS-DDSM, INbreast, etc.).
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Previously, we developed CAD system based on the nested contours algorithm (NCA)
especially designed for the X-ray image analysis that provided clinically significant results.
Presently, the achievements in the field of deep learning and convolutional neural network
technology provide the excellent opportunities to look at the problem of breast lesion
detection and classification in a new way. Therefore, we tried to train the YOLOv4-based
CNN and compare the results directly to the ones obtained with the help of the NCA.

2. Materials and Methods
2.1. Methods
2.1.1. NCA

A description of NCA was already made in [24]. NCA is specifically developed to
analyze 2D projections (mammography mass) of the 3D objects (breast lesion), which is its
main feature. NCA requires no image pre-processing and uses the source image as an input.
At first, level sets are built for the entire brightness range of the mammography image with
a constant step of gradation k. From this set of level lines (contours), the ones nested to each
other are sequentially identified. If the contour is different from the nested one obtained in
the previous step gradation k, it is concluded that the contour under consideration does not
represent a mass and should be discarded. The NCA demonstrated high sensitivity not
only for the typical and clearly visible lesions, but also in the cases of atypical and poorly
invisible changes (for example, asymmetric areas and invisible breast cancer obscured by
the dense parenchyma background).

2.1.2. YOLOv4

The Yolo method is a one-stage detector that does not use a separate algorithm to
generate regions, but instead predicts the coordinates of a certain number of bounding
boxes with different characteristics, such as classification results and confidence levels,
and then adjusts the location of the boxes. The YOLO architecture is based on the fully
convolutional neural network (FCNN) construction. This approach splits each full image
to the nets N x N, and for each net returns B limiting frames with the assessment of both
significance and probability of the class C [25]. Figure 1 shows the implemented YOLOv4
architecture, where the DarkNet architecture is located at the input level. The DarkNet is
an open source neural network framework written in C and CUDA.

fully fully fully
connected connected connected 5B+C
DarkNet » e ' ; R TR » |
Architecture . . Box = (x, y, w, h,
abj conf)
Tx7x1024 512 4096 7x7x30
Tensor of prediction

Figure 1. The YOLOV4 architecture with DarkNet framework.

To train the YOLOv4 model, we used 106 images from the INBreast dataset [26]
containing two different mammographic types of BC: mass and microcalcification cluster.
The INBreast dataset represents the wide variability of cases and is made publicly available
with precise annotations.

We also added to the INBreast dataset 29 proven BC images where all the pathologic
areas were segmented by the certified radiologist. Thus, in total we used images of 135 BC
cases for the attempt of YOLOV4 training.

Most of the collected datasets have a small number of samples for medical applications
and often suffer from an imbalanced distribution. To overcome this problem, two solutions
were employed in many studies: data augmentation and transfer learning.



J. Imaging 2022, 8, 88

4 of 14

Because of the small size of the training set, we augmented the data. The augmented
data were used for the training set only. Every image was multiplied eight times with
random rotation, mirroring, and shift. Thus, we obtained 1080 images of BC. Additionally,
for the YOLOV4, we used another approach for data augmentation, the Mosaic method [25].
The Mosaic method improves the generalization of object detection tasks. The Mosaic
method represents a data augmentation method that mixes four training images. The
method can better enrich the background of the target and prevent the degradation of the
network generalization ability due to the similar background of the training set. In addition,
the YOLOv4 has a strong generalization ability because it can learn highly generalized
features to be transferred to other fields.

To improve the YOLOvV4 results, we used the image pre-processing method [19]. This
approach includes three steps:

1.  Truncation normalization—according to the intensity histogram of the ROI image,
a pair of the effective maximum intensity and minimum intensity is being selected,
and then they are used to cut off the intensity of the image and finally to perform
the normalize operating. This ensures that the breast region has a sufficient range of
intensity distribution.

2.  Image enhancement—Contrast limited adaptive histogram equalization (CLAHE
algorithm) [27];

3.  Image synthesizing—a 3-channel image is synthesized and composed of the truncated
and normalized image, the contrast enhanced image with clip limit 1, and the contrast
enhanced image with clip limit 2.

Figure 2 shows the mammography image pre-processing result.

Figure 2. The result of the source image pre-processing. (A): source image; (B): after pre-processing.

The dataset was split into two subsets to train YOLOv4: the training subset included
90% of the images and the validation subset included 10% of the images. We used the
graphic processor NVIDIA Tesla K80 (16 Gb memory) to train the YOLOv4. The size of the
input image was 608 x 608.

