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Abstract

Statistical power depends on the size of the effect of interest. However, effect sizes are rarely fixed in psychological
research: Study design choices, such as the operationalization of the dependent variable or the treatment manipulation,
the social context, the subject pool, or the time of day, typically cause systematic variation in the effect size. Ignoring
this between-study variation, as standard power formulae do, results in assessments of power that are too optimistic.
Consequently, when researchers attempting replication set sample sizes using these formulae, their studies will be
underpowered and will thus fail at a greater than expected rate. We illustrate this with both hypothetical examples
and data on several well-studied phenomena in psychology. We provide formulae that account for between-study
variation and suggest that researchers set sample sizes with respect to our generally more conservative formulae. Our
formulae generalize to settings in which there are multiple effects of interest. We also introduce an easy-to-use website
that implements our approach to setting sample sizes. Finally, we conclude with recommendations for quantifying

between-study variation.
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The validity of research in the biomedical and social sci-
ences is under intense scrutiny at present. A particular area
of focus is on a widespread failure to replicate prior find-
ings that some have labeled the replicability crisis (Brodeur,
Le, Sangnier, & Zylberberg, 2012; Francis, 2013; Ioannidis,
2005; Yong, 2012). This problem has gained increasing
recognition in psychology (Fanelli, 2009; Nosek & Lakens,
2014; Pashler & Wagenmakers, 2012), and, indeed, several
prominent findings (Bargh, Chen, & Burrows, 1996; Bargh,
Gollwitzer, Lee-Chai, Barndollar, & Trotschel, 2001; Bem,
2011) have notoriously failed to replicate.

As a consequence of this crisis, interest in how to plan
and conduct replications has increased (Asendorpf et al.,
2013; Brandt et al., 2014; Open Science Collaboration,
2012; Klein et al., 2014; Pashler & Wagenmakers, 2012).
Considerable attention has been devoted to factors that
can cause effect sizes to vary across studies. For example,
it has been shown that so-called questionable research
practices can have a drastic impact on reported p values
and thus effect sizes (Simmons, Nelson, & Simonsohn,
2011). Although this observation is important, it is clear
that questionable research practices are not the only

factors contributing to between-study variation in effect
sizes. Another critical source of between-study variation
is what can be broadly termed method factors, that is,
anything pertaining to the implementation of a study that
is not directly related to the theory under study (e.g.,
seemingly major factors, such as the operationalization of
the dependent variable or the treatment manipulation,
but also seemingly minor factors, such as the social con-
text, the subject pool, or the time of day; for a compre-
hensive list, see the Replicability and Meta-Analytic
Suitability Inventory of Brown et al., 2014, this issue, who
use the term sampling decisions for what we term method
Jactors.). The between-study variation in effect sizes
resulting from such method factors can have dramatic
and difficult to foresee effects on the outcome of a study
and thus should be explicitly considered in planning a
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replication study so as to mitigate the likelihood of repli-
cation failure.

The reason between-study variation in effect sizes
(also known as effect size heterogeneity or more simply
as heterogeneity) complicates matters for researchers
attempting replication is that it affects how likely one is
to obtain a statistically significant estimate when the
effect exists (i.e., statistical power). Best practices dictate
setting sample sizes to achieve some prespecified level of
power (typically 80%; Cohen, 1992). However, standard
power formulae do not account for effect size heteroge-
neity (i.e., they assume it is zero) thereby resulting in
assessments of power that are too optimistic—particu-
larly when effect sizes are small to moderate. This unwar-
ranted optimism causes sample sizes to be set too low
and, thus, replication attempts to fail at a greater than
expected rate.

We believe that ignoring effect size heterogeneity may
add substantially to current difficulties in replicating psy-
chological research. We illustrate why by first showing
that psychological research often involves considerable
heterogeneity and then showing the consequences of
this heterogeneity for study planning. In particular, we
demonstrate that data on close replications from the
“Many Labs” Replication Project (Klein et al., 2014) and
more general replications of the choice overload effect
(i.e., that an increase in the number of options from
which to choose can lead to adverse consequences such
as a decrease in the likelihood of making a choice or the
satisfaction with a choice; Iyengar & Lepper, 2000)
exhibit substantial between-study variation.! We then
show that this between-study variation means that sam-
ple sizes for future replications need to be set consider-
ably higher than indicated by standard formulae to
achieve adequate statistical power; in some cases, the
impact of heterogeneity is so large that even sample
sizes in the thousands do not provide sufficient power.
We also demonstrate that the consequences of between-
study variation are particularly significant for small to
moderate effect sizes and when there are multiple effects
of interest in a given study. To aid researchers in sample
size planning, we provide power formulae that account
for heterogeneity, and we suggest that sample sizes be
set to achieve adequate power with respect to our gen-
erally more conservative formulae; these formulae are
implemented on an easy-to-use website that we have
created to facilitate the immediate assessment of the
impact of effect size heterogeneity on replicability (see
the Discussion section for details). Finally, we provide
specific recommendations for quantifying between-study
variation. These recommendations highlight the need to
extend empirical findings to include information about
the differing levels of heterogeneity that are observable
across domains.

Why Heterogeneity Matters for Power
Analyses

In a recent article, Cumming (2014) discussed the “dance
of the confidence intervals,” that is, how the point esti-
mates and 95% confidence intervals from a set of replica-
tion studies tend to “bounce around”:

[When studies] all estimate the same population
mean, 1 . . . the bouncing around . . . should match
what we expect simply because of sampling
variability. If there is notably more variability than
this, we can say the set of studies is heterogeneous,
and there may be one or more moderating variables
that affect the effect size [pl. (p. 22)

Effect size heterogeneity—extra variability or bounce in
the dance of the confidence intervals, to use the lan-
guage of Cumming (2014)—has long been regarded as
important for more general (i.e., systematic or concep-
tual) replications in psychological research. For instance,
a meta-analysis of 17 general replications of the choice
overload effect (see Appendix A for data) yields P = 78%
(i.e., more than three quarters of the variability in these
17 studies is due to heterogeneity—a large amount).
Though substantial heterogeneity is unsurprising in the
context of more general replications, there is mounting
evidence of heterogeneity even under conditions that are
nearly ideal for replication. For example, consider the
Many Labs project that provides 16 estimates of 13 classic
and contemporary effects in psychology from 36 inde-
pendent samples totaling 6,344 subjects. Despite the fact
that each of the 36 labs involved in the Many Labs project
used identical materials and that these materials were
administered through a web browser to minimize lab-
specific effects, random effects meta-analyses conducted
by the Many Labs authors yield nonzero estimates of het-
erogeneity for all 14 of the effects they found to be non-
null (they studied 16 effects in total, but 2 were found to
be null). Further, the average I? across these 14 studies
was 40%: Lab-specific method factors account for nearly
half of the total variability of the studies on average (see
Table 3 of Klein et al., 2014).

