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The validity of research in the biomedical and social sci-
ences is under intense scrutiny at present. A particular area 
of focus is on a widespread failure to replicate prior find-
ings that some have labeled the replicability crisis (Brodeur, 
Le, Sangnier, & Zylberberg, 2012; Francis, 2013; Ioannidis, 
2005; Yong, 2012). This problem has gained increasing 
recognition in psychology (Fanelli, 2009; Nosek & Lakens, 
2014; Pashler & Wagenmakers, 2012), and, indeed, several 
prominent findings (Bargh, Chen, & Burrows, 1996; Bargh, 
Gollwitzer, Lee-Chai, Barndollar, & Trotschel, 2001; Bem, 
2011) have notoriously failed to replicate.

As a consequence of this crisis, interest in how to plan 
and conduct replications has increased (Asendorpf et al., 
2013; Brandt et  al., 2014; Open Science Collaboration, 
2012; Klein et al., 2014; Pashler & Wagenmakers, 2012). 
Considerable attention has been devoted to factors that 
can cause effect sizes to vary across studies. For example, 
it has been shown that so-called questionable research 
practices can have a drastic impact on reported p values 
and thus effect sizes (Simmons, Nelson, & Simonsohn, 
2011). Although this observation is important, it is clear 
that questionable research practices are not the only 

factors contributing to between-study variation in effect 
sizes. Another critical source of between-study variation 
is what can be broadly termed method factors, that is, 
anything pertaining to the implementation of a study that 
is not directly related to the theory under study (e.g., 
seemingly major factors, such as the operationalization of 
the dependent variable or the treatment manipulation, 
but also seemingly minor factors, such as the social con-
text, the subject pool, or the time of day; for a compre-
hensive list, see the Replicability and Meta-Analytic 
Suitability Inventory of Brown et al., 2014, this issue, who 
use the term sampling decisions for what we term method 
factors.). The between-study variation in effect sizes 
resulting from such method factors can have dramatic 
and difficult to foresee effects on the outcome of a study 
and thus should be explicitly considered in planning a 
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Abstract
Statistical power depends on the size of the effect of interest. However, effect sizes are rarely fixed in psychological 
research: Study design choices, such as the operationalization of the dependent variable or the treatment manipulation, 
the social context, the subject pool, or the time of day, typically cause systematic variation in the effect size. Ignoring 
this between-study variation, as standard power formulae do, results in assessments of power that are too optimistic. 
Consequently, when researchers attempting replication set sample sizes using these formulae, their studies will be 
underpowered and will thus fail at a greater than expected rate. We illustrate this with both hypothetical examples 
and data on several well-studied phenomena in psychology. We provide formulae that account for between-study 
variation and suggest that researchers set sample sizes with respect to our generally more conservative formulae. Our 
formulae generalize to settings in which there are multiple effects of interest. We also introduce an easy-to-use website 
that implements our approach to setting sample sizes. Finally, we conclude with recommendations for quantifying 
between-study variation.
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replication study so as to mitigate the likelihood of repli-
cation failure.

The reason between-study variation in effect sizes 
(also known as effect size heterogeneity or more simply 
as heterogeneity) complicates matters for researchers 
attempting replication is that it affects how likely one is 
to obtain a statistically significant estimate when the 
effect exists (i.e., statistical power). Best practices dictate 
setting sample sizes to achieve some prespecified level of 
power (typically 80%; Cohen, 1992). However, standard 
power formulae do not account for effect size heteroge-
neity (i.e., they assume it is zero) thereby resulting in 
assessments of power that are too optimistic—particu-
larly when effect sizes are small to moderate. This unwar-
ranted optimism causes sample sizes to be set too low 
and, thus, replication attempts to fail at a greater than 
expected rate.

We believe that ignoring effect size heterogeneity may 
add substantially to current difficulties in replicating psy-
chological research. We illustrate why by first showing 
that psychological research often involves considerable 
heterogeneity and then showing the consequences of 
this heterogeneity for study planning. In particular, we 
demonstrate that data on close replications from the 
“Many Labs” Replication Project (Klein et al., 2014) and 
more general replications of the choice overload effect 
(i.e., that an increase in the number of options from 
which to choose can lead to adverse consequences such 
as a decrease in the likelihood of making a choice or the 
satisfaction with a choice; Iyengar & Lepper, 2000) 
exhibit substantial between-study variation.1 We then 
show that this between-study variation means that sam-
ple sizes for future replications need to be set consider-
ably higher than indicated by standard formulae to 
achieve adequate statistical power; in some cases, the 
impact of heterogeneity is so large that even sample 
sizes in the thousands do not provide sufficient power. 
We also demonstrate that the consequences of between-
study variation are particularly significant for small to 
moderate effect sizes and when there are multiple effects 
of interest in a given study. To aid researchers in sample 
size planning, we provide power formulae that account 
for heterogeneity, and we suggest that sample sizes be 
set to achieve adequate power with respect to our gen-
erally more conservative formulae; these formulae are 
implemented on an easy-to-use website that we have 
created to facilitate the immediate assessment of the 
impact of effect size heterogeneity on replicability (see 
the Discussion section for details). Finally, we provide 
specific recommendations for quantifying between-study 
variation. These recommendations highlight the need to 
extend empirical findings to include information about 
the differing levels of heterogeneity that are observable 
across domains.

Why Heterogeneity Matters for Power 
Analyses

In a recent article, Cumming (2014) discussed the “dance 
of the confidence intervals,” that is, how the point esti-
mates and 95% confidence intervals from a set of replica-
tion studies tend to “bounce around”:

[When studies] all estimate the same population 
mean, µ . . . the bouncing around . . . should match 
what we expect simply because of sampling 
variability. If there is notably more variability than 
this, we can say the set of studies is heterogeneous, 
and there may be one or more moderating variables 
that affect the effect size [µ]. (p. 22)

Effect size heterogeneity—extra variability or bounce in 
the dance of the confidence intervals, to use the lan-
guage of Cumming (2014)—has long been regarded as 
important for more general (i.e., systematic or concep-
tual) replications in psychological research. For instance, 
a meta-analysis of 17 general replications of the choice 
overload effect (see Appendix A for data) yields I2 = 78% 
(i.e., more than three quarters of the variability in these 
17 studies is due to heterogeneity—a large amount). 
Though substantial heterogeneity is unsurprising in the 
context of more general replications, there is mounting 
evidence of heterogeneity even under conditions that are 
nearly ideal for replication. For example, consider the 
Many Labs project that provides 16 estimates of 13 classic 
and contemporary effects in psychology from 36 inde-
pendent samples totaling 6,344 subjects. Despite the fact 
that each of the 36 labs involved in the Many Labs project 
used identical materials and that these materials were 
administered through a web browser to minimize lab-
specific effects, random effects meta-analyses conducted 
by the Many Labs authors yield nonzero estimates of het-
erogeneity for all 14 of the effects they found to be non-
null (they studied 16 effects in total, but 2 were found to 
be null). Further, the average I2 across these 14 studies 
was 40%: Lab-specific method factors account for nearly 
half of the total variability of the studies on average (see 
Table 3 of Klein et al., 2014).

