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ABSTRACT

Detecting and localizing a person crossing a line seg-

ment, i.e., border, is valuable information in security systems

and human context awareness. To that end, we propose a

border crossing localization system that uses the changes in

measured received signal strength (RSS) on links between

transceivers deployed linearly along the border. Any sin-

gle link has a low signal-to-noise ratio because its RSS also

varies due to environmental change, (e.g., branches swaying

in wind), and sometimes does not change significantly when

a person crosses it. The redundant, overlapping nature of the

links between many possible pairs of nodes in the network

provides an opportunity to mitigate errors. We propose new

classifiers to use the redundancy to estimate where a person

crosses the border. Specifically, the solution of these clas-

sifiers indicates which pair of neighboring nodes the person

crosses between. We demonstrate that in many cases, these

classifiers provide more robust border crossing localization

compared to a classifier that excludes these noisy, redundant

measurements.

1. INTRODUCTION

Knowing when and where people leave one region and en-

ter another is an important piece of information in an age of

increasing security and human context-aware computing sys-

tems. A person illegally crossing a national border, a driver

passing through an intersection, or a shopper entering an aisle

in a store are examples of “border crossings,” i.e., people

moving from one region to another by crossing the line seg-

ment that separates them.

In this paper, we present methods for localizing a per-

son crossing a border by measuring overlapping line segment

crossings. A related idea is shown in movies like Entrap-

ment, Ocean’s Twelve, and The Return of the Pink Panther, in

which a seemingly impossible-to-bypass mesh of laser beams

serves as a security system, and blocking any one laser trig-

gers an alarm. Instead of lasers, we propose using received

signal strength (RSS) measurements from a radio frequency

(RF) link to detect line segment crossings. As in [1, 2, 3, 4, 5],
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Fig. 1. (top) The drop in Link 1 RSS at sample 108 correctly

indicates that a person is crossing the link line. Link 2 sees

small RSS changes and fails to detect the crossing. (bottom)

No person is near the link line. Link 3 shows little change, but

link 4 shows a significant drop in RSS at sample 108, which

would incorrectly be detected as a crossing.

we conceptualize a radio link as a link line, i.e., the line seg-

ment between a transmitter and receiver. Compared to a laser

beam, an RF link experiences changes in RSS in a relatively

large area around the link line. With some RF links, that area

around the link line is small. The RSS on these links expe-

rience large changes when a person is on the link line; but

when a person is far away from the link line, the RSS shows

very little change. However, other RF links can experience

large changes even when a person is far away from the link

line; moreover, the link can experience very little change even

when the person is on the link line (see Fig. 1). For our pur-

poses it suffices to say that these “noisy” links have low signal

and high noise and thus are less reliable as link line crossing

detectors.

In this paper, we propose using multiple, overlapping

links of varying signal-to-noise ratio (SNR) in methods that

not only answer the question of when a border is crossed,

but where the border is crossed. To accomplish these goals,



we deploy N nodes linearly along a border such that links

form between pairs of nodes (see Fig. 2). Nodes k and l

form a link (k, l). Each link has an associated line segment

between the positions of nodes k and l, which we call the link

line. We denote L as the set of all links (k, l), k 6= l, which

are measured in the network. A special subset of L is what

we call the set of “short segments”, the links (j, j + 1) for

j = 1, . . . , N − 1. Short segments have neighboring nodes

as endpoints. As shorthand notation, we call the link line on

(j, j + 1) “short segment j”.

1 2 3 N

Short Segments
Border

Nodes

j=1 j=2

Link Lines

Fig. 2. Border crossing system with N nodes aligned lin-

early. Short segments are created between neighboring pairs

of nodes. Link lines are curved in this figure for visual pur-

poses only. In practice, the link lines are viewed as line seg-

ments with the nodes as their endpoints.

First, consider a network in which we measure RSS only

on the short segments j, for j = 1, . . . , N − 1, and have as a

goal to estimate which one of these, if any, were crossed by a

person. Any single false alarm or missed detection among the

N−1 links would cause the system to be unable to determine

the crossed short segment.

