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Abstract

The concept of conditional computation for deep nets

has been proposed previously to improve model perfor-

mance by selectively using only parts of the model condi-

tioned on the sample it is processing. In this paper, we in-

vestigate input-dependent dynamic filter selection in deep

convolutional neural networks (CNNs). The problem is in-

teresting because the idea of forcing different parts of the

model to learn from different types of samples may help

us acquire better filters in CNNs, improve the model gen-

eralization performance and potentially increase the inter-

pretability of model behavior. We propose a novel yet sim-

ple framework called GaterNet, which involves a backbone

and a gater network. The backbone network is a regular

CNN that performs the major computation needed for mak-

ing a prediction, while a global gater network is introduced

to generate binary gates for selectively activating filters in

the backbone network based on each input. Extensive ex-

periments on CIFAR and ImageNet datasets show that our

models consistently outperform the original models with a

large margin. On CIFAR-10, our model also improves upon

state-of-the-art results.

1. Introduction

It is widely recognized in neural science that distinct

parts of the brain are highly specialized for different types

of tasks [20]. It results in not only the high efficiency in

handling a response but also the surprising effectiveness of

the brain in learning new events. In machine learning, con-

ditional computation [3] has been proposed to have a sim-

ilar mechanism in deep learning models. For each specific

sample, the basic idea of conditional computation is to only

involve a small portion of the model in prediction. It also

means that only a small fraction of parameters needs to be

updated at each back-propagation step, which is desirable

for training a large model.
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Figure 1. Model Architecture (better viewed in color). The gater

extracts features and generates sparse binary gates for selecting

filters in the backbone network in an input-dependent manner.

One line of work that is closely related to conditional

computation is Mixture of Experts (MoE) [15], where mul-

tiple sub-networks are combined via an ensemble using

weights determined by a gating module. Particularly, sev-

eral recent works [25, 28] propose to ensemble a small sub-

set of dynamically selected experts in the model for each

input. By doing so, these models are able to reduce com-

putation cost while achieving similar or even better results

than baseline models. Note that both the expert architec-

tures and the number of experts in these works are pre-

defined and fixed. Another line of works that resemble con-

ditional computation focus on dynamic network configura-

tion [29, 1, 7, 2, 4]. There are no explicitly defined experts

in these methods. Rather, they dynamically select the units,

layers, or other components in the main model for each in-

put. In these works, one small sub-module is usually added

to each position to be configured in the model. That is, each

sub-module added is making decisions locally specific to

the components it is configuring.

In this paper, we propose a novel framework called

GaterNet for input-dependent dynamic filter selection in

convolutional neural networks (CNNs), as shown in Fig-

ure 1. We introduce a dedicated sub-network called gater,
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which extracts features from input and generates the binary

gates needed for controlling filters all at once based on the

features. The gating vector is then used to select the filters

in the backbone1 network (the main model in our frame-

work), and only the selected filters in the backbone network

participate in the prediction and learning. We used a dis-

cretization technique called Improved SemHash [17] to en-

able differentiable training of input-dependent binary gates

such that the backbone and the gater network can be trained

jointly via back-propagation.

Compared to previous works on dynamic network con-

figuration, we use a dedicated sub-network (the gater) for

making global decisions on which filters in the backbone

network should be used. The decision on each gate (for

each filter) is made based on a shared global view of the

current input. We argue that such a global gating unit can

make more holistic decisions about how to optimally use the

filters in the network than local configuration employed by

previous work. Note that in [28], a module of the network

is used to generate all the gates, which at a glance is similar

to our gater. However, there are two important differences.

Firstly, [28] is not based on an end-to-end approach. It re-

quires a pre-processing step to cluster classes of samples

and assign each cluster to a sub-branch of the network to

handle. The assignments provides explicit supervision for

training the gating module. Secondly, as mentioned above,

the sub-branch architectures and the number of branches are

both manually defined and fixed throughout training in [28].

In contrast, in our framework, each sample uses a dynam-

ically determined sub-branch depending on the filters be-

ing selected. As a result, our method potentially allows a

combinatorial number of choices of sub-branches or experts

given the number of filters to be controlled, which is more

amenable for capturing complex distribution manifested in

the data.

Our experiments on CIFAR [21] and ImageNet [24] clas-

sification datasets show that the gater in GaterNet is able to

learn effective gating strategies for selecting proper filters.