Since the dataset is currently limited, the model YOLOv4 was trained with the transfer
learning method, where initial pre-trained weights learned on the Microsoft Common
Objects in the Context (MS COCO) dataset were used [28]. The MS COCO dataset is a
large-scale object detection, segmentation, key-point detection, and captioning dataset,
which consists of 328 K images [29].

It is shown that the concept of transfer learning is effective in training a deep net for
mammography images in [22,30]. In transfer learning, usually the last few layers of the
network are replaced by new layers and initialized with random weights, the unchanged
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layers can be either frozen, i.e., made untrainable, or kept trainable. However, we perform
training from the first layer and do not freeze some layers.

In the tasks of classification with localization and object detection, the ratio of the areas
of the bounding boxes (Intersection over Union) is most often used as a metric to determine
the reliability of the bounding box location:

Tol — S(ANB) ’
S(AUB)
where A and B are the predicted bounding box and the ground truth bounding box,
respectively. loU equals zero for non-overlapping bounding boxes and one for perfect
overlap. In our case, average IolU was 80.05%.

In addition, in object detection tasks the mean Average Precision (mAP) is used as a

metric, i.e., as a value of average precision over all categories:

1
AP = | p(r)dr
j

where p is Precision, r is Recall based on the assumption that the bounding box is defined
correctly, if IoU > 0.5. Since Precision and Recall are between 0 and 1, then AP, hence, mAP
is also between 0 and 1. In practice, AP is often calculated by points at which Recall values
are evenly distributed in the interval [0;1]:

AP, AP.(0) + AP.(0.1) + ...+ AP.(1)),AP = AP,

= ﬁ(

Thus, when training in more than 4000 iterations, we obtained mAP( 5 = 96.23% (with
the IoU threshold 50%). With the confidence threshold 0.25: Precision = 0.96, Recall = 0.91,
Fi-score = 0.93. Figure 3 shows the results of the YOLOV4 training.

Overfitting occurs when the accuracy on the training set keeps increasing while
the accuracy of the validation set is decreasing between the epochs. The loss value of
the models gradually decreased and the training of the model was stopped before the
overfitting occurred.

2.2. Materials

After the training the YOLOv4 model, both the YOLO model itself and the NCA were
tested on the test set that we did not use the YOLO for the training procedure.

The test set included 100 mammography images with the proven BC and 100 mam-
mography images with the proven absence of BC. The distribution of mammographic BC
types is shown in Table 1, and the density distribution is given in Table 2.

Table 1. The distribution of the mammographic BC types in the test set.

Mammographic Type N

Star-like lesion 16

Mass with unclear border 30
Round- or oval-shaped mass with clear border 8
Asymmetric density 28

Changes invisible on the dense parenchyma background 16
Partly visualized mass 2

Total 100

The rate of false-positive markings assessed in the subset of the images contained the
proven BC; the rate of false-negative markings assessed in the subset of images contained
the proven absence of BC.
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Figure 3. The results of the YOLOvV4 training. The red line—mean Average Precision (mAP). The blue
line—error graph (Loss).

Table 2. The density distribution of all BC images included to the test set.

ACR Density Category N
ACR* A 27
ACRB 33
ACRC 31
ACRD 9
Total 100

* Note: ACR = American College of Radiology.

2.3. Statistical Methods

To assess the results, the following three statistical categories were selected: True-
Positive (TP; the model detected a lesion where it actually exists); False-Positive (FP; the
model detected a lesion where it actually does not exist); False-Negative (FN; the model
did not detect the lesion, where it actually exists). In addition, the accuracy, sensitivity,
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precision, recall, F1-score are often used to estimate the quality of mammogram lesion
detection models [31-35].

We estimated the model performance by calculating Precision, Recall, and F;-score
through these three categories of statistics. Precision shows the proportion of objects related
to the lesions among the objects detected by the detector. Recall shows the proportion of the
detected objects related to the lesions in the total number of lesion objects, i.e., how well our
detector finds objects related to lesions. Fi-score is the harmonic mean between Precision
and Recall. We used Recall as the primary standard for identifying the version between the
YOLO model and the NCA. Below are the mathematical definitions for Precision, Recall,
and F;-score:

TP TP E — score — 2-Precision-Recall
TP + FP’ TP+FN’" ' B
Since detection of the BC regions is more important than several false-positive results,

a weighted Fq-score, i.e., Fg-score, was also used. The Fg-score measures the efficiency of
the detector considering that Recall is 3 times more important than Precision:

Precision = Recall =

Precision + Recall’

Precision-Recall
-Precision + Recall

Fp —score = (1+p?)

