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Abstract
Analyzing user messages in social media can mea-
sure different population characteristics, including pub-
lic health measures. For example, recent work has cor-
related Twitter messages with influenza rates in the
United States; but this has largely been the extent of
mining Twitter for public health. In this work, we
consider a broader range of public health applications
for Twitter. We apply the recently introduced Ailment
Topic Aspect Model to over one and a half million
health related tweets and discover mentions of over
a dozen ailments, including allergies, obesity and in-
somnia. We introduce extensions to incorporate prior
knowledge into this model and apply it to several tasks:
tracking illnesses over times (syndromic surveillance),
measuring behavioral risk factors, localizing illnesses
by geographic region, and analyzing symptoms and
medication usage. We show quantitative correlations
with public health data and qualitative evaluations of
model output. Our results suggest that Twitter has broad
applicability for public health research.

Introduction
Twitter, Facebook and other social media encourage fre-
quent user expressions of their thoughts, opinions and ran-
dom details of their lives. Tweets and status updates range
from important events to inane comments. Most messages
contain little informational value but the aggregation of mil-
lions of messages can generate important knowledge. Sev-
eral Twitter studies have demonstrated that aggregating mil-
lions of messages can provide valuable insights into a pop-
ulation. Barbosa and Feng (2010) classified tweets by sen-
timent, a first step towards measuring public opinion, such
as political sentiment, which has been shown to track public
political opinion and predict election results (Tumasjan et
al. 2010; O’Connor et al. 2010). Eisenstein et al. (2010)
studied lexical variations across geographic areas directly
from tweets. Others have monitored the spread of news (Ler-
man and Ghosh 2010), detected the first mention of news
events (Petrović, Osborne, and Lavrenko 2010), and moni-
tored earthquakes (Sakaki, Okazaki, and Matsuo 2010).
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Twitter users often publicly express personal information;
messages like “I gots da flu” and “sick with this flu it’s taking
over my body ughhhh” are common. Knowing that a specific
user has the flu may not be interesting, but millions of such
messages can be revealing, such as tracking the influenza
rate in the United Kingdom and United States (Lampos and
Cristianini 2010; Culotta 2010b). While many studies have
analyzed influenza rates and tracking in Twitter, these have
largely been the limits of mining public health information
from Twitter.

We believe Twitter can have a greater impact on public
health informatics than just influenza tracking. A cursory
examination of health related tweets reveals more detailed
information: the message “Had to pop a Benadryl....allergies
are the worst....ughh” indicates a user suffering from aller-
gies and treating with Benadryl. “my g-ma is so cute when
she’s all doped up on Vicadin (sic.) for her foot” indicates
Vicodin as a treatment for foot pain. Furthermore, tweets
are not isolated events: they occur with specific times, lo-
cations, languages and users. Aggregating over millions of
users could provide new tools for public health research.

This paper asks: what public health information can be
learned from Twitter? While previous studies focused on
specific questions (influenza rates) with specific models
(keyword or statistical classifier for flu tweets), we ask an
open question with a general model: the newly introduced
Ailment Topic Aspect Model (ATAM) (Paul and Dredze
2011). Previous work introduced ATAM, created a data set
and replicated influenza tracking results. This work im-
proves the model using prior knowledge, and reports results
for several new applications: geographic syndromic surveil-
lance for multiple ailments (tracking illness over time and
location), correlating behavioral risk factors with ailments,
and analyzing correlations of symptoms and treatments with
ailments. Our results include quantitative correlations with
government data as well as qualitative evaluations of model
output. To the best of our knowledge, this is the first work to
use social media sources for a broad range of public health
informatics on a range of ailments, rather than a narrow set
of applications on one or two ailments.



Public Health Informatics and the Web
Syndromic surveillance, the monitoring of clinical syn-
dromes that have significant impact on public health, im-
pacts medical resource allocation, health policy and educa-
tion. Many common diseases are continuously monitored by
collecting data from health care facilities, a process known
as sentinel surveillance. Resources limit surveillance, most
especially for real time feedback. For this reason, the Web
has become a source of syndromic surveillance, operating
on a wider scale for a fraction of the cost. Google Flu Trends
(Ginsberg et al. 2008) tracks the rate of influenza using
query logs on a daily basis, up to 7 to 10 days faster than the
Center for Disease Control and Prevention’s (CDC) FluView
(Carneiro and Mylonakis 2009). High correlations exist be-
tween Google queries and other diseases (Pelat et al. 2009),
including “Lyme disease” (Seifter et al. 2010). These results
fall under the area of infodemiology (Eysenbach 2009).

