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Abstract

Video concept learning often requires a large set of train-

ing samples. In practice, however, acquiring noise-free

training labels with sufficient positive examples is very ex-

pensive. A plausible solution for training data collection is

by sampling from the vast quantities of images and videos

on the Web. Such a solution is motivated by the assumption

that the retrieved images or videos are highly correlated

with the query. Still, a number of challenges remain. First,

Web videos are often untrimmed. Thus, only parts of the

videos are relevant to the query. Second, the retrieved Web

images are always highly relevant to the issued query. How-

ever, thoughtlessly utilizing the images in the video domain

may even hurt the performance due to the well-known se-

mantic drift and domain gap problems. As a result, a valid

question is how Web images and videos interact for video

concept learning. In this paper, we propose a Lead–Exceed

Neural Network (LENN), which reinforces the training on

Web images and videos in a curriculum manner. Specif-

ically, the training proceeds by inputting frames of Web

videos to obtain a network. The Web images are then fil-

tered by the learnt network and the selected images are ad-

ditionally fed into the network to enhance the architecture

and further trim the videos. In addition, Long Short-Term

Memory (LSTM) can be applied on the trimmed videos to

explore temporal information. Encouraging results are re-

ported on UCF101, TRECVID 2013 and 2014 MEDTest in

the context of both action recognition and event detection.

Without using human annotated exemplars, our proposed

LENN can achieve 74.4% accuracy on UCF101 dataset.

1. Introduction

Motivations. Video concept learning is fundamentally a

classification task that predicts whether a video is relevant

∗This work was done when Chuang Gan was a visiting research student

in Microsoft Research Asia.

(a) Mopping floor

(b)  Juggling balls

(c)  Baby crawl

... ...

... ...

... ...

Figure 1. Web image and videos returned by a search engine are

usually highly correlated to the query. However, web videos are

always untrimmed and contain large portion of irrelevant frames,

as indicated by green boxes in this figure. Web images could be

noisy due to 1) semantic drift, i.e. the mismatch between query

and returned images, for example juggling balls in this figure (b),

and 2) domain gap, i.e. the inconsistencies between videos and

images, e.g. images of baby crawl usually post edited with clean

white background.

to a given concept. The significance of the topic is partly re-

flected in the huge volume of published papers in the area of

computer vision in the last decades. For example, support

vector machines (SVM) trained on reliable hand-crafted

features such as mid-level parts [42, 40], improved dense

trajectories [39] and deep neural networks [8, 22, 30, 38]

have achieved promising recognition results. A critical step

along this process is the acquisition of sufficiently large

amounts of quality training data. The acquisition, however,

is not a trivial process. For instance, it took long time to

construct the ActivityNet [18] and Sport1M [22] datasets,

which only contain hundreds of concepts. Such a labor-

intensive process will become extremely difficult for the ul-
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Figure 2. Preliminary experiment results: (a) the action recognition performance by using web images only (I), web videos only (V), and

Late fuse (Late fuse); (b) the accuracy distribution of different action classes by using web images only; (c) the accuracy distribution of

different action classes by using web videos only.

timate goal of labeling thousands of video concepts.

On the other hand, with the success of commercial Web

image and video search engines, we can easily crawl suf-

ficient images and videos via Google, Flickr and YouTube,

given a concept as a query. Automatic sampling of these

Web images and videos for video concept learning thus ap-

pears as a natural way of replacing expensive manual label-

ing. Such a solution sounds promising, though is challeng-

ing, particularly for identifying high-quality positive sam-

ples. Web images are always well taken, especially for

the highlight moments of actions and events. This cate-

gory of resources, nevertheless, is fragmentally recorded

and static. Web videos, in contrast, are untrimmed and with

large spatio-temporal variance. Therefore, the videos of-

ten contain redundant and irrelevant parts in answering the

query. There is no clear mechanism, however, how the Web

images and videos could be jointly exploited for video con-

cept learning in a principled way.

Preliminary experiments. To better understand how much

Web images and videos could contribute to video con-

cept learning, we conduct a preliminary experiment on the

UCF101 action recognition dataset, which contains 101 ac-

tion categories. First, we collect Web images and videos

via the Google image search engine and YouTube, by issu-

ing each action category as a search query. For each cate-

gory, we crawled around 600 images and 15 videos as pos-

itive training examples. To learn video concept detectors,

VGGNet [31] is first pre-trained with the ILSVRC-2012 [6]

training set of 1.2 million images and then fine-tuned by us-

ing Web images and frames of Web videos for action recog-

nition respectively, which is observed to be better than train-

ing from scratch [13, 15]. Evaluating the learnt detectors

on the test split 2 on UCF101 dataset, Figure 2 (a) shows

the accuracies by using Web images, Web videos and their

late fusion. There are two observations as shown in the fig-

ure: 1) the accuracy by solely using Web images can reach

61.3%, compared with 57.8% using Web videos; 2) with

a simple late fusion of the prediction scores of fine-tuned

models on Web images and videos, the performance can

further be improved to 66.7%. The results essentially in-

dicate that Web images and videos are complementary for

learning video concepts.