Given these results, it is clear that substantial heteroge-
neity can occur even under conditions that are nearly ideal 
for replication and without questionable research prac-
tices: In the Many Labs studies, it was caused exclusively 
by as yet unidentified (and potentially unidentifiable) 
method factors specific to each of the 36 labs participating 
in the project. Consequently, it seems reasonable to con-
clude that some degree of effect size heterogeneity is 
likely to be present in much psychological research.

Effect size heterogeneity is caused by moderating vari-
ables (i.e., what we term method factors). When these 
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moderating variables can be identified (e.g., large effect 
for male subjects and small effect for female subjects), 
heterogeneity can be explained and controlled for (e.g., 
by controlling for sex in the study design and analysis). 
However, moderators are often hard to identify—particu-
larly when a research area is new or when a set of studies 
consists of close replications (e.g., the Many Labs stud-
ies). We therefore suggest that researchers explicitly 
account for heterogeneity in study planning—in particu-
lar in setting sample sizes to achieve adequate statistical 
power—rather than assuming, as is typical, that heteroge-
neity is zero.

Statistical power is the probability of rejecting the null 
hypothesis when it is false. More formally, in most set-
tings in psychology, statistical power is the probability 
that, if the true effect size is µ and µ z 0, then a planned 
study will reject the sharp point null hypothesis H0: µ = 0 
at size D (typically D = .05). When the true effect size µ is 
on a standardized scale, such as the Cohen’s d scale 
(which we assume throughout but relax in Appendix B), 
power is a function of µ, D, and the sample size. 
Consequently, the sample size can be set to achieve a 
desired level of power given µ and D, and best practices 
dictate planning studies that are adequately powered 
(typically at 80%; Cohen, 1992).

When each potential study has the same effect size µ, 
as would be the case for exact replications, there is no 
effect size heterogeneity. However, because replications 
in psychology are never exact (Brandt et  al., 2014; 
Rosenthal, 1991; Tsang & Kwan, 1999), as evidenced by 
the choice overload and Many Labs results presented ear-
lier, there is no single µ. Instead, each potential study has 
its own effect size µi that differs from the overall average 
effect size µ. Heterogeneity, denoted W2, quantifies the 
variance of the µi around µ, and it expresses the inherent 
variability in effect sizes that is observed when not all 
method factors are known and controlled for.

When effect size heterogeneity is present (i.e., when 
W2 > 0), the variability of the sampling distribution of a 
replication study’s effect size estimate (and consequently 
of any associated test statistic) will be greater than that 
assumed by standard null hypothesis significance tests. 
In the language of Cumming (2014), there will be extra 
bounce in the dance of the confidence intervals, but the 
usual amount of bounce will be assumed in the signifi-
cance test. This assumption is in expectation generally 
quite optimistic, and thus power is overstated for a given 
sample size thereby leading sample sizes to be set too 
low and studies to be underpowered.

We derive new power formulae that account for this 
scenario. Whereas in standard power formulae power is 
calculated as a function of µ, D, and the sample size 
(assuming W2 is zero), in our formulae, it is calculated as 
a function of µ, W2, D, and the sample size (see Appendix 

B for details; our formulae nest the standard ones in that 
they reduce to them when W2 is set to zero). We can then 
set the sample size to achieve a desired level of power 
given µ, W2, and D using these new formulae.

In standard power formulae, the effect size µ is taken 
as a known input (D and the sample size are set by the 
researcher). In our formulae, the effect size heterogeneity 
W2 is also analogously taken as a known input. When 
prior studies in a research domain have been conducted, 
reasonable values for µ and W2 can be obtained by con-
ducting a random effects meta-analysis of them (Cooper, 
Hedges, & Valentine, 2009; Cumming, 2014; Hunter & 
Schmidt, 2000); when they have not been conducted, we 
suggest conducting a sensitivity analysis across a range of 
reasonable values of µ and W2. In the sequel, we assume 
µ and W2 are given but return to their specification and 
estimation in the Discussion section.

Analyses of Single Effects

In this section, we consider the power of the single effect 
of interest obtained from a two-condition study. Using a 
hypothetical example, we examine how both power and 
sample size requirements vary as a function of µ and W2. 
We then present data from the Many Labs replications as 
well as from studies of the choice overload effect and 
calculate the sample size required for a future study in 
these domains to achieve adequate power.

Hypothetical example

Consider a simple two-condition, between-subjects 
experiment with equal sample size n in each condition in 
which the standardized difference between the means of 
the observations in each condition is given by µ (i.e., the 
effect size µ is on the Cohen’s d scale). Cohen (1992) 
defined small, medium, and large effect sizes in psychol-
ogy as µ = 0.2, 0.5, and 0.8, respectively, and we consider 
each of these in turn. Standard power formulae (Faul, 
Erdfelder, Lang, & Buchner, 2007) require sample sizes of 
310, 51, and 21 subjects per condition for these respec-
tive effect sizes to achieve 80% power for a one-sided test 
with D = .05 (we use one-sided tests because replication 
requires matching the direction of the effect obtained in 
prior studies).

Now, suppose there is independent condition-specific 
heterogeneity W2. Pigott (2012) provided guidance on the 
typical degree of between-study variation, or heterogene-
ity, in psychology by relating it to the degree of within-
study variation (i.e., sampling variation). In particular, 
she has defined a small amount of heterogeneity to be 
equal to one third the within-study variation, a medium 
amount of heterogeneity to be equal to the within-study 
variation, and a large amount of heterogeneity to be 
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equal to three times the within-study variation. In our set-
ting, her framework equates the condition-specific within-
study variation to the standard error of the sample mean; 
because the effect size µ is on the standardized Cohen’s d 
scale, we can without loss of generality assume that the 
observation-level variance is one, and thus the standard 
error of the sample mean is one over the sample size. As 
an example, when the sample size is n = 25 subjects per 
condition, a small amount of heterogeneity would be W2 = 
1/3 × 1/25 = ~.01, a moderate amount of heterogeneity 
would be W2 = 1/25 = .04, and a large amount of heteroge-
neity would be W2 = 3 × 1/25 = .12. Consequently, we 
examine how power and the sample size requisite for 
adequate power vary as heterogeneity W2 ranges from 0 
(i.e., no heterogeneity) to .12 (i.e., large heterogeneity).