Similar results exist for Twitter, which can be a compli-
mentary resource to query logs, but may also contain freely
available and more detailed information; people write de-
tailed messages for others to read. Lampos and Cristian-
ini (2010) and Culotta (2010b) correlated tweets men-
tioning the flu and related symptoms with historical data.
Similarly, Quincey and Kostkova (2010) collected tweets
during the H1N1 pandemic for analysis. Ritterman, Os-
borne, and Klein (2009) combined prediction markets and
Twitter to predict H1N1. More generally, Chew and Eysen-
bach (2010) evaluated Twitter as a means to monitor public
perception of the 2009 H1N1 pandemic. Scanfeld, Scan-
feld, and Larson (2010) evaluated the public understanding
of antibiotics by manually reviewing Tweets that showed in-
correct antibiotic use, e.g., using antibiotics for the flu.

The public health community is also considering how so-
cial media can be used to spread health information, with
applications including risk communication and emergency
response. Vance, Howe, and Dellavalle (2009) analyzed
the pros and cons of using social media to spread public
health information in young adults. Pros include low cost
and rapid transmission, while cons included blind author-
ship, lack of source citation, and presentation of opinion as
fact. Greene et al. (2010) studied how medical information
is exchanged on Facebook, where groups specific to diseases
share information, support, and engage patients in their dis-
eases. Fernandez-Luque, Karlsen, and Bonander (2011) re-
viewed different approaches for extracting information from
social web applications to personalize health care informa-
tion. The model we use in this paper could be used to ana-
lyze tweets for health care personalization. Finally, the com-
munity is considering the larger impact of how social me-
dia can impact health care, where patients can “friend” doc-
tors and constantly share information among thousands of
friends (Hawn 2009; Jain 2009).

A Model for Diseases in Twitter
We apply the Ailment Topic Aspect Model (ATAM) (Paul
and Dredze 2011) to created structured disease information
from tweets that we use for public health metrics. To im-
prove the quality of these metrics, we modify the model to

incorporate outside information. We first summarize previ-
ous work on ATAM and then discuss our modifications.

Ailment Topic Aspect Model
Probabilistic topic models, such as latent Dirichlet alloca-
tion (LDA) (Blei, Ng, and Jordan 2003), associate word to-
kens with latent topics. Documents are distributions over
topics, and topics are distributions over words, oftentimes
forming a semantically coherent word set. ATAM, which
models how users express their illnesses and ailments in
tweets, builds on the notion of topics. It assumes that for
each health related tweet – we discuss how these are iden-
tified below – reflects a latent ailment a, such as flu, aller-
gies, or cancer. Similar to a topic, an ailment a indexes a
distribution over words φa. Additionally, an ailment main-
tains a distribution over symptoms and treatments, similar
to the Topic Aspect Model (TAM) (Paul and Girju 2010).
The latent variable y ∈ {0, 1, 2} determines which aspect
(general, symptom, treatment) generates each word. We fol-
low Paul and Dredze (2011) and use a list of keyphrases
to automatically identify possible symptoms and treatments
(i.e. y is observed).1 In addition to ailments, ATAM includes
a more traditional topic model component – a topic z as a
distribution over words and a document specific distribution
θ over topics drawn from a Dirichlet distribution – since
even in tweets about health topics, users also describe ac-
tions unrelated to this symptom-treatment structure, such as
“sick today so playing video games.” These topic distribu-
tions account for “playing video games.” A switch variable
x ∈ {0, 1} (Binomialy distributed and parameterized by π)
determines if a word is generated from an ailment dependent
distribution φa,y or a non-ailment topic z. This idea is sim-
ilar to the Twitter conversation+topic model (Ritter, Cherry,
and Dolan 2010), where words in a tweet can depend either
on a LDA-style topic model or a message-specific conversa-
tion act, though the model structure is different.

A Gibbs sampling algorithm learns ATAM’s parameters.
The collapsed Gibbs sampler marginalizes out the multino-
mials, requiring sampling for the variables a, z, x and ` from
a distribution conditioned on the current values of all other
variables. Details are beyond the scope of this summary.
The topic Dirichlet hyper-parameter is optimized and other
hyper-parameters are set manually. We used 8000 sampling
iterations with Z = 15 and A = 20.