Given these results, it is clear that substantial heteroge-
neity can occur even under conditions that are nearly ideal
for replication and without questionable research prac-
tices: In the Many Labs studies, it was caused exclusively
by as yet unidentified (and potentially unidentifiable)
method factors specific to each of the 36 labs participating
in the project. Consequently, it seems reasonable to con-
clude that some degree of effect size heterogeneity is
likely to be present in much psychological research.

Effect size heterogeneity is caused by moderating vari-
ables (i.e., what we term method factors). When these
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moderating variables can be identified (e.g., large effect
for male subjects and small effect for female subjects),
heterogeneity can be explained and controlled for (e.g.,
by controlling for sex in the study design and analysis).
However, moderators are often hard to identify—particu-
larly when a research area is new or when a set of studies
consists of close replications (e.g., the Many Labs stud-
ies). We therefore suggest that researchers explicitly
account for heterogeneity in study planning—in particu-
lar in setting sample sizes to achieve adequate statistical
power—rather than assuming, as is typical, that heteroge-
neity is zero.

Statistical power is the probability of rejecting the null
hypothesis when it is false. More formally, in most set-
tings in psychology, statistical power is the probability
that, if the true effect size is p and p # 0, then a planned
study will reject the sharp point null hypothesis H: 1 =0
at size a (typically o = .05). When the true effect size p is
on a standardized scale, such as the Cohen’s d scale
(which we assume throughout but relax in Appendix B),
power is a function of p, a, and the sample size.
Consequently, the sample size can be set to achieve a
desired level of power given p and a, and best practices
dictate planning studies that are adequately powered
(typically at 80%; Cohen, 1992).

When each potential study has the same effect size p,
as would be the case for exact replications, there is no
effect size heterogeneity. However, because replications
in psychology are never exact (Brandt et al.,, 2014;
Rosenthal, 1991; Tsang & Kwan, 1999), as evidenced by
the choice overload and Many Labs results presented ear-
lier, there is no single p. Instead, each potential study has
its own effect size y, that differs from the overall average
effect size p. Heterogeneity, denoted 12, quantifies the
variance of the p,; around p, and it expresses the inherent
variability in effect sizes that is observed when not all
method factors are known and controlled for.

When effect size heterogeneity is present (i.e., when
12 > 0), the variability of the sampling distribution of a
replication study’s effect size estimate (and consequently
of any associated test statistic) will be greater than that
assumed by standard null hypothesis significance tests.
In the language of Cumming (2014), there will be extra
bounce in the dance of the confidence intervals, but the
usual amount of bounce will be assumed in the signifi-
cance test. This assumption is in expectation generally
quite optimistic, and thus power is overstated for a given
sample size thereby leading sample sizes to be set too
low and studies to be underpowered.

We derive new power formulae that account for this
scenario. Whereas in standard power formulae power is
calculated as a function of p, a, and the sample size
(assuming t° is zero), in our formulae, it is calculated as
a function of y, %, a, and the sample size (see Appendix

B for details; our formulae nest the standard ones in that
they reduce to them when 12 is set to zero). We can then
set the sample size to achieve a desired level of power
given 1, 7%, and a using these new formulae.

In standard power formulae, the effect size p is taken
as a known input (a0 and the sample size are set by the
researcher). In our formulae, the effect size heterogeneity
12 is also analogously taken as a known input. When
prior studies in a research domain have been conducted,
reasonable values for p and 1% can be obtained by con-
ducting a random effects meta-analysis of them (Cooper,
Hedges, & Valentine, 2009; Cumming, 2014; Hunter &
Schmidt, 2000); when they have not been conducted, we
suggest conducting a sensitivity analysis across a range of
reasonable values of p and 7% In the sequel, we assume
u and 12 are given but return to their specification and
estimation in the Discussion section.

Analyses of Single Effects

In this section, we consider the power of the single effect
of interest obtained from a two-condition study. Using a
hypothetical example, we examine how both power and
sample size requirements vary as a function of p and 1%
We then present data from the Many Labs replications as
well as from studies of the choice overload effect and
calculate the sample size required for a future study in
these domains to achieve adequate power.

Hypotbetical example

Consider a simple two-condition, between-subjects
experiment with equal sample size 7 in each condition in
which the standardized difference between the means of
the observations in each condition is given by p (i.e., the
effect size p is on the Cohen’s d scale). Cohen (1992)
defined small, medium, and large effect sizes in psychol-
ogy as 1 = 0.2, 0.5, and 0.8, respectively, and we consider
each of these in turn. Standard power formulae (Faul,
Erdfelder, Lang, & Buchner, 2007) require sample sizes of
310, 51, and 21 subjects per condition for these respec-
tive effect sizes to achieve 80% power for a one-sided test
with a = .05 (we use one-sided tests because replication
requires matching the direction of the effect obtained in
prior studies).