It consistently improves the original model with a signifi-

cant margin. On CIFAR-10, our method gives better classi-

fication results than state-of-the-art models with only 1.2%

additional parameters. Our contributions are summarized as

follows:

• We propose a new framework for dynamic filter selec-

tion in CNNs. The core of the idea is to introduce a

dedicated gater network to take a glimpse of the input,

and then generate input-dependent binary gates to se-

lect filters in the backbone network for processing the

input. By using Improved SemHash, the gater network

can be trained jointly with the backbone in an end-to-

end fashion through back-propagation.

• We conduct extensive experiments on GaterNet, which

1The term backbone is also used in object detection and TSE-Net [5].

show that it consistently improves the generalization

performance of deep CNNs without significantly in-

creasing the model complexity. In particular, our mod-

els achieve better results than several state-of-the-art

models on the CIFAR-10 dataset by only introducing a

small fraction of parameters.
• We perform an in-depth analysis about the model

behavior for GaterNet, which reveals that GaterNet

learns effective gating strategies by being relatively de-

terministic on the choice of filters to use in shallow lay-

ers but using more input-dependent filters in the deep

layers.

2. Related Work

The concept of conditional computation is first discussed

by Bengio in [3]. Early works on conditional computation

focus on how to select model components on the fly. Bengio

et al. have studied four approaches for learning stochastic

neurons in fully-connected neural networks for conditional

selection in [4]. On the other hand, Davis and Arel have

used low-rank approximations to predict the sparse activa-

tions of neurons at each layer [6]. Bengio et al. have also

tested reinforcement learning to optimize conditional com-

putation policies [2] .

More recently, Shazeer et al. have investigated the com-

bination of conditional computation with Mixture of Ex-

perts on language modeling and machine translation tasks

[25]. At each time step in the sequence model, they dy-

namically select a small subset of experts to process the in-

put. Their models significantly outperformed state-of-the-

art models with a low computation cost. In the same vein,

Mullapudi et al. have proposed HydraNets that uses multi-

ple branches of networks for extracting features [28]. In this

work, a gating module is introduced to generate decisions

on selecting branches for each specific input. This method

requires a pre-processing step of clustering the ground-truth

classes to force each branch to learn features for a specific

cluster of classes as discussed in the introduction.

Dynamic network configuration is another type of con-

ditional computation that has been studied previously. In

this line of works, no parallel experts are explicitly defined.

Instead, they dynamically configure a single network by

selectively activating model components such as units and

layers for each input. Adaptive Dropout is proposed by Ba

and Frey to dynamically learn a dropout rate for each unit

and each input [1]. Denoyer and Ludovic have proposed a

tree structure neural network called Deep Sequential Neu-

ral Network [7]. A path from the root to a leaf node in

the tree represents a computation sequence for the input,

which is also dynamically determined for each input. Re-

cently, Veit and Belongie [29] have proposed to skip layers

in ResNet [10] in an input-dependent manner. The resulting

model is performing better and also more robust to adver-
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sarial attack than the original ResNet, which also leads to

reduced computation cost.

Previous works have also investigated methods that dy-

namically re-scale or calibrate the different components in

a model. The fundamental difference between these meth-

ods and dynamic network configuration is that they gen-

erate a real-valued vector for each input, instead of a bi-

nary gate vector for selecting network components. SE-Net

proposed by Hu et al. [12] re-scales the channels in feature

maps on the fly and achieves state-of-the-art results on Im-

ageNet classification dataset. Stollenga et al. [26] have also

proposed to go through the main model for multiple passes.

The features resulting from each pass (except the last) are

used to generate a real-valued vector for re-scaling the chan-

nels in the next pass. In contrast to these works, our gater

network generates binary decisions to dynamically turn on

or off filters depending on each input.

3. GaterNet

Our model contains two convolutional neural sub-

networks, namely the backbone network and the gater net-

work as illustrated in Figure 1. Given an input, the gater

network decides the set of filters in the backbone network

for use while the backbone network does the actual predic-

tion. The two sub-networks are trained in an end-to-end

manner via back-propagation.

3.1. Backbone

The backbone network is the main module of our

model, which extracts features from input and makes the

final prediction. Any existing CNN architectures such as

ResNet [10], Inception [27] and DenseNet [13] can be read-

ily used as the backbone network in our GaterNet.