Model Extension: Incorporating Prior Knowledge
As with topic models, there is little control over what ail-
ments ATAM discovers. While ATAM discovers meaning-
ful ailments, there are numerous public health resources that
could be used to improve model output. We use prior knowl-
edge in the form of articles written about diseases, each an
example of words associated with an ailment. We selected
20 disease articles likely to appear in Twitter data.2

1Lists are from the medical website wrongdiagnosis.com.
2From WebMD.com: Allergies, anxiety, asthma, back pain,

breast cancer, COPD, depression, diabetes, ear infection, eye
health, flu, foot injuries, heartburn, irritable bowel syndrome, mi-
graine, obesity, oral health, skin health, sleep disorders.



We paired each article with an ATAM ailment and placed
a prior distribution over the ailment’s words based on the
article. Following the LDA framework, the priors over our
multinomial word distributions are defined by the Dirich-
let distribution – the multinomials associated with each ail-
ment are sampled from a different Dirichlet. The Dirichlet
distribution can be defined with two parameters, a mean m,
which can be thought of as the most likely multinomial to be
drawn from this Dirichlet, and a precision s, which controls
how much a sample multinomial vector can deviate from the
mean – the lower the precision, the less influence the prior
has over the inferred posterior. We set the mean ma as the
distribution over words in the articles for the ailment a. We
optimize s to maximize data likelihood using the fixed-point
iteration derived by Minka (2003) to update the precision
given a fixed mean. The definition of the mean and the up-
date rule for the precision are:

ma,w =
cwa + λ

c∗a + λW
(1)

snewa = sa

∑
wma,wΨ(nwa + sama,w)−ma,wΨ(sama,w)∑

w Ψ(n∗a + sa)−Ψ(sa)
(2)

The mean ma,w is a fixed constant, where cwa represents
the count of word w in the article about ailment a. We use
add-λ smoothing (with a small factor λ = 0.01) to ensure
non-zero values for all words. The precision sa is updated
throughout the sampling process. We use a Gibbs EM pro-
cedure in which we perform 10 iterations of sampling with
fixed Dirichlet parameters, then following Eq. (2) we update
s based on the current state of the sampler, where nwa is the
count of word w assigned to ailment distribution a. We ran
this model with Z = 20 and A = 20 using the same hyper-
parameters as in the unsupervised setting. We call this new
model ATAM+.

Evaluation
We begin with a description of data and a more traditional
evaluation of model output. We start with a collection of over
2 billion tweets collected from May 2009 to October 2010
(O’Connor et al. 2010), from which we select health related
tweets for ATAM training. Culotta (2010a) found simple
keyword matching insufficient for filtering tweets (e.g., “I’m
sick of this” and “justin beber ur so cool and i have beber
fever”). Paul and Dredze (2011) use 5,128 labeled mes-
sages to train a high precision SVM binary classifier (0.90)
to identify health related messages, which produced a cor-
pus of 1.63 million English tweets. We removed punctua-
tion, stop words, URLs and hashtags. ATAM (fully unsuper-
vised) and ATAM+ (using WebMD articles as prior knowl-
edge) were trained over these health messages.

Ailment output was annotated by two people not involved
in running the models or aware of the WebMD articles. Each
person labeled the 20 ailments with disease names of their
own choosing or as incoherent based on the top 20 words
for the general, symptom, and treatment distributions. For
the 20 ailments, annotators agreed on labels for 17 ATAM
ailments (of which 4 were incoherent). ATAM+ produced
more clear and coherent ailments; annotators agreed on 15

ailments (all coherent) and no cluster was identified by both
annotators as incoherent. Examples of seven of the fifteen
ATAM+ ailments with annotator labels appear in Figure 1.
The remaining ailments were respiratory illness, common
cold, infections, physical injuries, headaches, exercise, skin
problems and insomnia. To improve interpretability of this
table, we include longer phrases in addition to single words.
For each contiguous sequence of tokens in a tweet assigned
to the same ailment distribution, we extracted a single phrase
and included it in the ailment distributions. Several high fre-
quency phrases appear in the top of the ailment distributions.