Now, suppose there is independent condition-specific
heterogeneity t2. Pigott (2012) provided guidance on the
typical degree of between-study variation, or heterogene-
ity, in psychology by relating it to the degree of within-
study variation (i.e., sampling variation). In particular,
she has defined a small amount of heterogeneity to be
equal to one third the within-study variation, a medium
amount of heterogeneity to be equal to the within-study
variation, and a large amount of heterogeneity to be
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Fig. 1. Power at standard sample size. 80% power is achieved at the
standard sample size when heterogeneity 1° is zero, but power dimin-
ishes as it increases.

equal to three times the within-study variation. In our set-
ting, her framework equates the condition-specific within-
study variation to the standard error of the sample mean;
because the effect size p is on the standardized Cohen’s d
scale, we can without loss of generality assume that the
observation-level variance is one, and thus the standard
error of the sample mean is one over the sample size. As
an example, when the sample size is 7 = 25 subjects per
condition, a small amount of heterogeneity would be 1% =
1/3 x 1/25 = ~.01, a moderate amount of heterogeneity
would be t? = 1/25 = .04, and a large amount of heteroge-
neity would be 1> = 3 x 1/25 = .12. Consequently, we
examine how power and the sample size requisite for
adequate power vary as heterogeneity 1% ranges from 0
(i.e., no heterogeneity) to .12 (i.e., large heterogeneity).
In Figure 1, we present power as a function of the
effect size p and condition-specific heterogeneity 1> when
the sample size is set to value indicated by standard
power formulae (i.e., 310, 51, or 21 subjects per condi-
tion for small, medium, and large effect sizes respec-
tively). As can be seen, when heterogeneity is zero, 80%
power is achieved, as would be expected on the basis of
standard power formulae. However, power decreases as
heterogeneity increases, and this is most pronounced for
when the effect size is small. Indeed, the impact of het-
erogeneity on power depends strongly on the effect size.
When the effect size is large, even relatively large amounts
of heterogeneity have only a modest impact on power:
Power remains at about 75% when heterogeneity is mod-
erate (i.e., T = .04) and drops to only just below 70%
when heterogeneity is large (i.e., 1> = .12). On the other
hand, when the effect size is small, even small amounts
of heterogeneity cause power to drop dramatically:

Power is only about 65% when 1> = .01. When the effect
size is small, and when heterogeneity is moderate (large),
power is only about 60% (55%), making the likelihood of
replication little better than a coin toss.

In Figure 2, we present the sample size per condition
required to achieve 80% power as a function of the effect
size p and heterogeneity 12 As can be seen, when het-
erogeneity is zero, the requisite sample size matches that
calculated by standard formulae and indicated by the
dashed horizontal lines. However, as heterogeneity
increases, the requisite sample size increases rather dra-
matically, and it can be many multiples of that suggested
by standard formulae; this increase is particularly promi-
nent when the effect size is small and moderate.

Mamny Labs and choice overload data

To present the effect of heterogeneity on power and the
sample size requisite for adequate power in the context
of actual psychological research, we use experimental
data from both close and general replications. In particu-
lar, we examine how heterogeneity affects power and
requisite sample sizes for 36 studies of the 16 effects
examined by the Many Labs authors (close replications)
and for 17 studies of the choice overload effect (general
replications). All studies were unmoderated (i.e., they
were two-condition, single-effect studies).

Effect size and heterogeneity estimates for the difference
in the means of the two conditions based on random
effects meta-analyses of each effect appear in Table 1; all
estimates are presented on the standardized Cohen’s d
scale to facilitate comparison. Using these estimates, we
can calculate power and the sample size requisite for ade-
quate power for future replication studies of these effects.
These calculations can provide guidance for, in the case of
the 16 effects studies by the Many Labs authors, future rep-
lication studies in different social contexts and with new
subject pools in which their materials are used (.e., close
replications) and, in the case of the choice overload effect,
future replication studies in which different operationaliza-
tions of the dependent variable and treatment manipula-
tion (i.e., general replications) are used.

The results in Table 1 are divided into three sections:
null effects (currency priming and flag priming), normal-
sized effects (imagined contact through low vs. high cat-
egory scales), and very large effects (anchoring and the
allowed/forbidden effect). Heterogeneity is most relevant
for normal-sized effects, though we discuss each of the
three in turn. The Many Labs authors found that two
effects (i.e., currency priming and flag priming) did not
replicate. For these two effects (and only these two
effects), heterogeneity was estimated at zero (it was very
small but nonzero for gains vs. loss framing). Consequently,
n,, the sample size per condition requisite for adequate

Downloaded from pps.sagepub.com at NORTHWESTERN UNIV/SCHL LAW on November 17, 2014


http://pps.sagepub.com/

616

McShane, Bockenholt

1000 -

800 -

go=n

600 -

600 -

c 400 -

200 -

40 -

30 -

20 -

I I I I I
0.000 0.050 0.075 0.100 0.125

2
T

I
0.025

Fig. 2. Sample size per condition requisite for 80% power. The dashed
line indicates the sample size indicated by standard formulae. 80%
power is achieved at this sample size when heterogeneity 1 is zero,
but a considerably larger sample size is required as heterogeneity
increases. The y-axis is capped at 1,000, and, in some cases, 80% cannot
be achieved even with infinite sample sizes.

power computed with standard formulae, is equal to n,
the sample size computed per condition requisite for
adequate power computed with our formulae, and it pro-
vides adequate power; that said, 7, is unrealistically large
because the effects are miniscule.

For the five very large effects (i.e., the four anchoring
effects plus the allowed/forbidden effect), the effect sizes
are so large that adequate power is obtained with very
small sample sizes. Consequently, heterogeneity does not
have much of an impact (i.e., n, and »_ are similar or
identical).

Turning to the studies with effect sizes more typical in
psychology (i.e., imagined contact through low vs. high
category scales), the effect of heterogeneity can be quite
dramatic. For example, standard sample size formulae
suggest that a sample size of 7, = 885 subjects per condi-
tion (i.e., 1,770 in total) is adequate to obtain 80% power
for the imagined contact effect; however, because of het-
erogeneity, power is only 66.7% with 885 subjects per
condition, and our formulae require a sample size of 1, =
2,434 subjects per condition (i.e., 4,868 in total) for ade-
quate power. The results are even more striking for the
choice overload effect in which heterogeneity is much
larger (i.e., because the studies are general rather than
close replications). Standard sample size formulae sug-
gest that a sample size of 7, = 71 subjects per condition
is adequate to obtain 80% power. However, because of
heterogeneity, power is only 64.3% with 71 subjects per
condition, and our formulae require a sample size of 1, =
389 subjects per condition for adequate power.

As can be seen in Table 1, the impact of heterogeneity
is relatively modest when either the effect size is large or
heterogeneity is small (noting, as per Figures 1-2, that
even small heterogeneity 1% can have a large impact if the
effect size p is also small). What can be done when effect
size heterogeneity is not so modest (e.g., imagined con-
tact, quote attribution, choice overload)? In the case of
choice overload, the 17 studies were general replications.
Therefore, one could search for study-level design factors
that moderated the effects observed across 17 studies;
such moderators might explain some of the variation in
the effects thereby reducing 2. However, in the case of
the imagined contact and quote attribution effects, the 36
studies were close replications with identical materials.
Therefore, one would have to search for moderators per-
taining to the social context or subject pool; this is more
difficult (and possibly intractable), and realistically one
might simply need larger sample sizes to replicate these
effects.