Let us first consider a standalone backbone CNN without

the gater network. Given an input image x, the output of

the l-th convolutional layer is a 3-D feature map Ol(x). In

a conventional CNN, Ol(x) is computed as:

Ol
i(x) = φ(F l

i ∗ I
l(x)), (1)

where Ol
i(x) is the i-th channel of feature map Ol(x), F l

i

is the i-th 3-D filter, I l(x) is the 3-D input feature map to

the l-th layer, φ denotes the element-wise nonlinear activa-

tion function, and ∗ denotes convolution. In general cases

without the gater network, all the filters F l
i in the current

layer are applied to I l(x), resulting in a dense feature map

Ol(x). The loss for training such a CNN for classification

is L = − logP (y|x, θ) for a single input image, where y is

the ground-truth label and θ denotes the model parameters.

3.2. Gater

In contrast to the backbone, the gater network is an assis-

tant of the backbone and does not learn any features directly

used in the prediction. Instead, the gater network processes

the input to generate an input-dependent gating mask—a bi-

nary vector. The vector is then used to dynamically select

a particular subset of filters in the backbone network for the

current input. Specifically, the gater network learns a func-

tion as below:

G(x) = D(E(x)). (2)

Here, E is an image feature extractor defined as E : x →
f, x ∈ R

h′×w′×c′ , f ∈ R
h, with h′, w′, c′ being the height,

width and channel number of an input image respectively,

and h being the number of features extracted. D is a func-

tion defined as D : f → g, f ∈ R
h, g ∈ {0, 1}c, where c

is the total number of filters in the backbone network. More

details about function E and D will be discussed in Sec-

tion 3.2.1 and Section 3.2.2 respectively.

From the above definition we can see that, the gater net-

work learns a function which maps input x to a binary gat-

ing vector g. With the help of g, we reformulate the compu-

tation of feature map Ol(x) in Equation (1) as below:

Ol
i(x) =

{

0, if gli = 0

φ(F l
i ∗ I

l(x)), if gli = 1
(3)

Here gli is the entry in g corresponding to the i-th filter at

layer l, and 0 is a 2-D feature map with all its elements

being 0. That is, the i-th filter will be applied to I l(x) to

extract features only when gli = 1. If gli = 0, the i-th filter

is skipped and 0 is used as the output instead. When gl

is a sparse binary vector, a large subset of filters will be

skipped, resulting in a sparse feature map. In this paper, we

implement the computation in Equation (3) by masking the

output channels using the binary gates:

Ol
i(x) = φ(F l

i ∗ I
l(x)) · gli (4)

In the following subsections, we will introduce how we

design the functions E and D in Equation (2) and how we

enable end-to-end training through the binary gates.

3.2.1 Feature Extractor

Essentially, the function E(x) in Equation (2) is a feature

extractor which takes an image x as input and outputs a fea-

ture vector f . Similar to the backbone network, any existing

CNN architectures can be used here to learn the function

E(x). There are two main differences compared with the

backbone network: (1) The output layer of the CNN archi-

tecture is removed such that it outputs features for use in

the next step. (2) A gater CNN does not necessarily need to

be as complicated as the one for the backbone. One reason

is that the gater CNN is supposed to obtain a brief view of

the input. Having an over-complicated gater network may

encounter various difficulties in computation cost and opti-

mization. Another reason is to avoid the gater network ac-

cidentally taking over the task that is intended for the back-

bone network.
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3.2.2 Features to Binary Gates

Fully-Connected Layers with Bottleneck As defined in

Equation (2), the function D(f) needs to map the vector f

of size h to a binary vector g of size c. We first consider us-

ing fully-connected layers to map f to a real-valued vector

g′ of size c. If we use one single layer to project the vector,

the projection matrix would be of size h × c. This can be

very large when h is thousands and c is tens of thousands.

To reduce the number of parameters in this projection, we

use two fully-connected layers to fulfill the projection. The

first layer projects f to a bottleneck of size b, followed by

the second layer mapping the bottleneck to g′. In this way,

the total number of parameters becomes (h+c)×b. This can

be significantly smaller than h × c when b is much smaller

than h and c. We ignore bias parameters here for simplicity.

