
Open access to the Proceedings of the

22nd USENIX Security Symposium

is sponsored by USENIX

This paper is included in the Proceedings of the

22nd USENIX Security Symposium.

August 14–16, 2013 • Washington, D.C., USA

ISBN 978-1-931971-03-4

You Are How You Click: Clickstream Analysis
for Sybil Detection

Gang Wang and Tristan Konolige, University of California, Santa Barbara;

Christo Wilson, Northeastern University; Xiao Wang, Renren Inc.;

Haitao Zheng and Ben Y. Zhao, University of California, Santa Barbara

USENIX Association 22nd USENIX Security Symposium 241

You are How You Click: Clickstream Analysis for Sybil Detection

Gang Wang, Tristan Konolige, Christo Wilson†, Xiao Wang‡,

Haitao Zheng and Ben Y. Zhao

UC Santa Barbara †Northeastern University ‡Renren Inc.

{gangw, tkonolige, htzheng, ravenben}@cs.ucsb.edu, cbw@ccs.neu.edu, xiao.wang@renren-inc.com

Abstract

Fake identities and Sybil accounts are pervasive in to-

day’s online communities. They are responsible for a

growing number of threats, including fake product re-

views, malware and spam on social networks, and as-

troturf political campaigns. Unfortunately, studies show

that existing tools such as CAPTCHAs and graph-based

Sybil detectors have not proven to be effective defenses.

In this paper, we describe our work on building a prac-

tical system for detecting fake identities using server-side

clickstream models. We develop a detection approach

that groups “similar” user clickstreams into behavioral

clusters, by partitioning a similarity graph that cap-

tures distances between clickstream sequences. We vali-

date our clickstream models using ground-truth traces of

16,000 real and Sybil users from Renren, a large Chinese

social network with 220M users. We propose a practical

detection system based on these models, and show that it

provides very high detection accuracy on our clickstream

traces. Finally, we worked with collaborators at Renren

and LinkedIn to test our prototype on their server-side

data. Following positive results, both companies have

expressed strong interest in further experimentation and

possible internal deployment.

1 Introduction

It is easier than ever to create fake identities and user ac-

counts in today’s online communities. Despite increas-

ing efforts from providers, existing services cannot pre-

vent malicious entities from creating large numbers of

fake accounts or Sybils [9]. Current defense mecha-

nisms are largely ineffective. Online Turing tests such as

CAPTCHAs are routinely solved by dedicated workers

for pennies per request [22], and even complex human-

based tasks can be overcome by a growing community

of malicious crowdsourcing services [23, 39]. The result

of this trend is a dramatic rise in forged and malicious

online content such as fake reviews on Yelp [35], mal-

ware and spam on social networks [10, 11, 32], and large,

Sybil-based political lobbying efforts [27].
Recent work has explored a number of potential so-

lutions to this problem. Most proposals focus on de-

tecting Sybils in social networks by leveraging the as-

sumption that Sybils will find it difficult to befriend real
users. This forces Sybils to connect to each other and

form strongly connected subgraphs [36] that can be de-

tected using graph theoretic approaches [8, 34, 45, 46].
However, the efficacy of these approaches in practice is
unclear. While some Sybil communities have been lo-

cated in the Spanish Tuenti network [7], another study on
the Chinese Renren network shows the large majority of

Sybils actively and successfully integrating themselves

into real user communities [43].

In this paper, we describe a new approach to Sybil

detection rooted in the fundamental behavioral patterns

that separate real and Sybil users. Specifically, we pro-
pose the use of clickstream models as a tool to detect

fake identities in online services such as social networks.

Clickstreams are traces of click-through events generated

by online users during each web browsing “session,” and

have been used in the past to model web traffic and user
browsing patterns [12, 20, 24, 28]. Intuitively, Sybils and
real users have very different goals in their usage of on-

line services: where real users likely partake of numerous

features in the system, Sybils focus on specific actions
(i.e. acquiring friends and disseminating spam) while try-

ing to maximize utility per time spent. We hypothesize

that these differences will manifest as significantly dif-
ferent (and distinctive) patterns in clickstreams, making

them effective tools for “profiling” user behavior. In our
context, we use these profiles to distinguish between real
and Sybil users.

Our work focuses on building a practical model for ac-

curate detection of Sybils in social networks. We develop

several models that encode distinct event sequences and

inter-event gaps in clickstreams. We build weighted

242 22nd USENIX Security Symposium USENIX Association

graphs of these sequences that capture pairwise “similar-

ity distance” between clickstreams, and apply clustering

to identify groups of user behavior patterns. We validate

our models using ground-truth clickstream traces from

16,000 real and Sybil users from Renren, a large Chinese

social network with 220M users. Using our methodol-

ogy, we build a detection system that requires little or

no knowledge of ground-truth. Finally, we validate the

usability of our system by running initial prototypes on

internal datasets at Renren and LinkedIn.

The key contributions of this paper are as follows:

• To the best of our knowledge, we are the first to ana-
lyze click patterns of Sybils and real users on social

networks. By analyzing detailed clickstream logs

from a large social network provider, we gain new in-

sights on activity patterns of Sybils and normal users.

• We propose and evaluate several clickstream mod-

els to characterize user clicks patterns. Specially,

we map clickstreams to a similarity graph, where

clickstreams (vertices) are connected using weighted

edges that capture pairwise similarity. We apply

graph partitioning to identify clusters that repre-

sent specific click patterns. Experiments show that
our model can efficiently distinguish between click-
streams of Sybil and normal users.

• We develop a practical Sybil detection system based

on our clickstream model, requiring minimal in-

put from the service provider. Experiments using

ground-truth data show that our system generates

<1% false positives and <4% false negatives.

• Working closely with industrial collaborators, we

have deployed prototypes of our system at Renren

and LinkedIn. Security teams at both companies

have run our system on real user data and received

very positive results. While corporate privacy poli-

cies limit the feedback visible to us, both companies

have expressed strong interest in further experimen-

tation and possible deployment of our system.

To the best of our knowledge, we are the first to study
clickstream models as a way to detect fake accounts in

online social networks. Moving forward, we believe

clickstream models are a valuable tool that can com-

plement existing techniques, by not only detecting well-

disguised Sybil accounts, but also reducing the activity

level of any remaining Sybils to that of normal users.

Roadmap. We begin in Section 2 by describing the

problem context and our ground-truth dataset, followed

by preliminary analysis results in Section 3. Next, in Sec-

tion 4 we propose our clickstream models to effectively

distinguish Sybil with normal users. Then in Section 5,

we develop an incremental Sybil detector that can scale

with today’s large social networks. We then extend this

detector in Section 6 by proposing an unsupervised Sybil

Dataset Users Clicks Date (2011) Sessions

Sybil 9,994 1,008,031 Feb.28-Apr.30 113,595

Normal 5,998 5,856,941 Mar.31-Apr.30 467,179

Table 1: Clickstream dataset.

detector, where only a minimal (and fixed) amount of
ground-truth is needed. Finally, in Section 7, we describe
experimental experience of testing our prototype code in

real-world social networks (Renren and LinkedIn). We

then discuss related work in Section 8 and conclude in
Section 9.

2 Background

In this section, we provide background for our study.

First, we briefly introduce the Renren social network
and the malicious Sybils that attack it. Second, we de-

scribe the key concepts of user clickstreams, as well as

the ground-truth dataset we use in our study.

Renren. Renren is the oldest and largest Online So-

cial Network (OSN) in China, with more than 220 mil-

lion users [17]. Renren offers similar features and func-
tionalities as Facebook: users maintain personal profiles
and establish social connections with their friends. Ren-

ren users can update their status, write blogs, upload pho-

tos and video, and share URLs to content on and off Ren-

ren. When a user logs-in to Renren, the first page they
see is a “news-feed” of their friends’ recent activities.

Sybils. Like other popular OSNs, Renren is targeted

by malicious parties looking to distribute spam and steal

personal information. As in prior work, we refer to the

fake accounts involved in these attacks as Sybils [43].

Our goal is to detect and deter these malicious Sybils; our

goal is not to identify benign fakes, e.g. pseudonymous

accounts used by people to preserve their privacy.

Prior studies show that attackers try to friend normal

users using Sybil accounts [43]. On Renren, Sybils usu-

ally have complete, realistic profiles and use attractive
profile pictures to entice normal users. It is challeng-
ing to identify these Sybils using existing techniques be-

cause their profiles are well maintained, and they inte-
grate seamlessly into the social graph structure.

