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This article extends and strengthens the knowledge in pieces perspective (diSessa,
1988, 1993) by applying core components to analyze how 5th-grade students with
computational knowledge of whole-number multiplication and connections between
multiplication and discrete arrays constructed understandings of area and ways of us-
ing representations to solve area problems. The results complement past research by
demonstrating that important components of the knowledge in pieces perspective are
not tied to physics, more advanced mathematics, or the learning of older students. Fur-
thermore, the study elaborates the perspective in a particular context by proposing
knowledge for selecting attributes, using representations, and evaluating representa-
tions as analytic categories useful for highlighting some coordination and refinement
processes that can arise when students learn to use external representations to solve
problems. The results suggest, among other things, that explicitly identifying similari-
ties and differences between students’past experiences using representations to solve
problemsanddemandsofnewtaskscanbecentral tosuccessful instructionaldesign.

This case study applies core components of an epistemological perspective re-
ferred to as knowledge in pieces (diSessa, 1988, 1993) to answer an instance of the
following research question: How can students coordinate their understandings of
problem situations with those of external representations when learning to solve
problems? DiSessa developed the knowledge in pieces perspective to explain
emerging expertise in Newtonian mechanics. The perspective holds that knowl-
edge elements are more diverse and smaller in grain size than those presented in
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textbooks.1 Growth and change consists of multiple, related processes including
not only the construction of new knowledge elements, but also the coordination of
diverse knowledge elements and the extension or constriction of conditions under
which particular elements may be applied productively. Further research has ap-
plied the knowledge in pieces perspective to examine emerging competence in the
domains of Newtonian mechanics (e.g., Roschelle, 1998; Sherin, 2001), intuitive
epistemology (diSessa, Elby, & Hammer, 2003; Hammer & Elby, 2002), functions
(e.g., Monk & Nemirovsky, 1994; Moschovich, 1998), fractions (Smith, 1995),
and probability (Wagner, 2003). Most participants in these studies have been high
school and college students.

The study presented here extends and strengthens the knowledge in pieces per-
spective by applying core components to answer the following instance of the re-
search question previously mentioned: How can elementary school students who
have computational knowledge of whole-number multiplication and who have
made connections between multiplication and discrete arrays construct under-
standings of area and ways of using representations to solve area problems? By
providing an existence proof that the knowledge in pieces perspective can lend in-
sight into learning core topics in elementary mathematics, the study presented here
demonstrates that important components of the perspective are not tied to physics,
more advanced mathematics, or the learning of older students. The study also elab-
orates the perspective in contexts where students are learning to use external repre-
sentations to solve problems by proposing analytic categories for knowledge that
highlight some coordination and refinement processes. Finally, past research has
demonstrated that many students have trouble understanding the multiplicative re-
lation between length and area measurement. Because students often bring experi-
ences with whole-number multiplication and discrete representations to the study
of area, understanding how the case study students used such prior knowledge to
build understandings for representing and solving area problems can provide in-
sight into the learning of still other students in this domain.

Smith, diSessa, and Roschelle (1993) restated key components of the knowl-
edge in pieces perspective in their critique of misconceptions research. These au-
thors claimed that understandings termed misconceptions in past research are, in
fact, rooted in productive and effective knowledge imbedded among further cogni-
tive structures that form knowledge systems. These authors restated knowledge re-
finement as a useful perspective for understanding the gradual transformation of
novice into expert knowledge systems and pointed out that elements in such sys-
tems can take multiple forms, including conceptual, strategy, justification, and
control knowledge (Smith et al., 1993, p. 148).
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I examine several forms of knowledge that played a role in the gradual transfor-
mation of case study students’ knowledge. Among other resources, I focus on stu-
dents’criteria for representations, a class of knowledge that has emerged as a focus
in recent research on metarepresentational competence (e.g., diSessa, 2002;
diSessa, Hammer, Sherin, & Kolpakowski, 1991; diSessa & Sherin, 2000).
Metarepresentational competence refers to cognitive resources for generating pos-
sibly new external representations and capabilities to judge and refine such repre-
sentations. It also includes understanding how to work with representations for dif-
ferent purposes and can support students’ ability to learn new representations and
explain their properties. diSessa suggested that criteria are most likely to be en-
gaged when students design representations, and most research on
metarepresentational competence has focused on cases in which middle and high
school students have designed graphical representations of motion and spatially
distributed data. The study presented here demonstrates that students can engage
criteria for representations when learning to use more schooled representations for
different purposes, contributes to mathematics education research by uncovering
constructive resources that have not previously been reported in studies of multi-
plication or area measurement, and addresses implications for instructional design
in the concluding discussion.

CHILDREN’S MATH WORLDS

The study presented here was conducted in the context of current mathematics ed-
ucation reform efforts in the United States. In response to new standards for school
mathematics (National Council of Teachers of Mathematics, 1989, 2000), recently
developed mathematics curricula have often approached core topics through tasks
that require students to coordinate understandings of problem situations, represen-
tations of those situations, and solution strategies. Several such curricula have been
funded by the National Science Foundation (NSF; e.g., Coxford et al., 1998;
Lappan, Fey, Fitzgerald, Friel, & Phillips, 2002; The University of Chicago School
Mathematics Project, 1995). This study was conducted in the context of a further
NSF-funded curriculum development project called Children’s Math Worlds to be
published under the name of Math Expressions (CMW; Fuson, in press). A main
objective of CMW is to make the goals of the new mathematics standards accessi-
ble, particularly to urban, as well as suburban, students and teachers.

The data for this article come from the CMW project’s second cycle of develop-
ing and implementing multidigit multiplication materials.2 The materials intend
for students to (a) coordinate multiplication, arrays, and rectangular areas and (b)

APPLYING KNOWLEDGE IN PIECES 363

2Izsák (2004b) and Izsák and Fuson (2000) reported results from the first cycle of development and
implementation.



use their resulting understandings as the basis for constructing numeric methods
for multidigit multiplication. The original intent for this study was to track interac-
tions between classroom instruction and individual student learning by videotap-
ing CMW lessons in one fifth-grade classroom and conducting weekly
out-of-class interviews with a subset of students from the same class. The focus of
the study shifted when, during the interviews, students grappled with several un-
derstandings that have not been reported widely in the multiplication or area mea-
surement literatures. In addition to knowledge of whole-number factor–product
combinations, connections between multiplication and repeated addition, and as-
pects of linear measurement, the students also engaged knowledge for using dots
as representations of situations, associations with the words inside and outside, and
the criterion that drawings be to scale. Investigating how students coordinated and
refined such knowledge to construct understandings of area and ways of using rep-
resentations to solve area problems required interviews that progressed through
tasks more slowly than the lessons. Thus, resulting interviews did not pursue
multidigit multiplication in much depth.

RESEARCH ON WHOLE-NUMBER MULTIPLICATION,

ARRAYS, AND RECTANGULAR AREAS

Theoretical and empirical studies have examined connections among whole-num-
ber multiplication, arrays, and rectangular areas. Classifications of situations that
can be modeled by multiplication have consistently included rectangular areas
(e.g., Greer, 1992; Schmidt & Weiser, 1995; Schwartz, 1988; Vergnaud, 1983,
1988), and research on multiplication has used rectangles to illustrate multiplica-
tion of fractions and the commutative property (Greer, 1992). Some researchers
have suggested, however, that students connect multiplication to areas of rectan-
gles by reciting, but not understanding, the length times width formula (De Corte,
Verschaffel, & Van Coillie, 1988; Nesher, 1992; Peled & Nesher, 1988; Simon &
Blume, 1994).

Several multiplication studies have taken place in classrooms (e.g., Confrey &
Scarano, 1995; Hino, 2002; Izsák, 2004b; Lampert, 1986a, 1986b;
Mechmandarov, 1987, as discussed by Nesher, 1988; Scarano & Confrey, 1996;
Treffers, 1987), but only those by Hino and by Izsák have had a primary focus on
arrays and rectangular areas. Hino analyzed students’ progressive uses for sin-
gle-digit multiplication when determining areas in one Japanese fourth-grade
classroom, but he did not focus in depth on students’ connections between multi-
plication and the underlying row and column structure of unit squares. Izsák com-
pared how taken-as-shared classroom practices (e.g., Cobb, Stephan, McClain, &
Gravemeijer, 2001) and individual students in one U.S. fourth-grade classroom
used area representations to coordinate expanded forms for factors (e.g., 28 = 20 +
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8) and the distributive property during the CMW project’s first cycle of developing
and implementing multidigit multiplication materials. These studies did not exam-
ine how students could construct understandings of rectangular areas as arrays of
unit squares. The next sections summarize research on students’understandings of
rectangular areas and cognitive resources for connecting multiplication and arrays
that inform the study presented here.

Students’ Understandings of Rectangular Areas

Research has suggested that a good understanding of linear measurement is pre-
requisite to a good understanding of area measurement and that linear and area
measurement rely on many of the same ideas related to unit (Lehrer, 2003; Lehrer,
Jenkins, & Osana, 1998; Stephan & Clements, 2003). These include (a) relations
between the unit of measurement and the attribute being measured (e.g., Can you
use length units to measure area?), (b) the need to iterate a fixed unit and the idea
that a length or area can be partitioned into a number of equal-sized units, (c) un-
like units (e.g., feet and inches) cannot be counted the same, (d) measurement units
should cover or fill the attribute being measured without overlap, and (e) the size of
the unit is inversely proportional to the measure of a quantity. Elementary school
students do not appear to develop these ideas in a predictable order and can have a
better grasp of some than others. These studies have demonstrated that a fully de-
veloped understanding of linear and area measurement requires the coordination
of multiple ideas and that the process of coordination can vary from student to stu-
dent. Moreover, Simon and Blume (1994) demonstrated that difficulties coordinat-
ing ideas related to linear and area measurement can persist well beyond elemen-
tary grades. They found that, in a group of 26 preservice teachers, many did not
fully understand the multiplicative relation between linear and area measurements
of rectangles. These researchers argued that most learners must use rectangular ar-
eas, understood as arrays of unit squares, as the basis for understanding the trans-
formation of length into area measurements.