In summary, the real-valued vector g′ is computed as:

f ′ = ReLU(BatchNorm(FC1(f)))

g′ = FC2(f
′)

where FC1 and FC2 denotes the two linear projections,

ReLU denotes the non-linear activation function in [23],

and BatchNorm means batch normalization [14].

Improved SemHash So far, one important question still

remains unanswered: how to generate binary gates g from

g′ such that we can back-propagate the error through the

discrete gates to the gater? In this paper, we adopt a method

called Improved SemHash [17, 18].

During training, we first draw noise from a c-dimentional

Gaussian distribution with mean 0 and standard deviation

1. The noise ǫ is added to g′ to get a noisy version of the

vector: g′ǫ = g′ + ǫ. Two vectors are then computed from

g′ǫ:

gα = σ′(g′ǫ) and gβ = 1(g′ǫ > 0)

where σ′ is the saturating sigmoid function [19, 16]:

σ′(x) = max(0,min(1, 1.2σ(x)− 0.1))

with σ being the sigmoid function. Here, gα is a real-

valued gate vector with all the entries falling in the interval

[0.0, 1.0], while gβ is a binary vector. We can see that, gβ
has the desirable binary property that we want to use in our

model, but the gradient of gβ w.r.t g′ǫ is zero for most val-

ues of g′ǫ. On the other hand, the gradient of gα w.r.t g′ǫ is

well defined, but gα is not a binary vector. In forward prop-

agation, we randomly use g = gα for half of the training

samples and use g = gβ for the rest of the samples. When

gβ is used, we follow the solution in [17, 18] and define the

gradient of gβ w.r.t g′ǫ to be the same as the gradient of gα
w.r.t g′ǫ in the backward propagation.

The above procedure is designed for the sake of easy

training. Evaluation and inference are different to the train-

ing phase in two aspects. Firstly, we skip the step of draw-

ing noise and always set ǫ = 0. Secondly, we always use

the discrete gates g = gβ in forward propagation. That is,

the gate vector is always binarized in evaluation and infer-

ence phase. The interested readers are referred to [17, 18]

for more intuition behind Improved SemHash.

We use binary gates other than attention [30] or other

real-valued gates for two reasons. Firstly, binary gates

can completely deactivate some filters for each input, and

hence those filters will not be influenced by the irrelevant

inputs. This may lead to training better filters than real-

valued gates. Secondly, discrete gates open the opportunity

for model compression in the future.

Sparse Gates To encourage the gates g to be sparse, we

introduce a L1 regularization term into the training loss:

L = − logP (y|x, θ) + λ
‖G(x)‖1

c

where λ is the weight for the regularization term and c is the

size of g. Note that the backbone network receives no gradi-

ents from the second term, while the gater network receives

gradients from both the two terms.

3.3. Pre­training

While our model architecture is straightforward, there

are several empirical challenges to train it well. First, it is

difficult to learn these gates, which are discrete latent rep-

resentations. Although Improved SemHash has been shown

to work well in several previous works, it is unclear whether

the approximation of gradients mentioned above is a good

solution in our model. Second, the introduction of gater

network into the model has essentially changed the opti-

mization space. The current parameter initialization and

optimization technique may not be suitable for our model.

We leave the exploration of better binarization, initializa-

tion and optimization techniques to our future works. In

this paper, we always initialize our backbone network and

gater network from networks pre-traiend on the same task,

and empirically find it works well with a range of models.

4. Experiments

We first conduct preliminary experiments on CIFAR [21]

with ResNet [10, 11], which gives us a good understand-

ing about the performance improvements our method can

achieve and also the gating strategies that our gater is learn-

ing. Then we apply our method to state-of-the-art mod-

els on CIFAR-10 and show that we consistently outper-

form these models. Lastly, we move on to a large-scale

classification dataset, ImageNet 2012 [24], and show that

our method significantly improves the performance of large

models, such as ResNet and Inception-v4 [27], as well.

