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Abstract

We describe a method for generating a video of a talking face. The method takes still images of the target face and an audio

speech segment as inputs, and generates a video of the target face lip synched with the audio. The method runs in real time

and is applicable to faces and audio not seen at training time. To achieve this we develop an encoder–decoder convolutional

neural network (CNN) model that uses a joint embedding of the face and audio to generate synthesised talking face video

frames. The model is trained on unlabelled videos using cross-modal self-supervision. We also propose methods to re-dub

videos by visually blending the generated face into the source video frame using a multi-stream CNN model.

Keywords Computer vision · Machine learning · Visual speech synthesis · Video synthesis

1 Introduction

There has been much work recently in the area of trans-

forming one modality to another. Image to text is the most

prominent, e.g. in caption generation (Vinyals et al. 2015;

Karpathy and Fei-Fei 2015; Xu et al. 2015), but there is also

text to image (Reed et al. 2016), video to sound (Owens

et al. 2016), or in fact a combination of different mediums

e.g. video and audio to text (Chung et al. 2017). This paper

considers the case of images and audio to video.

We propose a method to generate videos of a talking face

using only an audio speech segment and face images of the

target identity. The speech segment need not be spoken orig-

inally by the target person (see Fig. 1). We dub the approach

Speech2Vid. Our method differs from previous approaches

for this task (see related work below) in that instead of

learning phoneme to viseme mappings, we learn the corre-

spondences between audio features and video data directly.

By focusing on the speech portion of audio and tight facial

regions of speakers in images, the Speech2Vid model is able

to produce videos of a talking face at test time even when

using images and audio outside of the training dataset.
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The key idea of the approach is to learn a joint embed-

ding of the target face and speech segment that can be used

to generate a frame of that face saying (lip synched with)

the speech segment. Thus the inputs are still images of the

face (that provides the identity, but is not speaking the target

segment) and the target speech segment; and the generated

output is the target face speaking the segment.

The Speech2Vid model is learnt from unlabelled videos

using a form of cross-modal self-supervision; unlabelled here

refers to the fact that the videos used for training were not

explicitly annotated by humans. The approach learns to pre-

dict the face in a target frame of the video where the audio

(and frame) is known, using other frames of the target video

to provide the still (identity) images of the face.

There are numerous possible application to Speech2Vid,

for example: re-dubbing videos with other languages, gener-

ating possible keyframes to help animate mouth movements

of animated characters in 3D animation or video-games, lip-

syncing mouth movements in music videos (these videos are

dubbed manually and can produce jarring lip movements)

and so on. Another potential application is re-animating char-

acters from TV shows with new audio as suggested in Charles

et al. (2016).

In the following, we first describe the architecture and

training of the Speech2Vid model in Sect. 3. The automatic

pipeline to prepare the video dataset used to train the gen-

eration network is described in Sect. 4. Section 5 reports

quantitative results, and assesses variations on the architec-

ture, including varying the number of images of the identity
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Fig. 1 The Speech2Vid model generates a video of a talking face, given

still images of the person and a speech segment. In the output video

the talking face is lip synched with the audio. Note, only one input

still image is shown in the figure, but the method can ingest multiple

images. The face need not be in the training dataset, i.e. the Speech2Vid

is applicable to unseen images and speech

used as input. Finally, Sect. 6 shows an application to video

re-dubbing by visually blending the generated face into the

source video frame.

2 RelatedWork

There are various works that propose methods to generate

or synthesise videos of talking heads from either audio or

text sources. The works can be divided on a number of axes:

is raw audio used or is the audio represented phonetically?

Are the new frames generated by frame reselection from the

source video or are they synthesised from external images?

Is the method only trained for one identity or is it applicable

to any at test time?

The majority of the existing works are based on frame res-

election from a video. For example, Fan et al. (2015) proposes

a method based on a bi-directional LSTM that selects a target

mouth region from a dictionary of saved target frames. The

lower half of the face from the selected frame is then blended

back into the background face. Similarly, Charles et al. (2016)

trains a model to select visemes based on the phonetic label

of the audio, and enforces visual smoothness by matching

the visual features of the last frame of one viseme to the first

frame of the next, optimised using the Viterbi algorithm. And

Taylor et al. (2017) also uses a phonetic-based method—the

audio is first transcribed into a phonetic sequence, from which

the animation parameters are generated. The final image here

is however generated by a CG animation model, rather than

by frame reselection.

The recent work of Suwajanakorn et al. (2017) trains a

recurrent neural network to predict the coordinates of key

facial landmarks for every frame given the audio, and fills the

texture based on the landmarks using frame reselection. The

paper proposes a series of post-processing steps like video

re-timing and jaw smoothing to produce realistic images.