Clickstream Data. In this paper, we investigate the

feasibility of using clickstreams to detect Sybils. A click-

stream is the sequence of HTTP requests made by a user

to a website. Most requests correspond to a user explic-

itly fetching a page by clicking a link, although some

requests may be programmatically generated (e.g. Xml-

HttpRequest). In our work, we assume that a clickstream

can be unambiguously attributed to a specific user ac-
count, e.g. by examining the HTTP request cookies.

Our study is based on detailed clickstreams for 9994

USENIX Association 22nd USENIX Security Symposium 243

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
 o

f
U

s
e
rs

 (
%

)

of Sessions Per User

Sybil
Normal

Figure 1: # of sessions per user.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10 12 14 16 18 20 22

%
 o

f
S

e
s
s
io

n
s

Hour In Day

Sybil
Normal

Figure 2: Sessions through the day.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

C
D

F
 o

f
U

s
e
rs

 (
%

)

Sessions Per Day Per User

Sybil
Normal

Figure 3: Sessions per day per user.

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
 o

f
U

s
e
rs

 (
%

)

Average Session Length Per User (Seconds)

Sybil
Normal

Figure 4: Average session length per

user.

 0

 20

 40

 60

 80

 100

 1 10 100

C
D

F
 o

f
U

s
e
rs

 (
%

)

Average Clicks Per Session Per User

Sybil
Normal

Figure 5: Average # of clicks per ses-

sion per user.

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000

C
D

F
 o

f
U

s
e
rs

 (
%

)

Average Inter-arrival Time
 Per Session Per User (Seconds)

Sybil
Normal

Figure 6: Average time interval be-

tween clicks per session per user.

Sybils and 5998 normal users on Renren. Sybil click-
streams were selected at random from the population of

malicious accounts that were banned by Renren in March

and April 2011. Accounts could be banned for abu-

sive behaviors such as spamming, harvesting user data

or sending massive numbers of friend requests. Nor-

mal user clickstreams were selected uniformly at random

from Renren user population in April 2011, and were

manually verified by Renren’s security team.
The dataset summary is shown in Table 1. In total,

our dataset includes 1,008,031 and 5,856,941 clicks for
Sybils and normal users, respectively. Each click is char-

acterized by a timestamp, an anonymized userID, and an

activity. The activity is derived from the request URL,

and describes the action the user is undertaking. For ex-

ample, the “friend request” activity corresponds to a user

sending a friend request to another user. We discuss the

different categories of activities in detail in Section 3.2.

Each user’s clickstream can be divided into sessions,

where a session represents the sequence of a user’s clicks

during a single visit to Renren. Unfortunately, users do

not always explicitly end their session by logging out of

Renren. As in prior work, we assume that a user’s ses-

sion is over if they do not make any requests for 20 min-

utes [6]. Session duration is calculated as the time in-

terval between the first and last click within a session.
Overall, our traces contain 113,595 sessions for Sybils

and 467,179 sessions for normal users.

3 Preliminary Clickstream Analysis

We begin the analysis of our data by looking at the high-

level characteristics of Sybil and normal users on Ren-

ren. Our goals are to provide an overview of the dataset,

and to motivate the use of clickstreams as a rich data

source for uncoveringmalicious behavior. Towards these

ends, we analyze our data in four ways: first, we exam-
ine session-level characteristics. Second, we analyze the

activities users engage in during each session. Third, we

construct a state-based Markov Chain model to charac-

terize the transitions between clicks during sessions. Fi-

nally, we use a Support Vector Machine (SVM) approach

to learn the important features that distinguish Sybil and

normal user clickstreams.

3.1 Session-level Characteristics

In this section, we seek to determine the session-level

differences between normal and Sybil accounts in our

dataset. First, we examine the total number of sessions

from each user. As shown in Figure 1, >50% of Sybils

have only a single session; far fewer than normal users.

It is likely that these Sybils sent spam during this sin-

gle session and were banned shortly thereafter. A small

portion of Sybils are very active and have>100 sessions.

Next, we examine when Sybils and normal users are

active each day. Figure 2 shows that all users exhibit a

clear diurnal pattern, with most sessions beginning dur-

ing daytime. This indicates that at least a significant por-
tion of Sybils in our dataset could be controlled by real

people exhibiting normal behavioral patterns.

Next, we investigate the number of sessions per user

per day. Figure 3 shows that 80% of Sybils only login to
Renren once per day or less, versus 20% of normal users.

The duration of Sybil sessions is also much shorter, as

shown in Figure 4: 70% of Sybil session are <100 sec-

onds long, versus 10% of normal sessions. The vast ma-

244 22nd USENIX Security Symposium USENIX Association

jority of normal sessions last several minutes.

Figure 5 shows the number of clicks per session per

user. Almost 60% of Sybil sessions only contain one

click, whereas 60% of normal user sessions have ≥10

clicks. Not only do Sybil sessions tend to be shorter,

but Sybils also click much faster than normal users. As

shown in Figure 6, the average inter-arrival time between

Sybil clicks is an order of magnitude shorter than for nor-

mal clicks. This indicates that Sybils do not linger on

pages, and some of their activities may be automated.

The observed session-level Sybil characteristics are

driven by attacker’s attempts to circumvent Renren’s se-

curity features. Renren limits the number of actions each

account can take, e.g. 50 friend requests per day, and 100

profiles browsed per hour. Thus, in order to maximize
efficiency, attackers create many Sybils, quickly login to
each one and perform malicious activities (e.g. sending

unsolicited friend requests and spam), then logout and

move to the next Sybil. As shown in Table 2, Sybils

spend a great deal of clicks sending friend requests and

browsing profiles, despite Renren’s security restrictions.

3.2 Clicks and Activities

Having characterized the session-level characteristics of

our data, we now analyze the type and frequency clicks

within each session. As shown in Table 2, we organize

clicks into categories that correspond to high-level OSN

features. Within each category there are activities that

map to particular Renren features. In total, we observe 55

activities that can be grouped into 8 primary categories.
These categories are:

• Friending: Includes sending friend requests, accept-

ing or denying those requests, and un-friending.

• Photo: Includes uploading photos, organizing al-

bums, tagging friends, browsing friend’s photos, and

writing comments on photos.

• Profile: This category encompasses browsing user
profiles. Like Facebook, profiles on Renren can be
browsed by anyone, but the information that is dis-

played is restricted by the owner’s privacy settings.

• Share: Refers to users posting hyperlinks on their

wall. Common examples include links to videos and

news stories on external websites, or links to blog

posts and photo albums on Renren.

• Message: Includes status updates, wall posts, and

real-time instant-messages (IM).

• Blog: Encompasses writing blogs, browsing blog ar-

ticles, and leaving comments on blogs.

• Notification: Refers to clicks on Renren’s notifica-
tion mechanism that alerts users to comments or likes

on their content.

Category Description
Sybil Clks Nrml Clks

(K) % # (K) %

Friending

Send request 417 41 16 0

Accept invitation 20 2 13 0

Invite from guide 16 2 0 0

Photo
Visit photo 242 24 4,432 76

Visit album 25 2 330 6

Profile Visit profiles 160 16 214 4

Share Share content 27 3 258 4

Message Send IM 20 2 99 2

Blog Visit/reply blog 12 1 103 2

Notification Check notification 8 1 136 2

Table 2: Clicks from normal users and Sybils on different

Renren activities. # of clicks are presented in thousands.

Activities with <1% of clicks are omitted for brevity.

• Like: Corresponds to the user liking (or unliking)

content on Renren.

Table 2 displays the most popular activities on Ren-

ren. The number of clicks on each activity is shown (in

thousands), as well as the percent of clicks. Percentages

are calculated for Sybils and normal users separately, i.e.

each “%” column sums to 100%. For the sake of brevity,

only activities with ≥1% of clicks for either Sybils or

normal users are shown. The “Like” category has no ac-

tivity with ≥1% of clicks, and is omitted from the table.

Table 2 reveals contrasting behavior between Sybils

and normal users. Unsurprisingly, normal users’ clicks

are heavily skewed toward viewing photos (76%), al-
bums (6%), and sharing (4%). In contrast, Sybils ex-

pend most of their clicks sending friend requests (41%),

viewing photos (24%), and browsing profiles (16%). The
photo browsing and profile viewing behavior are related:
these Sybils crawl Renren and download users’ personal

information, including profile photos.
Sybils’ clicks are heavily skewed toward friending

(41% for Sybils, 0.3% for normal users). This behavior

supports one particular attack strategy on Renren: friend-

ing normal users and then spamming them. However,

given that other attacks are possible (e.g. manipulating

trending topics [16], passively collecting friends [32]),

we cannot rely on this feature alone to identify Sybils.