3. Results

Star-like lesion (n = 16) represented the typical mammographic appearance of BC corre-
sponding to the dense center with a long spicula. In most cases, these lesions corresponded
to BIRADS 4-5 categories. The detection rate for the YOLOv4 and the NCA did not differ
significantly; however, the rate of false-positive markings was significantly higher for NCA
(9/16 vs. 0/16; p < 0.001) (Figure 4, Table 3).

Figure 4. Star-like lesion (arrow). (A): Source image; (B): YOLOv4 outcome; (C): NCA outcome.

Mass with unclear border had a less typical BC mammographic appearance, because
the length of the spicula was lower compared to the star-like lesions. Therefore, they
were usually described as BIRADS 3—4 lesions, and in some cases, it was not easy to
distinguish them from benign masses. Nevertheless, in this situation, the sensitivities of
the YOLOv4 and the NCA were also similar, but again the rate of false-positive markings
was numerically higher for NCA (14/30 vs. 7/30; p = 0.059) (Figure 5).
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Table 3. The rate of true-positive and false-positive outcomes for YOLOv4 and NCA-based CADs.

. True-Positive Markings False-Positive Markings
Lesion Type
YOLOv4 NCA YOLOv4 NCA
Star-like lesion 15/16 16/16 0/16 9/16
Mass with unclear border 24/30 24/30 7/30 14/30
Round—oor oval-shaped mass 8/8 8/8 3/8 4/8
with clear border
Asymmetric density 6/28 27/28 0/28 18/28
Changes invisible on the dense 5/16 16/16 0/16 16/16
parenchyma background
Partly visualized mass 2/2 2/2 0/2 2/2
Total 60/100 93/100 10/100 63/100

Figure 5. Mass with unclear border (arrows). (A): Source image; (B): YOLOv4 outcome; (C): NCA

outcome. lesion (arrow).

Round- or oval-shaped mass with clear border in the majority of cases corresponds to the
benign lesion; however, some malignancies (especially, mucinous carcinoma, lymphoma)
may have similar characteristics. These lesions were rated as BIRADS 3. In this clinical
situation, both approaches provided similar results with no difference in the rate of true
and false-positive markings (Figure 6).

Partly visualized mass was selected to belong to a separate class because its character-
istics may become non-typical due to the fact that the certain part of the lesion is outside
the field of view. In this case, both approaches provided similar outcomes; however, the
number of cases was too small for meaningful interpretation (Figure 7).

Asymmetric density in the majority of cases also corresponds to the benign changes. At
the same time, some BCs (approximately 2%), especially those surrounded by the dense
parenchyma, may have a variable asymmetric mammographic picture. The YOLOv4
was able to mark 6 of 28 such lesions, which was lower compared to the NCA (27 of 28;
p < 0.001). These results may be explained by the fact that the majority of asymmetric areas
actually contain true focal lesions that are poorly visible on the hyperdense background
and require the NCA approach for detection, because the textural and other characteristics
assessed by the YOLOV4 are in distinguishable from those of similar benign areas. At the
same time, the rate of false-positive markings was also higher for the NCA (18/28 vs. 0/28;
p <0.001) (Figure 8).
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Figure 6. Round- or oval-shaped mass with clear border (arrow). (A): Source image; (B): YOLOv4
outcome; (C): NCA outcome.

Figure 7. Partly visualized mass (arrow). (A): Source image; (B): YOLOv4 outcome; (C): NCA outcome.

Changes invisible on the dense parenchymal background are the most clinically important
problem of mammography because they are usually missed during the screening that
significantly worsens the outcomes. This problem becomes even more important, because
the capabilities of the clinical breast examination in this situation are also limited, and to
improve the detection rate, other screening approaches are needed (e.g., ultrasound or
tomosynthesis). In this situation, just like in the previous one, the NCA provided better
sensitivity (16/16 vs. 5/16; p < 0.001) at the expense of the significantly higher rate of
false-positive markings (16/16 vs. 0/16; p < 0.001) (Figure 9, Table 3).
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Figure 8. Asymmetric density (arrows). (A): Source image; (B): NCA outcome. The YOLOv4 did not
mark the lesion.

Figure 9. Changes poorly visible or invisible on the dense parenchyma background (arrow). (A): Source
image; (B): NCA outcome. The YOLOV4 did not mark the lesion.

To summarize, in our set the total sensitivity of the YOLOv4 was 60%, whereas for the
NCA the total sensitivity was 93%.

Figure 10 shows the obtained values of TP, FP, and FN for two compared approaches
and their confusion matrixes.