4.1. Datasets

CIFAR-10 and CIFAR-100 contain natural images be-

longing to 10 and 100 classes respectively. There are 50,000
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training and 10,000 test images. We randomly hold out

5,000 training images as a validation set. All the final re-

sults reported on test images are using models trained on

the complete training set. The raw images are with 32× 32
pixels and we normalize them using the channel means

and standard deviations. Standard data augmentation by

random cropping and mirroring are applied to the training

set. ImageNet 2012 classification dataset contains 1.28 mil-

lion training images and 50,000 validation images of 1,000

classes. We use the same data augmentation method as

the original papers of the baseline models in Table 3. The

images are of 224 × 224 and 299 × 299 in ResNet and

Inception-v4 respectively.

4.2. Cifar­10 and CIFAR­100

4.2.1 Preliminary Experiments with ResNet

We first validate the effectiveness of our method using

ResNet as the backbone network on CIFAR-10 and CIFAR-

100 datasets. We consider a shallow version, ResNet-20,

and two deep versions, ResNet-56 and ResNet-1642 to gain

a better understanding on how our gating strategy can help

models with varying capacities. All our gated models em-

ploy ResNet-20 as the gater network. Table 1 shows the

comparison with baseline models on the test set. ResNet-

Wider is the ResNet with additional filters at each layer

such that it contains roughly the same number of parame-

ters as our model. ResNet-SE is the ResNet with squeeze-

and-excitation block [12]. The Gated Filters column shows

the number of filters under consideration in our models.

Classification Results From the table we can see that, our

model consistently outperforms the original ResNet with a

significant margin. On CIFAR100, the error rate of ResNet-

164 is reduced by 1.83%.

It is also evident that, our model is performing better

than ResNet-SE in all cases. Note that our gater network is

generating binary gates for the backbone network channels,

while ResNet-SE is re-scaling the channels. It is interesting

that, although our method is causing more information loss

in the forward pass of backbone network due to the sparse

discrete gates, our model still achieves better generalization

performance than ResNet and ResNet-SE. This to some ex-

tent validates our assumption that only a subset of filters are

needed for the backbone to process an input sample.

Ablation Analysis on Model Size In all cases, ResNet-

Wider is better than the original ResNet as well. ResNet-

20-Wider is even the best among all the shallow models.

We hypothesize that ResNet-20 is suffering from under-

fitting due to its small amount of filters and hence adding

additional filters significantly improves the model. On the

other hand, although ResNet-20-Gated has a similar num-

ber of parameters as ResNet-20-Wider, a significant portion

2Our ResNet-164 is slightly different to the one in [11]. The number of

filters in the first group of residual units are 16, 4, 16 respectively.

(about a half) of its parameters belongs to the gater network,

rather than directly participating in prediction, and ResNet-

20-Gated still performed on par with ResNet-20-Wider.

The backbone network in ResNet-20-Gated suffers from

underfitting due to the lack of effective filters. The com-

parison among the deep models validates our hypothesis.

ResNet-50 and ResNet-164 contain many more filters than

ResNet-20, and adding filters to them shows only a mi-

nor improvement (see ResNet-50-Wider and ResNet-164-

Wider). In these cases, our models show a significant im-

provement over the wider models and are the best among

all the deep models on both datasets. The comparison with

ResNet-Wider shows that the effectiveness of our model

is not solely due to the increase of parameter number, but

mainly due to our new gating mechanism.

Complexity It appears to be an issue at a glance if a com-

prehensive gater network is needed to assist a backbone net-

work, as it may greatly increase the number of parameters.

However, our experiments show that the gater network does

not need to be complex, and as a matter of fact, it can be

much smaller than the backbone network (see Table 1). Al-

though the number of filters (in the backbone network) un-

der consideration varies from 336 to 7200, the results show

that a simple gater network such as ResNet-20 is powerful

enough to learn input-dependent gates for the three models

that have a wide range of model capacity. As such, when the

backbone network is large (where our method shows more

significant improvements over baselines), the parameter

overhead introduced by the gater network becomes small.

For example, ResNet-164-Gated has only 20% more pa-

rameters than ResNet-164. In contrast, in other more com-

plicated backbone networks such as DenseNet and Shake-

Shake, this overhead is reduced to 1.2% as shown in Table 2.

Consequently, the complexity and the number of additional

parameters that our method brings to an existing model is

relatively small, especially to large models.

Gate Distribution One question that would naturally oc-

cur is how the distribution of the learned gates looks like.

Firstly, it is possible that the gater network is just randomly

pruning the backbone network and introducing regulariza-

tion effects similar to dropout into the backbone. It is also

possible that the gates are always the same for different

samples. Secondly, the generated gates may give us good

insights into the importance of filters at different layers.