The discovered ailments qualitatively match their
WebMD priors (first row of Figure 1), but the discovered
ailments clusters often are more general. For example, the
ailment with a “foot injuries” prior produced a general in-
juries ailment; “knee”, “shoulder”, and “arm” were top gen-
eral words, “crutches” and “physical therapy” were top treat-
ments. Likewise, the “breast cancer” prior resulted in gen-
eral cancer; while “breast cancer” is the most frequent symp-
tom, stomach, lung, and skin cancer all appear as top 10
symptom phrases. Additionally, we observe some confu-
sions in the output between ailments with similar treatments
or symptoms. For example, the “cancer” ailment also in-
cludes symptom phrases of “pneumonia” and “heart attack”,
and “heart surgery” is the top treatment phrase. These are all
serious illnesses that appear within similar contexts (words
like “pray” and “recovery”) which caused the model to clus-
ter them together. In general, this problem occurred more
without the prior knowledge used in ATAM+. For example,
allergies would appear with the “skin problems” ailment in
ATAM, but ATAM+ kept allergic reactions (e.g. hives and
rashes) separate from seasonal allergies.

Comparison to Public Health Articles
To evaluate the output interpretability, we compare the
ailment distributions with distributions estimated from
WebMD articles – the same 20 articles used as priors. To
separately evaluate the symptom and treatment distributions,
we filtered each article for symptoms and treatments using
the keyphrase lists, then built ailment specific uni-gram lan-
guage models. We then evaluate how well our ailment clus-
ters match the WebMD articles by using these distributions
to align the ATAM and ATAM+ ailments with the articles.

Each article was paired with its corresponding ailment
in the model output, as labeled by the annotators – these
pairings serve as our gold standard alignments – though not
all articles had a corresponding ailment and vice versa. The
Jenson-Shannon (JS) divergence was computed between the
distributions for each ailment and the distributions for each
WebMD disease. To account for ailments that contained very
common symptoms and treatments, we measure the standard
score: x−x̄σ of the JS divergence, where x̄ and σ are the mean
and standard deviation of the divergence. This score was
then used to define a ranking of articles for ailments, and
ailments for articles. Ranking quality was measured as the
percentage of articles/ailments such that the highest-ranked
alignment was the correct alignment, as well as with mean
reciprocal rank (MRR), i.e. the mean of 1

rank , where rank is
the position of the correct article/ailment in the list. Results



Ailment Allergies Depression Aches/Pains Cancer Obesity Flu Dental
Prior Allergies Anxiety Back Pain Breast Cancer Diabetes Flu Oral Health

Frequency 6.4% 5.8% 10.8% 8.0% 2.3% 8.1% 4.6%
General Words allergies help body cancer blood flu meds

stop dont head pray doctor “swine flu” killers
eyes body need mom high “flu shot” dentist

allergic depression hurts shes meds dont teeth
Symptoms sneezing pain pain pain pressure fever pain

cold anxiety aches sad “high blood cold toothache
coughing stomach stomach “breast cancer” pressure” “sore throat” sore

Treatments medicine surgery massage surgery hospital hospital braces
benadryl treatment “hot bath” hospital diet vaccine surgery
claritin plastic ibuprofen “heart surgery” exercise medicine antibiotics

Figure 1: Seven ailments discovered by ATAM+ represented by their most likely words, symptoms, treatments and the label
independently assigned by two annotators. We also include the disease article used as a prior, and the discovered frequency of
the ailment p(a) in the 1.63 million tweets. Phrased extracted from the output are also shown.

Model Total Correct MRR Correct MRR
(S) (S) (T) (T)

Discovered Ailments to Articles
ATAM 12 2 0.33 4 0.51
ATAM+ 13 3 0.42 6 0.63

Articles to Discovered Ailments
ATAM 12 0 0.23 0 0.36
ATAM+ 13 1 0.32 5 0.54

Table 1: Results for aligning WebMD articles with discov-
ered ailments using symptom (S) and treatment (T) models.
Correct indicates the number of ailments with the correct an-
swer at rank 1. Higher MRR means better matches between
the articles and the discovered ailments.

(Table 1) show that ATAM+ outperforms ATAM, showing
that the priors produced more coherent ailments. We also
find that treatments are more consistent than symptoms, not
an unexpected result given the commonality of symptoms
for many of the ailments.

What Can be Learned from Twitter?
Given our evaluations suggesting that Twitter contains valu-
able information, we wonder: what public health informa-
tion can be learned from Twitter? Using ATAM+, we explore
several aspects of public health, including temporal and ge-
ographic impacts on medical wellbeing, and investigations
into how the public treats illness.