Table 4 shows the values of Precision, Recall, F;-score for test set.

Table 4. Values of Precision, Recall, and F;-score.

Score YOLOv4 NCA
Precision 0.85 0.59
Recall 0.60 0.93

F1-Score 0.70 0.72
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Figure 10. Confusion matrixes for (A): YOLOv4-based method and (B): NCA-based method. TP—the
model detected a lesion where it actually exists; FP—the model detected a lesion where it actually
does not exist; FN—the model did not detect the lesion, where it actually exists.

Table 5 shows the Fg-scores for different significance values of f3.

Table 5. Values of Fy at different significance values of f3.

B YOLOv4 NCA
10 5.66 8.11
50 29.59 45.09
100 59.58 91.56

The presented results show that the use of the NCA method for lesion detection on
mammograms is more significant, since it misses clinically important lesions to a lesser
extent. A further use of additional soft filters can reduce the number of false-positive results.

In addition, the radiologists, to whom all the CAD markings were demonstrated,
changed their decision about the case (additional examinations were performed) based on
the CAD output in 6/100 cases for the NCA. The YOLOv4 outputs did not influence the
radiologist’s decision.

4. Discussion

The YOLOv4 was already used for the mass-scale detection of the pre-processed
images. It represents a one-step detector that is especially effective compared to the two-
step detector in the cases where the context is necessary. It was demonstrated that in cases
where the background does not depend on the foreground, the two-step detectors are useful,
because the first step extracts the ROI. However, it was noted that for BC detection that is
dependent on the breast parenchyma, the one-step detectors may be more effective [19].

Unlike the two-stage methods, in which in the first stage the regions of interest are
determined by a selective search or a use of a special layer of a neural network, and in the
second stage the selected regions are considered by a classifier to determine whether they
belong to the original classes and a regressor that refines the location of the bounding boxes,
the Yolo detector analyzes the entire image without splitting it into regions. This allows
more accurate object recognition. Two-stage methods cannot consider global information,
since the regional candidates are generated first and then feature extraction is being per-
formed. Therefore, the global information cannot be taken into account when performing
classification regression, and many false-positive results are possible. For example, Fast
R-CNN (the best detection method [36]) marks background spots by mistake because it
cannot analyze a wider context. Additionally, YOLO can generalize the representations
of various objects that makes it more applicable to a variety of new environments. When
trained on natural images and tested on artwork, the YOLO is vastly superior to the best
detection methods, such as DPM and R-CNN. Since the YOLO is highly generalizable, it is
less likely to break down when applied to new domains or unexpected inputs [37].
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From the viewpoint of BC detection during the population-wide screening, the CAD
sensitivity appears to be a more important indicator than the specificity due to the following
observations described next. (1) mammography is usually the first step in BC detection
where the majority of the suspicious changes are found; their discrimination into the requir-
ing biopsy and follow-up is usually performed on the next step, for which the specificity of
discrimination is more important. (2) mammography itself is not specific enough to provide
sufficient lesion discrimination; therefore, it is hardly possible to significantly increase its
specificity with the help of the CAD.

Moreover, CADs are most important for clinical practice in the cases when they detect
poorly visible and invisible BCs (asymmetric areas, architectural distortions, etc.). On the
other hand, the majority of the mass lesions are clearly visible on the low-density fatty
background. This phenomenon is reflected by the data about the rate of radiologist’s
decision change where the YOLOv4 had no such influence. For these mammographic
BC types, the NCA clearly surpasses the YOLOv4 that makes it much more important
despite the higher rate of false-positive markings, because they may be assessed by other
modalities (e.g., by ultrasound).

What concerns the false-positive markings of the NCA is that the majority of them
corresponds to the typical benign lesions (as for the YOLOv4); segmented areas of the
dense parenchyma and Cooper ligaments projection crossings may be easily rejected by
the visual analysis or the specific filtering.

One more point is in the CAD markings themselves. The NCA draws the approximate
contour of the lesion, which may be preferential for the future visual analysis of the mark
as well as for its comparison with the source image. On the other hand, the YOLOv4 shows
the rectangle that contains the suspicious lesion, and in some cases, in which the contour of
the lesion is not clear, it is more difficult to assess this area visually.

5. Conclusions

The NCA, based on the specific radiomic-based approach for mammographic images,
was superior to the YOLOV4 in the cases of asymmetric density and invisible changes
on the dense parenchyma background, which is clinically significant. On the other hand,
YOLOV4 generates fewer false-positives. Therefore, it seems reasonable to combine both
YOLOv4 and NCA to improve the quality of mammographic image classification in the
future studies.
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