Analyses of Multiple Effects

Up to the present, the discussion has centered on a single
effect of interest. In practice, however, researchers are
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Table 1. Effect Size (), Heterogeneity (1), Standard Sample Size per Condition Requisite for 80% Power (7,), Our Sample
Size per Condition Requisite for 80% Power (72,), and Power at the Standard Sample Size Requisite for 80% Power (Power) for

17 Effects

Effect o T N n, Power (%)
Currency priming —0.02 .00 40,377 40,377 80.0
Flag priming 0.02 .00 36,924 36,924 80.0
Imagined contact 0.12 .08 885 2,434 66.7
Sunk costs 0.29 .05 145 155 78.1
Quote attribution 0.31 .16 131 239 69.6
Norm of reciprocity 0.36 .09 95 108 76.4
Choice overload 0.42 .35 71 389 64.3
Gender differences in implicit math attitudes 0.57 A1 39 42 78.0
Retrospective gambler fallacy 0.61 .09 34 36 78.8
Gains versus loss framing 0.66 .00 30 30 81.0
Correlation between implicit and explicit math attitudes 0.82 .10 20 20 80.5
Low versus high category scales 0.88 .16 17 19 78.0
Anchoring—Babies born 1.21 15 10 10 81.5
Allowed/forbidden 1.93 .50 5 5 81.3
Anchoring—Mount Everest 2.00 36 5 5 85.4
Anchoring—Chicago 241 .69 4 4 83.3
Anchoring—Distance to New York City 2.53 .30 3 4 79.2

Note: Effect sizes are presented on the standardized Cohen’s d scale, and t denotes heterogeneity of a mean difference on the standardized
Cohen’s d scale reported as a standard deviation (rather than as a variance 12). Effect size and heterogeneity estimates are based on random
effects meta-analyses conducted by the Many Labs authors for 15 of the 17 effects. We conducted our own meta-analysis of the choice overload
data presented in Appendix A and the correlation between implicit and explicit math attitudes data after converting the raw correlations to the
Cohen’s d scale. The effect of heterogeneity on the sample size requisite for 80% power and on power at the standard sample size is most notable
for effect sizes typical in psychology (i.e., imagined contact through low vs. high category scales).

often interested in multiple effects (e.g., a simple effect
and an interaction effect in a 2 x 2 study). Standard power
formulae tend not to deal with this situation—whether
there is heterogeneity or not—and researchers often sim-
ply determine the sample size on the basis of the smallest
of the multiple effects. This approach can be optimistic
because multiple effects are typically correlated with one
another; when they are negatively correlated, as fre-
quently occurs in practice (e.g., a simple effect and an
interaction effect in a 2 x 2 study), the sample size required
to achieve a given level of power for the multiple effects
jointly can be dramatically higher than that required for
the smallest of the effects. In this section, we extend the
analysis in the prior section to show the impact of hetero-
geneity on the sample size required for adequate power
when a researcher is interested in multiple effects.
Consider a 2 x 2 between-subjects experiment with
equal sample size 7 in each condition in which the sim-
ple effect of Experimental Factor A is 0.5, the simple
effect of Experimental Factor B is 0.8, the interaction
effect is 0.8, and the variance of the observations in each
condition is assumed, without loss of generality, to be 1
so that the simple effects are on the standardized Cohen’s
d scale (i.e., it can be assumed without loss of generality
that the observations in each condition have condition-
specific mean ab = 0.0, Ab = 0.5, aB = 0.8, and AB = 2.1,

and variance = 1).% Further, suppose there is independent
condition-specific heterogeneity with variance 2.

Imagine there are two researchers with different theo-
ries about the effects under study. The first researcher
develops a hypothesis about both simple effects, whereas
the second researcher develops a hypothesis about the
simple effect of Experimental Factor A and the interac-
tion; both researchers wish to achieve 80% power jointly
for one-sided tests of both effects of interest with o = .05.
Note that both of the researchers are interested in two
effects that are the same size (i.e., one effect of size 0.5
and another of size 0.8).

The sample size required so that the first researcher
achieves 80% power for both effects of interest jointly is
shown for various values of 12 by the solid curve in the
left panel of Figure 3. The dashed and dotted curves show
the sample size required to achieve 80% power for each
of the simple effects separately; consequently, these are
identical to corresponding curves in Figure 2. For rela-
tively low values of 1%, the sample size required to achieve
80% power for both effects jointly is negligibly larger than
that required for the smaller of the two simple effects.
However, as 1> gets larger, more subjects are required
beyond those required for the smaller simple effect.

The first researcher’s sample size calculations (see the
left panel of Figure 3) present an optimistic portrait of the
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Fig. 3. Sample size per condition requisite for 80% power. The solid curve indicates the sample size requisite for the two effects of interest
jointly, whereas the dashed curve indicates the sample size requisite for the simple effect of Experimental Factor A alone, the dotted curve indi-
cates the sample size requisite for the simple effect of Experimental Factor B alone, and the dot-dashed curve indicates the sample size requisite
for the interaction alone. The y-axis is capped at 1,000, and, in some cases, 80% cannot be achieved even with infinite sample sizes. The sample
size requisite for the two simple effects jointly is not much greater than that requisite for the smaller of the two simple effects when heterogene-
ity is small to moderate, but it is when heterogeneity is large. However, the sample size requisite for the simple effect of Experimental Factor
A and the interaction effect jointly is much greater than that requisite for either effect separately regardless of the degree of heterogeneity t2.

sample size required to achieve adequate power for mul-
tiple effects: The sample size required is only modestly
larger than that required for the smaller of the two effects
(except when heterogeneity is large). Unfortunately, this
is optimistic because, in 2 x 2 experiments, the estimates
of the two simple effects are positively correlated. If
instead a researcher were interested in, say, a single sim-
ple effect as well as the interaction effect (as the second
researcher is), the divergence between the sample size
required to achieve adequate power for both effects is
substantially larger than that required for the smaller of
the two. This occurs for two reasons. First, in a 2 x 2
experiment, whereas the estimates of each simple effect
are positively correlated with one another, they are each
negatively correlated with the estimate of the interaction
effect. Second, interactions are in general estimated with
greater error.