Figure 2 (b) and (c) further details the performance

across different action categories. Overall, different action

categories respond quite differently to Web images. Among

all the categories, the accuracy surpasses 80% in 54 out of

101 categories. Meanwhile, there are 16 action categories

where the accuracy is below 10%. The performance, in

contrast, are generally concentrated when exploiting Web

videos for each category. There are only 31 categories

whose performance is over 80% and 2 categories achieve

an accuracy lower than 10%. For instance, the images rele-

vant to the query mopping floor (Figure 1 (a)) are all highly

related to actions in videos, resulting in good performance

by Web images alone. Instead, Web images are found to

be quite different in visual appearance from videos due to

the domain gap [29] for queries such as baby crawl (Fig-

ure 1 (c)), and Web videos show better performance. In

the extreme case where all Web images are found to be less

helpful because of semantic drift [4], as for the query jug-

gling balls (Figure 1 (b)), the accuracy of a detector learnt

on Web images drops to 0, while the performance can still

reach 40% by relying on Web videos. As indicated by our

results, allowing an interaction between Web images and

videos could lead to better performance for video concept

learning. In particular, Web videos should lead the training

process, while the learning is enhanced by further involving

Web images.

Contributions. By consolidating the idea of jointly ex-

ploiting Web images and videos for video concept learn-

ing, we present a Lead-Exceed Neural Network (LENN), as

shown in Figure 3. Specifically, the training process starts

by feeding into all the key frames of Web videos to learn

an initial neural network. Then, the network is utilized to



predict on Web images and filter out the noisy ones. The

selected Web images further fine-tune the initial network

to enhance the whole architecture. The refined architec-

ture is employed to trim Web videos and localize the rel-

evant frames of Web videos to video concept. Finally, Long

Short-Term Memory (LSTM) [8] networks are applied on

the localized video frames to explore long term temporal

information for video concept learning. In summary, this

paper makes the following contributions:

• To the best of our knowledge, this is the first in-depth

study of utilizing web image and video data, which are

arbitrary and noisy, for real world video concept recog-

nition without any human supervision.

• Coupling with the powerful feature learning frame-

works Convolutional Neural Networks (CNNs) and

Long Short-Term Memory (LSTM), we pave a new

Lead–and–Exceed way of video concept learning,

which maximizes the instinct strengths of web videos

and images while minimizes the side effects caused by

semantic drift, domain gap, noises in irrelevant frames,

and so forth.

• Experimental results on three large-scale video

datasets demonstrate that the proposed system outper-

forms other webly-supervised approaches and certain

few-shot supervised approaches as well.

The remaining sections are organized as follows. Sec-

tion 2 describes related work on video concept learning and

learning from the Web. Section 3 presents our Lead–Exceed

Neural Network (LENN) for the video concept learning by

jointly exploiting Web images and videos. Section 4 pro-

vides empirical evaluations, followed by the discussion and

conclusions in Section 5

2. Related Work

Our research involves two research directions, which

will be reviewed briefly in this section.

Video Concept Learning. Video concept learning, such

as action recognition and event detection, has been widely

explored in the community of computer vision and multi-

media [47]. A detailed survey can be found in [26]. A

considerable portion of these works are about video rep-

resentation. Improved dense trajectories (IDT) [39] and its

variant [24, 41] combined with Fisher vector coding [28]

show state-of-the-art performance.

Motivated by the promising results of deep networks

(particularly ConvNets) on image analysis tasks [23, 37,

31, 20], there have also been a number of attempts to de-

velop a deep architectures for video recognition. Karpathy

et al. [22] compared several architectures for action recog-

nition. Tran et al. [38] proposed to learn generic spatial-

temporal features by using 3D ConvNets for video recog-

nition. Simonyan et al. [30] proposed two-stream networks

to capture spatial and motion information using frames and

stacked optical flows as inputs, respectively. More recently,

Recurrent Neural Networks (RNNs), which are well-suited

for modeling sequential information have also proven effec-

tive on video recognition. Srivastava et al. [34] proposed an

LSTM encoder-decoder framework to learn video represen-

tations in an unsupervised manner [34]. Donahua et al. [8]

trained a two-layer LSTM network for action classification.

Ng et al. [27] further demonstrated that a five-layer LSTM

network can achieve slightly better results. However, these

approaches are all based on the assumption that we have

high-quality labeled data that can be used for training. To

the best of our knowledge, there are no previous works ex-

ploring how to obtain reasonable results using noisy Web

data.