Other research has suggested that understanding rectangular areas as arrays of
unit squares can be accessible to upper elementary students. Peled and Nesher
(1988) found that fifth- and sixth-grade students had good understandings of the
constraints that equal groups problems must satisfy, including situations where
discrete objects are arranged in arrays. Students knew that each row in an array
must have the same number of elements and that each column must have the same
number of elements, but they could not connect rectangular areas to arrays or re-
peated addition when unit squares were not rendered. In subsequent research,
Outhred and Mitchelmore (2000) examined how first- through fourth-grade stu-
dents covered rectangles by drawing unit squares of a size specified in each of
three tasks. Although none of the students had been taught area measurement, vir-
tually all fourth-grade students generated correct coverings—arrays of unit
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squares with no gaps or overlaps. Having students draw instead of using physical
tiles was a significant element of the research design because, by fitting together
neatly, tiles make it possible for students to overlook the array structure and cover-
ing property (for further discussion, see Outhred & Mitchelmore, 2000, p. 146).
Battista, Clements, Arnoff, Battista, and Borrow (1998) suggested, however, that
array structures are less accessible to early elementary students. These studies
have evidenced that upper elementary students can understand rectangular areas in
terms of rows and columns of unit squares, the conception that Simon and Blume
(1994) argued was prerequisite to coordinating linear and area measurement.
These same studies, however, have not examined in much detail how students
could construct such a conception. The next section summarizes research on cog-
nitive resources that students can use to construct understandings of whole-num-
ber multiplication, the array structure, and connections between the two.

Counting and Repeated Addition as Resources for

Connecting Multiplication and Arrays

Whole-number multiplication is often introduced to students as repeated addition.
Some researchers (Bell, Fischbein, & Greer, 1984; Fischbein, Deri, Nello, & Ma-
rino, 1985) argued that primitive psychological models for each arithmetic opera-
tion mediate students’ selection of operations when solving problems and that re-
peated addition is the primitive model for multiplication. In other work (Bell,
Greer, Grimison, & Mangan, 1989; Nesher, 1988, 1992; Peled & Nesher, 1988),
researchers have challenged this position, arguing that experiences with language
and school tasks affect the connections students make between the two operations.
In further work, Anghileri (1989), Kouba (1989), and Mulligan and Mitchelmore
(1997) analyzed how elementary school students used blocks and other
manipulatives to solve single-digit problems about equal groups situations and, at
the same time, develop understandings of whole-number operations. These re-
searchers used large samples containing a cross section of students, primarily from
first through third grade, to map students’ increasingly efficient counting strategies
that led to repeated addition and culminated in recalled multiplication facts.
Anghileri accounted for the evolution of observed strategies in terms of automati-
zation and reduced demands on working memory.

Although research discussed previously has often treated whole-number multi-
plication as an abbreviation of whole-number addition, several researchers (e.g.,
Clark & Kamii, 1996; Confrey, 1994; Confrey & Smith, 1994, 1995; Schwartz,
1988; Steffe, 1988, 1994; Vergnaud, 1983, 1988) argued that the psychological op-
erations and types of quantities involved in multiplicative thinking are different
than those involved in additive thinking. I discuss the work of Steffe because he has
traced the development of individual third-grade students’ psychological struc-
tures for multiplication out of their structures for counting and because other re-

366 IZSÁK



searchers have applied his results to study children’s understanding of rectangular
area.

Central to all of Steffe’s (1988, 1994) work is the notion of a scheme. A scheme

is a cognitive structure with three parts: (a) an assimilatory structure that activates
when a child recognizes a relevant situation, (b) an activity or mental operation as-
sociated with situations that stimulate the assimilatory structure, and (c) an antici-
pated outcome or result of performing that activity or operation. Schemes support
goal-directed activity by allowing a child to anticipate the result of an activity or
operation before execution.

Steffe’s analysis of emerging multiplication schemes relies on the notion of
composite units. Children begin to form composite units through interiorization of
mental records of counting. A child who has formed composite units can under-
stand the number 5 simultaneously as one group of five and as five individual units.
Through further interiorization of composite units, a child can understand the
number 5 as both one group of five and five groups of a second composite unit.
Steffe referred to this coordination of two composite units as a multiplying scheme.
In fact, a child with such a scheme has coordinated three levels of units and, for ex-
ample, could assimilate a display of 20 blocks as five composite units, each of
which contains a second composite unit composed of four individual units. (The
blocks might not have to be arranged in an array to stimulate the scheme.) A child
could coordinate just two levels of units to solve addition problems, but must coor-
dinate three levels of units to structure problems as ones involving multiplication.
Thus, Steffe’s developmental account emphasizes the interiorization of counting
operations that make new types of units available, which, in turn, afford further
changes in the assimilatory structure of children’s counting schemes (see Steffe,
1988, 1994, for further details). In his studies, Steffe used tasks based on discrete
manipulatives and did not examine the measurement ideas summarized previously.

Reynolds and Wheatley (1996) extended Steffe’s (1988, 1994) work by using
composite units to explain how fourth-grade students could, or could not, generate
rectangular coverings using the row and column structure of arrays. Students had
paper, pencil, a ruler, and a calculator to answer the following question: “How
many 3-by-5 cards are needed to cover a sheet of paper 12 by 30?” Data presented
by Reynolds and Wheatley evidenced students’ knowledge of measurement, as
well as their available counting units and operations. One student, Kristen, ap-
peared to understand that she could use either inches or centimeters to solve the
problem so long as she used one measurement unit consistently. A second student,
Tracy, mixed 12 in. with 30 cm and was not able to construct an array of 3 × 5 cards
to measure her 12 × 30 rectangle. The researchers argued that Tracy had not assim-
ilated the task in such a way that she anticipated measuring the 12 × 30 rectangle
using the 3 × 5 card as the unit. These data suggested that, when drawing rectan-
gles, students engaged understandings of measurement as well as understandings
of composite units and counting schemes.
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To summarize, a significant body of theoretical and empirical research has ex-
amined connections among whole-number multiplication, arrays, and rectangular
areas. Researchers have suggested that students often recite, but do not understand,
the length times width formula and have suggested that understanding arrays of
unit squares can serve as a basis for understanding the transformation of length
into area measurements. Although past research has demonstrated that upper ele-
mentary students can understand rectangular areas in terms of rows and columns
of unit squares and has identified a range of understandings that support rectangu-
lar areas—including understandings of linear measurement, arrays, coverings, and
counting schemes—the same research has not examined in much detail how stu-
dents could construct rectangular areas as arrays of unit squares that cover. The
study presented here uses the knowledge in pieces perspective to analyze an in-
stance of such construction.

LEARNING TO SOLVE PROBLEMS WITH THE

CMW MATERIALS

The CMW materials used in the study presented here relied on whiteboards that
had printed on them a 50 × 100 array of dots. The boards had additional blank
space on the front and back. The CMW project introduced the boards in its second
iteration of the multiplication unit to provide students opportunities to draw rectan-
gles and thus make more visible potential conceptual difficulties. The intent of
early tasks was for students to (a) use the array of dots as a scaffold for drawing
rectangles and (b) focus on connections among single-digit multiplication, equal
groups, and areas of rectangles understood as arrays of unit squares. Subsequent
CMW tasks had students sketch rectangles in the blank space on their boards to
prepare for multiplying larger numbers. Students were to understand these
sketches as less detailed versions of rectangles that they had been drawing over
dots. Concluding tasks had students construct numeric methods for multidigit mul-
tiplication using sketched rectangles. See Izsák (2001) for further details.

During interviews, students often found dots more salient than spaces between
dots when working with rectangles drawn on the CMW dot boards. For example,
students might interpret a 2 × 33 rectangle as a 3 × 4 array of dots. I refer to arrays
based on dots as the dot perspective and arrays based on unit segments and squares
as the space perspective. I use dimensions when referring to the number of rows
and columns in an array and total when referring to the number of elements in an
array. In the dot perspective, dimensions are numbers of dots across and down an
array, and totals are total numbers of dots. In the space perspective, dimensions and
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totals correspond to normative dimensions and areas of rectangles. Students’ juxta-
position of the dot and space perspectives was not intended by the CMW project,
and their existing understandings of the dot perspective both supported and con-
strained their developing understandings of the space perspective.

Figure 1 summarizes analytic categories for students’ knowledge that highlight
coordination and refinement processes that emerged in the study presented here.
Students evidenced knowledge that supported three subtasks—selecting attrib-
utes, using representations, and evaluating representations. The main case study il-
lustrates how students refined knowledge used to select attributes. The arrows indi-
cate that this refinement depended, in part, on coordination of knowledge for
selecting attributes with knowledge for using and evaluating representations. The
descriptions following anticipate key case study data and point out connections
with prior research.

Selecting Attributes

For students with well-developed understandings of areas as coverings, the goal of
determining area might focus attention quickly on unit squares. Moreover, a strong
connection between areas and unit squares that cover might permit students to imag-
ine arrays of unit squares on the CMW whiteboards even before drawing. As be-
comes clear during the analysis following, students in the case study presented here
did not demonstrate a connection between areas and covering. Thus, they had to rely
on other knowledge to guide their attention to particular collections of dots or spaces
when answering questions about perimeters and areas of rectangles drawn on the
boards. I discuss two key understandings that students evidenced.

First, students in the study presented here began with connections between per-
imeters and “outsides” and between areas and “insides” of rectangles. Although
these connections gave some guidance, they were insufficient to direct students’at-
tention toward appropriate unit segments for perimeters and unit squares for areas.
Forexample, students triedusingdotsandunit segments todetermineareas.Second,
as students determined perimeters and areas of rectangles drawn on the dot boards,
theybecameincreasinglyaware thatnumericalanswersdependedontherepresenta-
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tional featureused:Answers for theperimeterandareachangewhena2×3rectangle
in the spaceperspective is viewedas a3×4arrayof dots.As students began to realize
the consequences of using the dot or space perspective, they chose representational
features more carefully when trying to accomplish a particular goal.