To answer these questions, we analyzed the gates gen-

erated by the gater network in ResNet-164-Gated. We

first conduct forward propagation in the gater network on

CIFAR-10 test set and collect gates for all the test samples.

As expected, three types of gates emerge: gates that are al-

ways on for all the samples, gates that are always off, and

gates that can be on or off conditioned on the input, i.e.,

input-dependent gates. We show the percentage of the three

types of gates at different depth in Figure 2. We can see
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Table 1. Classification error rates on the CIFAR-10 and CIFAR-100 test set. All the methods are with data augmentation. ResNet-Wider

is the ResNet with additional filters at each layer such that it contains roughly the same number of parameters as our model. ResNet-SE is

the ResNet with squeeze-and-excitation blocks. All the ResNet-Gated models are using ResNet-20 as the gater network. The Gated Filters

column shows the number of filters subject to gating in our models. All the baseline results are from our reimplementation.

Cifar10 Cifar100

Gated Filters Param Error Rates % Param Error Rates %

ResNet-20 [10] - 0.27M 8.06 0.28M 32.39

ResNet-20-Wider - 0.56M 6.85 0.57M 30.08

ResNet-20-SE [12] - 0.28M 7.81 0.29M 31.22

ResNet-20-Gated (Ours) 336 0.55M 6.88 (↓1.18) 0.60M 30.79 (↓1.60)

ResNet-56 [10] - 0.86M 6.74 0.86M 28.87

ResNet-56-Wider - 1.08M 6.72 1.09M 28.39

ResNet-56-SE [12] - 0.88M 6.27 0.89M 28.00

ResNet-56-Gated (Ours) 1,008 1.14M 5.72 (↓1.02) 1.14M 27.71 (↓1.16)

ResNet-164 [11] - 1.62M 5.61 1.64M 25.39

ResNet-164-Wider - 2.04M 5.57 2.07M 24.80

ResNet-164-SE [12] - 2.00M 5.51 2.02M 23.83

ResNet-164-Gated (Ours) 7,200 1.96M 4.80 (↓0.81) 1.98M 23.56 (↓1.83)

Layer

Pe
rc

en
ta
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0%

25%

50%

75%

100%

10 20 30 40 50

Always Off Always On Input-Dependent

Figure 2. The distribution of Gates in each layer for ResNet-164-

Gated on Cifar-10 Test Set. There are totally 54 residual units.

that, a large subset (up to 68.75%) of the gates are always

off at the shallow residual blocks. As the backbone net-

work goes deeper, the proportion of always-on and input-

dependent gates increases gradually. In the last two residual

blocks, input-dependent gates become the largest subset of

gates with percentages of around 45%. The phenomenon is

consistent with the common belief that shallow layers are

usually extracting low-level features which are essential for

all kinds of samples, while deep layers are extracting high-

level features which are very sample-specific.

Although the above figures show that the gater network

is learning input-dependent gates, it does not show how of-

ten that these gates are on/off. For example, a gate that is

on for only one test sample but off for the rest would also

appear input-dependent. To investigate this further, we col-

lect all the input-dependent gates and plot the distribution

of number of times that they are on in Figure 3. There are

totally 1567 input-dependent gates out of the total number

of 7200 gates for the backbone network. While many of

these gates remain in one state—either on or off—in most

of the time, there are 1,124 gates that switch on and off more

frequently—they are activated for 100 ∼ 9900 samples out

Figure 3. Distribution: X-axis is the number of times an input-

dependent gate is on, while Y-axis is the number of gates.

Figure 4. Distribution: X-axis is the number of gates on, while

Y-axis is the number of samples.

of the 10,000 test samples.

We also examined how many gates are fired when pro-

cessing each test example. The maximum and minimum

number of fired gates per sample is 5380 and 5506 respec-

tively. The average number is around 5453. The number

of gates used each time seems to obey a normal distribution

(see Figure 4).