Next, consider a network in which we measure links (k, l)
for many overlapping links L. When a person crosses through

a particular short segment j, they also must simultaneously

cross some other longer link lines associated with links (k, l)
for which k ≤ j < j +1 ≤ l (see Figure 3). In this paper, we

j=1 j=2

Short Segments

Nodes
Crossed Link Lines

j=3

Not Crossed Link Lines
Track

Fig. 3. A certain set of links are crossed when a person passes

over short segment s2.

propose that a system that exploits the measurements of the

redundant links can be more robust to single link errors. We

compare, via experimentation, the redundant links network

to the short segment-only network in terms of classification

accuracy.

With our goal of analyzing the robustness of both systems,

we compare the accuracy of three crossing segment classi-

fiers we propose in this paper. The closest codeword classi-

fier (CCC) and the maximum a posteriori classifier (MAPC)

leverage the measurements of the redundant link; the sim-

ple classifier (SC), excludes these measurements. Although

our focus is on the performance of these classifiers, we must

evaluate them by implementing link line crossing detectors

(LLCD) [1, 2, 3, 4, 5]. Algorithms in a LLCD use link RSS

measurements to produce link line crossing measurements xi

for each link i ∈ L. The output xi is a binary 1 when a cross-

ing is detected and 0 otherwise. A vector x = [x1, . . . , xL]
T

from L = |L| links is then fed into a crossing segment clas-

sifier (see Fig. 4). In our paper, a LLCD outputs one value

for xi for RSS measurements collected during time interval

Tmax, where ri is an RSS measurement for link i.

r1 Link Line

Crossing Detector

rL Link Line

Crossing Detector

Crossing

Segment

Classifier

x1

xL

∈{0,1}

j^

Fig. 4. Block diagram of a border crossing localization sys-

tem.

We discuss the details of each classifier in Section 2, com-

pare classifier accuracies through two experiments in Section

3, discuss the results, and conclude.

2. METHODS

In this section, we propose two crossing segment classifiers

that use the noisy, redundant binary measurement vector x to

classify which short segment j a person crossed while passing

over a border, or if no crossing took place. In addition, we

describe a third simple classification method that excludes the

measurements from the redundant links in its decision. We

first describe a LLCD that feeds binary vector measurements

into the classifiers.

2.1. Detecting Link Line Crossings

In order to evaluate our classifiers, we first implement a

LLCD. Although any LLCD could be used, we choose to

implement the moving average based detection method from

Section 4.3.1 in [2] because of its straightforward implemen-

tation and its accuracy in detecting link line crossings. In

this method, RSS measurements made on a link i feed into

a LLCD as shown in Figure 5. The moving average based

detector adds RSS measurements to a short and long term



Mean of 

Long Term 

Buffer

Link Line 

Crossing 

Detector

Mean of 

Short Term 

Buffer

Sum of  

Buffer

>Threshold

ri α

β

τ>α β
α
-

xi

Fig. 5. Moving average based detection [2]: Detector is 1

if the difference between short-term and long-term average

exceeds τ multiple times during a time interval.

buffer. The long term buffer stores the static behavior of the

link while the short term buffer stores the current behavior.

Upon adding a new RSS measurement to the buffers, the

detector computes the relative difference between the means

of the two buffers. When the relative difference exceeds a

threshold τ , an event is detected. These events are stored in

a buffer that holds Tmax amount of samples. When full, the

buffer is summed to count the number of events that occurred

during Tmax. If the number of events exceeds another thresh-

old, then xi = 1. The buffer is then cleared to receive the

next Tmax events. A LLCD is created for each link, and we

store the binary measurements in x.

If the LLCDs measured link line crossings without er-

ror, then a person crossing a particular short segment of the

border would result in a unique x. We call these unique

binary measurement vectors codewords where the code-

word for a person crossing short segment j is w(j) =

[w1(j), w2(j), . . . , wL(j)]
T

where wi(j) = 1 if by crossing

j, the person also crosses link i, and 0 otherwise. Formally,

wi(j) =

{
1, if (li ≤ j) and (j + 1 ≤ ki)

0, otherwise
(1)

where ki and li are the endpoints of link i, and ki < li, with-

out loss of generality. We denote the “off” codeword w(0)
whose elements are all 0. We define short segment 0 as the

class that no person crossed the border. As a result, an N

node system will have N unique codewords, which we de-

note as set W = {w(j)}N−1
j=0 .