However, it must be retrained for each identity required. One

of the closest works to ours is the recent work in Karras et al.

(2017) where given an audio sample, they produce 3D ver-

tex coordinates of a face mesh corresponding to the sample.

However, unlike ours, this method also must be retrained for

each identity.

A different use scenario is investigated in Garrido et al.

(2015), which describes a method to transfer the mouth

shapes from the video of a dubber to the face in the target

video using a 3D model. However, this method requires the

video footage of the dubber’s mouth saying the speech seg-

ment, whereas our method learns the relationship between

the sound and the mouth shapes.

Natural Image Synthesis Using CNNs Visual speech syn-

thesis is closely related to the problem of image synthesis,

which has seen significant advances in recent years with

the success of Generative adversarial networks (GANs)

proposed by Goodfellow et al. (2014). Another successful

approach, based on sequential pixel prediction, is the Pix-

elRNN and PixelCNN architectures of van den Oord et al.

(2016b). The Conditional PixelCNN (van den Oord et al.

2016a) extends this architecture such that the model can be

conditioned on any vector, for example, and most relevant to

Speech2Vid, the latent embedding of a face.

The recent work of Chen and Koltun (2017) proposes Cas-

caded Refinement Network that generates realistic-looking

images from pixel-wise semantic layout. They use a ‘content

representation’ loss function that has been used previously

in image style transfer works (Gatys et al. 2016)—the loss

forces the network to match activations of a pre-trained CNN

between the generated image and the ground truth, which

demonstrates significant benefits over an image-space loss.

Self-supervised Learning Supervised learning has been the

most prevalent paradigm in recent computer vision methods,

but there is also a good deal of previous work on self-

supervised representation learning, where raw data is used

as its own source of supervision—which is the approach

used to train Speech2Vid. One of the earliest examples of

self-supervision is the work on auto-encoders (Hinton and

Salakhutdinov 2006), and there are a number of more recent

applications on learning representations via data imputation.

The work on predicting co-occurrence (Isola et al. 2016),

context (Doersch et al. 2015), and colorization (Zhang et al.

2016) fall under this category.

Of more relevance is self-supervision from video, such

as Wang and Gupta (2015), Fernando et al. (2017), Misra et al.

(2016), Xue et al. (2016), Pătrăucean et al. (2016) and Denton

and Birodkar (2017). Recent methods have also investigated

123



International Journal of Computer Vision (2019) 127:1767–1779 1769

Fig. 2 The overall Speech2Vid model is a combination of two encoders

taking in two different streams of data (audio and still images), and

a decoder that generates an image corresponding to the audio while

retaining identity based on the still images

using multiple modalities, such as video and audio (Arand-

jelović and Zisserman 2017; Aytar et al. 2016; Chung and

Zisserman 2016; Nagrani et al. 2018), though unlike ours,

these have not been used to generate video frames given the

audio.

3 The Speech2VidModel

Our main goal at test time is to generate a video of a talk-

ing face given two inputs: (i) an audio segment, and (ii)

still images of the target identity (frontal headshot). The

Speech2Vid model (summarised in Fig. 2 at the block level),

consists of three main components: an audio encoder, an

identity image encoder and a talking face image decoder. For

a given input sample, the model generates one frame of image

output that best represents the audio sample at a specific time

step. The model generates the video on a frame-by-frame

basis by sliding a 0.35-s window over the audio sequence.

The frame is moved forward by 1 frame (0.04 s) at a time.

The network is trained on the large-scale video dataset

described in Sect. 4, containing over 700K samples. During

training, the ground truth output image of the target identity

speaking the audio segment is used as supervision. The image

is taken from the middle frame of the video in the 0.35-s

sampling window. The images for the identity of the speaker

are sampled from different points in time from the same video

stream, as shown in Fig. 3.

3.1 The Architecture

The Speech2Vid architecture is given in Fig. 4. We describe

the three modules (audio encoder, the identity encoder, and

the image decoder) in the following paragraphs. Note, these

three modules are trained together.

Audio Encoder We use a convolutional neural network

originally designed for image recognition. The layer config-

urations is based on VGG-M (Chatfield et al. 2014), but filter

sizes are adapted for the unusual input dimensions (12 × 35

instead of 224 × 224 which is the input dimension specified

by VGG-M). This is similar to the configuration used to learn

audio embedding in Chung and Zisserman (2016).

Identity Encoder Ideally, the identity vector produced by the

encoder should have features unique for facial recognition

and as such we use a VGG-M network pre-trained on the

VGG Face dataset (Parkhi et al. 2015). The dataset includes

2.6M images of 2.6K unique identities. Only the weights of

the convolutional layers are used in the encoder, while the

weights of the fully-connected layers are reinitialised.