The sample size required so that the second researcher
achieves 80% power for both the simple effect of size 0.5
and the interaction effect of size 0.8 jointly is shown for
various values of 12 by the solid curve in the right panel
of Figure 3. The dashed and dot-dashed curves show the
sample size required to achieve 80% power for each
effect separately. As can be seen, even for small values of
72, there is a considerable divergence among the solid
curve and the dashed and dot-dashed curves, and this
divergence only increases with t2. Much larger sample

sizes are required to achieve 80% power for both effects
jointly as compared with each separately. In sum, there is
a substantial difference in the sample sizes required by
the two researchers (and depicted in the two panels of
Figure 3), even though they are both interested in two
effects jointly and even though the two effect sizes of
interest are identical.

Discussion

In this discussion, we briefly recapitulate our findings
and recommendations. We then provide an in-depth dis-
cussion of how to quantify heterogeneity to facilitate the
implementation of our sample size formulae in practice.
Next, we discuss how the Many Labs approach could
serve as a model for improving the replicability of
research findings. Finally, in our conclusion, we outline a
proposal for advancing the standards of what constitutes
a successful replication.

Recapitulation and recommendations

In this article, we have argued for and presented evi-
dence that between-study variation in excess of sampling
variation is present in many psychological settings: “no
replications in psychology can be absolutely ‘direct’ or
‘exact,” (Brandt et al., 2014, p. 218) or, more poetically,
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“you cannot step into the same river twice for other
waters are continually flowing in” (Heraclitus quoted in
Plato’s Cratylus, Section 402a). We have shown that
between-study variation causes power to be lower than
expected on the basis of standard formulae and that this
is particularly pronounced for small to moderate effect
sizes or when there is interest in multiple simultaneous
effects. Consequently, if researchers are setting their sam-
ple sizes on the basis of standard formulae, it is unsur-
prising that they are finding replication difficult. These
difficulties are only exacerbated in an environment in
which researchers may be applying the statistical signifi-
cance filter (Gelman & Weakliem, 2009) and engaging in
questionable research practices (Fanelli, 2010; John,
Loewenstein, & Prelec, 2012; Simmons et al., 2011,
Simonsohn, Nelson, & Simmons, 2013), both of which
tend to upwardly bias effect size estimates.

We have proposed a remedy for this situation, namely,
setting sample sizes on the basis of our power formulae
that explicitly account for between-study variation.? Like
standard formulae, our approach requires an estimate of
the population average effect size p. It also requires an
estimate of heterogeneity 12. An estimate of the former
may be obtained from prior research, as is currently done
by researchers before using standard formulae. This strat-
egy is more difficult to use for the latter because it is
uncommon for researchers to report heterogeneity in
prior research except in meta-analytic studies; conse-
quently, we discuss it in greater depth later.

As mentioned throughout the article, we have created
an easy-to-use website that implements our formulae for
a wide variety of cases most common in psychological
research so that researchers may immediately begin
accounting for heterogeneity in sample size calculations.
The website is available at http://spark.rstudio.com/
blakemcshane/hetsampsize/, and it contains a tutorial
that explains how to reproduce the results contained in
this article. In particular, the tutorial demonstrates how to
reproduce the calculations of 7, presented in Table 1 as
well as the plots of Figures 2-3. It also demonstrates how
to extend them for different values of p and 12 By follow-
ing the tutorial as well as the additional instructional
material on the website, researchers should easily be able
to account for heterogeneity in their own sample size
determinations.

Quantifying beterogeneity

For our proposal to be most effective, it is important that
researchers have a reliable estimate of heterogeneity. This
estimate can easily be obtained when a large number of
prior studies are available via a random effects meta-anal-
ysis. However, this is the situation in which researchers
may be least interested in conducting a single replication

study; instead, they are typically more interested in evalu-
ating the evidence in a more cumulative fashion.

Consequently, an important consideration is how to
estimate heterogeneity when there are either no or few
prior studies available, for example, in new research
areas. Cumming (2014) has noted that meta-analysis is
possible even with as few as two prior studies, and there-
fore meta-analysis can be used to estimate heterogeneity.
However, with few prior studies, a meta-analysis is less
reliable—particularly ~ for estimating heterogeneity
(Chung, Rabe-Hesketh, Dorie, Gelman, & Liu, 2013).
Instead, we discuss three alternative approaches and
advocate for a sensitivity analysis approach.

First, a “best guess” for heterogeneity could be used,
as is currently done for effect sizes when there are no or
few prior studies available (i.e., researchers could do for
72 what they currently do for p when there are no or few
prior studies available). Although this approach is not
completely satisfactory because any best guess is unlikely
to be precisely correct, it is an improvement on the cur-
rent approach, which amounts to assuming a best guess
of zero and thus ignoring heterogeneity.

Second, an improvement on the first approach involves
examining how power or the sample size requisite for
adequate power varies when heterogeneity is below or
above the best guess (i.e., conducting a sensitivity analy-
sis). Sensitivity analyses to determine how power or the
sample size requisite for adequate power varies as a
function of the inputs (e.g., the effect size 1) are standard
practice in power and sample size analyses, and thus it is
natural to also conduct a sensitivity analysis with respect
to heterogeneity.

The hypothetical data and actual data results pre-
sented in this article (see Figures 2-3 and Table 1) por-
tend the results of such a sensitivity analysis in practice.
For small effect sizes, the sample size requisite for ade-
quate power is quite sensitive to the best guess of hetero-
geneity, and potentially unrealistic sample sizes would be
required even for low heterogeneity. For moderate effect
sizes, the sample size is reasonably insensitive provided
heterogeneity is low to moderate. Finally, for large effect
sizes, the sample size is comparably insensitive to hetero-
geneity. Sensitivity would in any case be exacerbated
when there is interest in multiple simultaneous effects.

An important feature of our website is that it automati-
cally conducts this sensitivity analysis for heterogeneity.
In particular, it returns a plot analogous to Figures 2-3 for
each effect of interest as well as all effects simultane-
ously. These plots can be used to assess the implications
for the sample size requisite for adequate power when
heterogeneity is below or above the specified value (.e.,
the best guess).