Normal users and Sybils share content (4% and 3%,

respectively) as well as send messages (2% and 2%)

at similar rates. This is an important observation, be-

cause sharing and messaging are the primary channels

for spam dissemination on Renren. The similar rates

of legitimate and illegitimate sharing/messaging indicate

that spam detection systems cannot simply leverage nu-

meric thresholds to detect spam content.

USENIX Association 22nd USENIX Security Symposium 245

Friend Invitation

PhotoINITIAL

Profile

FINAL

0.89

0.06

0.38

0.57

0.91

0.04

0.07

0.05

0.44 0.34

(a) State transitions for a Sybil account.

Profile

PhotoINITIAL

Share

FINAL

Blog

0.39

0.13

0.33

0.46

0.31

0.17

0.93

0.04

0.16

0.47

0.31
0.16

0.21

0.11
0.25

Notification

0.42

0.14
0.19

0.07

0.31

(b) State transitions for a real user.

Figure 7: Categories and transition probabilities in the clickstream models of Sybils and normal users.

3.3 Click Transitions

Sections 3.1 and 3.2 highlight some of the differences

between Sybils and normal users. Next, we examine dif-

ferences in click ordering, i.e. how likely is it for a user

to transition from activity A to activity B during a single

session?

We use a Markov Chain model to analyze click tran-

sitions. In this model, each state is a click category, and

edges represent transitions between categories. We add

two abstract states, initial and final, that mark the begin-
ning and end of each click session. Figure 7 shows the
category transition probabilities for both Sybils and nor-

mal users. The sum of all outgoing transitions from each

category is 1.0. To reduce the complexity of the Figure,

edges with probability <5% have been pruned (except

for transitions to the final state). Categories with no in-
coming edges after this pruning process are also omitted.

Figure 7(a) demonstrates that Sybils follow a very reg-
imented set of behaviors. After logging-in Sybils imme-

diately begin one of three malicious activities: friend in-

vitation spamming, spamming photos, or profile brows-
ing. The profile browsing path represents crawling be-
havior: the Sybil repeatedly views user profiles until their
daily allotment of views is exhausted.

Compared to Sybils, normal users (Figure 7(b)) en-
gage in a wider range of activities, and the transitions

between states are more diverse. The highest centrality

category is photos, and it is also the most probable state

after login. Intuitively, users start from their newsfeed,

where they are likely to see and click on friends’ recent

photos. The second most probable state after login is

checking recent notifications. Sharing and messaging are
both low probability states. This makes sense, given that

studies of interactions on OSNs have shown that users

generate new content less than once per day [41, 17].
It is clear from Figure 7 that currently, Sybils on Ren-

ren are not trying to precisely mimic the behavior of nor-

mal users. However, we do not feel that this type of

modeling represents a viable Sybil detection approach.

Simply put, it would be trivial for Sybils to modify

their behavior in order to appear more like normal users.

If Sybils obfuscated their behavior by decreasing their

transition probability to friending and profile browsing
while increasing their transition probability to photos and

blogs, then distinguishing between the two modelswould

be extremely difficult.

3.4 SVM Classification
The above analysis shows that Sybil sessions have very

different characteristics compared to normal user ses-

sions. Based on these results, we explore the possibil-

ity of distinguishing normal and Sybil sessions using a

Support Vector Machine (SVM) [26]. For our SVM ex-

periments, we extract 4 features from session-level infor-

mation and 8 features from click activities:
• Session Features: We leverage 4 features extracted

from user sessions: average clicks per session, aver-

age session length, average inter-arrival time between

clicks, and average sessions per day.

• Click Features: As mentioned in Section 3.2, there

are 8 categories of clicks activities on Renren. For
each user, we use the percentage of clicks in each

category as a feature.

We computed values for all 12 features for all users in

our dataset, input the data to an SVM, and ran 10 fold

cross-validation. The resulting classification accuracy
was 98.9%, with 0.8% false positives (i.e. classify nor-
mal users as Sybils) and 0.13% false negatives (i.e. clas-

sify Sybils as normal users). Table 3 shows the weights

assigned to the top 5 features. Features with positive

weight values are more indicative of Sybils, while fea-

tures with negative weights indicate they are more likely

in normal users. Overall, higher absolute value of the

weights corresponds to features that more strongly indi-

cate either Sybils or normal users. These features agree

with our ad-hoc observations in previous sections.

246 22nd USENIX Security Symposium USENIX Association

Feature Weight

% of clicks under Friending +5.65

% of clicks under Notification -3.68
Time interval of clicks (TBC) -3.73
Session length (SL) +1.34

% of clicks under Photo +0.93

Table 3: Weight of features generated by SVM.

While our SVM results are quite good, an SVM-based

approach is still a supervised learning tool. In practice,

we would like to avoid using any ground truth datasets

to train detection models, since they can introduce un-

known biases. Later, we will describe our unsupervised

detection techniques in detail.

3.5 Discussion

In summary, we analyze the Renren clickstream data to

characterize user behavior from three angles: sessions,

click activities, and click transitions. SVM analysis of

these basic features demonstrates that clickstreams are

useful for identifying Sybils on social networks.

However, these basic tools (session distributions,

Markov Chain models, SVM) are of limited use in prac-

tice: they require training on large samples of ground-

truth data. For a practical Sybil detection system, we

must develop clickstream analysis techniques that lever-

age unsupervised learning on real-time data samples, i.e.

require zero or little ground-truth. In the next section, we

will focus on developing clickstreams models for real-

time, unsupervised Sybil detection.

4 Clickstream Modeling and Clustering

In Section 3, we showed that clickstream data for Sybils

and normal users captured the differences in their behav-

ior. In this section, we build models of user activity pat-

terns that can effectively distinguish Sybils from normal

users. Our goal is to cluster similar clickstreams together

to form general user “profiles” that capture specific activ-
ity patterns. We then leverage these clusters (or profiles)
to build a Sybil detection system.

We begin by defining three models to represent a
user’s clickstream. For each model, we describe similar-

ity metrics that allow us to cluster similar clickstreams

together. Finally, we use our ground-truth data to eval-

uate the efficacy of each model in distinguishing Sybils
from normal users. We build upon these results later to

develop practical Sybil detection systems based on click-

stream analysis.

4.1 Clickstream Models

We define three models to capture a user’s clickstream.
Click Sequence Model. We start with the

most straightforward model, which only considers click

events. As shown in Section 3, Sybils and normal users

exhibit different click transition patterns and focus their

energy on different activities. The Click Sequence (CS)

Model treats each user’s clickstream as a sequence of

click events, sorted by order of arrival.

Time-based Model. As shown in Figure 6,

Sybils and normal users generate click events at different

speeds. The Time-based Model focuses on the distribu-

tion of gaps between events: each user’s clickstream is

represented by a list of inter-arrival times [t1, t2, t3, ..., tn]
where n is the number of clicks in a user’s clickstream.

Hybrid Model. The Hybrid Model combines click

types and click inter-arrival times. Each user’s click-

stream is represented as an in-order sequence of clicks

along with inter-event gaps between clicks. For exam-

ple: a(t1)c(t2)a(t3)d(t4)b where a,b,c,d are click types,
and ti is the time interval between the i

th and (i+ 1)th

event.

Click Types. Both the Click Sequence Model and the

Hybrid Model represent each event in the sequence by

its click event type. We note that we can control how

granular the event types are in our sequence representa-

tion. One approach is to encode clicks based on their

specific activity. Renren’s logs define 55 unique activi-
ties. Another option is to encode click events using their

broader category. In our dataset, our 55 activities fall un-

der 8 click categories (see Section 3.2). Our experimental
analysis evaluates both representations to understand the

impact of granularity on model accuracy.

4.2 Computing Sequence Similarity

Having defined three models of clickstream sequences,
we nowmove on to investigating methods to quantify the

similarity between clickstreams. In other words, we want

to compute the distance between pairs of clickstreams.

First, we discuss general approaches to computing the

distance between sequences. Then we discuss how to

apply each approach to our three clickstream models.