Syndromic Surveillance
Public health data mining from Twitter has concentrated
on syndromic surveillance, which tracks trends in medi-
cal conditions over time. Tracking influenza infections are
especially conducive to syndromic surveillance since they
are episodic and widespread. ATAM+ discovers many ail-
ments, one of which is “flu.” We measured the correla-
tion between the probability of the flu ailment for each
week (using the total tweets for that week) between mid-
August 2009 to October 20103 with the influenza rate in

3Earlier time periods contained gaps in the data.
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Figure 2: Influenza rate from August 2009 to October 2010
as measured by CDC FluView (measured as percentage of
specimen’s that tested positive for influenza) and ATAM+’s
“flu” ailment (the normalized probability of the “flu” ailment
given the week): correlation coefficient of 0.958.

the United States measured by the CDC, which collects and
publishes detailed weekly statistics under FluView.4 Results
with ATAM+ (Figure 2) yielded a Pearson correlation co-
efficient of 0.958; ATAM obtained a correlation of 0.934.
For comparison, we measured the correlation by normal-
izing using just the health related tweets, which considers
the percentage of health related messages that discuss the
flu. ATAM+ had a correlation of 0.966; ATAM had 0.881.
For comparison, these numbers are in the range of the 0.95
of Culotta (2010a) and the 0.97 of Lampos and Cristian-
ini (2010)5. However, an important difference is that these
systems are trained to fit government data using regression,

4
http://www.cdc.gov/flu/weekly/

5The former considers an unknown number of tweets from
September 2009 to May 2010; the latter considers approximately
26 million UK-based messages from the second half of 2009.



and were designed specifically to find flu tweets. In con-
trast, our approach discovers many ailments without labeled
tweets, of which one is “flu”.

Finally, since Google Flu Trends (Ginsberg et al. 2008)
tracks the rate of influenza using query logs, we compare our
Twitter rates directly with their reported rates. We obtained
the Google Flu Trends data6 for each week in the same time
period and measured the correlation with our Twitter rates.
When normalizing by all tweets, ATAM+ obtains 0.968 and
ATAM 0.935. Normalizing by only health related tweets
yields 0.974 for ATAM+ and 0.872 for ATAM.

Geographic Behavioral Risk Factors
Most work on automated syndromic surveillance focuses
on national health trends. However, syndromic surveillance,
which often focuses on seasonal diseases, is only one of a
myriad of measures used to track population wellbeing, like
tracking behavioral risk factors, such as the rate of cancer
or obesity. Sentinel surveillance collects health statistics for
chronic diseases or risk factors, often based on geography.

We investigated extracting geographically linked health
statistics from Twitter. For example: are users in some geo-
graphic areas more likely to exercise than others? We formu-
lated a list of questions based on the behavioral risk factor
surveillance system, run by the National Center for Chronic
Disease Prevention and Health Promotion at the CDC. For
each statistic that could potentially be measured with one or
more ATAM ailments, we measured the Pearson correlation
coefficient between the ailments discovered in each US state
with the state’s risk factor rate. For example, we measured
reported responses to the question “During the past month,
did you participate in any physical activities?” with the exer-
cise ailment for each state. This data was collected through
phone interviews of over 350,000 US adults in 2009.7

We assigned a US state to each tweet according to user
location by extracting this information from the location
field, part of a user’s profile. We searched each location field
for the name of a state (California, Wisconsin, etc.), or a
state abbreviation (CA, WI). The abbreviation had to be ei-
ther uppercase, or appear in the format “——, ca”. These
strict rules reduced the number of false positives.8 We ex-
tracted location information from 12% of the health related
tweets (196,000 tweets). We computed the number of each
ailment occurrences per capita: occurrences divided by the
total number of tweets per state.

Table 2 shows the correlations between each risk factor
and the related ailments measured for each state that had
at least 500 tweets (42 states in total.) The strongest corre-
lation was for tobacco use (proportion of residents in each
state who are smokers) with the cancer ailment. The cancer
ailment also had a high correlation with the percentage of

6Data Source: Google Flu Trends (www.google.org/flutrends)
7
http://apps.nccd.cdc.gov/gisbrfss/

8Many self-reported locations are nonsensical (e.x.: “Fight-
ing Dragons” or “under ur bed”) (Hong 2011), but strict patterns
seemed to produce good matches. Twitter provides geocodes, but
this relatively new feature was missing from much of our data. In
the future as geocodes increase, we can use them instead.