Finally, a third possibility is to use data from other
more established research areas to estimate heterogeneity
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Fig. 4. Posterior distribution of average heterogeneity. The average heterogeneity T for a difference in
means on the standardized Cohen’s d scale reported as a standard deviation (rather than as a variance) for
the Many Labs series of studies could be as high as 0.30, suggesting that heterogeneity in typical replica-

tion settings is likely to be higher than that.

and then to apply this estimate to the area that has no or
few prior studies. This seems like a reasonable approach
because studies in research areas with no or few prior
studies are likely to be more heterogeneous than those in
more established research areas (because, e.g., the opera-
tionalization of the dependent variable or the treatment
manipulation are likely to be less precisely calibrated).
Consequently, one could estimate heterogeneity in
research areas in which there are a large number of stud-
ies and use this estimate as a lower bound on heterogene-
ity in research areas with no or few prior studies. One
could then conduct a sensitivity analysis with respect to
this lower bound.

One version of this third approach would be to use
the Many Labs data to establish such a lower bound.
Because most replications in psychology are not as close
as those from the Many Labs series of studies, these stud-
ies seem particularly well-suited to establish a practical
lower bound on heterogeneity. How can one obtain a
lower bound with these data? One possibility is to simply
use the median value reported across the 16 effects. This
would imply heterogeneity of about T = .10 (e, t* =
.10% = .0D) for a difference in means on the standardized
Cohen’s d scale; this equates to condition-specific hetero-
geneity of T = .10/~/2 =.07 or 12 = .10%2 = .005. Researchers
attempting replication when there are no or few prior
studies available could potentially use this lower bound
as the estimate of heterogeneity. As illustrated previously,
even this seemingly low number can have a dramatic
effect on sample size calculations.

An approach that is more sophisticated than simply tak-
ing the median would be to build a Bayesian hierarchical
model for heterogeneity across the full set of Many Labs
studies. We implemented such a model (see Appendix C
for details) and found that the posterior distribution for T,
the average heterogeneity for a difference in means on the

standardized Cohen’s d scale, favors values substantially
larger than t = .10; this posterior is plotted in Figure 4, and
it is consistent with heterogeneity as large as t = .30 (i.e.,
12 = .09), suggesting that heterogeneity in typical settings,
in which replications are less close than the Many Labs
replications, is likely to be even larger than that.
Consequently, researchers may prefer to use this larger
value as a more conservative estimate.

We emphasize that we do not wish to enshrine these
particular heterogeneity estimates in the literature as cer-
tain other statistical rules (e.g., p < .05) have been.
Instead, we note that because they are based on replica-
tions that are closer than those typical in psychology,
they provide reasonable benchmarks and lower bounds.
Of course, the effects studied by and design choices
made by the Many Labs authors are not a random sample
of effects and designs across psychology more broadly:
Heterogeneity in a given research area or for a given
design choice could thus differ nontrivially from these
numbers, and this difference could be in either direction.
The sensitivity analysis approach that we advocate as the
best approach allows researchers to examine the poten-
tial consequences of this difference. As an additional
matter, we advocate research into quantifying heteroge-
neity across a variety of experimental settings (one pos-
sible way to achieve this is discussed in the following
subsection); such research would provide other research-
ers with heterogeneity estimates and lower bounds most
relevant to their setting.

The many benefits of Many Labs

The recommendations presented in this article are bene-
ficial for single-study replication. However, we also wish
to emphasize a number of benefits of the Many Labs
approach to science. As these two approaches seek
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different aims, we view them and their benefits as com-
plementary rather than competitive.

The core of the Many Labs approach lies in running
multiple smaller studies of a given phenomenon distrib-
uted across multiple labs rather than one large study of the
phenomenon in one lab. Because heterogeneity is the
norm in psychological research, this approach has three
direct benefits: (a) the explicit quantification of heterogene-
ity in a particular research area, (b) more efficient estima-
tion of the population average effect size, and (¢) better
calibration of the Type I error rate. We discuss each in turn.

First, multiple studies allow researchers to directly
quantify heterogeneity via meta-analysis of their own
data. This is beneficial because the estimate of heteroge-
neity is tied specifically to the phenomenon and opera-
tionalizations under study; alternative estimates of
heterogeneity typically require recourse to studies that
use conceptually similar but still distinct phenomena or
that use somewhat different operationalizations.

Such estimates of heterogeneity, particularly when
gathered across a variety of domains, provide a number
of benefits. They provide knowledge of how heterogene-
ity varies as a function of research domain and subdo-
main. They also provide direct inputs to our power and
sample size formulae. Finally, they suggest areas that are
likely ripe for theory enrichment (i.e., areas in which het-
erogeneity is large), which could come via study of, for
example, new moderators.

Second, multiple studies provide a more efficient esti-
mate of the overall population average effect size. For
instance, consider a researcher interested in a two-
condition, between-subjects study with d = 0.223 and
heterogeneity 1% = .01 (in which t* denotes heterogeneity
of a mean difference on the standardized Cohen’s d scale
and thus corresponds to condition-specific heterogeneity
of t* =.10%/2 = .005). Standard power calculations require
250 subjects per condition (i.e., a total of 500 subjects) for
80% power (this is of course optimistic because heteroge-
neity is ignored); suppose the researcher considers either
running one large study with 250 subjects per condition
or, as a parallel to the Many Labs series of studies, run-
ning one smaller study with 50 subjects per condition
and sending the study materials to four colleagues and
asking them to also run the study with 50 subjects per
condition (i.e., so there are a total of 500 subjects in both
scenarios). In the second scenario, not only can the
researcher pool across the five smaller studies to obtain
an estimate of heterogeneity (not possible in the first sce-
nario) but the overall estimate of the effect is 44% more
efficient in the second as compared with the first sce-
nario (i.e., the variance of the estimate in the second
scenario is 44% lower than in the first).