Previous research—but not research on multiplication and arrays—has exam-
ined cases where students attended to various features in a given situation or exter-
nal representation and selected some over others as they attempted problem-solv-
ing goals. Izsák (2000) analyzed processes of notation variation and mapping
variation that eighth-grade students used when constructing algebraic models of
linear motions in a physical device, and Roschelle (1998) introduced registrations
to characterize similar knowledge when analyzing students’ qualitative reasoning
about Newtonian motion simulated by a computer microworld. Other researchers
(Lobato, Ellis, & Muñoz, 2003; Lobato & Siebert, 2002; Meira, 1995; Monk &
Nemirovsky, 1994; Moschkovich, 1998; Nemirovsky, 1994; Schoenfeld, Smith, &
Arcavi, 1993) also reported instances in which learning to focus on and use fea-
tures of graphs and tables—including y-intercepts, x-intercepts, and slopes—and
attributes of physical objects for solving problems has been a significant accom-
plishment for students.

Using Representations

Solving problems requires students to use selected attributes to accomplish goals,
and multiple relations between attributes and goals can occur. In some cases, a given
attributecanbeused toaccomplishagoal inmore thanoneway.Students in thestudy
presented here sometimes determined the total number of elements in an array by
counting the elements one by one, other times by applying repeated addition to the
number of elements in each row or column, and still other times by multiplying the
dimensions. Understandings of the equal group structure and facility with comput-
ing sums versus products might determine which strategy a given student used. In
othercases,more thanoneattributecanbeused toaccomplishagivengoal.Atdiffer-
ent times, students used dots, unit segments, or unit squares to determine correct di-
mensionsof rectangles.Shading inFigure 2 illustrates these threemethods,andeach
can be extended to determine correct perimeters of rectangles. When counting unit
squares to determine perimeters, students would have to count corner squares
twice.4 The point is that unit segments are not the only representational feature that
can be used to determine correct numeric values for dimensions and perimeters.
Moreover, as research reviewed in the preceding paragraph has suggested, and as
analysis following confirms, coordinating representational features with goals can
be a significant, although often underemphasized, aspect of learning.
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Evaluating Representations

In some cases, students’ past experiences may allow them to focus quickly on a set
of attributes in a problem situation or representation when accomplishing a goal. In
cases where students have no, or limited, past experience with a situation or repre-
sentation, they must monitor their solution process more carefully. In such cases,
criteria—knowledge structures for evaluating representations—can become criti-
cal resources that help students regulate their problem-solving activity. Judgments
about representations are often made in relation to accomplishing a particular goal.
A criterion for arrays as representations of rectangular area is that they be drawn to
scale. Satisfying the to-scale criterion is critical when drawing replicas of problem
situations, but the correct row and column structure will suffice when determining
areas as total numbers of array elements.

As discussed in the beginning of the article, diSessa (2002; diSessa et al., 1991)
characterized students’ ability to generate, evaluate, and refine representations as
metarepresentational competence. In further work, Izsák (2003, 2004a) analyzed
cases in which eighth-grade students learned to represent and solve problems about
linear motions, in part, by coordinating several criteria for algebraic representations
andrefining thecontexts inwhich theyappliedcertainof thosecriteria.This research
has demonstrated not only that students posses criteria for representations, but also
that such criteria can play an important, if implicit, role in students’understandings
about the role of external representations in problem solving.

DATA AND METHODS

Data for this article came from a collaboration between the CMW project and Mrs.
Stuart5 during the 2000–2001 school year. Mrs. Stuart had taught for approximately
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dots × 4 dots. (b) Counting 3 unit segments × 4 unit segments. (c) Counting 3 unit squares × 4
unit squares.
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20 years and was teaching fifth grade in a small urban district in the Midwest. During
the collaboration, she taught the district-adopted Everyday Mathematics (The Uni-
versity of Chicago School Mathematics Project, 1995) curriculum in the mornings
and piloted the CMW multidigit multiplication unit 3 afternoons a week. Mrs. Stu-
art’s students had already studied the lattice (or Galosia) method for multidigit mul-
tiplication. Figure 3 demonstrates that the method represents factors vertically and
horizontally and places value for partial products along diagonals. Mrs. Stuart
wantedtopilot theCMWmaterialsbecause, inher judgment,herstudentsdidnotun-
derstand why the lattice method works. Her students had also worked with arrays of
dots in fourth grade but had not studied connections between rectangular area and
multidigit multiplication methods. Mrs. Stuart began the CMW lessons at the end of
November and concluded them in mid January. Her Everyday Mathematics lessons
during the same weeks focused on fractions, decimals, and percents.

I videotaped all 10 of Mrs. Stuart’s CMW multiplication lessons to record how
she implemented the materials, and I interviewed four pairs of her students to in-
vestigate their understandings of tasks contained in those lessons. The lesson vid-
eos allowed me to connect students’ problem-solving performance during the in-
terviews to classroom instruction. For instance, when students discussed areas as
“insides” of rectangles and the issue of scale, I knew that they had discussed simi-
lar ideas in class.

I asked Mrs. Stuart to identify students that ranged from high to low achieving,
but not students that were receiving special services. In addition to a range of
achievement levels, I asked for students who worked well together, who were will-
ing to explain their thinking, and who attended school regularly. In the end, I inter-
viewed a pair of high-achieving girls, a pair of high-achieving boys, a mid-achiev-
ing boy and girl, and a mid- and a low-achieving girl.

Figure 4 summarizes the chronological order of Mrs. Stuart’s CMW multiplica-
tion lessons and the student interviews used in the analysis presented here. (A few
additional lessons and final interviews occurred after the holidays.) I interviewed
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two of the pairs once a week over the course of Mrs. Stuart’s CMW instruction (Jill
and Ellie, Maisha and Lauren), but, due to scheduling constraints, interviewed the
remaining two pairs only once in the middle and once at the end of the unit. The
analysis following focuses on Jill and Ellie, because they provided the most de-
tailed data on how students can coordinate understandings of multiplication, ar-
rays, and rectangular areas. I use data on the remaining three pairs of students to
demonstrate that other students in Mrs. Stuart’s class evidenced similar under-
standings and faced similar challenges.

The 45- to 50-min semistructured interviews (Bernard, 1994, chap. 10) took
place in the principal’s office. During the interviews, I had students solve problems
like those that they were working on in class. I asked the students to work together
and to ask each other questions. When students were either done with a problem or
stuck, I led a discussion to probe what they were thinking and what difficulties, if
any, they were having. During these discussions, I mainly asked students to elabo-
rate their explanations, but, at times, I introduced alternatives to their ideas. If stu-
dents rejected my ideas and stuck to their own, I had further evidence of students’
conviction. If students accepted my ideas, I looked to see if they could elaborate in
ways reflecting understanding. I also varied problem situations to examine
whether, and how, students applied similar ideas across contexts. Consistent with
semistructured interview techniques, I posed subsequent problem situations in re-
sponse to ideas that students expressed. I afforded students opportunities to coordi-
nate understandings of multiplication, arrays, and rectangular areas through the se-
quence of tasks, by encouraging students to pursue their ideas and by having
students reexamine their work.

Initial interview tasks provided access to some of the students’ already-estab-
lished connections between multiplication and situations containing equal groups.
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student interviews. (Mrs. Stuart’s December 15, 2000, lesson occurred after Jill and Ellie’s in-
terview on the same day.)



The first three tasks were word problems accompanied by directions to “draw a di-
agram and write an equation that would solve the problem.”

1. Maria has borrowed five books from the library. If she borrows two more,
how many library books will she have all together?

2. How many tomato plants are in Jim’s garden if there are six plants in each
of three rows?

3. A supermarket chain has seven stores in each of four cities. How many su-
permarkets does the chain have in all?

Problem 1 can be solved by adding or counting, but not by using multiplication.
Problem 2 explicitly describes an array and can be solved using multiplication, ad-
dition, or counting. Problem 3 describes equal groups, but not an array, and can
also be solved using multiplication, addition, or counting. For subsequent inter-
view tasks, students used arrays of dots printed on paper, creating permanent re-
cords while working with materials essentially the same as the whiteboards used in
class. Sometimes, I presented rectangles drawn on dot paper and asked students to
find the perimeter and area. Other times, I asked students to draw rectangles that
showed particular multiplication problems.

I recorded the interviews using two video cameras, one to capture the students
and one to capture what they wrote. I also kept all of the students’ written work in
case the videotapes did not capture important aspects clearly. I transcribed the in-
terviews in their entirety and added notes indicating what students wrote and what
hand gestures they used. I analyzed the resulting transcripts and written work using
microgenetic methods (Schoenfeld et al., 1993). First, I went through individual
segments of transcript line by line, examining students’ utterances, hand gestures,
and other actions for evidence of what they were thinking as they worked on the
tasks. More often than not, data in a single segment were open to multiple interpre-
tations. I then tried to knit local accounts into consistent, global ones, building a
case for particular interpretations of the individual segments. A second researcher
viewed the interview videotapes independently, found a good overall fit between
the data and analysis for the main case study (Jill and Ellie), and identified a few
places where the analysis needed clarification. The analysis following reflects
those clarifications.

Only one student experienced difficulties when solving the three initial word
problems previously mentioned. The others connected multiplication with equal
groups in Problem 2 and sometimes in Problem 3. I had planned to follow Problem 3
with a problem or two that would evidence students’ connections between sin-
gle-digit multiplication and arrays of unit squares drawn over dots. With this data in
hand, I would then pursue students’ ability to construct two-digit multiplication
methods using area representations. Instead of focusing on unit segments and unit
squares, however, students often focused on the underlying dots. Moreover, some

374 IZSÁK



student difficulties appeared rooted in subtle differences between using arrays of
dotsandarraysofunit squares for representingandsolving multiplicationproblems.
In response, I investigated the range of understandings, including those of the dot
perspective,onwhichstudentscouldbuildunderstandingsof thespaceperspective.