4.2.1 Defining Distance Functions

Common Subsequences. The first distance met-
ric involves locating the common subsequences of vary-

ing lengths between two clickstreams. We formalize

a clickstream as a sequence S = (s1s2...si...sn), where
si is the ith element in the sequence. We then de-

fine Tk as the set of all possible k-grams (k consecu-

USENIX Association 22nd USENIX Security Symposium 247

tive elements) in sequence S: Tk(S) = {k-gram|k-gram=
(sisi+1...si+k−1), i ∈ [1,n+ 1− k]}. Simply put, each k-
gram in Tk(S) is a subsequence of S. Finally, the distance
between two sequences can then be computed based on

the number of common subsequences shared by the two

sequences. Inspired by the Jaccard Coefficient [19], we
define the distance between sequences S1 and S2 as:

Dk(S1,S2) = 1−
|Tk(S1)∩Tk(S2)|
|Tk(S1)∪Tk(S2)|

(1)

We will discuss the choice of k in Section 4.2.2.

Common Subsequences With Counts. The com-

mon subsequence metric defined above only measures
distinct common subsequences, i.e. it does not consider

the frequency of common subsequences. We propose a

second distance metric that rectifies this by taking the
count of common subsequences into consideration. For

sequences S1, S2 and a chosen k, we first compute the
set of all possible subsequences from both sequences as

T = Tk(S1)∪ Tk(S2). Next, we count the frequency of
each subsequence within each sequence i (i= 1,2) as ar-
ray [ci1,ci2, ...,cin] where n = |T |. Finally, the distance
between S1 and S2 can be computed as the normalized

Euclidean Distance between the two arrays:

D(S1,S2) =
1√
2

√

n

∑
j=1

(c1 j− c2 j)2 (2)

Distribution-based Method. Unfortunately, the

prior metrics cannot be applied to sequences of contin-

uous values (i.e. the Time-based Model). Instead, for

continuous value sequences S1 and S2, we compute the

distance by comparing their value distribution using a

two-sample KolmogorovSmirnov test (K-S test). A two-

sample K-S test is a general nonparametric method for

comparing two empirical samples. It is sensitive to dif-

ferences in location and shape of the empirical Cumu-

lative Distribution Functions (CDF) of the two samples.

We define the distance function using K-S statistics:
D(S1,S2) = supt |Fn,1(t)−Fn′,2(t)| (3)

where Fn,i(t) is the CDF of values in sequence Si.

4.2.2 Applying Distances Functions to Clickstreams

Having defined three distance functions for computing
sequence similarity, we now apply these metrics to our

three clickstream models. Table 4 summarizes the dis-

tance metrics we apply to each of our models. The Time-

based Model is the simplest case, because it only has one

corresponding distance metric (K-S Test). For the Click

Sequence and Hybrid Models, we use several different

parameterizations of our distance metrics.

Model Distance Metrics

Click Sequence Model
unigram, unigram+count,

10gram, 10gram+count

Time-based Model K-S test

Hybrid Model 5gram, 5gram+count

Table 4: Summary of distance functions.

Click Sequence Model. We use the common subse-

quence and common subsequence with counts metrics to

compute distances in the CS model. However, these two

metrics require that we choose k, the length of k-gram

subsequences to consider. We choose two values for k: 1

and 10, which we refer to as unigram and 10gram. Un-

igram represents the trivial case of comparing common

click events in two clickstreams, while ignoring the or-

dering of clicks. 10gram includes all unigrams, as well as

bigrams, trigrams, etc. As shown in Table 4, we also in-

stantiate unigram+count and 10gram+count, which in-

clude the frequency counts of each unique subsequence.

Although values of k > 10 are possible, we limit our

experiments to k= 10 for two reasons. First, when k= n

(where n is the length of a clickstream), the computa-

tional complexity becomes O(n2). This overhead is sig-
nificant when you consider that O(n2) subsequences will
be computed for every user in a clickstream dataset. Sec-

ond, long subsequences have diminishing utility, because

they are likely to be unique for a particular user. In our

tests, we found k = 10 to be a good limit on computa-

tional overhead and subsequence over-specificity.

Hybrid Model. Like the Click Sequence Model, dis-

tances between sequences in the Hybrid Model can also

be computed using the common subsequence and com-

mon subsequence plus count metrics. The only change

between the Click Sequence and Hybrid Models is that

we must discretize the inter-arrival times between clicks

so they can be encoded into the sequence. We do this

by placing inter-arrival times into log-scale buckets (in

seconds): [0,1], [1,10], [10,100], [100,1000], [1000,∞].
Based on Figure 6, the inter-arrival time distribution is

highly skewed, so log-scale buckets are better suited than

linear buckets to evenly encode the times.

After we discretize the inter-arrival times and insert

them into the clickstream, we use k = 5 as the parameter
for configuring the two distance metrics. Further increas-
ing k offers little improvement in the model but intro-

duces extra computation overhead. As shown in Table 4,

we refer to these metrics as 5gram and 5gram+count.

Thus, each 5gram contains three consecutive click events

along with two tokens representing inter-arrival time

gaps between them.

248 22nd USENIX Security Symposium USENIX Association

 0

 2

 4

 6

 8

 10

CS Hybrid CS Hybrid Time

E
rr

o
r

R
a
te

 (
%

)

Models

(Activities)

(Categories)

False Positive
False Negative

Figure 8: Error rate of three models.

 0
 1
 2
 3
 4
 5
 6
 7

unigram

unigram-c

10gram

10gram-c

5gram
5gram-c

E
rr

o
r

R
a
te

 (
%

)

Distance Functions

(CS Model) (Hybrid Model)

False Positive
False Negative

Figure 9: Error rate using different

distance functions.

 0

 1

 2

 3

 4

 5

 6

10 20 30 40 50 60 70 80 90 100

E
rr

o
r

R
a
te

 (
%

)

of Clusters (Hybrid Model)

False Positive
False Negative

Figure 10: Impact of number of clus-

ters (K).

4.3 Sequence Clustering

At this point we have defined models of clickstreams
as well as metrics for computing the distance between

them. Our next step is to cluster users with similar click-

streams together. As shown in Section 3, Sybil and nor-

mal users exhibit very different behaviors, and should

naturally form distinctive clusters.

To achieve our goal, we build and then partition a

sequence similarity graph. Each user’s clickstream is

represented by a single node. The sequence similarity

graph is complete, i.e. every pair of nodes is connected

by a weighted edge, where the weight is the similarity

distance between the sequences. Partitioning this graph

means producing the desired clusters while minimizing

the total weight of cut edges: users with similar activi-

ties (high weights between them) will be placed in the

same cluster, while users with dissimilar activities will

be placed in different clusters. Thus the clustering pro-

cess separates Sybil and normal users. Note that not all

Sybils and normal users exhibit homogeneous behavior;

thus, we expect there to be multiple, distinct clusters of

Sybils and normal users.

Graph Clustering. To cluster sequence similarity

graphs, we use METIS [18], a widely used multilevel k-
way partitioning algorithm. The objective of METIS is

to minimize the weight of edges that cross partitions. In

the sequence similarity graph, longer distances (i.e. dis-

similar sequences) have lower weights. Thus, METIS

is likely to place dissimilar sequences in different parti-

tions. METIS requires a parameter K that specifies the
number of partitions desired. We will assess the impact

of K on our system performance in Section 4.4.

Cluster Quality. A key question when evaluat-

ing our methodology is assessing the quality of clus-

ters produced by METIS. In Section 4.4, we leverage

our ground-truth data to evaluate false positives and

negatives after clustering the sequence similarity graph.

We label each cluster as “Sybil” or “normal” based on

whether the majority of nodes in the cluster are Sybils

or normal users. Normal users that get placed into Sybil

clusters are false positives, while Sybils placed in normal

clusters are false negatives. We use these criteria to eval-

uate different clickstream models and distance functions.

4.4 Model Evaluation

We now evaluate our clickstream models and distance

functions to determine which can best distinguish Sybil

activity patterns from those of normal users. We examine

four different variables: 1) choice of clickstream model,

2) choice of distance function for each model, 3) what

representation of clicks to use (specific activities or cat-
egories), and 4) K, the number of desired partitions for

METIS.

Experiment Setup. The experimental dataset con-

sists of 4000 normal users and 4000 Sybils randomly se-

lected from our dataset. In each scenario, we build click

sequences for each user (based on a given clickstream

model and click representation), compute all distances

between each pair of sequences, and then cluster the re-

sulting sequence similarity graph for a given value of K.

Finally, each experimental run is evaluated based on the

false positive and negative error rates.

Model Analysis. First, we examine the error rates

of different clickstream models and click representations

in Figure 8. For the CS and Hybrid models, we en-
code clicks based on activities as well as categories.

In the Time model, all clicks are encoded as inter-

arrival times. In this experiment, we use 10gram+count,

5gram+count, and K-S as the distance function for CS,

Hybrid, and Time, respectively. We fix K = 100. We in-

vestigate the impact of distance functions and K in sub-

sequent experiments.