Third, multiple studies allow for better calibration of the
realized Type I error under the null hypothesis that the
overall population average effect size p is zero. In the

presence of heterogeneity, standard null hypothesis sig-
nificance tests will reject the null more frequently than the
size a of the test because they test whether the study-
specific (as opposed to overall average) effect is zero.
Consequently, researchers may believe they have found
something that is generalizable but that, in reality, can only
be attributed to heterogeneity (i.e., study-specific method
factors). However, by pooling across multiple studies and
accounting for heterogeneity, researchers can test whether
the overall population average effect size 1 is zero in a
manner that preserves the stated size o of the test.

The Many Labs approach to science is of course more
costly: It requires the coordination of a large number of
labs across the world as well as a potentially larger num-
ber of subjects. These costs are real, but they must be
assessed against the benefits listed earlier as well as costs
of alternative approaches (e.g., the cost of failed single-
study replications, particularly those that are not properly
powered). It is our hope that improvements in technol-
ogy will ease the burden of coordinating studies across
multiple labs and will allow this approach to become
more common in psychological research.

Conclusion

The approach outlined in this article constitutes a prin-
cipled strategy for dealing with heterogeneity—a fact that
has largely been ignored until the present—in the con-
text of single-study replications. Though no panacea for
all ills that ail replication, the likelihood of future studies
replicating prior ones will increase when heterogeneity is
explicitly accounted for in sample size determinations,
thus mitigating, at least to some extent, the current diffi-
culties in replicating psychological research.

Nonetheless, current difficulties in replicating psycho-
logical research may stem directly from the notion of rep-
lication used: that estimates of one or more effects of
interest from a subsequent study match the direction of
those from one or more prior studies and attain statistical
significance. This definition fails to reflect many impor-
tant features of such estimates (e.g., magnitude, variabil-
ity), and, thus, in closing, we would like to raise the
possibility of altering the standards for what constitutes a
successful replication.

An ample literature has decried the null hypothesis sig-
nificance testing paradigm on which the current standards
for replication rely (Bakan, 1966; Cohen, 1994; Cumming,
2014; Gigerenzer, 2004; Gill, 1999; Hunter, 1997; Meehl,
1978; Rozenboom, 1960; Schmidt, 1996; Schwab,
Abrahamson, Starbuck, & Fidler, 2011; Serlin & Lapsley,
1993) and has instead noted that “the primary product of
a research inquiry is one or more measures of effect size,
not p-values” (Cohen, 1990, p. 1310). This is particularly
relevant as the difference between one estimate that
attains statistical significance and another estimate that
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fails to attain statistical significance is not in general statis-
tically significant itself*—an issue that is distinct from the
arbitrariness of the conventional a = .05 threshold
(Cochran, 1974; Cowles & Davis, 1982; Cramer, 1955;
Fisher, 1926; Yule & Kendall, 1950) but that is often mis-
understood in practice (Gelman & Stern, 2006).
Consequently, one might adopt an alternative notion
of replication (Asendorpf et al., 2013; Brandt et al., 2014;
Gelman, 2014) that involves comparing estimates of
effect sizes and their variability from subsequent studies
with those from prior studies for consistency in a more
holistic sense. Relatedly, one might seek to “power”
future studies so that effect size estimates from them are

Appendix A

Choice Overload Studies

likely to be consistent with those from prior literature
(e.g., whereas researchers are currently advised to choose
sample sizes so that future studies have adequate power
or probability [typically 80%)] of rejecting a null hypothe-
sis at size a [typically 5%l], researchers could instead
“power” studies so that they have adequate probability of
lying “near” the effect size in which nearness would
depend on both a and the degree of heterogeneity). It is
possible that—under such alternative notions of replica-
tion that are based on “one or more measures of effect
size, not p-values” (Cohen, 1990, p. 1310) and the consis-
tency among them—the replicability crisis may even turn
out to be no such thing at all.

Article ID p c Myoral Product category Detail

Iyengar and Lepper (2000) 1 0.82 13 249 Jam Study 1

2 0.30 15 193 Essays Study 2

3 0.44 15 193 Essays Study 2

4 0.82 24 67 Chocolates Study 3

5 1.15 .26 67 Chocolates Study 3

Shah and Wolford (2007) 6 0.77 22 80 Pens Study 1

Scheibehenne, Greifeneder, 7 -0.11 22 80 Restaurant coupons Study 1
and Todd (2009) 8 -0.18 .23 75 Charities Study 2b
9 —-0.25 .16 80 Music Study 3a
10 —-0.05 15 87 Music Study 3b
Sela, Berger, and Liu (2009) 11 0.38 .18 121 Ice cream Study 1a
12 0.45 .23 75 Food Study 1b

13 0.89 .28 51 Printers and MP3 players  Study 2

14 0.35 .16 156 Printers and MP3 players  Study 3

Diehl and Poynor (2010) 15 0.32 .16 165 Camcorders Study 2

16 0.53 .25 65 Computer wallpaper Study 3

Inbar, Botti, and Hanko (2011) 17 1.14 42 27 DVDs Study 1

Note: Choice overload studies. The effect size estimate for each study is given on the standardized Cohen’s d scale by p, the standard error of this
estimate is given by o, and the total sample size of the study is given by 7,,,. Iyengar and Lepper (2000), in both Studies 2 and 3, measured two
dependent variables; in each case, both measurements are included and, for simplicity, are considered as independent. A positive | is associated
with a negative impact of larger assortments (i.e., the choice overload effect), whereas a negative 1 is associated with a positive impact of larger
assortments. For simplicity, we considered only studies with no moderators (i.e., two-condition, single-effect studies).

Appendix B

Calculations

In this appendix, we derive the sampling variance of
effect size estimates in the presence of heterogeneity and
compare it with the sampling variance assumed by stan-
dard null hypothesis significance tests. These derivations
are general in that they account for multiple effects of
interest and relatively unrestricted forms of heterogeneity.
They follow directly from multilevel models, in particular

the random intercepts and slopes model with no group-
level predictors (Gelman & Hill, 2006).

In calculating the power for effect sizes, we assume
that y, the vector of condition-specific measurements of
interest (e.g., means, proportions) for each of the condi-
tions in a given study, has overall population mean a. We
let C be a matrix that yields the contrasts of interest such
that p = Ca denotes the overall population mean of the
contrasts of interest. For example, in a two-condition
experiment, the contrast matrix may be C = (-1 1), and,
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consequently, p will have one element that is the differ-

ence between the measurements in the two conditions.