JILL AND ELLIE

Jill and Ellie began the interviews able to mentally produce products of single-digit
numbers quickly and accurately. They could multiply two-digit numbers using the
lattice method, but they did not understand fully the representation of place value
and, in particular, why one adds diagonally. Moreover, Jill and Ellie’s diagrams for
the three initial word problems previously mentioned (see Figure 5) demonstrated
that the girls could connect multiplication to some situations that contain equal
groups of discrete objects. Ellie explained that the dual numbers in her written work
for Problem 2 reflected three rows with six in each. As Ellie was talking, Jill gave a
similar explanationwhilepointingatherownwork: “Onerow ofsix, tworowsof six,
and three rows of six.” When I asked the students if they could solve the problem
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withoutusingmultiplication, theycalculated6+6+6and, inaseparatesolution,cal-
culated3+3+3+3+3+3. Jill andEllie’s solution toProblem 3providedfurtherevi-
dence that they understood relations among multiplication, addition, and equal
groups because they identified four groups of seven across two different dia-
grams—one that showed equal groups as rows in an array and one that did not. Ellie
concluded that “theyboth show the same thing.” As mentioned previously, Mrs. Stu-
arts’ students had prior experiences with arrays of dots in the fourth grade.

I organize the analysis of Jill and Ellie’s learning trajectory into two phases.
During Phase I, Coordinating Dot and Space Perspectives on Arrays, the students’
main accomplishments included (a) differentiating the dot and space perspectives;
(b) coordinating dimensions and totals within each perspective; and (c) under-
standing that, in the dot perspective, one uses a single representational fea-
ture—dots—to determine both dimensions and totals, whereas in the space per-
spective, one uses unit segments to determine dimensions and unit squares to
determine totals. During Phase II, Refining a “to-Scale” Criterion for Representa-
tions of Rectangular Areas, Jill came to understand that, in the space perspective,
arrays do not have to be drawn to scale to determine areas of represented rectan-
gles: It suffices for arrays of unit rectangles to have the correct number of rows and
columns. Data from the two phases evidenced particularly Jill’s refinement and re-
organization of knowledge for selecting attributes, using arrays, and evaluating ar-
rays as representations sufficient for determining rectangular areas.

In presenting data, I label lines of transcript with both letters and numbers (e.g.,
A1, A2, B1, B2). Alphabetical order corresponds to chronological order of ex-
cerpts, and consecutive numbers correspond to contiguous lines of transcript
within excerpts. I used the following conventions when preparing the transcripts:

// … // denotes concurrent talk.
[ … ] denotes a comment I think a student made.

(inaudible) denotes a time when I could not understand what a student said.
( … ) denotes a comment that I inserted while preparing transcripts.
“ … ” denotes something that a student wrote down.

Phase I: Coordinating Dot and Space Perspectives on

Arrays

Phase I occurred during the first interview with Jill and Ellie. This interview took
place 3 days after the only CMW multiplication lesson that Mrs. Stuart had taught
so far (see Figure 4). Mrs. Stuart understood that her students had studied area and
perimeter in fourth grade and had begun her lesson with a quick review. Instead of
asking for definitions, she had asked for examples where one would need to find
perimeter or area. Students had offered a fence around a house as an example for
perimeter and finding the “inside of a building” as an example for area. Mrs. Stuart
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had then introduced the CMW whiteboards focusing on both dots and spaces.
When discussing dimensions of rectangles, she had explained that three dots make
two unit segments and had supported her explanation with a diagram drawn on the
overhead. When discussing areas, Mrs. Stuart had drawn unit squares inside of
rectangles but had not explicitly discussed the array structure or covering property
of those squares. Mrs. Stuart had then asked her students to draw diagrams that
matched “number models.” Jill and Ellie had produced diagrams with the correct
number of rows and columns in the space perspective during the lesson, but, at the
beginning of Phase I, combined elements of the dot and space perspectives to de-
termine incorrect dimensions and totals.

Data. Phase I began with the fourth interview task, which presented three
rectangles and asked the students to find the perimeter and area of each. Figure 6a
shows the rectangles, and Figure 6b shows Ellie’s initial incorrect dimensions for
the first. Jill labeled her rectangle the same way. After the students agreed that the
dimensions were three and four, Ellie stated that “the area is the inside” and then a
few exchanges later continued, “Eight plus six is 14 for the perimeter, and then the
area would be 12, right? ’Cause you multiply three by four, right?” A moment
later, however, she questioned the vertical dimension:

A1: Ellie: Wait. Are these only two or three? Are we doing dots or units?
A2: I: You tell me.

A3: Jill: Units then.
A4: I: Does it make a difference?

A5: Ellie: Well, yeah, because look this can be, this is either two units (pointed
to the left-hand edge of the rectangle), ’cause the spaces between
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them, there are two spaces, or it can be three ’cause you’ve got three
dots. Do you want to do dots, ’cause that’s how we usually do it in
class?

A6: Jill: Yeah. But then that would be five dots (pointed toward the rectangle).

Jill and Ellie changed their fours to fives and stated that the “area” and “perimeter”
would be 15 and 16, respectively. Subsequently, they explained that they had stud-
ied arrays together in fourth grade and there they had always counted dots. Ellie
expressed a preference for working with dots, and Jill agreed, saying, “’Cause it is
more like arrays, the dots.”

Analysis. Jill and Ellie’s initial understandings for selecting attributes were
based, at least in part, on their past experiences with arrays of dots. Moreover,
Ellie’s question about using dots versus units (line A1) suggested that her inconsis-
tent numeric labels may have been the result of undifferentiated dot and space per-
spectives. Jill’s focus on units (line A3), combined with her comment about dots
being like arrays, suggested that she may not have differentiated the two perspec-
tives either. Although the students did not restrict their use of the terms area and
perimeter to the space perspective, they did understand that dots and spaces gave
different dimensions (lines A5 and A6).

Data. To gain further access to Jill and Ellie’s understandings of dot and
space perspectives, I asked the students to work rectangles “both ways.” Using the
dot perspective on the second rectangle, Jill and Ellie correctly counted six dots
down and eight across. The students multiplied 6 × 8, and Ellie concluded, “So
area is 48 and the perimeter is, 16, and 16 plus 12, isn’t that 28?” Jill agreed. I then
asked Jill and Ellie to reexamine the first two rectangles using the space perspec-
tive. For the first rectangle, the students found the correct dimensions of two and
four and wrote “8” for area and “12” for perimeter. For the second rectangle, the
students found and wrote the correct vertical dimension of five before Ellie pre-
dicted the horizontal dimension:

B1: Ellie: Jill, that’s going to be seven because it seems like this (pointed to her
previous solutions using the dot method) has always been one less
than the other one, so that should be seven (Jill wrote “7” along the
top and bottom of the rectangle).

B2: Jill: Yeah. It is.
B3: Ellie: So that’s neat.

B4: Jill: //That’s neat.
B5: Ellie: That’s neat, ’cause// when you do the units, how it is just one less.
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Ellie stated that 5 × 7 = 35 would give the area and calculated out loud “seven plus
seven is 14, plus 10 is 24” for the perimeter. She described the first method as
counting “all the dots from top to bottom or right to left” and the second method as
counting “the spaces between the dots.” To illustrate one space, Jill drew a horizon-
tal line segment from one dot to an adjacent dot. Ellie concluded, “’Cause that is
what we did yesterday in class.” (Ellie apparently referred to the one CMW lesson
that had taken place 3 days prior to this interview.)

Analysis. Jill and Ellie coordinated appropriate arithmetic operations with
the goals of determining perimeters and areas: They consistently added dimen-
sions to determine what they termed perimeters and multiplied dimensions to de-
termine what they termed areas. Ellie also articulated explicit relations between
the dot and space perspectives when she noted that space dimensions were always
one less than dot dimensions (lines A1, A5, B1, and B5). This, in turn, may have
helped the students realize the importance of differentiating the two perspectives.
Although Ellie indicated the correct representational features for determining di-
mensions within the dot and space perspectives, subsequent data would evidence
that the students had to still coordinate their understandings of dimensions and to-
tals for each perspective with their understandings of “inside” and “outside.”

Data. IaskedJill andEllie toexplainoncemorehowtocalculate“perimeter” in
the dot perspective. Jill said, “You add up all the things on the outside,” and Ellie re-
ferred toedgeswhenstating that she“wouldbeaddingfour lines, four linesofdots.” I
then asked the students how to calculate the “area” using the dot perspective. Ellie
stated, “Multiply the two different numbers,” and Jill stated, “Yeah. You multiply
[the number], the top and the side.” When I asked if there was another way to “figure
out area,” Ellie offered, “You count the dots on the inside, right? Isn’t that what area
is, right?,” but was confused when she only counted 24 dots in the interior:

C1: Ellie: Why is that only 24? Oh, do you have to add the, I think you’ve got to
add the two sides, don’t you?

C2: Jill: ’Cause there’s six rows with eight in each. That’s like saying eight
(pointed to the second row of dots) plus eight (pointed to the third
row of dots) plus eight (pointed to the fourth row of dots) plus eight,
//which is basically multiplying.

C3: Ellie: Oh. Yeah. You gotta to count these.//

When Ellie subsequently explained, “Eight rows and each one contains six dots,”
she apparently focused on columns.

Analysis. Ellie refined her understandings for selecting attributes within the
dot perspective. She evidenced connections between “perimeter” and “outside,”

APPLYING KNOWLEDGE IN PIECES 379



and her comments suggested that she focused on edges of rectangles when using
the word outside. Her description of adding “four lines of dots” was consistent
with her perimeter computations for the 3 × 5 and 6 × 8 arrays in the previous sec-
tion, but it left unclear whether she realized this method counted corner dots
twice—once as part of the horizontal and once as part of the vertical dimension.6

Ellie’s count of 24 dots indicated that she initially focused on strict interiors when
using the word inside, but then used her numeric understandings of multiplication
(she had multiplied 6 × 8 = 48) to question her work (line C1). Recall that Ellie had
also multiplied to solve correctly the second problem shown in Figure 5. Now, she
had to coordinate her existing multiplicative relation between dimensions and to-
tals in the dot perspective with her understandings of “inside” and “outside.” After
listening to Jill connect equal groups of eight dots to multiplication (line C2), Ellie
focused on all 48 dots organized into equal groups of six dots when determining
the “area.” Ellie may have refined her notion of “inside” in the dot perspective to
include dots along edges, but the data did not provide direct evidence.