Two conclusions can be drawn from Figure 8. First,
the CS and Hybrid models significantly outperform the
Time-based model, especially in false negatives. This

demonstrates that click inter-arrival times alone are in-

sufficient to disambiguate Sybils from normal users.
Manual inspection of false negative Sybils from the Time

experiment reveals that these Sybils click at the same rate

as normal users. Thus these Sybils are either operated by

real people, or the software that controls them has been

intentionally rate limited.

USENIX Association 22nd USENIX Security Symposium 249

The second conclusion from Figure 8 is that encod-
ing clicks based on category outperforms encoding by

activity. This result confirms findings from the existing
literatures on web usage mining [3]: representing clicks

using high-level categories (or concepts) instead of raw

click types better exposes the browsing patterns of users.

A possible explanation is that high-level categories have

better tolerance for noise in the clickstream log. In the

rest of our paper, we use categories to encode clicks.

Next, we examine the error rate of different distance

functions for the CS and Hybrid models. As shown in

Figure 9, we evaluate the CS model using the unigram

and 10gram functions, as well as counting versions of

those functions. We evaluate the Hybrid model using the

5gram and 5gram+count functions.

Several conclusions can be drawn from Figure 9. First,

the unigram functions have the highest false negative

rates. This indicates that looking at clicks in isolation

(i.e. without click transitions) is insufficient to discover
many Sybils. Second, the counting versions of all three

distance functions produce low false positive rates. This

demonstrates that the repeat frequency of sequences is

important for identifying normal users. Finally, we ob-

serve that CS 10gram+count and Hybrid have similar ac-

curacy. This shows that click inter-arrival times are not

necessary to achieve low error rates.

Finally, we examine the impact of the number of clus-

ters K on detection accuracy. Figure 10 shows the error

rate of Hybrid 5gram+count as we vary K. The overall

trend is that larger K produces lower error rates. This

is because larger K grants METIS more opportunities to

partition weakly connected sequences. This observation

is somewhat trivial: if K = N, where N is the number

of sequences in the graph, then the error rate would be

zero given our evaluation methodology. In Section 6, we

discuss practical reasons why K must be kept ≈100.

Summary. Our evaluation shows that the Click

Sequence and Hybrid models perform best at disam-

biguating Sybils and normal users. 10gram+count and

5gram+count are the best distance functions for each

model, respectively. We find that accuracy is highest
when clicks are encoded based on categories, and when

the number of partitions K is large. In the following sec-

tions, we will use these parameters when building our

Sybil detection system.

5 Incremental Sybil Detection

Our results in Section 4 showed that our models can ef-

fectively distinguish between Sybil clickstreams and nor-

mal user clickstreams. In this section, we leverage this

methodology to build a real-time, incremental Sybil de-

tector. This system works in two phases: first, we cre-
ate clusters of Sybil and normal users based on ground-

truth data, as we did in Section 4. Second, we compute

the position of unclassified clickstreams in our sequence
similarity graph. If an unclassified clickstream falls into
a cluster representing clickstreams from ground-truth

Sybils, we conclude the new clickstream is a Sybil. Oth-

erwise, it is benign.

5.1 Incremental Detection

To classify a new clickstream given an existing clustered

sequence similarity graph, we must determine how to

“re-cluster” new sequences into the existing graph. We

investigate three algorithms.

The first is K Nearest Neighbor (KNN). For a given

unclassified sequence, we find the top-K nearest se-
quences in the ground-truth data. If the majority of these

sequences are located in Sybil clusters, then the new se-

quence is classified as a Sybil sequence.
The second algorithm is Nearest Cluster (NC). We

compute the average distance from an unclassified se-
quence to all sequences in each cluster. The unclassified
sequence is then added to the cluster with the closest av-

erage distance. The new sequence is classified as Sybil
or normal based on the cluster it is placed in.

The third algorithm is a less computationally-intensive

version of Nearest Cluster that we refer to as Nearest

Cluster-Center (NCC). NC and KNN require comput-

ing the distance from an unclassified sequence to all se-
quences in the ground-truth clusters. We can streamline

NC’s classification process by precomputing centers for
each cluster. In NCC, we only need to compute the dis-

tance from an unclassified sequence to the center of each
existing cluster.

For each existing cluster, the center is chosen by close-

ness centrality. Intuitively, the center sequence is the one

that has the shortest distance to all the other sequences

in the same cluster. To be more robust, we precompute

three centers for each cluster, that is, the three sequences

with highest closeness centrality.

5.2 System Evaluation

In this section, we evaluate our incremental Sybil detec-

tion system using our ground-truth clickstream dataset.

We start by evaluating the basic accuracy of the system at

classifying unknown sequences. Next, we evaluate how

quickly the system can identify Sybils, in terms of num-

ber of clicks in their clickstream. Finally, we explore

how long the system can remain effective before it needs

to be retrained using updated ground-truth data.

Detection Accuracy. We start with a basic evaluation

of system accuracy using our ground-truth dataset. We

split the dataset into training data and testing data. Both

datasets include 3000 Sybils and 3000 normal users. We

build sequence similarity graphs from the training data

250 22nd USENIX Security Symposium USENIX Association

 0

 1

 2

 3

 4

 5

KNN NC NCC

E
rr

o
r

R
a
te

 (
%

)

Detection Algorithm

False Positive
False Negative

Figure 11: Error rate of three reclus-

tering algorithms.

 0

 1

 2

 3

 4

 5

 6

50 100 All 50 100 All 50 100 All

E
rr

o
r

R
a
te

 (
%

)

of Clicks

(KNN) (NC) (NCC)

False Positive
False Negative

Figure 12: Error rate vs. maximum #

of clicks in each sequence.

 0

 1

 2

 3

 4

 5

KNN NC NCC

E
rr

o
r

R
a
te

 (
%

)

Detection Algorithm

False Positive
False Negative

Figure 13: Detection accuracy when

training data is two weeks old.

using Hybrid Model with 5gram+count as distance func-

tion. The number of clusters K = 100. In each sequence

similarity graph, we label the Sybil and normal clusters.

Next, we examine the error rates of the incremental

detector when unclassified users (3000 Sybils and 3000
normal users) are added to the sequence similarity graph.

We perform this experiment three times, once for each

of the proposed reclustering algorithms (KNN, NC and

NCC). As shown in Figure 11, the error rates for all three

reclustering algorithms are very similar, and all three

have <1% false positives. NC has slightly fewer false

positives, while NCC has the fewest false negatives.

Detection Speed. The next question we want to ad-

dress is: what is the minimum number of clicks neces-

sary to accurately classify clickstreams? Another way to

frame this question is in terms of detection speed: how

quickly (in terms of clicks) can our system accurately

classify clickstreams? To identify and respond to Sybils

quickly, we must detect Sybils using the minimal number

of click events.

Figure 12 shows the results of our evaluation when the

maximum number of clicks in all sequences are capped.

The “All” results refer to a cap of infinity, i.e. all clicks
in our dataset are considered. Note that not all sequences

in our dataset have 50 or 100 clicks: some Sybils were

banned before they produced this may clicks. Hence, the

caps are upper bounds on sequence length.

Surprisingly, the “All” results are not the most accurate

overall. As shown in Figure 12, using all clicks results

in more false negatives. This occurs due to overfitting:
given a large number of very long clickstreams from nor-

mal users, it is likely that they will occasionally exhibit

unusual, Sybil-like behavior. However, this problem is

mitigated if the sequence length is capped, since this nat-

urally excludes these infrequent, aberrant clickstreams.

In contrast to the “All” results, the results from the

≤ 50 click experiments produce the most false posi-

tives. This demonstrates that there is a minimum se-

quence length necessary to perform accurate classifica-
tion of clickstreams. We repeated these experiments us-

ing CS/10gram+count and received similar result, which

we omit for brevity.

There are two additional, practical take-aways from

Figure 12. First, the NCC algorithm performs equally

well versus NC and KNN. This is a positive result,

since the computational complexity of NCC is dramat-

ically lower than NC and KNN. Second, we observe that

our system can produce accurate results (false positives

<1%, false negatives<3%) when only considering short

sequences. This means that the system can make classifi-
cations quickly, without needing to store very long click-

streams in memory.

Accuracy Over Time. In order for our incremen-

tal detection system to be practically useful, its accuracy

should remain high for long periods of time. Put an-

other way, sequence similarity graphs trained with old

data should be able to detect fresh Sybil clickstreams. To

evaluate the accuracy of our system over time, we split

our dataset based on date. We train our detector using

the early data, and then apply the detector to the later

data. We restrict our analysis to data from April 2011;

althoughwe have Sybil data fromMarch 2011, we do not

have corresponding data on normal users for this month.