Similarly, in a 2 x 2 experiment, the contrast matrix may
-11 00

be C=|-1 0 1 0 |, and, consequently, the first two ele-
-1 1 1-1

ments of p will represent simple effects, whereas the

third will represent the interaction effect.

If we believe that (a) study-level, condition-specific
effect size heterogeneity is quantified by 2., (b) the sam-
pling variation of y is quantified by 2z, and (¢) these
sources of variance are independent of one another, then
B, our estimate of p, will have expectation p and variance
2y = CX,C' + CZ;C'. However, standard null hypothesis
significance tests account for sampling variation alone,
and, thus, assume that the variance is £o = CZ;C
Because of the overdispersion of X relative to
%o, such tests will typically have lower power than
expected if it is assumed, as is standard, that £, = X,

Before proceeding, we note that Zz should be written
more formally as £z(#) as it is a function of n, the vector
of sample sizes in each condition. Consequently, £, and
%o should be written more formally as Z4(m) and Zy(n),
respectively. This detail is suppressed but is clearly rele-
vant for calculating the sample size requisite for adequate
power.

If we assume that a normal distribution aptly models
heterogeneity and sampling variation and that the vari-
ance of these distributions are known, then the sampling
distribution of jiis N(u, =), whereas the null distribution
under the sharp point null hypothesis of zero effect is
N(O0, Z,). Power can be calculated by integrating the sam-
pling distribution of ji over the critical region determined
by the null distribution. Typically, we are interested in
testing the null hypothesis for only one or several ele-
ments of p, thereby simplifying the integration consider-
ably. Given this form for power, we can easily numerically
solve for m that give adequate power; typically, to sim-
plify matters, we assume an equal sample size »n per con-
dition (and thus a total sample size of 7 times the number
of conditions), thereby allowing for a numerical solution
in one dimension.

When (a) the condition-specific heterogeneity is inde-
pendent with variance 12 and (b) the study is between-
subjects with sampling variance 6% and equal sample size
n in each condition, = simplifies considerably reducing

to tZCC’+"72CC’ :(t2+f—;)CC’. Similarly, Z¢ reduces to
2

2_CC'1If interest in this setting centers on the treatment
n g

effect in a two-condition experiment or either of the sim-
ple effects in a 2 x 2 experiment, the distributions listed

2 2 2
earlier simplify to N(2(t +97)) and N©O.250), respec-
tively, where p is the single effect of interest. Letting

sg = /2(12 +cj_;> and So = lzf_j, the power of the one-

tailed test of Hy:p=0is 1— CD(%T'“') while the power for

the two-tailed test is 1— (D(Za/zso_ﬁ»ll) + @ (Zezo My where
s S,

Z, is the 100(1-a) percentilge of the standard normal

distribution and ®(x) is the standard normal cumulative
distribution function. These formulae can be easily solved
numerically for the smallest 7 such that adequate power
is achieved. Further, these formulae hold for the interac-
tion effect in a two by two experiment replacing the twos
in sy and s, by fours.

In this discussion, we assume that a, X,, and Z; are
known. In practice, they are often not. If we believe that
our uncertainty in o can be quantified by %, and that our
uncertainty is independent of all other sources of varia-
tion, then we can instead set £, = CX,C' + CZ,C' + CZ;
C' to account for this uncertainty. Alternatively, if prior
study-level data are available, one can bootstrap (Efron &
Tibshirani, 1994) the studies to derive sampling distribu-
tions for @ and £ ; furthermore, if subject-level data are
available, one can bootstrap that data to obtain sampling
distributions for £z. One can then use these values in
combination with our formulae to compute an approxi-
mate sampling distribution for, for example, the sample
size required for adequate power; then, a value from the
upper part of that distribution can be specified as the
sample size for a future replication. Another method for
accounting for uncertainty in @, £, and Z; is to conduct
a sensitivity analysis. Finally, adjustments can be made
directly to the power formulae presented earlier to make
them hold exactly under unknown parameters (e.g., mov-
ing from a normal distribution to a ¢ distribution when the
sampling variance 2z is unknown); in practice, adjust-
ments for unknown sampling variance have a negligible
impact on the sample size requisite for adequate power
when uncertainty in o or heterogeneity is nonzero
because, in such an environment, the sample size requi-
site is generally sufficiently large that the normal approxi-
mation holds reasonably well.

Appendix C

Bayesian bierarchical model

Our Bayesian hierarchical model for estimating heteroge-
neity in the Many Labs data is

2
ds,l ~ N(:ux + ﬁx,ly Og / ns,l)’

where d, , denotes the estimated effect size for study s from
lab 7 (so that s ranges from 1 to 16, and / ranges from 1 to
36), and 7, denotes the sample size for study s from lab 7.
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The hierarchical model for the lab-specific deviation
from the overall study mean can be written as

ﬂ&l ~ N(O,TSZ).

Primary interest in this case centers not on the hierarchi-
cal model for the means B, but rather on the hierarchical
model for the variances 7,%, which is log-normal

log(rs) ~ N(/T,nz).

We are most interested in the posterior distribution of 7 =
e’

All that remains for us to specify the full model is to
give our priors for the z, the o7, 7, and 1. In all cases, we
use relatively diffuse and, thus, noninformative priors:

ue~N(01007), 0. ~1G(0.001,0.001)

A ~U(-10,10), n~U(0,5).

All models were estimated in WinBUGS (Spiegelhalter,
Thomas, & Best, 1999).
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Notes

1. We follow Brandt et al. (2014, p. 218) and “use the term close
replications because it highlights that no replications in psy-
chology can be absolutely ‘direct’ or ‘exact’ recreations of the
original study (for the basis of this claim see Rosenthal, 1991;
Tsang & Kwan, 1999).”

2. Here and throughout, by the “simple effect of Experimental
Factor A (B),” we mean the “the simple effect of Experimental
Factor A (B) in the low condition of Factor B (A).” We use the
former for simplicity.

3. We note that our approach may be somewhat optimistic in
that we assume that the population average effect size p and
heterogeneity 1 are known—analogous to standard formulae
assuming p is known. Though both are never truly known,
our approach can be generalized to accommodate uncertainty
in them; because these extensions are technical in nature, we
present them in Appendix B.

4. For an example, consider Studies 10 and 12 of the choice
overload effect listed in Appendix A.
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