Data. At this point, I returned Jill and Ellie’s attention to the space perspec-
tive. Ellie stated that they should have five rows of seven, and the students began to
count horizontal line segments. Figure 7a shows that the students traced line seg-
ments as they counted successive rows, starting with the top edge. The students
were troubled when they arrived at 35 at the end of the fifth row. Jill observed, “We
are already at 35, and we haven’t done anything else.” Ellie concurred, “Wait. Wait.
This isn’t good.” The students agreed that they were getting too many segments,
but disagreed over which ones they should count. Ellie thought that they should
count just the horizontal segments, including those in the sixth row along the bot-
tom edge, whereas Jill thought that they should count vertical ones as well. Figure
7b shows further vertical line segments that Jill traced as she explained her think-
ing. Jill and Ellie tried to resolve their confusion in the following exchange:

D1: Jill: Maybe the unit thing just doesn’t make sense [in that] (pointed to-
ward her work shown in Figure 7b).

D2: Ellie: Well I don’t know, but how does that work? How does that work?
Like how would you figure out the area for that? ’Cause the area is
not 35, but when you multiply five times seven you get 35.

D3: Jill: Then the area, you must not be able to multiply five times seven, be-
cause if you multiply five times seven you’re not multiplying the ar-
ray. It is not really an array. //It’s only …
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D4: Ellie: Oh.// So maybe you are not multiplying an array. Maybe you’re just
(inaudible). Oh! That would be cool. That’s cool. So I don’t think
you could count on the inside, ’cause you don’t come up with the
right answer.

Analysis. When shifting to the space perspective, Jill and Ellie struggled to
coordinate dimensions and totals. The students understood that the dimensions of
the second rectangle would change from six and eight to five and seven, and they
used their numeric understandings of multiplication to predict that the area of the
rectangle would be 35. The data strongly suggested, however, that Jill and Ellie’s
notion of “inside” did not include covering, and so the students relied on other un-
derstandings as resources for selecting attributes. Within the dot perspective, Jill
and Ellie had used a single representational feature—dots—to determine both “ar-
eas” and “perimeters.” The students inappropriately extended the use of a single
representational feature—this time, unit segments—to determine both dimensions
and totals in the space perspective. Although Jill and Ellie used their knowledge of
multiplication to detect that they were counting too many segments (lines D2 and
D3), they had yet to find a representational feature that would give their expected
total of 35. When Jill explained that they were not working with an array (line D3),
she may have meant that their representation was not an array of dots. Jill and
Ellie’s comments (lines D3 and D4) strongly suggested that the students had
reached an impasse in understanding the space perspective.

Data. BecauseJill andEllieappearedstuck, Iaskedif theycould“thinkofadif-
ferent thing to count.” The students thought for a moment, and Jill offered, “The
squares inside the shape.” I asked Jill to show what she meant, and each student
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shaded one unit square. To try their new idea, the students counted unit squares one
byoneandarrivedat35.Astheyfinishedcounting, thefollowingexchangeensued:

E1: Ellie: Hey! That works! The squares figure out … the squares work! That’s
cool. So you have to figure out … count the squares in it.

E2: Jill: But that still wouldn’t be the correct area ’cause if eight times six has
48, that still only has …

E3: Ellie: But look, but look! Five times seven is 35, and we got 35 boxes.
E4: Jill: When we counted boxes. Yeah.

E5: Ellie: Wait. But see, if the area is that, then the area must be in boxes when
you’re doing the little, the units.

E6: Jill: So the area could be different
E7: Ellie: Right. That’s cool.

E8: Jill: in a shape. I never knew that.

A few exchanges later, Jill elaborated her last comment by saying that “the area in
shapes can change whether you’re using boxes or dots.”

After Jill and Ellie used the space perspective correctly on the third rectangle in
Problem 4 (see Figure 6), I asked if they could “think of the boxes as being in an ar-
ray.” Ellie responded, “The boxes could be a dot, if you were to separate out all the
boxes.” She proceeded to add dots to the center of each unit square (see Figure 8).
Ellie apparently followed Jill’s explanation, but she expressed uncertainty about
her own understanding of the space perspective: “You couldn’t use the unit, the,
just the space, you’d have to use the box. I don’t know why that’s like that.”

Analysis. Jill and Ellie confirmed that unit squares “work” by counting rather
than by noticing unit squares cover, providing further evidence that they did not at-
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tend to covering when selecting attributes. Jill did not explain why she focused on
“squares inside the shape,” but perhaps she remembered that Mrs. Stuart had dis-
cussed squares during her first CMW lesson. That the students counted all 35
squares one by one, however, suggested that they were uncertain of the answer and
so fell back on a strategy in which they had high confidence. Moreover, Ellie ap-
peared surprised and excited when announcing that “the squares work” (line E1),
whereas Jill doubted her method because she focused on 6 × 8 (line E2). Jill’s focus
on this product may have originated in her earlier comment that, when multiplying
5 × 7, “you’re not multiplying the array” (line D3). In particular, Jill’s strong con-
nection between arrays and dots may have returned her attention to the dimensions
of six and eight even as she counted unit squares.

Jill’s subsequent mention of two different answers for area (line E6), followed by
her comment that “the area in shapes can change whether you’re using boxes or
dots,” suggested that she further differentiated the dot and space perspectives. More-
over, Jill was apparently realizing that shifting from dots to spaces affected dimen-
sions and totals together. Such differentiation of the dot and space perspectives, and
the coordination of dimensions and totals within each, had the potential to support
Jill’s future problem solving because increasingly explicit understandings of the
consequences of using dots or spaces could help her focus more carefullyon particu-
lar representational features. Finally, Jill elaborated the notion of unit squares in an
array—a notion that I introduced—with her comment that “the boxes could be a dot,
if you were to separate out all the boxes.” Jill’s description of separating boxes sug-
gested that she was coordinating understandings of totals in the dot and space per-
spectives and possibly attending to covering, at least implicitly.

AlthoughElliebeganconnectingunit segmentswithdimensionsandunit squares
with totals in the space perspective (lines E3 and E5), her final admission that she
“[did not] know why that’s like that” made clear that her coordination was partial.
Ellie apparently understood that the product of dimensions measured in unit seg-
ments agreed with the total number of unit squares, but she did not seem to connect
unit segments along theperimeter withequal groups of unit squares, even thoughher
work on Problems 2 and 3 suggested strong connections between multiplication and
equal groups in other contexts (see Figure 5). Thus, her access to connections be-
tween multiplication and the array structure changed across problem contexts.

Summary. Jill and Ellie must not have fully understood the correct diagrams
that they produced during Mrs. Stuart’s first CMW lesson. The interview data indi-
cated that the students did not yet differentiate the dot and space perspectives at the
beginning of Phase I or fully coordinate representational features with dimensions
and totals within each perspective. Jill’s work during Phase I—and, to a lesser ex-
tent, Ellie’s—evidenced learning through refinement and coordination of knowl-
edge for selecting attributes. One example occurred when Jill and Ellie coordi-
nated dimensions and totals within and between the dot and space perspectives. A
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second occurred when the students discovered that, in the dot perspective, edges
must be considered as inside to preserve the multiplicative relation between di-
mensions and totals. A third occurred when Jill and Ellie reexamined their expec-
tation that a single representational feature could be used for both dimensions and
totals in the space perspective. Although the students’past experiences with arrays
of dots constrained emerging understandings of the space perspective sometimes,
Jill’s final work (see Figure 8) suggested that she used arrays of dots to solidify her
understanding of rectangular areas as arrays of unit squares. These data evidenced
the gradual transformation of novice into more expert knowledge of area because
conceiving arrays of unit squares could potentially support fuller understandings
of areas as coverings and the transformation of length into area measurements (as
suggested by Simon & Blume, 1994).

Phase II: Refining a “to-Scale” Criterion for

Representations of Rectangular Areas

Phase II began during the second interview with Jill and Ellie and continued into the
fourth. Mrs. Stuart taught her second, third, and fourth CMW multiplication lessons
in between the first and second interviews (see Figure 4). The CMW project devel-
oped the second lesson in response to difficulties that Jill, Ellie, and other interview
students were having focusing on the space instead of the dot perspective. (I discuss
data on the remaining students later in the article.) During the lesson, Mrs. Stuart had
students draw rectangles on blank parts of their whiteboards by marking off vertical
and horizontal unit segments and forming corresponding unit squares. She then had
students number unit segments and unit squares to emphasize the representational
features used for perimeter and area. Mrs. Stuart’s third lesson provided further op-
portunities for students to reinforce understandings of the space perspective, and Jill
and Ellie did not evidence further difficulties determining dimensions and totals in
the space perspective during subsequent interviews.

Mrs. Stuart’s fourth CMW lesson introduced the notion of sketching rectangles
to scale and provided the backdrop for Phase II interviews with Jill and Ellie. The
CMW project and Mrs. Stuart’s shared intention for the lesson was for students to
understand sketches as less detailed representations suitable for work with larger
numbers. A sample phrase that Mrs. Stuart used to communicate the goal of
sketching to her students was “to make [the rectangles] a little bit smaller than they
would be if you were using the dots.” A key issue for the research was whether stu-
dents would continue to interpret to-scale rectangles in terms of rows and columns
of unit squares even when arrays were not rendered explicitly.

My original intent for the second interview was to assess what Jill and Ellie un-
derstood about Mrs. Stuart’s instruction regarding scale drawings. As I listened to
the students’ initial explanations, however, I could not tell if they were simply re-
peating what had been said in class. To better understand connections the students
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made among multiplication, arrays of unit squares, and scale drawings, I began
varying contexts for the use of rectangular representations. Jill and Ellie’s initial
responses contained seemingly contradictory comments, some of which possibly
evidenced capabilities untapped by the CMW materials or Mrs. Stuarts’ imple-
mentation of those materials. Although Mrs. Stuart’s instruction emphasized scale
drawings, Jill in particular seemed to have a tacit understanding that drawings did
not have to be exact replicas to solve area problems. As I posed further questions
and tasks to better understand what Jill was saying, I apparently supported her in-
creasingly explicit understanding that to-scale drawings are not required to deter-
mine areas of represented rectangles so long as the row and column structure of
not-to-scale unit rectangles matches the row and column structure of unit squares.