Lastly, we want to investigate what gating strategy has

been learned by the gater network. To do so, we represent

the filter usage of each test sample as a 7200-dimensional

binary vector where each element in the vector represents if

the corresponding gate is on (1) or off (0). We collect the

filter usage vector of each sample and reduce the dimension
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Figure 5. Visualization of the high dimensional gate vectors. PCA

and t-SNE are applied to reduce the vector dimension to 2. Dots

with the same color corresponds to test samples with the same

label. Better viewed in color.

of these vectors from 7200 to 400 using Principal Compo-

nent Analysis (PCA). We then project these vectors onto a

2-dimensional space via t-SNE [22] (see Figure 5). Interest-

ingly, we find samples of the same class tend to use similar

gates. In the figure, each color of dots represents a ground-

truth label. This shows that the gater network learned to turn

on similar gates for samples from the same class— hence

similar parts of the backbone network are used to process

the samples from the class. On the other hand, we found the

clusters in Figure 5 is still far from perfectly setting samples

from different labels apart. It is indeed a good evidence that

the gater network doesn’t accidentally take over the predic-

tion task that the backbone network is intended to do, which

is what we want to avoid. We want the gater network to

focus on learning to make good decisions on which filters

in the backbone network should be used. From this anal-

ysis, we can see that the experiments are turned out as we

expected and the backbone network still does the essential

part of prediction for achieving the high accuracy.

We can draw the following conclusions from the above

observations and analyses:

• The gater network is capable of learning effective gates

for different samples. It tends to generate similar gates

for samples from the same class (label).

• The residual blocks at shallow layers are more redun-

dant than those at deep layers.

• Input-dependent features are more needed at deep lay-

ers than at shallow layers.

4.2.2 State-of-the-Art on CIFAR-10

Next we test the performance of our method with state-

of-the-art models, Shake-Shake [9] and DenseNet [13], on

CIFAR-10 dataset. We use Shake-Shake and DenseNet as

the backbone network and ResNet-20 again as the gater

network to form our models respectively. Table 2 summa-

rizes the comparison of our models with the original mod-

els. The gater network in our method consistently improves

the state-of-the-art backbone network without significantly

increasing the number of parameters. One of our models,

Shake-Shake-Gated 26 2x96d, has only 1.2% more param-

eters than the corresponding baseline model. Another in-

teresting finding is that, with the assistance of the gater net-

work, DenseNet-BC-Gated (L = 250,K = 24) is even per-

forming better than both DenseNet-BC (L = 190,K = 40)
and DenseNet-BC-Gated (L = 190,K = 40), although it

has much fewer parameters.

Note that in [8], it is shown when Shake-Shake 26 2x96d

is combined with a data pre-processing technique called

cutout, it can achieve 2.56% error rate on CIFAR-10 test

set. The technique is orthogonal to our method and can also

be combined with our method to give better results.

4.3. ImageNet

To test the performance of our method on large datasets,

we apply our method to models for ImageNet. We use

ResNet [10] and Inception-v4 [27] as the backbone network

and ResNet-18 [10] as the gater network to form our mod-

els. Table 3 shows the classification results on ImageNet

validation set with baselines similar to the settings in Ta-

ble 1. We can see that, our method improves all the models

by 0.52% ∼ 1.85% in terms of top-1 error rate, and 0.14% ∼
0.78% in terms of top-5 error rate. Note that [29] proposes

to dynamically skip layers in ResNet-101, and the top-1

and top-5 error rates of their model are 22.63% and 6.26%

respectively. Our ResNet-101-Gated achives 21.51% and

5.72% on the same task, which is apparently much better

than their model. In addition, there are also two interesting

findings:

• The performance of ResNet-101 is significantly

boosted with the help of the gater network. ResNet-

101-Gated is even performing better than ResNet-152

using much fewer layers.

• Similar to the results on CIFAR datasets, ResNet-

Wider is performing well when the original model is

shallow and small, but is outperformed by our models

when the original model contains enough filters.

4.4. Implementation Details

We train the baseline models by following the training

schemes in the original papers. We pre-train the backbone

and the gater network on the target task separately to prop-

erly initialize the weights. The training scheme here in-

cludes training configurations such as number of training

epochs, learning rate, batch size, weight decay and so on.

After pre-training, we train the backbone and the gater

network jointly as a single model. In addition to follow-

ing the original training scheme for each backbone archi-
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Table 2. Classification error rates on the CIFAR-10 test set. All the methods use data augmentation during training. All our models are

using ResNet-20 as the gater network. The Gated Filters column shows the number of filters subject to gating in our models. All the

baseline results are from our reimplementation.