In Figure 1, we present power as a function of the 
effect size µ and condition-specific heterogeneity W2 when 
the sample size is set to value indicated by standard 
power formulae (i.e., 310, 51, or 21 subjects per condi-
tion for small, medium, and large effect sizes respec-
tively). As can be seen, when heterogeneity is zero, 80% 
power is achieved, as would be expected on the basis of 
standard power formulae. However, power decreases as 
heterogeneity increases, and this is most pronounced for 
when the effect size is small. Indeed, the impact of het-
erogeneity on power depends strongly on the effect size. 
When the effect size is large, even relatively large amounts 
of heterogeneity have only a modest impact on power: 
Power remains at about 75% when heterogeneity is mod-
erate (i.e., W2 = .04) and drops to only just below 70% 
when heterogeneity is large (i.e., W2 = .12). On the other 
hand, when the effect size is small, even small amounts 
of heterogeneity cause power to drop dramatically: 

Power is only about 65% when W2 = .01. When the effect 
size is small, and when heterogeneity is moderate (large), 
power is only about 60% (55%), making the likelihood of 
replication little better than a coin toss.

In Figure 2, we present the sample size per condition 
required to achieve 80% power as a function of the effect 
size µ and heterogeneity W2. As can be seen, when het-
erogeneity is zero, the requisite sample size matches that 
calculated by standard formulae and indicated by the 
dashed horizontal lines. However, as heterogeneity 
increases, the requisite sample size increases rather dra-
matically, and it can be many multiples of that suggested 
by standard formulae; this increase is particularly promi-
nent when the effect size is small and moderate.

Many Labs and choice overload data

To present the effect of heterogeneity on power and the 
sample size requisite for adequate power in the context 
of actual psychological research, we use experimental 
data from both close and general replications. In particu-
lar, we examine how heterogeneity affects power and 
requisite sample sizes for 36 studies of the 16 effects 
examined by the Many Labs authors (close replications) 
and for 17 studies of the choice overload effect (general 
replications). All studies were unmoderated (i.e., they 
were two-condition, single-effect studies).

Effect size and heterogeneity estimates for the difference 
in the means of the two conditions based on random 
effects meta-analyses of each effect appear in Table 1; all 
estimates are presented on the standardized Cohen’s d 
scale to facilitate comparison. Using these estimates, we 
can calculate power and the sample size requisite for ade-
quate power for future replication studies of these effects. 
These calculations can provide guidance for, in the case of 
the 16 effects studies by the Many Labs authors, future rep-
lication studies in different social contexts and with new 
subject pools in which their materials are used (i.e., close 
replications) and, in the case of the choice overload effect, 
future replication studies in which different operationaliza-
tions of the dependent variable and treatment manipula-
tion (i.e., general replications) are used.

The results in Table 1 are divided into three sections: 
null effects (currency priming and flag priming), normal-
sized effects (imagined contact through low vs. high cat-
egory scales), and very large effects (anchoring and the 
allowed/forbidden effect). Heterogeneity is most relevant 
for normal-sized effects, though we discuss each of the 
three in turn. The Many Labs authors found that two 
effects (i.e., currency priming and flag priming) did not 
replicate. For these two effects (and only these two 
effects), heterogeneity was estimated at zero (it was very 
small but nonzero for gains vs. loss framing). Consequently, 
n0, the sample size per condition requisite for adequate 

Fig. 1. Power at standard sample size. 80% power is achieved at the 
standard sample size when heterogeneity W2 is zero, but power dimin-
ishes as it increases.
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power computed with standard formulae, is equal to nW, 
the sample size computed per condition requisite for 
adequate power computed with our formulae, and it pro-
vides adequate power; that said, n0 is unrealistically large 
because the effects are miniscule.

For the five very large effects (i.e., the four anchoring 
effects plus the allowed/forbidden effect), the effect sizes 
are so large that adequate power is obtained with very 
small sample sizes. Consequently, heterogeneity does not 
have much of an impact (i.e., n0 and nW are similar or 
identical).

Turning to the studies with effect sizes more typical in 
psychology (i.e., imagined contact through low vs. high 
category scales), the effect of heterogeneity can be quite 
dramatic. For example, standard sample size formulae 
suggest that a sample size of n0 = 885 subjects per condi-
tion (i.e., 1,770 in total) is adequate to obtain 80% power 
for the imagined contact effect; however, because of het-
erogeneity, power is only 66.7% with 885 subjects per 
condition, and our formulae require a sample size of nW = 
2,434 subjects per condition (i.e., 4,868 in total) for ade-
quate power. The results are even more striking for the 
choice overload effect in which heterogeneity is much 
larger (i.e., because the studies are general rather than 
close replications). Standard sample size formulae sug-
gest that a sample size of n0 = 71 subjects per condition 
is adequate to obtain 80% power. However, because of 
heterogeneity, power is only 64.3% with 71 subjects per 
condition, and our formulae require a sample size of nW = 
389 subjects per condition for adequate power.

As can be seen in Table 1, the impact of heterogeneity 
is relatively modest when either the effect size is large or 
heterogeneity is small (noting, as per Figures 1–2, that 
even small heterogeneity W2 can have a large impact if the 
effect size µ is also small). What can be done when effect 
size heterogeneity is not so modest (e.g., imagined con-
tact, quote attribution, choice overload)? In the case of 
choice overload, the 17 studies were general replications. 
Therefore, one could search for study-level design factors 
that moderated the effects observed across 17 studies; 
such moderators might explain some of the variation in 
the effects thereby reducing W2. However, in the case of 
the imagined contact and quote attribution effects, the 36 
studies were close replications with identical materials. 
Therefore, one would have to search for moderators per-
taining to the social context or subject pool; this is more 
difficult (and possibly intractable), and realistically one 
might simply need larger sample sizes to replicate these 
effects.