2.2. Closest Codeword Classifier

The first classifier we propose, the CCC, finds the codeword

that is closest to x in terms of Hamming distance. The CCC

classifies which short segment j is crossed using

ĵ = arg min
j

‖x−w(j)‖
2

(2)

where ‖·‖
2

is the ℓ2 norm. Note that if there are no errors in

any of the L link line crossing detectors, then x = w(j) for

the correct short segment j which was crossed. If ĵ = 0 then

the CCC classifies that there was no crossing.

In some instances, more than one codeword will minimize

(2), thus the CCC does not definitively classify which of the

short line segments were crossed. Under these conditions, the

CCC randomly chooses one of the short line segments whose

codeword satisfies (2). Finding the closest match between x

and w(j) can be viewed as error correction where x differs

from the true codeword w(j) in γ places. The CCC corrects γ

errors when the detector chooses the correct crossed segment.

2.3. Maximum a Posteriori Classifier

Here, we propose the MAPC, which builds upon the CCC

by adding in prior knowledge of the accuracy of each LLCD.

We capture the accuracy of the detector for link i by its prob-

ability of detection, P d
i , and its probability of false alarm,

P
fa
i . These probabilities help us make more informed deci-

sions about which short line segment a person crossed based

on x.

To learn the prior probabilities, as a proof of concept,

we assume that the network is trained by a person crossing

each short segment multiple times. The value of P d
i and

P
fa
i are then estimated from the training data. To prevent

the MAPC from assuming any particular measurement pro-

vides certainty, we limit P d
i and P

fa
i to be in the range ǫ <

P d
i , P

fa
i < 1 − ǫ for some small ǫ > 0. In our experiments,

we use ǫ = 0.0001. Future work could explore methods to

predict performance via statistics that can be measured with-

out training, e.g., RSS mean or variance.

To formulate the MAPC, we first formulate the likelihood

of measurement x given that a person crossed short segment

j. Under the assumption of conditional independence of

links, this is p(x | j) =
∏L

i=1 p(xi | j), where

p(xi | j) =
[
(P d

i )
xi(1− P d

i )
1−xi

]wi(j)
·

[
(P fa

i )xi(1− P
fa
i )1−xi

]1−wi(j)
. (3)

Next we consider the prior probabilities of j. If the N nodes

are equally spaced along the border, this might make crossing

each short segment j equally probable. If, however, N nodes

are unevenly distributed along the border, we may want to as-

sume that crossing a longer short segment is more probable

than crossing a shorter short segment. We may also want to

modify how likely crossing j is given environmental factors,

e.g. thick vegetation, hills, etc. To account for these condi-

tions, we impose a prior, pJ(j), on each j. With a prior on j,

we form the more general MAPC, formally defined as

ĵ = arg max
j

pJ (j) p(x | j). (4)

Note again that if multiple j have equal joint probability, we

randomly choose one of them.



2.4. Simple Classifier

A more basic method to classify which short segment was

crossed would be to eliminate all the redundant links and mea-

sure only the short segments. The third classifier, i.e. SC,

in contrast to the CCC and MAPC, only measures link line

crossings on (j, j + 1) for j = 1, . . . , N − 1. If a LLCD for

short link i measures a 1 for xi, then the system would clas-

sify short segment i was crossed. In the event that more than

one LLCD outputs a 1, SC randomly selects from the candi-

date short segments for its solution. In like manner, if none of

the LLCDs for the short link lines report a crossing, then SC

selects the 0 class, for no crossing, as its solution. We show

in the next section how each classifier compares in accuracy.

3. EXPERIMENTAL VERIFICATION

In this section we show the accuracy of the CCC and MAPC

compared to the SC using two experimental campaigns.

3.1. Equipment and Procedures

The wireless nodes used in the following experiments are

Texas Instruments CC2531 USB dongles, each of which

transmits at 2.4 GHz with +4.5 dBm. Following a TDMA

protocol, each node takes a turn transmitting a packet while

the others receive the packet. An additional listen node is

connected to a laptop to overhear the wireless traffic and to

log RSS measurements for each link. Each node is placed on

a tripod that stands 0.91 meters high.