Learning from Web Data. As commercial visual search

engines became mature, many researchers have pushed

hard in the direction of learning visual models using Web

data [5, 7, 35, 11, 25]. To combat the problems of noise and

data bias, [4, 5, 7] proposed semi-supervised approaches to

jointly learn robust visual models and find clean exemplars,

hoping the simple examples learned first could detect harder

and more complex examples. In the video domain, Duan

et al. [10] describe a system that uses a large amount of

weakly labeled Web videos for visual event recognition by

measuring the distance between two videos and a new trans-

fer learning method. Chen et al. [36] and Duan et al. [9]

proposed domain transfer approaches from Web images for

action localization and event recognition task. Habibian et

al. [17] obtain textual descriptions of videos from the Web

and learn a multimedia embedding for few-example event

recognition. Nevertheless, these approaches all require hu-

mans to annotate a few positive videos as seeds. To al-

leviate the tedious human burdens and achieve labor-free

video concept learning, several researchers have attempted

to learn video concept detectors by crawling images and

videos [45, 16] after querying the event name and potential

associated queries. However, the quality of the concepts is

low compared with the fully-supervised approach, due to

the fact that Web video search engines are a weak form of

supervision, providing no spatial or temporal localization.

This means that the untrimmed video contains large quan-

tities of unrelated frames, which will confuse the classifier

training. In [3, 32], the authors attempt to learn video con-

cepts from Web images. However, the performance is still

limited, due to the well-known domain gap problem [29],

even though concept pruning and a domain adaptation ap-

proach [32] have been proposed to address the domain shift

problem. To eliminate these concerns, we propose a novel

framework to learn video concept detectors by leveraging

image and video web data together.

Our work is also related to zero-shot video retrieval [12,

1, 43, 32, 14, 44]. Given a textual query, state-of-the-art

event retrieval system is performed by selecting concepts
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Figure 3. The overview of our approach: Web videos are firstly used to train a Lead Network by fine-tuning the VGGNET [31]. Then the

Leading Network is applied to Web images to filter out noisy images due to semantic drift or domain gap. After further fine-tuning the

Leading Network by adding related images, we obtain an Exceeding Network which is then used to filter out irrelevant frames. Finally, the

remaining related frames are fed into a LSTM network to incorporate temporal information.

linguistically related to the query and fusing the concept re-

sponses on unseen videos. The key building block of zero-

shot video retrieval is a pre-defined large vocabulary of con-

cepts. Therefore, the output of our framework can serve as

the input of zero-shot video retrieval systems.

3. Approach

In our framework, all supervision information for both

images and videos are crawled from Web, and the infor-

mation is gradually reinforced during the learning process.

Web videos and images are presumed to be complementary

to each other. Due to the heterogeneity of videos and im-

ages, even a video may have irrelevant frames given a query,

it is unlikely that images which are visually similar to the

irrelevant frames will be also retrieved by a search engine.

For example, no images similar to the last three frames of

the first video (mopping floor) in Figure 1 (a) will be re-

trieved using the query mopping floor. Similarly, given a

query, the retrieved noisy images are very unlikely to appear

in a video clip, e.g. the clean background images of baby

crawling in Figure 1 (c). To leverage such complementary

information from Web videos and images, videos are firstly

used to train a Lead Network to model the appearances of

related frames and unrelated frames. Then the Lead Net-

work is used to filter out noisy images. By further refining

the Lead Network on the remaining images, we obtain an

Exceed Network, which is then used to filter out unrelated

frames. After pruning videos, only related frames are fed

into a LSTM network to further incorporate temporal in-

formation. The whole video concept learning framework is

summarized in Figure 3, which consists of four major com-

ponents: data gathering, Lead Network training using Web

videos, Exceed Network training using Web images and a

LSTM network to model temporal information. Each com-

ponent will be detailed in following subsections.

3.1. Data Gathering

The Web is the richest source for training data gather-

ing. In our framework, all supervised information is gath-

ered from Web-based search engines.

For the image domain, we use category names with mi-

nor changes (e.g. doing balance beam for the class balance

beam) and photo filter to query Google image search and

download the retrieved images. The photo filter removes ar-

tificial images that rarely appear in videos. To comply with

the query format of Google image search engine, all occur-

rences of without, non- and not are replaced with the minus

sign. With this procedure, about 600 images on average are

gathered for each query.

For the video domain, we download the queried videos

at the best quality available from YouTube. In order to con-

trol both storage and computational cost, we limit the re-

trieved video to be less than 15 minutes in length. In prac-

tice, 90% of videos have a duration between 5 and 10 min-

utes. Around 60% of the videos are in resolution 1280×
720, while the majority have a frame rate of 30 FPS (frames

per second). In the paper, we crawl about 15 videos on av-

erage for each query.