Jill’s insight, which emerged over the course of three interviews, illustrates the
arrows in Figure 1 because understanding that counting not-to-scale unit rectan-
gles suffices (knowledge for using representations) allowed her to reduce empha-
sis on the to-scale criterion (knowledge for evaluating representations), and, as a
result, she apparently separated the underlying row and column structure from the
shape of individual elements (refining her knowledge for selecting attributes). The
knowledge in pieces perspective, with its attention to knowledge elements of di-
verse types, handles such data well. Data on the remaining students provides fur-
ther examples of students understandings of to-scale rectangles as representations.
In the concluding discussion, I argue that Jill’s accomplishment was particularly
significant when considered as part of a longer possible learning trajectory in
which students construct relations between representations and situations across
topics and domains that afford solutions to problems.

Data. When I first asked Jill and Ellie to draw rectangles on blank paper to
show multiplication problems, they marked off segments across and down that
were about the same length, similar to Mrs. Stuart’s demonstration. Jill com-
mented that she needed tick marks along the perimeter so that she would not “get
confused at what’s a unit,” and Ellie commented that they wanted to make spaces
“at least somewhat even.” I then had the students draw fresh rectangles without any
marks or labels and asked whether those could show different multiplication prob-
lems. Jill drew a rectangle such that the height was approximately half the width
and explained that her rectangle could be 50 × 100, 2 × 4, 4 × 8, or 6 × 12 “as long
as the thing is half of it.” To test the strength of connections that the students evi-
denced between lengths and widths of drawn rectangles and ratios of numbers be-
ing multiplied, I asked whether Jill’s rectangle could be 10 × 100. Jill said no be-
cause 10 is a tenth of 100, and the height of her rectangle was half the length. The
students made several additional comments consistent with the understanding that
lengths and widths should be in the same ratio as the numbers being multiplied.

I wondered, however, whether Jill and Ellie’s comments were constrained by
their perceptions of appropriate answers in school settings and so asked them to

APPLYING KNOWLEDGE IN PIECES 385



imagine drawing rectangles for themselves, not for class or homework. Jill drew
the rectangle shown in Figure 9a and said, “You could just say it’s four and 10 if
you really wanted to. And it wouldn’t much matter ’cause you could still multiply
those (pointed to her “4” and “10” labels) and you could find out just the area of the
shape.” When I asked if Ellie’s rectangle shown in Figure 9b could also be 4 × 10,
Jill stated:

F1: Jill: It could be 4 by 10, if, if, well it couldn’t be 4 by 10, but if you were just
drawing it for any old reason you really wanted to, and somehow math
just came in handy for something other than homework and school, then
you could make it like that, but it wouldn’t be to scale, but you would
still be able to multiply things, but you wouldn’t find the correct area.

Both students subsequently agreed that you would have to draw rectangles to scale
to find areas.

When I asked whether vertical and horizontal units would be the same in a
not-to-scale rectangle, the students answered, “No.” When I asked whether this
difference mattered, Jill responded, “Depends if you’re multiplying just for fun, or
if you really want to find the area.” Both students appeared to understand the dis-
tinction that Jill articulated, but, during the balance of the second interview, Ellie’s
comments evidenced a stronger requirement that lengths and widths of rectangles
match the relative sizes of numbers, even when multiplying “just for fun.”

Analysis. Jill and Ellie’s responses at the beginning of Phase II raised ques-
tions about connections they evidenced among multiplication, area, and rectangles
drawn to scale. When I asked the students to draw rectangles to show multiplica-
tion, they drew rectangles approximately to scale as if I had asked specifically
about area. Did these responses reflect such tight connections that the students al-
ways thought about area when thinking about multiplication and rectangles, or
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were the students producing what they thought to be appropriate answers in school
settings? Explicitly inviting the students to think about out-of-school contexts pro-
vided some evidence that Jill in particular might consider different relations
among multiplication, area, and rectangles depending on the problem-solving con-
text. Initially, she seemed to say that you could use not-to-scale drawings to deter-
mine the area of a rectangle, but moments later she rejected this idea (line F1).

Just what Jill meant by the alternate “for fun” setting remained unclear. One
meaning she may have had was that using a not-to-scale array of unit rectangles
would suffice to determine the answer to a multiplication problem. Such sensitiv-
ity to relations between representations and problem-solving goals would evi-
dence metarepresentational competence. A second meaning she may have had was
that a rectangle could serve simply as a graphic organizer for recording factors and
products. This meaning would undermine claims that Jill evidenced
metarepresentational competence if she did not attend to the underlying row and
column structure. Thus, I tried to better understand just what Jill meant by “for
fun” during the next interview.

Data. At the beginning of the third interview, which occurred 1 week after the
second, Jill and Ellie recalled the two discussed purposes for drawing rectangles
and the issue of scale. I asked them to “draw a rectangle that would show you how
to multiply seven times nine.” Both drew approximately to-scale rectangles that
showed seven rows of nine unit squares. When I asked how accurate the rectangles
needed to be, the students gave different answers. Ellie said, “Fairly accurate,” and
elaborated her perspective by explaining that “boxes” should be about the same
size “’cause you’re working with the same things.” She demonstrated differ-
ent-sized boxes with the drawings shown in Figure 10a.

In contrast, Jill said, “As long as it has 63 boxes, you’re OK.” She said that one
could work with Ellie’s “two weird sized boxes” and went on to draw 63 boxes as
shown in Figure 10b. When she was done, Jill stated, “That, strangely enough, is
63 boxes. And you could just say this is seven (wrote “7” across the top) and this is
nine (wrote “9” on the left-hand side).” When I asked, Jill indicated that her draw-
ing showed neither seven boxes across nor nine boxes down. She then crossed out
and moved boxes so that her drawing did have seven boxes across and nine down as
shown in Figure 10c. Jill made clear that she combined the shaded boxes with adja-
cent boxes and so did not leave uncovered space in the middle of her work. At this
point, I asked Jill to recall questions that Mrs. Stuart had asked during previous
classes. Jill discussed nine rows of seven, made connections to the computation 7 ×
9, and demonstrated how she would begin to rearrange and resize her 63 boxes into
rows of seven equal-sized boxes.

Analysis. Although the first rectangles that Jill and Ellie drew to show 7 × 9
suggested a tendency to draw rectangles to scale even when multiplying just for
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fun, the two students responded differently to my question about accuracy. Ellie’s
comment about “working with the same things” suggested a criterion, closely re-
lated to the to-scale criterion, that similar features of a problem situation should be
inscribed by similar features in a representation of that situation. Jill appeared in-
tent on generating a counterexample to Ellie’s idea as she rendered 63 boxes (see
Figure 10b). Her initial drawing showed the correct product but not the factors, and
her modified work (see Figure 10c) showed the factors and product but neither the
underlying equal group structure central to whole-number multiplication nor the
approximate shape of a rectangle. Jill’s discussion of 7 × 9 and further modifica-
tion of her work strongly suggested that she understood, but did not focus on, the
equal group structure when drawing 63 boxes as shown in Figures 10b and 10c.
Thus, Jill may have interpreted rectangles drawn for fun simply as places to record
factors and products without attention to the underlying array structure. Neverthe-
less, I continued with the interview tasks that I had designed to access students’ re-
lations between representations and problem-solving goals.

Data. Data from the second interview left unclear whether Jill and Ellie had
thought of their drawn rectangles as actual rectangles or as representations of sepa-
rate, imagined rectangles for which they were trying to determine areas. Clarifying
how the students understood their drawings was important because such under-
standings could affect whether they applied their to-scale criterion. To pursue fur-
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FIGURE 10 (a) Ellie’s different-sized boxes. (b) Jill draws 63 boxes. (c) Jill moves three
boxes.



ther the students’ connections among multiplication, to-scale rectangles, and area,
I made the distinction between representing and represented rectangles more ex-
plicit by asking the students to figure out the area of the rectangular interview room
with a drawn diagram.

Jill and Ellie measured the interview room with a yardstick and determined that
the dimensions were 14 ft. × 16 ft. Both students drew approximately to-scale rect-
angles (see Figure 11) and used the lattice method to determine that 14 × 16 = 224.
When I asked how accurate the rectangles had to be to determine the area of the
room, Jill said, “Pretty accurate,” and Ellie said, “If you want to build an exact rep-
lica of it, then you kinda need to have it exact.”

To push harder on the to-scale criterion, I drew the rectangle shown in Figure
12a and asked whether it could be used to figure out the area of the room. Jill said,
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FIGURE 11 (a) Jill’s first rectangle for determining the area of the interview room. (b) Ellie’s
first rectangle for determining the area of the interview room.

FIGURE 12 (a) My proposed rectangle for determining the area of the interview room. (b)
Jill draws a unit rectangle.



“No.” Ellie explained, “You could use the numbers, but you cannot use that shape.”
I would have dropped scale drawings at this point, but Jill suddenly took a step to-
ward relaxing her to-scale criterion by saying, “This would have to be a separate
unit (traced the top edge of the rectangle), this would have to be a bigger unit
(traced the top edge again) than that one (pointed to the left-hand side of the rectan-
gle).” Jill went on to explain that the unit for the vertical dimension “would be like
the size of a molecule.” She also demonstrated the horizontal units by counting 16
segments across the top of the rectangle, pausing her pencil between each segment.

Ellie continued to object that the vertical dimension was “way too small” and
the horizontal dimension “way too big” because “16 and 14 are only two apart.”
Even Jill seemed uncertain about using different-sized units for each dimension,
saying, “It wouldn’t work because then the squares would be way off; and, if you
really wanted to get a measurement, you couldn’t do that.” When I asked if there
was a way to use “my crazy rectangle anyway to figure out the area,” Jill re-
sponded, “Not to this room, but it could be a hallway.” She then used the vertical
dimension of the rectangle to count 10 horizontal segments and concluded that the
drawn rectangle was 1 × 10. Ellie stated, “Even if you have the different unit sizes,
you just really couldn’t figure it out with those squares.”

Analysis. With more explicit separation of representing rectangles and the
represented interview room, Jill and Ellie’s initial drawings and comments were
consistent with the understanding that representing rectangles had to be essentially
to scale if one were to determine areas of represented rectangles. Ellie’s stated goal
of creating an “exact replica” and Jill’s stated goal of getting a “measurement”
helped explain why they drew approximately to-scale rectangles shown in Figure
11 and why they explicitly rejected the not-to-scale rectangle shown in Figure 12a.