Two experimental sites are chosen to show the accuracy

of each classifier in different environments. The first site is

in a natural area with many trees. Nine nodes are deployed

such that they are 4 meters apart (see Figure 6). The second

site is inside the Union cafeteria at the University of Utah

by lunch tables and large pillars. The indoor environment

induces more complex fading patterns and is similar to indoor

border crossing scenarios (e.g. the aisles of a store). Nine

nodes are again equally spaced along the 29.26-meter border

(see Figure 7).

To test with fewer than nine nodes, we keep the deploy-

ment along the same total border length, and four nodes are

removed such that five evenly spaced nodes remain. Next,

two of the remaining five nodes are removed, leaving three

evenly spaced nodes. Under these conditions, the data from

the nine node configuration can be used for the five and three

node case by removing the appropriate links’ RSS measure-

ments.

In each experiment, a border crosser indicates into a voice

recorder the start of the experiment. RSS values for all of

the links are then logged in a computer as the person crosses

the border. The border crosser then indicates into the voice

recorder the end of the Tmax-long crossing experiment and

the computer stops logging the RSS values. This process

is repeated thirty times for each short segment j, for j =

Fig. 6. Experiment in out-

door environment

Fig. 7. Experiment near

cafeteria tables

1, . . . , N − 1. In addition to crossing each short segment,

the border crosser then walks back and forth 2.4 meters away

from and parallel to the border, so that we can evaluate what

happens when a person walks near but never crosses the bor-

der. The above procedures are carried out twice, first for a

training data set, and second for a testing data set.

In this paper, the LLCDs use the same best parameters

recorded for the long term and short term buffers in the last

of Section 3.4.1 of [2] in both the indoor and outdoor experi-

ments. However, we vary the threshold τ to achieve varying

levels of detection and false alarm accuracy for the LLCDs.

We compare the accuracy of the classifiers using the follow-

ing metrics: the probability of correct classification (Pcc),

meaning ĵ matches the true short segment crossed; and the

probability of border crossing false alarm (Pfb), meaning ĵ 6=
0 when the border was not crossed. We envision that a bor-

der crossing localization system should have a low Pfb (at the

expense of a lower Pcc) in some applications, because a false

alarm could result in wasted time and resources devoted to

investigate a falsely reported border crossing.

3.2. Experiment 1 (Outdoor) Results

In this section, we compare the probability of Pcc and Pfb as

a function of τ using the MAPC, CCC, and SC in the out-

door environment experiment. We show the relationship be-

tween τ and these probabilities in Figure 8 and 9 where five

nodes were deployed. Figure 8 shows that as τ approaches 0,

Pfb increases. A low τ causes an LLCD to frequently out-

put a binary 1 even when the person does not cross the link.

When many of the LLCDs output a one, the classifiers tend

to decide that multiple short segments were crossed. Thus,

even when the border is not crossed, the classifiers yield a

high false alarm classification probability. Moreover, when

the border is crossed, the classifier must randomly choose be-

tween the classified crossed segments, thus lowering Pcc (see

Figure 9).

In contrast, when τ is large, few, if any, link lines will

be detected as crossed. When many of the LLCDs output a

zero, the classifiers tend to decide that no short segments were

crossed, i.e. ĵ = 0. This reduces Pfb, but we also observe a
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Fig. 8. Probability of border crossing false alarm as a function

of τ for N = 5.
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Fig. 9. Probability of correct classification as a function of τ

for N = 5.

decrease in Pcc since we are unlikely to classify the correct

crossed short segment.

For the remainder of this paper, we let τ be the value that

maximizes Pcc while keeping Pfb ≤ 0.01 for each classifier.

In Figure 10, we show Pcc for each classifier when three, five,

and nine nodes are deployed.