3.2. Lead Network

Web videos directly describe the visual appearance of

video concepts with less domain gap. So we start by train-

ing a Lead Network by using Web videos. For this train-

ing, each video is decomposed into a set of frames. Us-

ing all video frames would be computationally expensive

and is not necessary, as there is lots of redundancy between

frames. Thus, we only use the key frames. To extract these,

we start with detecting shot boundaries by calculating color

histograms for all frames. For each frame, we then calcu-

late the L1 distance between the previous color histogram

and the current one. If the distance is larger than a certain

threshold, this frame is marked as a shot boundary. After

detecting the shot, frames within a shot are similar, so we

use the frame in the middle to represent the shot, defining it

as the key frame. By using this algorithm, we extract around

200 key frames for a 5 minute video.

Encouraged by the state-of-art performance achieved

by CNNs in several action recognition task [30], we also

choose CNNs as a building block of our framework. Train-

ing a CNN starting from a random initialization is time-

consuming and also requires large quantities of annotated

training data, while CNNs pre-trained from ImageNet have

been proven to generalize well to other vision tasks with

domain-specific fine-tuning. Thus we choose a pre-trained

CNN for a warm start. Specifically, we choose the VG-

GNET networks [31] released by Oxford to conduct ex-

periments, which contains sixteen convolutional layers and

three fully connected layers. The output of the last fully-

connected layer is fed into a 1000-way softmax layer with

multinomial logistic regression used to define the loss func-

tion, which is equivalent to defining a probability distribu-

tion over the 1000 classes. To fine-tune the VGGNET, we

set the output number of the last fully-connected layer and

the softmax layer as the number of video concepts, and ini-

tialize the network with pre-trained weights, except that the

weights for the last fully-connected layer are randomly ini-

tialized.

3.3. Exceed Network

Though with less domain gap, the Lead Network trained

on videos suffers from unfocused problem. To suppress the

effect of unrelated frames for the Lead Network, we resort

to using supervised information from the image domain.

For a video concept, the related images with distinctive ac-

tion scenes will be helpful to keep related frames in videos

with implicit supervised information derived from the im-

age capture process. While promising, the Web images are

noisy and some exhibit semantic drift, as e.g. the example

of juggling ball. The top returned images are all about the

ball itself, not juggling.

To remove useless Web images and keep related ones, we

use the Lead Network to perform filtering. The Lead Net-

work is trained on both related frames and unrelated frames,

and favors related Web images since unrelated frames rarely

appear as single images, as they are not informative enough

to capture.

Formally, suppose we have M crawled images from C

video concepts. Each data sample is the form of (Im, ym),
where ym ∈ {1, 2, ...,C} is the category label of the m-

th image. Each image Im is fed into the Lead Network in

a feed-forward pass, and yields a probability distribution

pm ∈ R
C over the C video concepts. We use pm(c) to

denote the probability of image m being in the cth category.

We keep images whose pm(ym) is above a threshold ηI as

related images labeled by the Lead Network. Empirically,

ηI is set as 0.5 in our experiments which is good enough to

filter unrelated images.

The cleaned Web images are used to further fine-tune the

Lead Network and obtain the Exceed Network. The Exceed

Network is more focused on video concept related appear-

ance enhanced by related web images. The Exceed Network

is further taken back to trim Web videos to keep related

frames. Suppose a video Vi from video concept yi contains

a set of key frames Vi = {vi1, vi2, · · · , vini
}, where ni de-

notes the total number of key frames in Vi. We feed each

key frame into the Exceed Network, and obtain its probabil-

ity score on yi. The key frames with scores above threshold

ηV will be selected to train the temporal model. ηV is set as

0.5, the same as ηI .

Implementation details. Each key frame is resized with

the shorter side to be 256 pixels which is compatible with

the input requirement of VGGNET. During Leed Network

training, all key frames are randomly shuffled, and orga-

nized as mini-batches with size of 128 for VGGNET fine-

tuning by using stochastic gradient descend. The learning

rate starts from 10-3 and decreases to 10-4 after 20K iter-

ations, then to 10-5 after 40K iterations. The training is

stopped after 60K iterations. During Exceed Network train-

ing, we take the selected web images inputs to further en-

hance the initial trained Lead Network. The learning rates

starts from 10-3 and decreases to 10-4 after 30K iterations.

The training will be stopped after 60K iterations.

3.4. Long ShortTerm Memory Machines

Besides appearance information in each related frame,

temporal information also contains discriminative signals

for video concept learning. Thus, after related frames are

selected for Web videos, we further utilize Long Short-

term Memory (LSTM) to capture such temporal informa-

tion. Long Short-term Memory (LSTM) [19] is a type

of recurrent neural network (RNN) that solves the vanish-

ing and exploding gradients problem of conventional RNN

architectures when trained using back-propagation. Stan-

dard LSTM architecture includes an input layer, a recurrent

LSTM layer and an output layer. The recurrent LSTM layer



has a set of memory cells, forget gates, input gates and out-

put gates, which allow it to maintain long-term memory and

reset its memory, respectively.