Analyses of Multiple Effects

Up to the present, the discussion has centered on a single 
effect of interest. In practice, however, researchers are 

Fig. 2. Sample size per condition requisite for 80% power. The dashed 
line indicates the sample size indicated by standard formulae. 80% 
power is achieved at this sample size when heterogeneity W2 is zero, 
but a considerably larger sample size is required as heterogeneity 
increases. The y-axis is capped at 1,000, and, in some cases, 80%  cannot 
be achieved even with infinite sample sizes.
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often interested in multiple effects (e.g., a simple effect 
and an interaction effect in a 2 × 2 study). Standard power 
formulae tend not to deal with this situation—whether 
there is heterogeneity or not—and researchers often sim-
ply determine the sample size on the basis of the smallest 
of the multiple effects. This approach can be optimistic 
because multiple effects are typically correlated with one 
another; when they are negatively correlated, as fre-
quently occurs in practice (e.g., a simple effect and an 
interaction effect in a 2 × 2 study), the sample size required 
to achieve a given level of power for the multiple effects 
jointly can be dramatically higher than that required for 
the smallest of the effects. In this section, we extend the 
analysis in the prior section to show the impact of hetero-
geneity on the sample size required for adequate power 
when a researcher is interested in multiple effects.

Consider a 2 × 2 between-subjects experiment with 
equal sample size n in each condition in which the sim-
ple effect of Experimental Factor A is 0.5, the simple 
effect of Experimental Factor B is 0.8, the interaction 
effect is 0.8, and the variance of the observations in each 
condition is assumed, without loss of generality, to be 1 
so that the simple effects are on the standardized Cohen’s 
d scale (i.e., it can be assumed without loss of generality 
that the observations in each condition have condition-
specific mean ab = 0.0, Ab = 0.5, aB = 0.8, and AB = 2.1, 

and variance = 1).2 Further, suppose there is independent 
condition-specific heterogeneity with variance W2.

Imagine there are two researchers with different theo-
ries about the effects under study. The first researcher 
develops a hypothesis about both simple effects, whereas 
the second researcher develops a hypothesis about the 
simple effect of Experimental Factor A and the interac-
tion; both researchers wish to achieve 80% power jointly 
for one-sided tests of both effects of interest with D = .05. 
Note that both of the researchers are interested in two 
effects that are the same size (i.e., one effect of size 0.5 
and another of size 0.8).

The sample size required so that the first researcher 
achieves 80% power for both effects of interest jointly is 
shown for various values of W2 by the solid curve in the 
left panel of Figure 3. The dashed and dotted curves show 
the sample size required to achieve 80% power for each 
of the simple effects separately; consequently, these are 
identical to corresponding curves in Figure 2. For rela-
tively low values of W2, the sample size required to achieve 
80% power for both effects jointly is negligibly larger than 
that required for the smaller of the two simple effects. 
However, as W2 gets larger, more subjects are required 
beyond those required for the smaller simple effect.

The first researcher’s sample size calculations (see the 
left panel of Figure 3) present an optimistic portrait of the 

Table 1. Effect Size (µ), Heterogeneity (W), Standard Sample Size per Condition Requisite for 80% Power (n0), Our Sample 
Size per Condition Requisite for 80% Power (nW), and Power at the Standard Sample Size Requisite for 80% Power (Power) for 
17 Effects

Effect µ W n0 nW Power (%)

Currency priming −0.02 .00 40,377 40,377 80.0
Flag priming 0.02 .00 36,924 36,924 80.0
Imagined contact 0.12 .08 885 2,434 66.7
Sunk costs 0.29 .05 145 155 78.1
Quote attribution 0.31 .16 131 239 69.6
Norm of reciprocity 0.36 .09 95 108 76.4
Choice overload 0.42 .35 71 389 64.3
Gender differences in implicit math attitudes 0.57 .11 39 42 78.0
Retrospective gambler fallacy 0.61 .09 34 36 78.8
Gains versus loss framing 0.66 .00 30 30 81.0
Correlation between implicit and explicit math attitudes 0.82 .10 20 20 80.5
Low versus high category scales 0.88 .16 17 19 78.0
Anchoring—Babies born 1.21 .15 10 10 81.5
Allowed/forbidden 1.93 .50 5 5 81.3
Anchoring—Mount Everest 2.00 .36 5 5 85.4
Anchoring—Chicago 2.41 .69 4 4 83.3
Anchoring—Distance to New York City 2.53 .30 3 4 79.2

Note: Effect sizes are presented on the standardized Cohen’s d scale, and W denotes heterogeneity of a mean difference on the standardized 
Cohen’s d scale reported as a standard deviation (rather than as a variance W2 ). Effect size and heterogeneity estimates are based on random 
effects meta-analyses conducted by the Many Labs authors for 15 of the 17 effects. We conducted our own meta-analysis of the choice overload 
data presented in Appendix A and the correlation between implicit and explicit math attitudes data after converting the raw correlations to the 
Cohen’s d scale. The effect of heterogeneity on the sample size requisite for 80% power and on power at the standard sample size is most notable 
for effect sizes typical in psychology (i.e., imagined contact through low vs. high category scales).
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sample size required to achieve adequate power for mul-
tiple effects: The sample size required is only modestly 
larger than that required for the smaller of the two effects 
(except when heterogeneity is large). Unfortunately, this 
is optimistic because, in 2 × 2 experiments, the estimates 
of the two simple effects are positively correlated. If 
instead a researcher were interested in, say, a single sim-
ple effect as well as the interaction effect (as the second 
researcher is), the divergence between the sample size 
required to achieve adequate power for both effects is 
substantially larger than that required for the smaller of 
the two. This occurs for two reasons. First, in a 2 × 2 
experiment, whereas the estimates of each simple effect 
are positively correlated with one another, they are each 
negatively correlated with the estimate of the interaction 
effect. Second, interactions are in general estimated with 
greater error.

The sample size required so that the second researcher 
achieves 80% power for both the simple effect of size 0.5 
and the interaction effect of size 0.8 jointly is shown for 
various values of W2 by the solid curve in the right panel 
of Figure 3. The dashed and dot-dashed curves show the 
sample size required to achieve 80% power for each 
effect separately. As can be seen, even for small values of 
W2, there is a considerable divergence among the solid 
curve and the dashed and dot-dashed curves, and this 
divergence only increases with W2. Much larger sample 

sizes are required to achieve 80% power for both effects 
jointly as compared with each separately. In sum, there is 
a substantial difference in the sample sizes required by 
the two researchers (and depicted in the two panels of 
Figure 3), even though they are both interested in two 
effects jointly and even though the two effect sizes of 
interest are identical.

Discussion

In this discussion, we briefly recapitulate our findings 
and recommendations. We then provide an in-depth dis-
cussion of how to quantify heterogeneity to facilitate the 
implementation of our sample size formulae in practice. 
Next, we discuss how the Many Labs approach could 
serve as a model for improving the replicability of 
research findings. Finally, in our conclusion, we outline a 
proposal for advancing the standards of what constitutes 
a successful replication.