Both the MAPC and the CCC improve in Pcc as the num-

ber of nodes increases, achieving almost perfect classification

for N = 5 and 9. Adding more nodes to the system cre-

ates greater distance between codewords and x and therefore

allows us to make more correct classifications. We also ob-

serve that the MAPC outperforms the CCC for N = 3. By

adding in probabilistic conditions in the MAPC, we improve

the accuracy compared to the CCC, which does not take into

account these probabilities. When we compare the SC to the

MAPC and CCC, we observe that the SC achieves a compa-

rable Pcc to the MAPC for N = 3 and 5, but suffers when
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Fig. 10. Probability of correct classification in the outdoor en-

vironment using the MAPC, CCC, and SC with a 0.01 proba-

bility of border crossing false alarm.

N = 9. So whereas MAPC and CCC strictly increase in Pcc

with more nodes, the SC can perform worse. The SC relies on

the short link lines for classification, and when one or more

short link lines are poor line segment crossing detectors, the

SC can suffer in accuracy.

3.3. Experiment 2 (Indoor) Results

In this section, we again compare Pcc of the three classifiers

by using the τ that maximizes Pcc while keeping Pfb ≤ 0.01
(see Figure 11). We observe dramatically reduced Pcc for al-
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Fig. 11. Probability of correct classification in the indoor en-

vironment using the MAPC, CCC, and SC with a 0.01 proba-

bility of border crossing false alarm.

most all node configurations and classifiers compared to the

outdoor case. One explanation for this reduction is that an



indoor setting introduces more multipath fading than an out-

door environment, which in turn causes more links to be poor

line segment crossing detectors.

In spite of the significant drop in Pcc, we observe the same

general improvement in classification as N increases for the

MAPC and CCC. We also observe that the SC shares this

same improving behavior, which we did not observe in the

outdoor case. It is probable that all short link lines were suffi-

ciently reliable line segment crossing detectors in this setting

and SC improved as a result with increasing N .

A surprising result is that the CCC and SC perform twice

as well as the MAPC when N = 5. The MAPC uses probabil-

ities estimated from training data, and we would therefore an-

ticipate that the MAPC would always perform at least as well

as the CCC and SC. However, the probability estimates may

be inaccurate. The inaccuracies are influenced by the places a

person walks with relation to the border during training. Ide-

ally, we would want a person to train the MAPC by visiting

several locations near and on the border and then record the

link accuracies. But this would take a significant amount of

time to train. When the estimates are close to the true proba-

bility, the performance gain of the MAPC can be as great as

two times, as in the N = 9 case.

In a practical outdoor border crossing localization sys-

tem, we might conclude that using the CCD would be a ideal

choice since it achieves a high accuracy and does not need

to be trained. However, if the number of nodes were limited,

the SC may be the better choice for its accuracy and plug-

and-play nature. However, in the more complicated indoor

environment, the MAPC would achieve a higher Pcc using a

large number of nodes. Although the MAPC must be trained,

this may only have to be done occasionally.

4. CONCLUSION

In this paper, we proposed two new classifiers that provide ro-

bust border crossing localization using RSS measurements on

redundant RF links. Each classifier localized a border cross-

ing by deciding which short segment was crossed. The CCC

obtained near perfect classification at a 0.01 false alarm rate in

the outdoor border for five and nine nodes and did not have to

be trained. The MAPC matched or exceeded the CCC in accu-

racy but required a training period. The SC achieved the high-

est accuracy with three nodes, but can degrade as the number

of nodes increases. In the indoor environment, however, nine

nodes were required for any classifier to reach adequate ac-

curacy; the MAPC reached a 0.86 probability of correct clas-

sification while the SC reached 0.72. The CCC was not a

reliable classifier in this environment in any of the node con-

figurations. Future experiments will test performance in other

environments and with higher numbers of nodes.

We found that the number of nodes and the border en-

vironment were critical components in determining which of

these three classifiers would be best. We found that lever-

aging redundancy improved accuracy when the number of

nodes was high. However, when fewer nodes were deployed

and thus little redundancy was present, methods that exploit

redundancy performed as well or worse than a method that

excluded redundant measurements. For an indoor border lo-

calization system, none of the classifiers worked well when

three and five nodes were deployed. However, when we used

nine nodes, using the redundant measurements provided more

robustness despite noisy links.

In summary, we have demonstrated that when many nodes

are employed in either indoor or outdoor environments, it is in

our best interest to use a classifier that leverages redundancy.
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