Correlation
Risk Factor Ailments ATAM+ ATAM
Asthma Allergies 0.241 0.195
Diabetes Obesity 0.073 0.203
Exercise All ailments -0.352 -0.394
Exercise Exercise 0.140 –
Exercise Obesity -0.201 -0.248
Health Care Coverage All ailments -0.253 -0.319
Heart attack Obesity 0.244 0.341
Heart attack Cancer 0.613 0.291
Obesity Obesity 0.280 0.203
Obesity Exercise -0.267 –
Tobacco use Cancer 0.648 0.320

Table 2: Correlations between the rate of a behavioral risk
factor in a US state using CDC data with the measured rate
of an ATAM ailment in that state. For example, states with
higher obesity rates had more obesity tweets, and states with
higher smoking rates had more cancer tweets. Note: ATAM+
discovered an exercise ailment; ATAM did not.

people who have had heart attacks since some heart-related
ailments were grouped into the cancer cluster. Other inter-
esting correlations include a significant negative correlation
between exercise and the frequency of posting any ailments,
suggesting that Twitter users are less likely to become sick
in states where people exercise. Similarly, there is a nega-
tive correlation between the rate of health care coverage in a
state and the likelihood of posting tweets about diseases.

Geographic Syndromic Surveillance
So far we have demonstrated the ability to mine public
health information both over time (syndromic surveillance
for influenza) and by geographic region (behavioral risk fac-
tors.) We now seek to combine these to track an ailment over
time and geography. For this experiment, we select seasonal
allergies, an ailment that is correlated both with time and lo-
cation; allergy season ranges over different dates by region.
We computed the (normalized) rate of the allergy ailment
by state and by month and plotted four months: February,
April, June, and August (Figure 3). Shading was computed
from the mean and standard deviation of all the states’ al-
lergy rates (over the three months) so that the color scale
(ranging from lighter to darker) indicates rates that were
more than a standard deviation below, half a standard devia-
tion below, within half a standard deviation, more than half a
standard deviation above, and more than a full standard de-
viation above the mean. States with less than 50 tweets in a
month were excluded (shaded diagonally.) We also show the
top 10 words w most predictive of the allergy ailment a and
a given month m, ranked according to p(a,m|w).

We observe several known patterns of allergies.9 The pri-
mary allergy season begins in February or March and runs
through May or June, beginning earliest in the South and the
West. Observe that these areas have higher rates than the rest
of the nation in February, while high rates have appeared in

9Seasonal allergy information is taken from the WedMB article
on allergies and geography: http://www.webmd.com/allergies/

allergy-relief-10/worst-allergy-cities.
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Figure 3: Rates of allergies discovered by ATAM+ by state for four months in 2010. Darker shading indicates higher allergy
rates; diagonal shaded states lacked sufficient data. Notice that allergy rates peak in the middle of the allergy season (April),
and that in colder weather (February) they are more prominent in warmer climates (West and South). Next to each month are
the top 10 words w most predictive of the allergy ailment a during the monthm (p(a,m|w)). Bolded words are those especially
recognized as being associated with particular allergy seasons, e.g. ragweed begins to pollinate in mid-August, tree pollen
season is in full effect in April, and June is often the worst month for hay fever (http://www.gsk.com/infocus/hay-fever.htm).

the rest of the country by April, the peak of the season. The
primary allergen in the spring is tree pollen, indicated by
the presence of “pollen” and “trees” in April. Grass aller-
gies peak in May and June; observe that “grass” is one of
the top words in June. Weed season begins in August, the
main contributor of which is ragweed, which is known to be
especially prevalent in the Midwest. Notice that “ragweed”
is associated with August, and that many Midwestern states
have the highest rate during this month.

We seek quantitative validation of trends by time and lo-
cation. Returning to the task of influenza tracking, the CDC
provides infection rates by state.10 We compute the influenza
rates using the flu ailment as before, but now compute sep-
arate rates for each state. We measured the rates for the
2009-2010 influenza season (12 months from September).
The CDC data uses a numeric value (integer between 1
and 10) indicating the level of flu activity for each week
in each state. We ignored state/week pairs where the total
number of tweets was less than 50, reducing the number of
data points to 39% of the total, yielding 1057 data points.
ATAM+ obtained a correlation of 0.66, and ATAM yielded
0.23. These correlations demonstrate the feasibility of syn-
dromic surveillance within specific geographic regions.