Denote an input sequence X as {x1, x1, · · · , xT }, where

each xt is a feature vector of a video frame at time t.

Through the LSTM, the input sequence is mapped to an out-

put sequence Y = {y1, y2, · · · , yT } as follows:

it = σ(Witxt +Wirrt−1 +Wicct + bi), (1)

ft = σ(Wfxxt +Wrfrt−1 +Wcfct−1 + bf ), (2)

ct = ft ⊙ ct−1 + it ⊙ g(Wcxxt +Wcrrt−1 + bc), (3)

ot = σ(Woxxt +Worrt−1 +Wocct + bo), (4)

mt = ot ⊙ h(ct), (5)

rt = Wrmmt, (6)

yt = Wyrrt + by. (7)

Here W ′s and b′s are the weight matrices and biases, re-

spectively. ⊙ denotes element-wise multiplication and c is

activation of a memory cell. i, f , o are activations of the

input gate, forget gate and output gate respectively. m and

r are the recurrent activation before and after projection. σ

is the sigmoid function. g and h are the tanh function.

We take the frames selected by Exceed Network to train

a LSTM network. The top layer is a softmax classifier.

We use the LSTM implemented by Caffe [21], and set the

rolling time k as 25 and the number of hidden state as 256.

The LSTM weights are learnt by using the BPTT algorithm

with a mini-batch size of 10. And the learning rate starts

from 10-3 and decreases to 10-4 after 50K iterations. The

training is stopped after 100K iterations.

4. Experiment

We empirically verify the merit of our video concept

learning framework in two aspects: 1) how Web videos and

images complement each other and 2) comparisons with

state-of-the-art zero/one shot learning methods. To achieve

this goal, two sets of experiments were conducted on video

action recognition and event detection, respectively.

4.1. Dataset

We validate our framework on three large-scale video

recognition datasets. One is for action recognition, and the

other two are for video event detection.

UCF101 [33]. This is a large video dataset collected from

YouTube for action recognition, which contains 101 action

classes, 13K clips and 27 hours of video data. The task

is considered challenging since lots of videos are captured

under poor lighting, cluttered background, or severe cam-

era motion. As our framework doesn’t require a training

set, we only use the three provided test-splits with around

3,800 videos each for evaluation. Performance is measured

in terms of classification accuracy.

TRECVID MED 20131 and 2014 dataset2. These are

two largest publicly available video corpora in the liter-

ature for video event detection. They have been intro-

duced by NIST for all participants in the TRECVID com-

petition and research community to conduct experiments.

MEDTest 13 contains 20 events E006 – E015 and E021 –

E030, while MEDTest 14 has 20 events E021 – E040, where

E021 – E030 are shared by both datasets. Each dataset con-

tains three different partitions, i.e., Background, 100EX and

MEDTest. Background contains about 5000 background

videos not belonging to any of the target events; 100EX

contains 100 positive videos for each event, are used as

the training set; MEDTest contains around 25,000 videos

(over 960 hours of videos), with per-video ground truth an-

notations for 20 event categories. Since we focus on uti-

lizing Web data to train event detectors, we just use the

5000 videos in the Background set (not using any positive

videos from 100EX) during training. To evaluate the perfor-

mance, we apply the official metric: average precision (AP)

per event, and mean Average Precision (mAP) by averaging

AP on all events.

Implementation details. For testing on UCF101 dataset,

we uniformly sample 25 frames per video on the testing

videos and then utilize a spatial network or a LSTM net-

work to do predictions. To arrive at a video-level classifica-

tion score, we rely on simply late fusion. Testing the spatial

model is achieved by averaging the classification score on

key frames. For the testing on TRECVID MED dataset us-

ing LSTM model, we produce 25 key frame long clips with

a 12-frame overlap between two consecutive clips and the

classification score of a video is the average of the scores

of all clips. Similarly, the average of scores predicted on

all key frames by spatial model is taken as the classification

result of a video.

4.2. Experiment Result on Action Recognition

We first validate the performance of our models that cap-

ture the appearance information, then examining whether

the better appearance information could improve the tem-

poral model and the final concept detection results.

Comparison with baselines. To the best of our knowl-

edge, this is the first attempt to use Web data to conduct

action recognition on UCF101 dataset. To demonstrate the

effectiveness of our proposed framework, we compare our

framework against other baseline systems:

• Image: Directly using Web images to fine-tune the

VGGNET.

• Video: Directly using Web video key frames to fine-

tune the VGGNET.