Figure 13 shows the accuracy of the detector when it is

trained on data from March 31-April 15, then applied to

data from April 16-30. As the results show, the detector

remains highly accurate for at least two weeks after it has

been trained using the NCC reclustering algorithm. Un-

fortunately, the limited duration of our dataset prevents

us from examining accuracy at longer time intervals.

We repeated this experiment using only one week of

training data, but the false negative rate of the detector

increased to ≈10%. This shows that the detector needs

to be trained on sufficient data to provide accurate results.

6 Unsupervised Sybil Detection

Our incremental Sybil detection system from Section 5

has a serious shortcoming: it must be trained using large

samples of ground-truth data. In this section, we de-

velop an unsupervised Sybil detection system that re-

quires only a small, constant amount of ground-truth.

The key idea is to build a clustered sequence similarity

graph as before. But instead of using full ground-truth

USENIX Association 22nd USENIX Security Symposium 251

Known Good

Users

Uncolored ClusterColored Clusters

METIS

Partitions

Figure 14: Unsupervised clustering

with coloring.

 0

 20

 40

 60

 80

 100

 50 100 150 200 250N
o
rm

a
l
C

lu
s
te

r
C

o
v
e
ra

g
e
 (

%
)

Number of Seeds

20 Clusters
50 Clusters

100 Clusters

Figure 15: # of seeds vs. % of cor-

rectly colored normal user clusters.

 0

 20

 40

 60

 80

 100

March(1-15) March(16-31) April(1-15) April(16-30)N
o
rm

a
l
C

lu
s
te

r
C

o
v
e
ra

g
e
 (

%
)

Time of Datasets

600 Seeds
450 Seeds
300 Seeds

Figure 16: Consistency over time of

normal seeds for coloring.

of all clickstreams to mark a cluster as Sybil or normal,

we only need a small number of clickstreams of known

real users as “seeds” that color the clusters they reside

in. These seeds can be manually verified as needed. We
color all clusters that include a seed sequence as “nor-

mal,” while uncolored clusters are assumed to be “Sybil.”

Since normal users are likely to fall under a small number

of behavioral profiles (clusters in the graph), we expect a
small fixed number of seeds will be sufficient to color all
clusters of normal user clickstreams.

Figure 14 depicts our unsupervised approach, showing

howMETIS partitions nodes into clusters which are then

colored if they contain seed users. Once the system is

trained in this manner, it can be used incrementally to

detect more Sybils over time, as described in Section 5.

In this section, we discuss the design of our unsuper-

vised system and evaluate its performance. We begin by

analyzing the number and composition of seeds that are

necessary to ensure high accuracy of the system. Next,

we evaluate the performance of the system by compar-

ing its accuracy to our ground-truth data. Finally, we

examine how the ratio of Sybils to normal users in the

unclassified data impacts system accuracy.

6.1 Seed Selection and Composition

Number of Seeds. The most important parameter in

our unsupervised Sybil detection system is the number

of seeds. On one hand, the number of seeds needs to be

large and diverse enough to color all “normal” clusters.

Normal clusters that remain uncolored are potential false

positives. On the other hand, the seed set needs to be

small enough to be practical. If the size of the seed set

is large, it is equivalent to having ground-truth about the

dataset, which is the situation we are trying to avoid.

We now conduct experiments to determine how many

seeds are necessary to color the clusters. We choose

3000 Sybils and 3000 normal users at random from our

dataset to be the unclassified dataset. We also randomly
choose some number of additional normal users to be the

seeds. As in Section 5, we use the Hybrid Model with

the 5gram+count distance function. We also conducted

experiments with CS/10gram+count, but the results are

very similar and we omit them for brevity.

Figure 15 depicts the percentage of normal of clus-

ters that are correctly colored for different values of K

(number of METIS partitions) as the number of seeds is

varied. As expected, fewer seeds are necessary when K

is small because there are fewer clusters (and thus each

cluster includes more sequences). When K = 100, 250

seeds (or 4% of all normal users in the experiment) are

able to color 99% of normal clusters.

Seed Consistency Over Time. Next, we examine

whether a set of seeds chosen at an early date are equally

effective at coloring clusters based on later data. In other

words, we want to know if the seeds are consistent over

time. If this is not the case, it would represent additional

overhead on the deployment of our system.

To test seed consistency over time, we divide our two

months of Sybil clickstream data into four, two-week

long datasets. We add an equal number of randomly

selected normal users to each of the four datasets. Fi-

nally, we select an additional x random normal users to

act as seeds. We verify (for each value of x) that these

seeds color 100% of the normal clusters in the first tem-
poral dataset. We then evaluate what percentage of nor-

mal clusters are colored in the subsequent three tempo-

ral datasets. In all experiments, we set K = 100, i.e. the

worst case scenario for our graph coloring approach.

The results of the temporal consistency experiments

are shown in Figure 16. In general, even though the Sybil

and normal clickstreams change over time, the vast ma-

jority of normal clusters are successfully colored. Given

600 seeds, 99% of normal clusters are colored after 4

weeks, although the percentage drops to 83% with 300
seeds. These results demonstrate that the seed set does

not need to be drastically altered over time.

6.2 Coloring Evaluation

We now evaluate the overall effectiveness of our Sybil

detection system when it leverages unsupervised train-

ing. In these experiments, we use our entire clickstream

dataset. We choose x random normal users as seeds,

252 22nd USENIX Security Symposium USENIX Association

build and cluster the sequence similarity graph using Hy-

brid/5gram+count, and then color the clusters that con-

tain the seeds. Finally, we calculate the false positive

and negative rates using the samemethodology as in Sec-

tion 5, i.e. by comparing the composition of the colored

clusters to ground-truth.

The results are shown in Figure 17. As the num-
ber of seeds increases, the false positive rate decreases.

This is because more seeds mean more normal clusters

are correctly colored. With just 400 seeds, the false

positive rate drops to <1%. Unfortunately, relying on

unsupervised training does increase the false negative

rate of our system by 2% versus training with ground-

truth data. However, in cases where ground-truth data

is unavailable, we believe that this is a reasonable trade-

off. Note that we also repeated these experiment with

CMS/10gram+count, and it produced slightly higher

false positive rates, although they were still <1%.

Unbalanced Training Dataset. Next, we evaluate

the impact of having an unbalanced training dataset (e.g.

more normal users than Sybils) on the accuracy of our

system. Thus far, all of our experiments have assumed

a roughly equal percentage of Sybils and normal users

in the data. However, in practice it is likely that normal

users will outnumber Sybils when unsupervised learning

is used. For example, Facebook suspects that 8.7% of its
user base is illegitimate, out of >1 billion total users [1].

We now evaluate how detection accuracy changes

when we decrease the percentage of Sybils in the train-

ing data. In these experiments, we construct training sets

of 6000 total users with different normal-to-Sybil ratios.

We then run unsupervised training with 500 seeds. Fi-

nally, we incrementally add an additional 3000 Sybils

and 3000 normal users to the colored similarity graph

using the NCC algorithm (see Section 5.1). We ran ad-

ditional tests using the NC and KNN algorithms, but the

results were very similar and we omit them for brevity.

Figure18 shows the final error rate of the system (i.e.
after 6000 users have been incrementally added) for

varying normal-to-Sybil ratios. The false positive rate

remains ≤1.2% regardless of the normal-to-Sybil ratio.

This is a very good result: even with highly skewed

training data, the system is unlikely to penalize normal

users. Unfortunately, the false negative rate does rise as

the number of Sybils in the training data falls. This result

is to be expected: the system cannot adequately classify

Sybil clickstreams if it is trained on insufficient data.
Handling False Positives. The above analy-

sis demonstrates that our system achieves high accuracy

with a false positive rate of 1% or less. Through man-

ual inspection, we find that “false positives” generated
by our detector exhibit behaviors generally attributed to

Sybils, including aggressively sending friend requests or

browsing profiles. In real-world OSNs, suspicious users
identified by our system could be further verified via ex-
isting complementary systems that examines other as-

pects of users. For example, this might include systems

that classify user profiles [32, 43], systems that verify
user real-world identity [2], or even Sybil detection sys-

tems using crowdsourced human inspection [38]. These
efforts could further protect benign users from misclassi-

fication.