Ellie appeared to understand and reject the possibility of using “different unit
sizes” when she objected that the relative difference between vertical and horizon-
tal dimensions of my drawn rectangle was much larger than the difference between
16 and 14. This, in turn, suggested that her to-scale criterion may have been part of
a tightly connected cluster of ideas that included inscribing similar features of situ-
ations with similar features of representations (an idea that she had articulated ear-
lier) and replicating problem situations with representations of those situations.
The data did not permit closer analysis of this possibility.

I would have dropped the scale issue if Jill had not made the observation about
different vertical and horizontal units. Whether Jill recalled the discussion from
the previous interview about different-sized horizontal and vertical unit segments
remained unclear, but her comments that “the squares would be way off” and that
my rectangle could represent a hallway suggested that she would have to refine her
understandings further before relaxing her to-scale criterion. I decided to pursue
the issue of scale a little further because Jill’s consideration of different-sized units
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suggested that she might develop new flexibility when using drawn rectangles to
determine areas of separate represented rectangles.

Data. I asked Jill and Ellie how they might use their drawn rectangles to de-
termine the total number of unit squares if they did not know the lattice method. Jill
explained that she would add 14 sixteen times. I then asked the students once more
if they could use my rectangle. Jill said, “No,” thought for a moment, changed her
answer to “Yes,” and said, “The boxes would be like this (see Figure 12b), and
that’s not much of a box, but that’s what size the boxes would be.” Jill explained
that she could count the boxes, but acknowledged that this would be difficult be-
cause the boxes were small and “almost shaded in.” I asked Jill to imagine long,
skinny rectangles that were a little bigger, so that they could be counted accurately,
and asked once more if she could use my rectangle. She replied, “Yes. Now I say,
’Yes.’” When I asked Jill why she had changed her mind, she replied:

G1: Jill: Because I found out that even though the boxes aren’t square, they’re
still boxes. Like on that rectangle over there (pointed toward Ellie’s
work), Ellie’s rectangle, they’re not exactly complete boxes. Some of
them are, but some of them are rectangles. And so you could just count
the tiny rectangles.

I asked Jill if counting boxes for my rectangle seemed like a new idea, and she said,
“Yeah. It’s sorta strange.” When I asked why, she explained, “Because I’m used to
counting boxes, like squares.” The third interview ended at this point.

Analysis. By focusing the students on ways that they used representing rect-
angles to determine areas of represented rectangles, I supported new coordination
of particularly Jill’s understandings. She focused on repeated addition when dis-
cussing adding 14 sixteen times and may have coordinated that addition with equal
groups of unit rectangles, but she did not do so explicitly. Jill’s comment that boxes
like the one shown in Figure 12b would be hard to count raised the possibility that
she objected to my rectangle because of the small size, and not the shape, of ele-
ments in the resulting array. Her comparison of boxes and squares (line G1), how-
ever, suggested that the shape of elements in an representing array was a central
mathematical issue for Jill: It did not appear obvious to her that the number of ele-
ments was independent of scale and, therefore, that drawn unit rectangles were suf-
ficient for determining the number of square feet in the interview room. Jill relaxed
her to-scale criterion as she became increasingly aware that unit rectangles were
sufficient for determining areas because the count remained the same. This, in
turn, exemplifies the coordination indicated by the arrow between Using Repre-
sentations and Evaluating Representations in Figure 1.
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Data. Mrs. Stuart’s fifth through eighth CMW lessons focused on using areas
of rectangles to develop numeric methods for multidigit multiplication, but I
wanted to pursue further Jill and Ellie’s connections between representing arrays
and areas of represented rectangles. At the beginning of the fourth interview, 1
week after the third, the students recalled that they had found the interview room to
be 14 ft. × 16 ft. and had discussed the issue of scale. Ellie explained that a rectan-
gle is to scale if all vertical and horizontal unit segments are the “same.”

Jill recalled that, even though the vertical and horizontal unit segments are dif-
ferent in a not-to-scale rectangle, the resulting rectangle can still be used to deter-
mine area. She then drew the rectangle shown in Figure 13a and said that it both
was and was not to scale. Jill explained that her rectangle was not to scale because
it did not have square units, but that it “would be the exact same area anyway.” She
then used the lattice method to determine correctly that her drawing contained 224
“boxes” and explained that there were 16 columns that contained 14 boxes each.
When I asked for another way to count the boxes, Jill said that “there are 14 16s”
and shaded the bottom row of unit rectangles to illustrate one group of 16. Finally,
when I asked why the rectangle was to scale, Jill explained, “Because it would still
be 14 by 16” and demonstrated with hand gestures how to squeeze unit rectangles
into unit squares (see Figure 13b). She elaborated further, saying that “if you were
to squish [the unit rectangles] all together, they would become unit squares” and
the result would give “the correct drawing and shape of a room.” Ellie said, “Oh! I
get what you’re saying!,” and commented that squeezing would make the horizon-
tal unit segments the same size as the vertical unit segments. A few exchanges
later, however, she pointed to Jill’s rectangle shown in Figure 13a and stated that
“this shape does not work.”

Analysis. Data from the fourth interview provided further evidence that
newly coordinated understandings among multiplication, representing arrays, and
represented areas were emerging, particularly for Jill. First, she recalled the central
idea discussed during the third interview: Not-to-scale rectangles can be used to
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FIGURE 13 (a) Jill’s not-to-scale 14 × 16 rectangle. (b) Jill transforms unit rectangles into
unit squares.



determine areas even though vertical and horizontal unit segments are not the same
length. Second, Jill’s comment that “it would be the exact same area anyway” sug-
gested that her connection between a to-scale rectangle and the one she had drawn
in Figure 13a was based on the total number of array elements. Jill’s demonstra-
tions of 16 groups of 14 and 14 groups of 16 evidenced her attention not only to the
total number of unit rectangles, but also to their organization in rows and columns.
Third, Jill connected to-scale and not-to-scale rectangles when she cupped her
hands and explained how to transform unit rectangles into unit squares. These data
contrasted with Jill’s initial discussion of 63 boxes during the second interview and
suggested that she now understood that the row and column structure, and not the
shape, was the feature of representing arrays critical for determining areas of rep-
resented rectangles. Ellie’s coordination of multiplication, representing arrays,
and areas of represented rectangles appeared less flexible.

Summary. Phase I data evidenced Jill and Ellie’s refinement and coordina-
tion of knowledge for selecting attributes, and Phase II data evidenced reorga-
nized relations among particularly Jill’s knowledge for selecting attributes, using
representations, and evaluating representations. At the beginning of Phase II, the
students’ drawn rectangles and comments were consistent with the understand-
ing that lengths and widths of drawn rectangles should be in the same ratio as
the numbers being multiplied. Jill’s discussion of 4 × 10 rectangles (see Figure
9) and her subsequent drawing of 63 boxes suggested that, when first relaxing
her to-scale criterion, she lost sight of the equal group structure central to
whole-number multiplication. Thus, her to-scale criterion and her understanding
of equal groups in the space perspective appeared linked because she dropped
both at the same time. As the students generated 14 × 16 arrays to represent the
area of the interview room, however, Jill in particular decoupled her to-scale cri-
terion from her understanding of the row and column structure of arrays in the
space perspective. Key to this accomplishment was Jill’s insight that she could
use an array of not-to-scale unit rectangles in the same way as an array of
to-scale unit squares. Jill’s coordination of knowledge for using and evaluating
representations led to refined knowledge for selecting attributes because she fo-
cused more on the row and column structure and less on the shape of elements
within that structure. Jill could still draw rectangles to scale, and might even pre-
fer to do so when determining areas, but now she demonstrated more control
over relations between the representations that she generated and goals that she
was trying to accomplish. Finally, Jill’s discussion of not-to-scale arrays evi-
denced metarepresentational competence more clearly than her initial comments
about multiplying “just for fun.” Thus, she may have constructed a small piece
of metarepresentational competence as she engaged tasks and responded to my
questions during the third and fourth interviews.
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THE REMAINING PAIRS OF STUDENTS

Data on the three remaining pairs of students did not contain as extended se-
quences of knowledge refinement and coordination as did the data on Jill and Ellie.
Nevertheless, they did contain further examples of students struggling with the dot
and space perspectives and considering to-scale and not-to-scale representations
for determining rectangular areas. The work of these students demonstrate that Jill
and Ellie were not outliers.

Maisha and Lauren were the mid- and low-achieving students, respectively, and
Figure 4 shows that the timing of Maisha and Lauren’s interviews in between Mrs.
Stuart’s CMW lessons was the same as that for Jill and Ellie. When working on the
first three word problems, Maisha appeared to understand more clearly than Lauren
connectionsamongmultiplication, equal groups, andarrays.MaishaandLaurendid
notevidenceaconnectionbetweenareaandcoveringandsofacedchallengessimilar
to those faced byJill and Ellie during Phase I. In particular, when working on the sec-
ond rectangle in Problem 4, Maisha also tried using a single representational fea-
ture—unit segments—to determine both dimensions and totals. Whereas Jill and
Ellie initially described areas as the insides of rectangles, Maisha said that, to calcu-
late area, “You add the sides, and then you see how many units are in the center, and
then you add the numbers together.” She demonstrated by drawing 20 unit segments
perpendicular to the perimeter of the 5 × 7 rectangle (see Figure 14a), adding 24 for
the perimeter, and arriving at 44. One difference between Maisha’s use of unit seg-
ments for the center and Jill and Ellie’s (see Figure 7) was that Maisha’s work did not
suggest an implicit focus on rows containing equal groups. Lauren disagreed with
Maisha and focused instead on equal groups of six dots.
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FIGURE 14 (a) Maisha counted unit segments to calculate area. (b) Lauren counted dots be-
yond the perimeter.



In contrast to Jill and Ellie, Maisha and Lauren did not propose a new unit with
which to measure areas, but, after I explained that one counts “lines between dots”
to determine perimeters and “squares” to determine areas, Maisha consistently
counted unit squares to determine totals in the space perspective. Whether she co-
ordinated total numbers of unit squares with products of dimensions during subse-
quent interviews, however, remained unclear.