• Image + Video: Using Web images to fine-tune the

VGGNet first, then using the fine-tuned model to select

1http://nist.gov/itl/iad/mig/med13.cfm
2http://nist.gov/itl/iad/mig/med14.cfm

http://nist.gov/itl/iad/mig/med13.cfm
http://nist.gov/itl/iad/mig/med14.cfm


Method Acc (%)

Image 62.4

Video 58.5

Image + Video 63.2

Noise Mixing 64.6

Late fusion 67.8

Mixing 68.9

Lead-Exceed (Ours) 74.4

Lead-Exceed + LSTM (Ours) 76.3

Table 1. Comparisons with other approaches on UCF101 dataset.

Method Acc (%)

Image 58.5

Video 53.4

Image + Video 59.5

Mixing 61.4

Lead-Exceed (Ours) 65.7

Table 2. Comparison LSTMs performance on UCF101 dataset

when using different appearance models to select relevant frames.

key frames from videos for further fine-tuning.

• Noise Mixing; Directly mixing the Web image and

video key frames together to fine-tune the VGGNET.

• Mixing: Mixing the selected Web image and video

key frames in our framework together to fine-tune the

VGGNET.

• Late Fusion: Using the selected Web images and

videos in our framwork separately to fine-tune two

VGGNETs and then average their scores as final pre-

diction.

The comparison results are shown in Table 1. To further

examine whether the improved appearance model could

yield a better temporal model, we use the above models to

select 25 key frame for each Web video and put them into

an LSTM classifier to train a temporal model. The result of

LSTM classifiers and are shown in Table 2.

Result Analysis. From Table 1, we can observe three key

findings: 1) Performance can be significantly improved by

taking advantage of both Web images and videos. Partic-

ularly, comparing with using Web images only and Web

videos only, our Lead-Exceed Network can improve the rel-

ative performance by 20% and 27%, respectively, which

validates the direction of jointly using Web images and

videos for video concept learning; 2) Our proposed Lead-

Exceed Network performs significantly better than the other

two baselines (noise mixing, mixing and late fusion) that

use both images and videos, which validate that our method

is effective in learning discriminative information by taking

full advantage of both images and videos; 3) However, Im-

age + Video performs worst in methods using both videos

and images. This is not surprising, since images for a video

concept may have semantic drift that will lead the fine-

Method mAP (%)

Concept Discovery [3] 2.3

Bi-concept [16] 6.0

Composite Concept [16] 6.4

EventNet [45] 8.9

Selecting [32] 11.8

Lead-Exceed (Ours) 16.3

Lead-Exceed + LSTM (Ours) 16.7

Table 3. Comparisons with other state-of-the-art zero-shot event

detection systems on MEDtest13.

Method MEDtest13 MEDtest14

IDTFV 12.4 8.9

VGG 13.8 11.8

Lead-Exceed (Ours) 16.3 14.7

Lead-Exceed + LSTM (Ours) 16.7 15.8

Table 4. Comparisons with other stat-of-the-art few-shot event de-

tection approaches on MEDtest14.

tuning to the wrong direction, and in turn, the fine-tuned

model has a hard time selecting the right frames, thus even

hurting performance on these categories. From Table 2, we

observe that better appearance models can also help bet-

ter trimming for unconstrained Web videos, achieving high-

est performance compared with other trimming approaches

when using a LSTM to model temporal information. When

comparing Table 1 with Table 2, we find that the LSTM

model is not as good as the appearance model. We specu-

late the drop may be cased by the fact that there are only

15 video samples in each class for training. We believe that

adding more video data into the training set would further

improve the results.

4.3. Experiment Results on Event Detection

Comparison with Previous Zero-shot Approach. In or-

der to have a better understanding of our approach, we

also apply our framework on the large-scale TRECVID

MED 2013 and 2014 datasets. We first compare our ap-

proach with recent state-of-the-art zero-shot systems that

also use Web data to learn event detectors, including (1)

Concept Discovery [3], (2) Bi-Concept [16], (3) Composite

Concepts [16], (4) EventNet [45], and (5) Selected Con-

cepts [32]. Approach (1) directly uses Web images to train

event detectors, while approaches (2) – (4) directly use Web

videos to train event detectors, and approach (5) first uses

Web images to pre-train a concept detector, and then uses

top returned testing videos to re-train an event detector. For

a fair comparison, we report our results on MEDtest13 and

directly compare with state-of-the-art results quoted from

original papers. The results in Table 3 show that our frame-

work beats other zero-shot systems by a large margin. We

observe that our proposed algorithm significantly outper-
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Figure 4. Per-event detection result compared with using videos only on MEDTest 13 dataset.
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Figure 5. Per-event detection result compared with using videos only on MEDTest 14 dataset.

forms the previous approaches. For additional analysis, we

also provide event class-specific results in Figure 4 and 5.