7 Practical Sybil Detection

In this section, we examine the practical performance of

our proposed Sybil detection system. First, we shipped

our code to the security teams at Renren and LinkedIn,

where it was evaluated on fresh data in a production en-

vironment. Both test results are very positive, and we

report them here. Second, we discuss the fundamental

limits of our approach, by looking at our impact on Sybil

accounts that can perfectly mimic the clickstream pat-

terns of normal users.

7.1 Real-world Sybil Detection

With the help of supportive collaborators at both Ren-

ren and LinkedIn, we were able to ship prototype code

to the security teams at both companies for internal test-

ing on fresh data. We configured our system to use un-
supervised learning to color clusters. Sequence similar-

ity graphs are constructed using the Hybrid Model and

the 5gram+count distance function, and the number of

METIS partitions K is 100.

Renren. Renren’s security team trained our system

using clickstreams from 10K users, of which 8K were
randomly selected, and 2K were previously identified
as suspicious by the security team. These clickstreams

were collected between January 17–27, 2013. 500 hon-
est users that have been manually verified by Renren’s
security team were used as seeds. Once trained, our sys-

tem was fed clickstreams from 1 million random users

(collected in early February, 2013) for classification as
normal or suspicious. In total, our system identified 22K
potential Sybil accounts. These accounts are now being

investigated by the security team.

While corporate privacy policies prevented Renren

from sharing detailed results with us, their feedback was

very positive. They also indicated that our system identi-

fied a new attack performed by a large cluster of users
whose clickstream behavior focused heavily on photo

sharing. Manual inspection revealed that these photos

used embedded text to spread spam for brands of clothes

and shoes. Traditional text analysis-based spam detec-

tors and URL blacklists were unable to catch this new

attack, but our system identified it immediately.

USENIX Association 22nd USENIX Security Symposium 253

 0

 2

 4

 6

 8

 10

300 400 500 600

E
rr

o
r

R
a
te

 (
%

)

Number of Seeds

False Positive
False Negative

Figure 17: Detection accuracy versus
number of seeds.

 0

 2

 4

 6

 8

 10

 12

 14

1 2 5 10

E
rr

o
r

R
a
te

 (
%

)

Normal-Sybil Ratio

False Positive
False Negative

Figure 18: Detection accuracy versus
Normal-Sybil ratio.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
D

F
 (

%
)

Clicks Per Day

Friending
Messages

Profiles

Figure 19: Clicks per day by outlier

normal users.

LinkedIn. LinkedIn’s security team used our soft-

ware to analyze the clickstreams of 40K users, of which

36K were randomly sampled, and 4K were previously

identified as suspicious by the security team. These
clickstreams were gathered in February, 2013. Again,

our feedback was very positive, but did not include pre-

cise statistics. However, we were told that our system

confirmed that ≈1700 of the 4000 suspicious accounts
are likely to be Sybils. Our system also detected an ad-

ditional 200 previously unknown Sybils.

A closer look at the data shows that many of the ac-

counts not detected by our system were borderline ac-

counts with specific flags popping up in their profiles.
For example, some accounts had unusual names or oc-

cupational specialties, while others had suspicious URLs

in their profiles. These results remind us that a behavior
model is clearly only a part of the equation, and should

be used in conjunction with existing profile analysis tools
and spam detectors [5, 10, 37, 38, 44].
Ongoing Collaboration. In summary, the security

teams at both Renren and LinkedIn were very pleased

with the initial results of our system. We plan to con-

tinue collaborating with both groups to improve our sys-

tem and implement it in production.

7.2 Limits of Sybil Detection

Finally, we wish to discuss the worst case scenario for

our system, i.e. a scenario where attackers have full

knowledge of the clickstream patterns for real users,

and are able to instrument the behavior of their Sybils

to mimic them precisely. In this attack model, the at-

tacker’s goal is to have Sybils carry out malicious actions

(e.g. sending spam) without being detected. However, to

evade detection, these Sybils must limit themselves to

behavior consistent with that of normal users.

We can thus bound the capabilities of Sybils that avoid

detection in this attack model. First, the Sybil’s click-

stream must remain inside the “normal” clusters pro-

duced by our detector. Second, the most aberrant behav-

ior within a given “normal” cluster is exhibited by real

users within the cluster who are farthest from the center.

The activities performed by these outliers serve as effec-

tive bounds on Sybil behavior. Sybil clickstreams cannot

deviate from the center of the cluster more than these

outliers, otherwise they will be excluded from the clus-

ter and risk detection. Thus, we can estimate the maxi-

mum amount of malicious activity a Sybil could perform

(without getting caught) by studying these outliers.

We now examine the behavior of outliers. We cali-

brate our system to produce clusters with false positive

rate <1% using Hybrid/5gram+count, and K = 100. In

this configuration, the detector outputs 40 Sybil and 60
normal clusters when run on our full dataset. Next, we

identify the two farthest outliers in each normal cluster.

Finally, we plot the clicks per day in three activities from

the 120 outliers in Figure 19. We focus on clicks for

sending friend requests, posting status updates/wall mes-

sages, and viewing user profiles. These activities corre-
spond to the three most common attacks we observe in

our ground-truth data, i.e. sending friend request spam,

status/wall spam, and profile crawling.
As shown in Figure 19, 99% of outliers generate ≤10

clicks per day in the target activities. In the vast ma-

jority of cases, even the outliers generate <2 clicks per

day. These results show that the effective bound on Sybil

behavior is very tight, i.e. to avoid detection, Sybils can

barely generate any clicks each day. These bounds sig-

nificantly increase the cost for attackers, since they will
need many more Sybils to maintain the same level of

spam generation capacity.

8 Related Work

Sybil Detection on OSNs. Studies have shown

that Sybils are responsible for large amounts of spam

on Facebook [10], Twitter [11, 32], and Renren [43].

Various systems have been proposed by the research

community to detect and mitigate these Sybils. One

body of work leverages social graphs to detect Sybils.

These systems detect tight-knit Sybil communities that

have a small quotient-cut from the honest region of the

graph [46, 45, 34, 36, 8, 7]. However, recent studies have
demonstrated the limitations of this approach. Yang et al.

254 22nd USENIX Security Symposium USENIX Association

show that Sybils on Renren blend into the social graph

rather than forming tight communities [43]. Mohaisen

et al. show that many social graphs are not fast-mixing,

which is a necessary precondition for community-based

Sybil detectors to be effective [21].

A second body of work has used machine learning to

detect Sybil behavior on Twitter [44, 5, 37] and Face-
book [31]. However, relying on specific features makes
these systems vulnerable to Sybils with different attack

strategies. Finally, one study proposes using crowd-

sourcing to identify Sybils [38].
Web Usage Mining. Researchers have studied the

usage patterns of web services for the last decade [30].

Several studies focus on session-level analysis to learn

user’s browsing habits [14, 13, 24]. Others develop ses-

sion clustering techniques [4, 42, 40, 33, 25], Markov

Chain models [20, 28], and tree-based models [12] to
characterize user browsing patterns. We also leverage

a Markov Chain model and clustering in our work. Two

studies have focused specifically on characterizing click-
streams from OSNs [6, 29].

The vast majority of the web usage mining litera-

ture focuses on characterizing the behavior of normal

users. To the best of our knowledge, there are only

two studies that leverage clickstreams for anomaly de-

tection [15, 28]. Both of these studies use session-
level features to identify crawlers, one focusing on e-

commerce and the other on search engines. Their tech-

niques (e.g. session distributions, Markov Chain models)

require training on large samples of ground-truth data,

and cannot scale to today’s large social networks.

9 Conclusion

To the best of our knowledge, this is the first work
to leverage clickstream models for detecting malicious

users in OSNs. Our results show that we can build an

accurate Sybil detector by identifying and coloring clus-

ters of “similar” clickstreams. Our system has been val-

idated on ground-truth data, and a prototype has already

detected new types of image-spam attacks on Renren.

We believe clickstreammodels can be a powerful tech-

nique for user profiling in contexts outside of OSNs. In
our ongoing work, we are studying ways to extend click-

stream models to detect malicious crowdsourcing work-

ers and forged online product and travel reviews.

IRB Protocol

This work was carried out under an approved IRB pro-

tocol. All data was anonymized by Renren prior to our

use. The clickstreams are old enough that the events they

describe are no longer accessible via the current website.

All experiments run on recent user data were conducted

on-site at Renren and LinkedIn respectively, and all re-

sults remain on-site.

Acknowledgments

We would like to thank the anonymous reviewers for

their feedback, and Yanjie Liang (Renren) and David

Freeman (LinkedIn) for their assistant in experiments.