Recapitulation and recommendations

In this article, we have argued for and presented evi-
dence that between-study variation in excess of sampling 
variation is present in many psychological settings: “no 
replications in psychology can be absolutely ‘direct’ or 
‘exact,’” (Brandt et al., 2014, p. 218) or, more poetically, 

Fig. 3. Sample size per condition requisite for 80% power. The solid curve indicates the sample size requisite for the two effects of interest 
jointly, whereas the dashed curve indicates the sample size requisite for the simple effect of Experimental Factor A alone, the dotted curve indi-
cates the sample size requisite for the simple effect of Experimental Factor B alone, and the dot-dashed curve indicates the sample size requisite 
for the interaction alone. The y-axis is capped at 1,000, and, in some cases, 80% cannot be achieved even with infinite sample sizes. The sample 
size requisite for the two simple effects jointly is not much greater than that requisite for the smaller of the two simple effects when heterogene-
ity is small to moderate, but it is when heterogeneity is large. However, the sample size requisite for the simple effect of Experimental Factor 
A and the interaction effect jointly is much greater than that requisite for either effect separately regardless of the degree of heterogeneity W2.

 at NORTHWESTERN UNIV/SCHL LAW on November 17, 2014pps.sagepub.comDownloaded from 

http://pps.sagepub.com/


When Power Analyses Are Optimistic 619

“you cannot step into the same river twice for other 
waters are continually flowing in” (Heraclitus quoted in 
Plato’s Cratylus, Section 402a). We have shown that 
between-study variation causes power to be lower than 
expected on the basis of standard formulae and that this 
is particularly pronounced for small to moderate effect 
sizes or when there is interest in multiple simultaneous 
effects. Consequently, if researchers are setting their sam-
ple sizes on the basis of standard formulae, it is unsur-
prising that they are finding replication difficult. These 
difficulties are only exacerbated in an environment in 
which researchers may be applying the statistical signifi-
cance filter (Gelman & Weakliem, 2009) and engaging in 
questionable research practices (Fanelli, 2010; John, 
Loewenstein, & Prelec, 2012; Simmons et  al., 2011; 
Simonsohn, Nelson, & Simmons, 2013), both of which 
tend to upwardly bias effect size estimates.

We have proposed a remedy for this situation, namely, 
setting sample sizes on the basis of our power formulae 
that explicitly account for between-study variation.3 Like 
standard formulae, our approach requires an estimate of 
the population average effect size µ. It also requires an 
estimate of heterogeneity W2. An estimate of the former 
may be obtained from prior research, as is currently done 
by researchers before using standard formulae. This strat-
egy is more difficult to use for the latter because it is 
uncommon for researchers to report heterogeneity in 
prior research except in meta-analytic studies; conse-
quently, we discuss it in greater depth later.

As mentioned throughout the article, we have created 
an easy-to-use website that implements our formulae for 
a wide variety of cases most common in psychological 
research so that researchers may immediately begin 
accounting for heterogeneity in sample size calculations. 
The website is available at http://spark.rstudio.com/
blakemcshane/hetsampsize/, and it contains a tutorial 
that explains how to reproduce the results contained in 
this article. In particular, the tutorial demonstrates how to 
reproduce the calculations of nW presented in Table 1 as 
well as the plots of Figures 2–3. It also demonstrates how 
to extend them for different values of µ and W2. By follow-
ing the tutorial as well as the additional instructional 
material on the website, researchers should easily be able 
to account for heterogeneity in their own sample size 
determinations.

Quantifying heterogeneity

For our proposal to be most effective, it is important that 
researchers have a reliable estimate of heterogeneity. This 
estimate can easily be obtained when a large number of 
prior studies are available via a random effects meta-anal-
ysis. However, this is the situation in which researchers 
may be least interested in conducting a single replication 

study; instead, they are typically more interested in evalu-
ating the evidence in a more cumulative fashion.

Consequently, an important consideration is how to 
estimate heterogeneity when there are either no or few 
prior studies available, for example, in new research 
areas. Cumming (2014) has noted that meta-analysis is 
possible even with as few as two prior studies, and there-
fore meta-analysis can be used to estimate heterogeneity. 
However, with few prior studies, a meta-analysis is less 
reliable—particularly for estimating heterogeneity 
(Chung, Rabe-Hesketh, Dorie, Gelman, & Liu, 2013). 
Instead, we discuss three alternative approaches and 
advocate for a sensitivity analysis approach.

First, a “best guess” for heterogeneity could be used, 
as is currently done for effect sizes when there are no or 
few prior studies available (i.e., researchers could do for 
W2 what they currently do for µ when there are no or few 
prior studies available). Although this approach is not 
completely satisfactory because any best guess is unlikely 
to be precisely correct, it is an improvement on the cur-
rent approach, which amounts to assuming a best guess 
of zero and thus ignoring heterogeneity.

Second, an improvement on the first approach involves 
examining how power or the sample size requisite for 
adequate power varies when heterogeneity is below or 
above the best guess (i.e., conducting a sensitivity analy-
sis). Sensitivity analyses to determine how power or the 
sample size requisite for adequate power varies as a 
function of the inputs (e.g., the effect size µ) are standard 
practice in power and sample size analyses, and thus it is 
natural to also conduct a sensitivity analysis with respect 
to heterogeneity.

The hypothetical data and actual data results pre-
sented in this article (see Figures 2–3 and Table 1) por-
tend the results of such a sensitivity analysis in practice. 
For small effect sizes, the sample size requisite for ade-
quate power is quite sensitive to the best guess of hetero-
geneity, and potentially unrealistic sample sizes would be 
required even for low heterogeneity. For moderate effect 
sizes, the sample size is reasonably insensitive provided 
heterogeneity is low to moderate. Finally, for large effect 
sizes, the sample size is comparably insensitive to hetero-
geneity. Sensitivity would in any case be exacerbated 
when there is interest in multiple simultaneous effects.

An important feature of our website is that it automati-
cally conducts this sensitivity analysis for heterogeneity. 
In particular, it returns a plot analogous to Figures 2–3 for 
each effect of interest as well as all effects simultane-
ously. These plots can be used to assess the implications 
for the sample size requisite for adequate power when 
heterogeneity is below or above the specified value (i.e., 
the best guess).