Image Decoder The decoder takes as input the concate-

nated feature vectors of the FC7 layers of the audio and

identity encoders (both 256-dimensional). The features vec-

tor is gradually upsampled, layer-by-layer, through bilinear

upsampling followed by a convolutional layer. The design of

this is similar to the encoder but in reverse order (VGG-M

in reverse). See details in Fig. 4. The network features two

skip connections to help preserve the defining features of the

target identity—this is done by concatenating the encoder

activations with the decoder activations (as used in U-Net

suggested in Ronneberger et al. 2015) at the locations shown

in the network diagram.

3.2 Loss Function

The network is trained with both an image-space, and a con-

tent loss. The benefit of using this over only an image-space

loss can be seen in Fig. 12.

Image-Space Loss An L1 loss is used (Eq. 1, ŷ is the ground

truth and y is the predicted value) between the prediction and

the ground truth images. An L1 loss is known to encourage

less blurring than L2, which is more commonly used for

image generation and in auto-encoders (Isola et al. 2017).

L=

N∑

n=1

||ŷn − yn|| (1)

Content Loss An image-space loss between the prediction

and the ground truth images can severely penalise realistic

outputs, for instance, slightly darker or lighter images that

still look realistic. To mitigate this problem, we use the ‘con-

tent representation’ loss proposed by Gatys et al. (2016);

Chen and Koltun (2017), which uses a L1 losses between

layer activations from a pre-trained CNN. Here, a pre-trained

face recognition (Parkhi et al. 2015) network is used, and the

activations from 5 convolution layers (conv1 to conv5) are

matched (Fig. 5), so that both fine details and global arrange-

ments can be captured.

As in Chen and Koltun (2017), the relative weight of each

loss is given by the inverse of the number of elements in a
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Fig. 3 Sampling strategy for identity images during training. Identities are sampled from past and future frames far from actual (ground truth)

audio/output image samples. For each window, we sample five different frames

Fig. 4 The three modules in the Speech2Vid model. From top to bot-

tom: (i) audio encoder, (ii) identity encoder with multiple still images as

input, and (iii) image decoder. Each Conv layer is followed by a ReLU

which is not shown here. /2 refers to the stride of each kernel in a spe-

cific layer which is normally of equal stride in both spatial dimensions

except for the Pool2 layer in which we use stride 2 in the time-step

dimension (denoted by /2t ). ↑ refers to up-sampling (by a factor of

2). The network includes two skip connections between the identity

encoder and the image decoder

given layer. For example, the weight for the image-space loss

is 1/(109 × 109 × 3) while the weight for the conv1 content

loss is 1/(56 × 56 × 96).

3.3 Post-processing: Image Sharpening

CNNs trained to generate images tend to produce blurry

images (Pathak et al. 2016; Zhang et al. 2016), particularly

when trained with an image-space loss. A network trained

with the content loss produces sharper images, but there are

still benefits to be gained from image sharpening.

We train a separate CNN to sharpen the images pro-

duced by the Speech2Vid model. The model is inspired by

VDSR (Kim et al. 2016), which uses a residual connection

between the input and output, so that the network only has to

learn the image difference. The model is trained on the still

images in the main training dataset (Sect. 4). Our implemen-

tation has 10 convolutional and ReLU layers, and the layer

configuration is shown in Fig. 6.

We train the network on artificially blurred face images

(Fig. 7), as opposed to training the network end-to-end

together with the generator network. This is because the

alignments between the input image, the target (ground truth)

image and the generated image are not perfect even after the

spatial registration (of Sect. 4), and thus avoid the sharpening

network having to learn the residual coming from the mis-

alignment. The type of blur applied here is Gaussian, since

it closely mimics the blur generated by the networks.

The images that we ask the CNN to sharpen are rela-

tively homogeneous in content (they are all face images),

and we find that the CNN performs very well in sharpening

the images under this constraint. The results can be seen in

Fig. 12.

3.4 Implementation Details

This section describes the input representations for the audio

and identity and the network training. The inputs are fed into
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Fig. 5 Image-space and content loss

Fig. 6 Image sharpening (deblurring) CNN module

Fig. 7 Inputs for training the image sharpening CNN. Left: Artificially

blurred input; Right: Original image (ground truth)

separate modules in the network in the forms of 0.35-s audio

and either (1) a still image, or (2) five still images of the target

identity.

Audio The input to the audio encoder are Mel-frequency

cepstral coefficients (MFCC) values extracted from the raw

audio data. The MFCC values are made up of individual

coefficient each representing a specific frequency band of

the audio short-term power on a non-linear mel scale of fre-

quency; 13 coefficients are calculated per sample but only

the last 12 are used in our case. Each sample fed into the

audio encoder is made up of 0.35-s input audio data with

a sampling rate of 100 Hz resulting in 35 time steps. Each

encoded sample can be viewed as a 12 × 35 heatmap where

each column represents MFCC features at each time step (see

Fig. 8).