This work is supported in part by NSF grants CNS-

1224100 and IIS-0916307 and DARPA GRAPHS (BAA-
12-01). Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the
funding agencies.

References

[1] Facebook has more than 83 million illegitimate accounts.
BBC News, August 2012.

[2] Verify facebook account. https://www.facebook.

com/help/398085743567023/, 2013.

[3] BANERJEE, A., AND GHOSH, J. Concept-based cluster-

ing of clickstream data. In Proc. of ICIT (2000).

[4] BANERJEE, A., AND GHOSH, J. Clickstream clustering

using weighted longest common subsequences. In Proc.

of the Web Mining Workshop, SIAM Conference on Data

Mining (2001).

[5] BENEVENUTO, F., MAGNO, G., RODRIGUES, T., AND

ALMEIDA, V. Detecting spammers on twitter. In Proc. of

CEAS (2010).

[6] BENEVENUTO, F., RODRIGUES, T., CHA, M., AND

ALMEIDA, V. Characterizing user behavior in online so-

cial networks. In Proc. of IMC (2009).

[7] CAO, Q., SIRIVIANOS, M., YANG, X., AND

PREGUEIRO, T. Aiding the detection of fake accounts

in large scale social online services. In Proc. of NSDI

(2012).

[8] DANEZIS, G., AND MITTAL, P. Sybilinfer: Detect-

ing sybil nodes using social networks. In Proc of NDSS

(2009).

[9] DOUCEUR, J. R. The Sybil attack. In Proc. of IPTPS

(2002).

[10] GAO, H., HU, J., WILSON, C., LI, Z., CHEN, Y., AND

ZHAO, B. Y. Detecting and characterizing social spam

campaigns. In Proc. of IMC (2010).

[11] GRIER, C., THOMAS, K., PAXSON, V., AND ZHANG,

M. @spam: the underground on 140 characters or less.

In Proc. of CCS (2010).

[12] GÜNDÜZ, C., AND ÖZSU, M. T. A web page prediction

model based on click-stream tree representation of user

behavior. In Proc. of SIGKDD (2003).

USENIX Association 22nd USENIX Security Symposium 255

[13] HEER, J., AND CHI, E. H. Mining the structure of

user activity using cluster stability. In Proc. of the Work-

shop onWeb Analytics, SIAMConference on Data Mining

(2002).

[14] HEER, J., AND CHI, E. H. Separating the swarm: cate-

gorization methods for user sessions on the web. In Proc.

of CHI (2002).

[15] HOFGESANG, P. I., AND KOWALCZYK, W. Analysing

clickstream data: From anomaly detection to visitor pro-

filing. In Proc. of ECML/PKDD Discovery Challenge

(2005).

[16] IRANI, D., BALDUZZI, M., BALZAROTTI, D., KIRDA,

E., AND PU, C. Reverse social engineering attacks in

online social networks. In Proc of DIMVA (2011).

[17] JIANG, J., WILSON, C., WANG, X., HUANG, P., SHA,

W., DAI, Y., AND ZHAO, B. Y. Understanding latent

interactions in online social networks. In Proc. of IMC

(2010).

[18] KARYPIS, G., KUMAR, V., AND KUMAR, V. Multilevel
k-way partitioning scheme for irregular graphs. Journal

of Parallel and Distributed Computing 48 (1998), 96–
129.

[19] LEVANDOWSKY, M., AND WINTER, D. Distance be-

tween sets. Nature 234 (1971), 34–35.
[20] LU, L., DUNHAM, M., AND MENG, Y. Mining signif-

icant usage patterns from clickstream data. In Proc. of

WebKDD (2005).

[21] MOHAISEN, A., YUN, A., AND KIM, Y. Measuring the

Mixing Time of Social Graphs. In Proc. of IMC (2010).

[22] MOTOYAMA, M., LEVCHENKO, K., KANICH, C., MC-

COY, D., VOELKER, G. M., AND SAVAGE, S. Re:

Captchas – understanding captcha-solving from an eco-
nomic context. In Proc. of USENIX Security (2010).

[23] MOTOYAMA, M., MCCOY, D., LEVCHENKO, K., SAV-

AGE, S., AND VOELKER, G. M. Dirty jobs: The role of

freelance labor in web service abuse. In Proc. of Usenix

Security (2011).

[24] OBENDORF, H., WEINREICH, H., HERDER, E., AND

MAYER, M. Web page revisitation revisited: implications

of a long-term click-stream study of browser usage. In

Proc. of CHI (2007).
[25] PETRIDOU, S. G., KOUTSONIKOLA, V. A., VAKALI,

A. I., AND PAPADIMITRIOU, G. I. Time-aware web

users’ clustering. IEEE Trans. on Knowl. and Data Eng.

(2008), 653–667.
[26] PLATT, J. C. Advances in kernel methods. MIT Press,

1999, ch. Fast training of support vector machines using

sequential minimal optimization, pp. 185–208.
[27] Russian twitter political protests ’swamped by spam’.

BBC News, December 2011.

[28] SADAGOPAN, N., AND LI, J. Characterizing typical and
atypical user sessions in clickstreams. In Proc. of WWW

(2008).
[29] SCHNEIDER, F., FELDMANN, A., KRISHNAMURTHY,

B., AND WILLINGER, W. Understanding online social

network usage from a network perspective. In Proc. of

IMC (2009).

[30] SRIVASTAVA, J., COOLEY, R., DESHPANDE, M., AND

TAN, P. N. Web usage mining: discovery and applica-

tions of usage patterns from Web data. SIGKDD Explor.

Newsl. 1, 2 (2000), 12–23.
[31] STRINGHINI, G., KRUEGEL, C., AND VIGNA, G. De-

tecting spammers on social networks. In Proc. of ACSAC

(2010).

[32] THOMAS, K., ET AL. Suspended accounts in retrospect:

An analysis of twitter spam. In Proc. of IMC (2011).

[33] TING, I.-H., KIMBLE, C., AND KUDENKO, D. Ubb

mining: Finding unexpected browsing behaviour in click-

stream data to improve a web site’s design. In Proc. of

International Conference on Web Intelligence (2005).

[34] TRAN, N., MIN, B., LI, J., AND SUBRAMANIAN, L.

Sybil-resilient online content voting. In Proc. of NSDI

(2009).

[35] VEGA, C. Yelp outs companies that pay for positive re-

views. ABC News, November 2012. http://abcnews.

go.com/blogs/business/2012/11/yelp-outs-

companies-that-pay-for-positive-reviews.

[36] VISWANATH, B., POST, A., GUMMADI, K. P., AND

MISLOVE, A. An analysis of social network-based sybil

defenses. In Proc. of SIGCOMM (2010).

[37] WANG, A. H. Don’t follow me: Spam detection on twit-

ter. In Proc. of SECRYPT (2010).

[38] WANG, G., MOHANLAL, M., WILSON, C., WANG, X.,

METZGER, M., ZHENG, H., AND ZHAO, B. Y. Social

turing tests: Crowdsourcing sybil detection. In Proc. of

NDSS (2013).

[39] WANG, G., WILSON, C., ZHAO, X., ZHU, Y., MOHAN-

LAL, M., ZHENG, H., AND ZHAO, B. Y. Serf and turf:

crowdturfing for fun and profit. In Proc. of WWW (2012).

[40] WANG, W., AND ZAÏANE, O. R. Clustering web ses-

sions by sequence alignment. In Proc. of DEXA (2002).

[41] WILSON, C., BOE, B., SALA, A., PUTTASWAMY, K.

P. N., AND ZHAO, B. Y. User interactions in social net-

works and their implications. In Proc. of EuroSys (2009).

[42] XIAO, J., AND ZHANG, Y. Clustering of web users using

session-based similarity measures. In Proc. of ICCNMC

(2001).

[43] YANG, Z., WILSON, C., WANG, X., GAO, T., ZHAO,

B. Y., AND DAI, Y. Uncovering social network sybils in

the wild. In Proc. of IMC (2011).

[44] YARDI, S., ROMERO, D., SCHOENEBECK, G., AND

BOYD, D. Detecting spam in a twitter network. First

Monday 15, 1 (2010).

[45] YU, H., GIBBONS, P. B., KAMINSKY, M., AND XIAO,

F. Sybillimit: A near-optimal social network defense

against sybil attacks. In Proc. of IEEE S&P (2008).
[46] YU, H., KAMINSKY, M., GIBBONS, P. B., AND FLAX-

MAN, A. Sybilguard: defending against sybil attacks via

social networks. In Proc. of SIGCOMM (2006).