10
http://gis.cdc.gov/grasp/fluview/main.html

Word Ent. Most Common Ailments
vomiting 2.19 Flu (23%), Aches (16%), Insomnia (12%)
burn 2.02 Skin (36%), Aches (17%), Headache (2%)
chill 1.95 Headache (28%), Insomnia (18%), Flu (12%)
fever 1.46 Flu (50%), Cold (24%), Infection (11%)
pimples 0.72 Skin (84%), Depression (5%)
fractured 0.69 Physical injuries (82%), Cancer (12%)
toothache 0.61 Dental (83%), Insomnia (9%), Aches (6%)
headache 0.56 Headache (75%), Insomnia (25%)
tumor 0.22 Cancer (96%)
mood 0.20 Depression (96%), Obesity (4%)

Table 3: Common symptom words, their most commonly
associated ailments, and the entropy of their distribution
over ailments. Entropy values ranged from 0 to 2.47.

Analyzing Symptoms and Medications
Discovered ailments include both milder, acute illness (in-
fluenza, allergies, etc.) as well as more common chronic con-
ditions (obesity and insomnia). For many of these ailments,
sufferers often do not visit their doctor, instead managing
the illness on their own. Flu patients often stay home, take
medication and eat soup. Obese people put themselves on a
diet and exercise regimen. Insomnia suffers resort to chang-
ing their sleeping environment or sleeping aids. Since people
are not seeing health care providers, their illness, symptoms
and chosen treatments go unreported. Obtaining these statis-



Word # Ent. Most Common Ailments
Pain Relief Medication
tylenol 1807 1.57 HA (39%), IN (30%), Cold (9%)
ibuprofen 1125 1.54 HA (37%), DN (21%), Aches (17%)
advil 1093 1.08 HA (61%), Cold (6%), DN (5%)
aspirin 885 1.04 HA (69%), IN (10%), Aches (10%)
vicodin 505 1.33 DN (61%), Injuries (11%), HA (10%)
codeine 406 1.94 Cold (25%), DN (19%), HA (17%)
morphine 206 1.17 DN (59%), Infection (22%), Aches (9%)
aleve 183 1.10 HA (62%), IN (15%), DN (14%)
Allergy Medication
benadryl 871 1.24 Allergies (64%), Skin (13%), IN (12%)
claritin 417 0.54 Allergies (88%), HA (5%)
zyrtec 386 0.49 Allergies (90%)
sudafed 298 1.61 Allergies (39%), Cold (21%), HA (20%)

Table 4: Treatment words (medications) for pain relief and
allergies sorted by frequency (#), their most commonly as-
sociated ailments, and the entropy of their distribution over
ailments. Entropy values ranged from 0.02 to 2.26. Com-
mon ailments discovered for pain relief medications are
headaches (HA), insomnia (IN) and dental (DN).

tics requires extensive polling of a large population. Twitter
provides an opportunity to quickly and easily measure these
statistics. Scanfeld, Scanfeld, and Larson (2010) consider
one such application, in which they studied how people used
antibiotics by examining tweets.

For each symptom and treatment w that appeared more
than 50 times in the health related messages, a total of 413
symptoms and 113 treatments, we computed the distribution
over ailments using ATAM+: P (a|w). Low entropy treat-
ments indicate specialized use, such as “sunscreen” (treat-
ment) and “pancreatic” (symptom). High entropy indicates
common use, such as “medicine” (treatment) and “painful”
(symptom). We provide two sets of results based on this
data. Common symptoms, their entropy, and most common
associated ailments appear in Table 3. These distributions
correspond to common knowledge about symptoms: fevers
are associated with the flu, the common cold and infections,
and toothaches are linked to dental problems, insomnia, and
aches. Other terms showed interesting correlations, such as
“pimples” and depression, and “mood” (as in bad mood or
mood swings) with obesity.