Lauren focused on unit segments and unit squares sometimes, but she continu-
ally reverted to dots. She first explained that, to determine the area of a 3 × 7 rectan-
gle, she “counted each of the lines between the dots.” She then counted unit seg-
ments along the normative perimeter and got 21. I could not tell why she got 21
instead of 20, but perhaps she erred when counting. Lauren then explained that, to
determine perimeter, “you’re counting the dots on the outside,” and she proceeded
to count 28 dots beyond the perimeter of the 3 × 7 rectangle (see Figure 14b).
When I asked her to determine area once more, she counted the 20 dots along the
perimeter. Thus, like Jill and Ellie, Lauren struggled to coordinate her understand-
ings of “inside” and “outside” with corresponding dots.

Given difficulties that especially Lauren had focusing on the space perspective,
I did not pursue questions about when rectangles did or did not have to be drawn to
scale in much depth. During the third interview, however, I had the students draw a
rectangle that was “really long.” The width of the rectangle that Lauren drew was
approximately three times the height. When I asked if the rectangle could show 7 ×
8, the students first said no, but then Maisha changed her answer to yes. She drew
in the 7 × 8 array and compared the resulting 56 “rectangle boxes” to 56 square
units in a to-scale rectangle. Lauren restated Maisha’s explanation, saying that
“you’re going to end up with the same number of boxes,” and traced rows as she
counted by seven. These data suggested that Maisha (and possibly Lauren) real-
ized more readily than did Jill and Ellie during Phase II that they could count
not-to-scale unit rectangles and so loosened their to-scale criterion more quickly.

Bill and Nick were high-achieving students. Figure 4 shows that one interview
with these students occurred in between Mrs. Stuart’s fourth and fifth CMW les-
sons. Their drawn representations and explanations for the first three word prob-
lems evidenced connections among multiplication, equal groups, and arrays. Bill
and Nick also correctly drew rectangles on dot paper and counted unit segments for
dimensions and unit squares for totals. Thus, they coordinated appropriate repre-
sentational features with dimensions and totals in the space perspective.

Bill recognized more quickly than did Jill and Ellie during Phase II that repre-
senting rectangles do not have to be drawn to scale to determine areas of repre-
sented rectangles. At one point, he drew the rectangle shown in Figure 15a to show
1 × 10 and stated, “It would be really weird to do area like that, one by something,
but it would just be 10. … I mean it’s a really bad sketch.” Nick questioned Bill’s
explanation at first, saying ,“The units have to be the same amount. You can’t just
have one that’s small and one that’s long. But if it is a bad sketch, then yeah you
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could do it.” Nick’s comment suggested a criterion similar to Ellie’s that vertical
and horizontal units should be represented by the same length, but he apparently
gave less weight to this criterion.

In subsequent discussion, I asked the students to draw a rectangle that showed 6
× 40. Figure 15b shows Bill’s drawing with the 6 on the vertical and the 40 on the
horizontal dimension. I then reversed Bill’s labels (see Figure 15b) and asked
whether, with new labels, the rectangle could be used first to multiply 6 × 40 and
then to find the area of a rectangle. Thus, I asked Bill and Nick about two prob-
lem-solving goals similar to those that Jill and Ellie had discussed. Bill and Nick
responded that if you just wanted to count the boxes to determine area, it would
make no difference, and Bill drew one not-to-scale unit below the rectangle (see
Figure 15b). Like Maisha, Bill apparently understood more easily than other inter-
view students that counting unit rectangles could determine the area of a repre-
sented rectangle.

Rick and Elaine were mid-achieving students. Figure 4 shows that one inter-
view with these students occurred in between Mrs. Stuart’s fourth and fifth CMW
lessons. Rick’s drawn representations and explanations for Problems 2 and 3 evi-
denced connections among multiplication, equal groups, and arrays, but Elaine ap-
peared to have more trouble. Figures 16a and 16b show Elaine’s work for Problems
1 and 2. She explained that her drawn rectangles for Problem 1 showed 5 + 2 = 7,
and she may have focused just on the lengths of two adjacent sides. For Problem 2,
Elaine drew similar rectangles and said that there were 18 plants in three rows, but
she shaded one row of three when I asked her to illustrate her thinking (see Figure
16b). Thus, her verbal explanation and drawn work appeared inconsistent. For
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FIGURE 15 (a) Bill’s sketch for a 1 × 10 rectangle. (b) Bill drew one box for a not-to-scale 40
× 6 rectangle.



Problem 3, Elaine drew the perimeter of a 4 × 7 rectangle, but she stated that she
was unsure whether to use addition or multiplication. Rick identified equal groups
of unit squares in rows and columns when drawing rectangles on the dot paper, but
Elaine had trouble coordinating dimensions and totals in the space perspective. I
did not pursue issues of scale with this pair.

DISCUSSION

As stated at the outset, the study presented here provides an existence proof that the
knowledge in pieces perspective can lend insight into learning core elementary
mathematics topics, demonstrating that important components are not tied to phys-
ics, moreadvancedmathematics, or the learningof older students.Theanalytic cate-
gories of knowledge for selecting attributes, using representations, and evaluating
representations comprise an elaboration of the perspective highlighting how coordi-
nation and refinement of multiple knowledge elements can occur as students learn to
use representations to solve problems about situations. Contact with past research
discussed previously suggests that the categories of knowledge for selecting attrib-
utes, using representations, and evaluating representations may be useful when ana-
lyzing learning in further domains within and beyond elementary mathematics.

Data on the remaining students suggested that Jill and Ellie were not outliers but
did evidence coordination and refinement in more detail than did the other pairs.
Maisha and Lauren also focused on dots initially and had trouble coordinating
their understandings of “inside” and “outside” with appropriate representational
features in both the dot and space perspectives. I could not tell whether Bill, Nick,
Rick, or Elaine also focused on dots initially or had trouble with understandings of
“inside” and “outside” because their first interviews occurred after Mrs. Stuart’s
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FIGURE 16 (a) Elaine’s diagrams for Problem 1. (b) Elaine’s diagrams for Problem 2.



second and third lessons. Recall that these lessons were designed to focus students’
attention on the space perspective. One reason why Jill and Ellie evidenced more
detailed coordination and refinement of knowledge was that they gave higher pri-
ority to scale drawings than did Maisha and possibly Lauren, Bill, or Nick. At least
Maisha and Nick seemed to understand more readily that they could still count ele-
ments in not-to-scale arrays to determine areas.

Readers might ask if the specific results about learning in the study presented
here were simply an artifact of developing insufficiently the notion of area as cov-
ering at the outset of instruction. Although the study presented here was not ini-
tially designed to examine how students might construct areas as coverings, results
of past research summarized previously, combined with those of the study pre-
sented here, suggest that accessible learning trajectories in the domain of area re-
mains an important focus for future research. Recall that past research has docu-
mented cases where students either did, or did not, demonstrate (possibly implicit)
understandings of areas as coverings. Past research (Lehrer, 2003; Lehrer et al.,
1998; Stephan & Clements, 2003) also demonstrated that the coordination of mul-
tiple ideas related to units can vary from student to student. Although Simon and
Blume (1994) hypothesized that students must first understand area as measurable
by an array of unit squares before constructing relations between length and area
measurements, they did not suggest how students might construct understandings
of such arrays. The study presented here provides an existence proof that students
can begin to construct areas as arrays of unit squares by refining and coordinating a
range of understandings, including those of discrete arrays.

Readers might also ask what was significant about Jill’s learning, particularly
during Phase II. If she understood areas as arrays of unit squares, would that not suf-
fice given that the instructional goal was to have students use rectangular area repre-
sentations tounderstandnumericmethodsformultidigitmultiplication?Theanswer
would be “Yes” if one focused only on the content in the CMW materials, but I argue
that changes to “No” if one considers a longer learning trajectory in which students
construct relations between representations and situations that afford solutions to
problems across topics and domains. Developing flexible relations between repre-
sentations and problem situations, based on an understanding of what is sufficient
for solving a problem, is important for understanding other mathematical represen-
tations.Forexample, Izsák(2003) reportedacase inwhichapairofeighth-gradestu-
dents thought that algebraic representations of linear motion should be true for all
values of the independent variable, but came to understand that equations (which
constrain the independent variable to a unique value) can be solved to determine
when specific events occur. I am not suggesting a direct connection between using
not-to-scale rectangular representations andbeingprepared formodeling linearmo-
tion with algebraic representations, but rather I am advancing the hypothesis that
more explicit attention to relations between representations and situations in the ele-
mentary grades might better prepare students for subsequent courses in which more
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complex relations are central. Another direction for future research, therefore, is to
search for further opportunities to focus on such relations.

The study presented here extends the small but growing number of results on
students’ criteria for representations. In particular, the study demonstrates that
such criteria can be engaged when students not only design representations, as re-
ported in past research, but also learn to use more schooled representations, al-
though such engagement may be more tacit in this case. This raises the possibility
that past research has overlooked the important role that criteria for representations
can play, in conjunction with other understandings, when students study still other
topics in mathematics and science.

Finally, results of the study presented here suggest that using whiteboards
with arrays of dots was neither a complete success nor a failure. The CMW de-
signers and Mrs. Stuart met ahead of time and anticipated that the instructional
approach, including the boards, would be accessible to her students. It is fair to
say, however, that we assumed her students knew more about area than they did
and that we did not adequately account for their past experiences using discrete
representations. That Jill, Ellie, Maisha, and Lauren drew heavily on past experi-
ence with dots highlights the importance of understanding continuities and dis-
continuities that students experience as they attend to and use inscriptions to
solve problems. Past experiences with arrays of dots both supported and con-
strained students’ coordination of unit segments and squares with dimensions
and totals in the space perspective. Moreover, the prevalence of elementary
mathematics activities in which students attend to a single feature (e.g., manipu-
lable cubes or drawn objects) suggests that other students with similar experi-
ences might also face challenges when learning to attend adaptively to represen-
tational features. More generally, results of the study presented here suggest
explicitly identifying similarities and differences between students’ past experi-
ences using representations to solve problems and demands of new tasks can be
central to successful instructional design.
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