Gated Filters Param Error Rates %

DenseNet-BC (L = 100, k = 12) [13] - 0.77M 4.48

DenseNet-BC-Gated (L = 100, k = 12,Ours) 540 1.05M 4.03

DenseNet-BC (L = 250, k = 24) [13] - 15.32M 3.61

DenseNet-BC-Gated (L = 250, k = 24,Ours) 2,880 15.62M 3.31

DenseNet-BC (L = 190, k = 40) [13] - 25.62M 3.52

DenseNet-BC-Gated (L = 190, k = 40,Ours) 3,600 25.93M 3.39

Shake-Shake 26 2x64d [9] - 11.71M 3.05

Shake-Shake-Gated 26 2x64d (Ours) 3,584 12.01M 2.89

Shake-Shake 26 2x96d [9] - 26.33M 2.82

Shake-Shake-Gated 26 2x96d (Ours) 5,376 26.65M 2.64

Table 3. Single-crop error rates on the ImageNet 2012 validation set. ResNet-Wider is the ResNet with additional filters at each layer such

that it contains roughly the same number of parameters as our model. ResNet-SE is the ResNet with squeeze-and-excitation units. All the

ResNet-Gated models are using ResNet-18 as the gater network. The Gated Filters column shows the number of filters subject to gating in

our models. All the baseline results are from our reimplementation, except † from the original paper.

Gated Filters Parameters Top-1 Error % Top-5 Error %

ResNet-34 [10] - 21.80M 26.56 8.48

ResNet-34-Wider - 33.89M 25.36 7.91

ResNet-34-SE [12] - 21.96M 26.08 8.30

ResNet-34-Gated (Ours) 3,776 34.08M 26.04 (↓0.52) 8.34 (↓0.14)

ResNet-101 [10] - 44.55M 23.36 6.56

ResNet-101-Wider - 59.17M 21.89 6.05

ResNet-101-SE [12] - 49.33M 22.38† 6.07†

ResNet-101-Gated (Ours) 32,512 64.21M 21.51 (↓1.85) 5.78 (↓0.78)

ResNet-152 [10] - 60.19M 22.34 6.22

ResNet-152-Wider - 81.37M 21.50 5.67

ResNet-152-SE [12] - 66.82M 21.57† 5.73†

ResNet-152-Gated (Ours) 47,872 83.80M 21.19 (↓1.15) 5.45 (↓0.77)

Inception-v4 [27] - 44.50M 20.33 4.99

Inception-v4-Gated (Ours) 16,608 61.67M 19.64 (↓0.69) 4.80 (↓0.19)

tecture, we introduce a few minor modifications. Firstly,

we increase the number of training epochs for DenseNet-

Gated and Shake-Shake-Gated by 20 and 30 respectively as

they seem to converge slowly at the end of training. Sec-

ondly, we set the initial learning rate for DenseNet-Gated

and Shake-Shake-Gated to a smaller value, 0.05.

Note that not all the filters in a backbone network are

subject to gating in our experiments. When ResNet is used

as the backbone, we apply filter selection to the last con-

volutional layer in each residual unit, which is similar to

SE-block [12]. As for DenseNet, we apply filter selection

to all the convolutional layers except the first in each dense

block. There are multiple residual branches in each residual

block in Shake-Shake. We apply filter selection to the last

convolutional layer in each branch. In Inception-v4, there

are many channel concatenation operations. We apply filter

selection to feature maps after the concatenation operations.

For all our models on CIFAR, we set the size of the bot-

tleneck layer to 8. ResNet-34-Gated, ResNet-101-Gated

and Inception-v4-Gated use a bottlneck size of 256, while

ResNet-152-Gated uses 1024.

5. Conclusions
In this paper, we have proposed GaterNet, a novel ar-

chitecture for input-dependent filter selection in CNNs. It

involves two distinct components: a backbone network that

conducts actual prediction and a gater network that decides

which part of backbone network should be used for pro-

cessing each input. Extensive experiments on CIFAR and

ImageNet indicate that our models consistently outperform

the original models with a large margin. On CIFAR-10, our

model improves upon state-of-the-art results. We have also

performed an in-depth analysis about the model behavior

that reveals an intuitive gating strategy learned by the gater

network.
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