For these two we report the number that using video only

and our Lead-Exceed Network. We observe that for 19

out of 20 classes in MEDtest13 and 17 of 20 classes in

MED14 dataset, confirming that our proposed Lead-Exceed

Network can better leverage the complementary strengths

of images and videos. The failure cases are due to the Lead

Network failing to model an event (with the average preci-

sion below 0.05). When the Lead Network is seriously bad,

our Exceed Network is unable to enhance the results.

Comparison with state-of-the-art Few-shot Ap-

proaches. We also compare our approach with state-of

the art approaches using 5 positive exemplars by using

the best hand-crafted features: Improved Dense Trajec-

tory with Fisher Vector and best high-level VGG CNN

features. Trajectory features have proven to be the most

reliable hand-crafted features for action recognition and

event recognition, consisting of five different descriptors

(trajectories, HOG, HOF, MBHX and MBHY) to capture

the shape and temporal motion information of videos.

We adopt the improved trajectories proposed by [39]

to extract local features for each video in the UCF101

dataset. We use the default parameters, which results in

426 dimensions in total. Then the PCA operations are

performed separately on each of the 5 descriptor types

to keep half of the dimensions. After PCA, the local

features reduce to 213 dimensions. Finally, each video is

encoded in a Fisher Vector [28] based on a GMM of 256

Gaussians, producing a 109,056-dimensional vector. For

VGG CNN features, we take the key frames of videos as

input to forward pass the VGGNET and extract the fc6

activation. To arrive at video-level representations, we rely

on simply average pooling. To train the event detector,

we use LIBSVM [2], with fixed parameter C = 1, as

recommended in [46]. In the results shown in Table 4, our

webly supervised approach remarkably can achieve better

results than when 5 human-annotated exemples are fed into

traditional supervised learning approaches.

5. Conclusion

In this paper, we present a simple but effective labor-

free video concept learning framework by jointly utilizing

noisy Web videos and images. Our approach can lever-

age the complementary nature of the two media, by draw-

ing on the novel idea of a Lead–Exceed Neural Network

(LENN). Experimental results on three large video recog-

nition datasets confirm that our framework can learn high-

quality video concept detectors without annotating any pos-

itive exemplars. We believe this paper opens up avenues for

exploitation of Web data to achieve next cycle performance

gains in the video learning task.

Acknowledgement. This work was supported in part

by the National Basic Research Program of China

Grant 2011CBA00300, 2011CBA00301, the National

Natural Science Foundation of China Grant 61033001,

61361136003, partially supported by the Data to Decisions

Cooperative Research Centre (www.d2dcrc.com), and

partially supported by the ARC DECRA and DP.

www.d2dcrc.com


References

[1] M. ain, J. C. van Gemert, T. Mensink, and C. G. Snoek. Ob-

jects2action: Classifying and localizing actions without any

video example. ICCV, 2015. 3

[2] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems

and Technology, 2011. 8

[3] J. Chen, Y. Cui, G. Ye, D. Liu, and S. Chang. Event-driven

semantic concept discovery by exploiting weakly tagged in-

ternet images. In ICMR, 2014. 3, 7

[4] X. Chen and A. Gupta. Webly supervised learning of convo-

lutional networks. ICCV, 2015. 2, 3

[5] X. Chen, A. Shrivastava, and A. Gupta. NEIL: Extracting vi-

sual knowledge from web data. In ICCV, pages 1409–1416,

2013. 3

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009. 2

[7] S. K. Divvala, A. Farhadi, and C. Guestrin. Learning ev-

erything about anything: Webly-supervised visual concept

learning. In CVPR, pages 3270–3277, 2014. 3

[8] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,

S. Venugopalan, K. Saenko, and T. Darrell. Long-term recur-

rent convolutional networks for visual recognition and de-

scription. CVPR, 2015. 1, 3

[9] L. Duan, D. Xu, and S.-F. Chang. Exploiting web images

for event recognition in consumer videos: A multiple source

domain adaptation approach. In CVPR, pages 1338–1345,

2012. 3

[10] L. Duan, D. Xu, I.-H. Tsang, and J. Luo. Visual event

recognition in videos by learning from web data. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

34(9):1667–1680, 2012. 3

[11] J. Fu, Y. Wu, T. Mei, J. Wang, H. Lu, and Y. Rui. Relaxing

from vocabulary: Robust weakly-supervised deep learning

for vocabulary-free image tagging. In ICCV, pages 1985–

1993, 2015. 3

[12] C. Gan, M. Lin, Y. Yang, Y. Zhuang, and A. G. Hauptmann.