Finally, a third possibility is to use data from other 
more established research areas to estimate heterogeneity 
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and then to apply this estimate to the area that has no or 
few prior studies. This seems like a reasonable approach 
because studies in research areas with no or few prior 
studies are likely to be more heterogeneous than those in 
more established research areas (because, e.g., the opera-
tionalization of the dependent variable or the treatment 
manipulation are likely to be less precisely calibrated). 
Consequently, one could estimate heterogeneity in 
research areas in which there are a large number of stud-
ies and use this estimate as a lower bound on heterogene-
ity in research areas with no or few prior studies. One 
could then conduct a sensitivity analysis with respect to 
this lower bound.

One version of this third approach would be to use 
the Many Labs data to establish such a lower bound. 
Because most replications in psychology are not as close 
as those from the Many Labs series of studies, these stud-
ies seem particularly well-suited to establish a practical 
lower bound on heterogeneity. How can one obtain a 
lower bound with these data? One possibility is to simply 
use the median value reported across the 16 effects. This 
would imply heterogeneity of about W = .10 (i.e., W2 = 
.102 = .01) for a difference in means on the standardized 
Cohen’s d scale; this equates to condition-specific hetero-
geneity of W = .10/ 2 = .07 or W2 = .102/2 = .005. Researchers 
attempting replication when there are no or few prior 
studies available could potentially use this lower bound 
as the estimate of heterogeneity. As illustrated previously, 
even this seemingly low number can have a dramatic 
effect on sample size calculations.

An approach that is more sophisticated than simply tak-
ing the median would be to build a Bayesian hierarchical 
model for heterogeneity across the full set of Many Labs 
studies. We implemented such a model (see Appendix C 
for details) and found that the posterior distribution for W̄, 
the average heterogeneity for a difference in means on the 

standardized Cohen’s d scale, favors values substantially 
larger than W = .10; this posterior is plotted in Figure 4, and 
it is consistent with heterogeneity as large as W = .30 (i.e., 
W2 = .09), suggesting that heterogeneity in typical settings, 
in which replications are less close than the Many Labs 
replications, is likely to be even larger than that. 
Consequently, researchers may prefer to use this larger 
value as a more conservative estimate.

We emphasize that we do not wish to enshrine these 
particular heterogeneity estimates in the literature as cer-
tain other statistical rules (e.g., p < .05) have been. 
Instead, we note that because they are based on replica-
tions that are closer than those typical in psychology, 
they provide reasonable benchmarks and lower bounds. 
Of course, the effects studied by and design choices 
made by the Many Labs authors are not a random sample 
of effects and designs across psychology more broadly: 
Heterogeneity in a given research area or for a given 
design choice could thus differ nontrivially from these 
numbers, and this difference could be in either direction. 
The sensitivity analysis approach that we advocate as the 
best approach allows researchers to examine the poten-
tial consequences of this difference. As an additional 
matter, we advocate research into quantifying heteroge-
neity across a variety of experimental settings (one pos-
sible way to achieve this is discussed in the following 
subsection); such research would provide other research-
ers with heterogeneity estimates and lower bounds most 
relevant to their setting.

The many benefits of Many Labs

The recommendations presented in this article are bene-
ficial for single-study replication. However, we also wish 
to emphasize a number of benefits of the Many Labs 
approach to science. As these two approaches seek 

Fig. 4. Posterior distribution of average heterogeneity. The average heterogeneity W̄ for a difference in 
means on the standardized Cohen’s d scale reported as a standard deviation (rather than as a variance) for 
the Many Labs series of studies could be as high as 0.30, suggesting that heterogeneity in typical replica-
tion settings is likely to be higher than that.
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 different aims, we view them and their benefits as com-
plementary rather than competitive.

The core of the Many Labs approach lies in running 
multiple smaller studies of a given phenomenon distrib-
uted across multiple labs rather than one large study of the 
phenomenon in one lab. Because heterogeneity is the 
norm in psychological research, this approach has three 
direct benefits: (a) the explicit quantification of heterogene-
ity in a particular research area, (b) more efficient estima-
tion of the population average effect size, and (c) better 
calibration of the Type I error rate. We discuss each in turn.

First, multiple studies allow researchers to directly 
quantify heterogeneity via meta-analysis of their own 
data. This is beneficial because the estimate of heteroge-
neity is tied specifically to the phenomenon and opera-
tionalizations under study; alternative estimates of 
heterogeneity typically require recourse to studies that 
use conceptually similar but still distinct phenomena or 
that use somewhat different operationalizations.

Such estimates of heterogeneity, particularly when 
gathered across a variety of domains, provide a number 
of benefits. They provide knowledge of how heterogene-
ity varies as a function of research domain and subdo-
main. They also provide direct inputs to our power and 
sample size formulae. Finally, they suggest areas that are 
likely ripe for theory enrichment (i.e., areas in which het-
erogeneity is large), which could come via study of, for 
example, new moderators.

Second, multiple studies provide a more efficient esti-
mate of the overall population average effect size. For 
instance, consider a researcher interested in a two- 
condition, between-subjects study with d = 0.223 and 
heterogeneity W2 = .01 (in which W2 denotes heterogeneity 
of a mean difference on the standardized Cohen’s d scale 
and thus corresponds to condition-specific heterogeneity 
of W2 = .102/2 = .005). Standard power calculations require 
250 subjects per condition (i.e., a total of 500 subjects) for 
80% power (this is of course optimistic because heteroge-
neity is ignored); suppose the researcher considers either 
running one large study with 250 subjects per condition 
or, as a parallel to the Many Labs series of studies, run-
ning one smaller study with 50 subjects per condition 
and sending the study materials to four colleagues and 
asking them to also run the study with 50 subjects per 
condition (i.e., so there are a total of 500 subjects in both 
scenarios). In the second scenario, not only can the 
researcher pool across the five smaller studies to obtain 
an estimate of heterogeneity (not possible in the first sce-
nario) but the overall estimate of the effect is 44% more 
efficient in the second as compared with the first sce-
nario (i.e., the variance of the estimate in the second 
scenario is 44% lower than in the first).

Third, multiple studies allow for better calibration of the 
realized Type I error under the null hypothesis that the 
overall population average effect size µ is zero. In the 

presence of heterogeneity, standard null hypothesis sig-
nificance tests will reject the null more frequently than the 
size D of the test because they test whether the study-
specific (as opposed to overall average) effect is zero. 
Consequently, researchers may believe they have found 
something that is generalizable but that, in reality, can only 
be attributed to heterogeneity (i.e., study-specific method 
factors). However, by pooling across multiple studies and 
accounting for heterogeneity, researchers can test whether 
the overall population average effect size µ is zero in a 
manner that preserves the stated size D of the test.