To evaluate treatments, we selected two common groups
of medications: pain relief and allergy medication. We com-
pare several common medications within these groups in
Table 4. The most common ailment for the pain reliev-
ers is headaches. The three strongest medications, codeine,
morphine and vicodin, are all used for more serious ail-
ments, including dental problems and infections. Tylenol
(acetaminophen) is perhaps the most popular pain reliever
on the market, and is the most commonly mentioned pain
reliever. Additionally, ibuprofen is used to treat aches as it
is an anti-inflammatory. The allergy medications are all pri-
marily used to treat allergies. Benadryl is a more generic
cold/allergy medication that causes drowsiness, thus it is
used for insomnia in addition to allergies. Similarly, Sudafed
is marketed for sinus headaches, so it appears with the com-
mon cold and headaches. As other examples of treatments,

we found “penicillin” (entropy 1.64) most commonly ap-
pearing with infections (45%) and “acupuncture” (entropy
1.45) most commonly appearing with depression (36%) and
physical injuries (33%). Finally, similar to Scanfeld, Scan-
feld, and Larson (2010), we found that while the most com-
mon usage of antibiotics was correctly for infection (68%)
and dental (9%) (patients whose wisdom teeth are removed
often receive antibiotics to prevent infection), there were in-
correct uses as well: common cold (9%) and flu (3%). These
findings largely confirm the known properties and intended
usages of common medications.

The Limits of Twitter
We have investigated a variety of public health data that can
be automatically extracted from Twitter. These results sug-
gest that public health officials and researchers can both re-
place current more expensive and time consuming methods
and expand the range of what can be easily measured, in-
cluding both new sources and types of information. How-
ever, Twitter cannot provide all answers, and it may not be
reliable for certain types of information. We describe some
of the limitations we encountered in this study.

We focused on population level metrics, but we had
wanted to consider analyses on the scale of individual users.
For example, how often does an allergy sufferer have se-
rious allergy problems? What is the recurrence rate of the
flu? Are certain people more likely to have repeated phys-
ical injuries? Are various ailments correlated with differ-
ent lifestyles? Additionally, we sought to compute statistics
about the course of acute illnesses. How long do influenza
symptoms last? Which medications have the largest impact
on symptoms? All of these statistics require that a single
user post multiple tweets, and possibly multiple updates over
the course of an illness. However, in our health related mes-
sages, 71% of users have only a single tweet and 97% have
5 or less, insufficient for computing user level statistics.

Our geographic analysis was fairly coarse, providing
statistics on the state level. More sophisticated geocoding
techniques could provide finer grained location informa-
tion, allowing for the detailed analysis as in Eisenstein et
al. (2010). However, we had too few tweets to consider finer
grained statistics, e.g. on the county level. We failed to ob-
tain even sufficient messages for each state. Additionally,
we observed that some tweets, particularly those about more
serious illnesses like cancer, were in regards to family mem-
bers rather than the user. This could throw off geographic
statistics if the subject of a tweet lives in a different loca-
tion than the author of the tweet. This issue could perhaps
be solved by filtering out tweets that are not about the user,
for example by using a classifier that is trained for this task.

The expression “more data is better data” holds here as
well. Our best results were obtained for influenza tracking
(high correlation with CDC data) which represented 8% of
the 1.63 million tweets. The above limitations are all inher-
ently data limitations, so more data suggests that some of
these goals may be achievable. The initial data set contained
2 billion tweets, which ranged from 1 millions message a
day (mid 2009) to close to 6 million messages a day (late



2010.) While 2 billion is a seemingly massive number, it rep-
resents a fraction of the total messages available. Twitter re-
ports that users now generate 50 million messages per day.11

Perhaps access to this quantity of data will enable many of
these statistics. Furthermore, the usage of mobile devices
and geotagging messages has greatly increased, suggesting
that more detailed geographical analyses are possible.

Finally, Twitter user demographics will limit research.
Twitter users tend to be younger (nearly half are under 35)
and only 2% are 65 or older.12 Twitter is still US centric: as
of June 2009, 62% of Twitter users were in the US.13 These
impose limitations on mining health information about se-
nior citizens, or other countries. However, increasing Twit-
ter usage may yield sufficient data. Future work will clarify
what are true limits of this research direction.

Future Directions
Our exploratory study of using Twitter to mine public health
information focused on producing data that correlates with
public health metrics and knowledge. Twitter clearly con-
tains many different types of information of value to public
health research on many different ailments. The next step is
to consider what new information can be learned by study-
ing Twitter, potentially supporting new health informatics
hypotheses. We plan to consider more specific applications
with the goal of learning new things from Twitter.
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