Exploring semantic inter-class relationships (SIR) for zero-

shot action recognition. In AAAI, 2015. 3

[13] C. Gan, N. Wang, Y. Yang, D.-Y. Yeung, and A. G. Haupt-

mann. DevNet: A deep event network for multimedia event

detection and evidence recounting. In CVPR, pages 2568–

2577, 2015. 2

[14] C. Gan, Y. Yang, L. Zhu, D. Zhao, and Y. Zhuang. Recogniz-

ing an action using its name: A knowledge-based approach.

International Journal of Computer Vision, pages 1–17, 2016.

3

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. CVPR, pages 580–587, 2014. 2

[16] A. Habibian, T. Mensink, and C. G. Snoek. Composite con-

cept discovery for zero-shot video event detection. In ICMR,

page 17, 2014. 3, 7

[17] A. Habibian, T. Mensink, and C. G. Snoek. Videostory:

A new multimedia embedding for few-example recognition

and translation of events. In ACM Multimedia, pages 17–26,

2014. 3

[18] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles.

Activitynet: A large-scale video benchmark for human ac-

tivity understanding. 1

[19] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997. 5

[20] W. Huang, D. Zhao, F. Sun, H. Liu, and E. Chang. Scalable

gaussian process regression using deep neural networks. In

IJCAI, pages 3576–3582, 2015. 3

[21] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B.

Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. In ACM Mul-

timedia, volume 2, page 4, 2014. 6

[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 1, 3

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 3

[24] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Be-

yond gaussian pyramid: Multi-skip feature stacking for ac-

tion recognition. CVPR, 2015. 3

[25] X. Liang, S. Liu, Y. Wei, L. Liu, L. Lin, and S. Yan. To-

wards computational baby learning: A weakly-supervised

approach for object detection. In ICCV, pages 999–1007,

2015. 3

[26] T. Mei, Y. Rui, S. Li, and Q. Tian. Multimedia search rerank-

ing: A literature survey. ACM Computing Surveys (CSUR),

46(3):38, 2014. 3

[27] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-

pets: Deep networks for video classification. CVPR, 2015.

3

[28] D. Oneata, J. Verbeek, C. Schmid, et al. Action and event

recognition with fisher vectors on a compact feature set. In

ICCV, 2013. 3, 8

[29] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-

sual category models to new domains. In ECCV, pages 213–

226. 2010. 2, 3

[30] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, 2014. 1,

3, 5

[31] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. ICLR, 2015. 2,

3, 4, 5

[32] B. Singh, X. Han, Z. Wu, V. I. Morariu, and L. S. Davis.

Selecting relevant web trained concepts for automated event

retrieval. ICCV, 2015. 3, 7

[33] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset

of 101 human actions classes from videos in the wild. arXiv

preprint arXiv:1212.0402, 2012. 6

[34] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsuper-

vised learning of video representations using lstms. ICML,

2015. 3

[35] C. Sun, C. Gan, and R. Nevatia. Automatic concept discov-

ery from parallel text and visual corpora. In ICCV, pages

2596–2604, 2015. 3



[36] C. Sun, S. Shetty, R. Sukthankar, and R. Nevatia. Tempo-

ral localization of fine-grained actions in videos by domain

transfer from web images. ACM Multimedia. 3

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. CVPR, 2015. 3

[38] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

C3D: Generic features for video analysis. ICCV, 2015. 1, 3

[39] H. Wang and C. Schmid. Action recognition with improved

trajectories. In ICCV, 2013. 1, 3, 8

[40] L. Wang, Y. Qiao, and X. Tang. Motionlets: Mid-level 3d

parts for human motion recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2674–2681, 2013. 1

[41] L. Wang, Y. Qiao, and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. CVPR,

2015. 3

[42] L. Wang, Y. Qiao, and X. Tang. Mofap: A multi-level rep-

resentation for action recognition. International Journal of

Computer Vision, pages 1–18, 2015. 1

[43] S. Wu, S. Bondugula, F. Luisier, X. Zhuang, and P. Natara-

jan. Zero-shot event detection using multi-modal fusion of

weakly supervised concepts. In CVPR, pages 2665–2672,

2014. 3

[44] T. Yao, T. Mei, C.-W. Ngo, and S. Li. Annotation for free:

Video tagging by mining user search behavior. In ACM Mul-

timedia, pages 977–986, 2013. 3

[45] G. Ye, Y. Li, H. Xu, D. Liu, and S.-F. Chang. Eventnet: A

large scale structured concept library for complex event de-

tection in video. In ACM Multimedia, pages 471–480, 2015.

3, 7

[46] S.-I. Yu, L. Jiang, Z. Mao, X. Chang, X. Du, C. Gan, Z. Lan,

Z. Xu, X. Li, Y. Cai, et al. Informedia@ TRECVID 2014

MED and MER. 8

[47] Z.-J. Zha, T. Mei, Z. Wang, and X.-S. Hua. Building a com-

prehensive ontology to refine video concept detection. In

multimedia information retrieval, pages 227–236, 2007. 3