The Many Labs approach to science is of course more 
costly: It requires the coordination of a large number of 
labs across the world as well as a potentially larger num-
ber of subjects. These costs are real, but they must be 
assessed against the benefits listed earlier as well as costs 
of alternative approaches (e.g., the cost of failed single-
study replications, particularly those that are not properly 
powered). It is our hope that improvements in technol-
ogy will ease the burden of coordinating studies across 
multiple labs and will allow this approach to become 
more common in psychological research.

Conclusion

The approach outlined in this article constitutes a prin-
cipled strategy for dealing with heterogeneity—a fact that 
has largely been ignored until the present—in the con-
text of single-study replications. Though no panacea for 
all ills that ail replication, the likelihood of future studies 
replicating prior ones will increase when heterogeneity is 
explicitly accounted for in sample size determinations, 
thus mitigating, at least to some extent, the current diffi-
culties in replicating psychological research.

Nonetheless, current difficulties in replicating psycho-
logical research may stem directly from the notion of rep-
lication used: that estimates of one or more effects of 
interest from a subsequent study match the direction of 
those from one or more prior studies and attain statistical 
significance. This definition fails to reflect many impor-
tant features of such estimates (e.g., magnitude, variabil-
ity), and, thus, in closing, we would like to raise the 
possibility of altering the standards for what constitutes a 
successful replication.

An ample literature has decried the null hypothesis sig-
nificance testing paradigm on which the current standards 
for replication rely (Bakan, 1966; Cohen, 1994; Cumming, 
2014; Gigerenzer, 2004; Gill, 1999; Hunter, 1997; Meehl, 
1978; Rozenboom, 1960; Schmidt, 1996; Schwab, 
Abrahamson, Starbuck, & Fidler, 2011; Serlin & Lapsley, 
1993) and has instead noted that “the primary product of 
a research inquiry is one or more measures of effect size, 
not p-values” (Cohen, 1990, p. 1310). This is particularly 
relevant as the difference between one estimate that 
attains statistical significance and another estimate that 
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fails to attain statistical significance is not in general statis-
tically significant itself4—an issue that is distinct from the 
arbitrariness of the conventional D = .05 threshold 
(Cochran, 1974; Cowles & Davis, 1982; Cramer, 1955; 
Fisher, 1926; Yule & Kendall, 1950) but that is often mis-
understood in practice (Gelman & Stern, 2006).

Consequently, one might adopt an alternative notion 
of replication (Asendorpf et al., 2013; Brandt et al., 2014; 
Gelman, 2014) that involves comparing estimates of 
effect sizes and their variability from subsequent studies 
with those from prior studies for consistency in a more 
holistic sense. Relatedly, one might seek to “power” 
future studies so that effect size estimates from them are 

likely to be consistent with those from prior literature 
(e.g., whereas researchers are currently advised to choose 
sample sizes so that future studies have adequate power 
or probability [typically 80%] of rejecting a null hypothe-
sis at size D [typically 5%], researchers could instead 
“power” studies so that they have adequate probability of 
lying “near” the effect size in which nearness would 
depend on both D and the degree of heterogeneity). It is 
possible that—under such alternative notions of replica-
tion that are based on “one or more measures of effect 
size, not p-values” (Cohen, 1990, p. 1310) and the consis-
tency among them—the replicability crisis may even turn 
out to be no such thing at all.

Choice Overload Studies

Article ID µ V ntotal Product category Detail

Iyengar and Lepper (2000) 1 0.82 .13 249 Jam Study 1
 2 0.30 .15 193 Essays Study 2
 3 0.44 .15 193 Essays Study 2
 4 0.82 .24 67 Chocolates Study 3
 5 1.15 .26 67 Chocolates Study 3
Shah and Wolford (2007) 6 0.77 .22 80 Pens Study 1
Scheibehenne, Greifeneder, 

and Todd (2009)
7 −0.11 .22 80 Restaurant coupons Study 1
8 −0.18 .23 75 Charities Study 2b
9 −0.25 .16 80 Music Study 3a

 10 −0.05 .15 87 Music Study 3b
Sela, Berger, and Liu (2009) 11 0.38 .18 121 Ice cream Study 1a
 12 0.45 .23 75 Food Study 1b
 13 0.89 .28 51 Printers and MP3 players Study 2
 14 0.35 .16 156 Printers and MP3 players Study 3
Diehl and Poynor (2010) 15 0.32 .16 165 Camcorders Study 2
 16 0.53 .25 65 Computer wallpaper Study 3
Inbar, Botti, and Hanko (2011) 17 1.14 .42 27 DVDs Study 1

Note: Choice overload studies. The effect size estimate for each study is given on the standardized Cohen’s d scale by µ, the standard error of this 
estimate is given by V, and the total sample size of the study is given by ntotal. Iyengar and Lepper (2000), in both Studies 2 and 3, measured two 
dependent variables; in each case, both measurements are included and, for simplicity, are considered as independent. A positive µ is associated 
with a negative impact of larger assortments (i.e., the choice overload effect), whereas a negative µ is associated with a positive impact of larger 
assortments. For simplicity, we considered only studies with no moderators (i.e., two-condition, single-effect studies).

Appendix A

Appendix B

Calculations
In this appendix, we derive the sampling variance of 
effect size estimates in the presence of heterogeneity and 
compare it with the sampling variance assumed by stan-
dard null hypothesis significance tests. These derivations 
are general in that they account for multiple effects of 
interest and relatively unrestricted forms of heterogeneity. 
They follow directly from multilevel models, in particular 

the random intercepts and slopes model with no group-
level predictors (Gelman & Hill, 2006).

In calculating the power for effect sizes, we assume 
that ȳ, the vector of condition-specific measurements of 
interest (e.g., means, proportions) for each of the condi-
tions in a given study, has overall population mean DD. We 
let C be a matrix that yields the contrasts of interest such 
that µ = CDD denotes the overall population mean of the 
contrasts of interest. For example, in a two-condition 
experiment, the contrast matrix may be C = (−1 1), and, 
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consequently, µ will have one element that is the differ-
ence between the measurements in the two conditions. 
Similarly, in a 2 × 2 experiment, the contrast matrix may 

be C = 
−
−
− −

















1 1 0

1 0 1

1 1 1

0

0

1

, and, consequently, the first two ele-

ments of µ will represent simple effects, whereas the 
third will represent the interaction effect.

If we believe that (a) study-level, condition-specific 
effect size heterogeneity is quantified by ΣΣττ , (b) the sam-
pling variation of ȳ  is quantified by ΣΣεε , and (c) these 
sources of variance are independent of one another, then 
µ̂, our estimate of µ, will have expectation µ and variance 
66s  = CΣΣττCc + CΣΣεεCc. However, standard null hypothesis 
significance tests account for sampling variation alone, 
and, thus, assume that the variance is 660  = CΣΣεεCc. 
Because of the overdispersion of 66s  relative to  
660, such tests will typically have lower power than 
expected if it is assumed, as is standard, that 66s  = 660.

Before proceeding, we note that ΣΣεε  should be written 
more formally as ΣΣεε(n) as it is a function of n, the vector 
of sample sizes in each condition. Consequently, 66s and 
660 should be written more formally as 66s(n) and 660(n), 
respectively. This detail is suppressed but is clearly rele-
vant for calculating the sample size requisite for adequate 
power.

If we assume that a normal distribution aptly models 
heterogeneity and sampling variation and that the vari-
ance of these distributions are known, then the sampling 
distribution of µ̂ is N(µ, 66s), whereas the null distribution 
under the sharp point null hypothesis of zero effect is 
N(0, 660). Power can be calculated by integrating the sam-
pling distribution of µ̂ over the critical region determined 
by the null distribution. Typically, we are interested in 
testing the null hypothesis for only one or several ele-
ments of µ, thereby simplifying the integration consider-
ably. Given this form for power, we can easily numerically 
solve for n that give adequate power; typically, to sim-
plify matters, we assume an equal sample size n per con-
dition (and thus a total sample size of n times the number 
of conditions), thereby allowing for a numerical solution 
in one dimension.

When (a) the condition-specific heterogeneity is inde-
pendent with variance W2 and (b) the study is between-
subjects with sampling variance V2 and equal sample size 
n in each condition, 66s simplifies considerably reducing 

to τ τ2 2 2
CC CC CC

2
′ + ′ = + ′σ σ

n n
( ) . Similarly, 660 reduces to 

σ 2

n
CC′. If interest in this setting centers on the treatment 

effect in a two-condition experiment or either of the sim-
ple effects in a 2 × 2 experiment, the distributions listed 

earlier simplify to N( )µ τ, ( )2 2 2
+ σ

n  and N(0 ),2
2V

n , respec-
tively, where µ is the single effect of interest. Letting 

sS n
= +2 2 2

( )τ σ  and s
n0 2
2

= σ , the power of the one-

tailed test of H0 0:µ =  is 1 0− −Φ( )| |z s
sS

α µ
 while the power for 

the two-tailed test is 1 2 0 2 0− +− − −Φ Φ( ) ( )/ /| | | |z s
s

z s
sS S

α αµ µ  where 
zD  is the 100 1( )−α  percentile of the standard normal 
distribution and ) ( )x  is the standard normal cumulative 
distribution function. These formulae can be easily solved 
numerically for the smallest n such that adequate power 
is achieved. Further, these formulae hold for the interac-
tion effect in a two by two experiment replacing the twos 
in sS and s0 by fours.

In this discussion, we assume that DD , ΣΣττ , and ΣΣεε �are 
known. In practice, they are often not. If we believe that 
our uncertainty in DD  can be quantified by 6α and that our 
uncertainty is independent of all other sources of varia-
tion, then we can instead set 66s = C ΣΣααCc + CΣΣττCc + CΣΣεε
Cc to account for this uncertainty. Alternatively, if prior 
study-level data are available, one can bootstrap (Efron & 
Tibshirani, 1994) the studies to derive sampling distribu-
tions for DD  and ΣΣττ ; furthermore, if subject-level data are 
available, one can bootstrap that data to obtain sampling 
distributions for ΣΣεε . One can then use these values in 
combination with our formulae to compute an approxi-
mate sampling distribution for, for example, the sample 
size required for adequate power; then, a value from the 
upper part of that distribution can be specified as the 
sample size for a future replication. Another method for 
accounting for uncertainty in DD , ΣΣττ , and ΣΣεε is to conduct 
a sensitivity analysis. Finally, adjustments can be made 
directly to the power formulae presented earlier to make 
them hold exactly under unknown parameters (e.g., mov-
ing from a normal distribution to a t distribution when the 
sampling variance ΣΣεε is unknown); in practice, adjust-
ments for unknown sampling variance have a negligible 
impact on the sample size requisite for adequate power 
when uncertainty in DD  or heterogeneity is nonzero 
because, in such an environment, the sample size requi-
site is generally sufficiently large that the normal approxi-
mation holds reasonably well.

Appendix C

Bayesian hierarchical model

Our Bayesian hierarchical model for estimating heteroge-
neity in the Many Labs data is

d ns l s s l s s l, , ,~ , / ,N µ β σ+( )2

where ds,l denotes the estimated effect size for study s from 
lab l (so that s ranges from 1 to 16, and l ranges from 1 to 
36), and ns,l denotes the sample size for study s from lab l.
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The hierarchical model for the lab-specific deviation 
from the overall study mean can be written as

βs l, ~ , .N s
20 τ( )

Primary interest in this case centers not on the hierarchi-
cal model for the means Es,l but rather on the hierarchical 
model for the variances Ws

2, which is log-normal

log N 2τ λ ηs( ) ( )~ , .

We are most interested in the posterior distribution of τ̄ = 
e Ō.

All that remains for us to specify the full model is to 
give our priors for the µs, the V s

2 , O−, and K. In all cases, we 
use relatively diffuse and, thus, noninformative priors:

µ σs ~ , , ~ . , .N 1 IG 1 12
s
20 00 0 00 0 00( ) ( )

λ η~ , , ~ , .U 1 1 U 5−( ) ( )0 0 0

All models were estimated in WinBUGS (Spiegelhalter, 
Thomas, & Best, 1999).
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Notes

1. We follow Brandt et al. (2014, p. 218) and “use the term close 
replications because it highlights that no replications in psy-
chology can be absolutely ‘direct’ or ‘exact’ recreations of the 
original study (for the basis of this claim see Rosenthal, 1991; 
Tsang & Kwan, 1999).”
2. Here and throughout, by the “simple effect of Experimental 
Factor A (B),” we mean the “the simple effect of Experimental 
Factor A (B) in the low condition of Factor B (A).” We use the 
former for simplicity.
3. We note that our approach may be somewhat optimistic in 
that we assume that the population average effect size µ and 
heterogeneity W2 are known—analogous to standard formulae 
assuming µ is known. Though both are never truly known, 
our approach can be generalized to accommodate uncertainty 
in them; because these extensions are technical in nature, we 
present them in Appendix B.
4. For an example, consider Studies 10 and 12 of the choice 
overload effect listed in Appendix A.
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