Identity The input to the identity encoder are still images

with a dimension of 112×112×3. Five images are used per

sample which are then concatenated channel-wise, resulting

in a input dimension of 112 × 112 × (3 × 5). Note that the

input image dimensions in the identity encoder (112×112) is

Fig. 8 Inputs to the Speech2Vid model. Left: MFCC heatmap for the

0.35-s time period. The 12 rows in the matrix represent the power of

the audio at different frequencies. Right: Still image of the speaker

slightly different than the output image by the image decoder

(109 × 109) due to the difference in filter sizes between the

first layer of the encoder and the last layer of the decoder.

This is compensated by cropping the image to the same size

as the output when training with the L1 loss or evaluating

with the MSE metric. The difference in filter sizes can also

be compensated by introducing some padding after the final

layer, but since the results shown in Chung et al. (2017) have

used these input and output dimensions, we chose to keep

to these dimensions for a fair comparison. Images are cho-

sen with different degrees of mouth openness (10, 30, 50,

70 and 90th percentile in terms of the distance between the

top and the bottom lips, from a random sample of images

from the face track), using the facial landmark detections, to

provide visual examples of teeth, etc. The benefits of using

multiple identify images are discussed in Sect. 5.3, where

it is shown that this significantly improves the output video

quality compared to only using a single identity image.

Training Our implementation is based on the MATLAB tool-

box MatConvNet (Vedaldi and Lenc 2015) and trained on a

NVIDIA Titan X GPU with 12GB memory. The network is

trained with batch normalisation and a fixed learning rate of
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Fig. 9 Data preparation pipeline

10−5 using stochastic gradient descent with momentum. The

training was stopped after 20 epochs, or when the validation

loss stops decreasing, whichever is sooner.

At test time, the network runs faster than twice real-time on

a GPU. This can be further accelerated by pre-computing and

saving the features from the identity encoder module, rather

than running this for every frame. In the case of redubbing

video, the output video is generated at the same frame rate

as the original video.

3.5 Discussion

The network architecture is based purely on CNNs, as

opposed to the recurrent architectures often used for tasks

relating to time sequences. Since there is a many-to-one rela-

tionship between phonemes and visemes (Ezzat and Poggio

2000; Cappelletta and Harte 2012), the mouth shape of the

speaker only depends on what is being said at the exact

moment, and some co-articulations from the neighbouring

visemes. We find that the 0.35-s window is sufficient to

capture this information. At test time, the video is gener-

ated frame-by-frame by sliding a temporal window across

the entire audio segment while using the same identity

images.

4 Video Dataset

This section describes our multi-stage strategy to prepare a

large-scale video dataset to train the Speech2Vid network.

We obtain tens of hours of visual face sequences aligned

with spoken audio.

The principal stages are: (i) detect and track all face

appearances in the video; (ii) determine who is speaking in

the video; and (iii) align the detected face image to the canon-

ical face. The pipeline is summarised in Fig. 9, and the details

are discussed in the following paragraphs.

Video Description We train the Speech2Vid model on videos

from which the LRS2 (Afouras et al. 2018) dataset is gen-

erated and we test using the test split of the VoxCeleb2

dataset (Chung et al. 2018). These datasets consist of a variety

of programs from drama to broadcast news, which provide

ideal training data for this task, given that a large proportion

of the videos are of high quality and only contain frontal or

near-frontal faces. Moreover, the faces are near-frontal and

the words are generally clearly spoken without too much

background noise, hence provide an easier learning envi-

ronment for the network. The training data only consists of

frontal and near-frontal faces, since the LRS2 dataset was

created using a frontal face detector. There are videos with

significant head movements in the dataset but these are not

excluded for training nor do we have a pre-processing step

to handle them.

Face Tracking The face tracking pipeline is based on Chung

and Zisserman (2016). First, the shot boundaries are deter-

mined by comparing colour histograms (Lienhart 2001) to

find the within-shot frames for which tracking is to be run.

The HOG-based DLIB face detector (King 2009) is used to

detect face appearances on every frame of the video. The face

detections are grouped into face tracks using a KLT detec-

tor (Lucas and Kanade 1981). Facial landmarks are extracted

using the regression-tree based method of Kazemi and Sul-

livan (2014).

Active Speaker Detection and AV Synchronisation Sync-

Net (Chung and Zisserman 2016) provides a joint embedding

of the audio and visual face sequences in a video, which can

be used to determine who is speaking in a multi-speaker video

scene. Moreover, the same method is used to correct the lip-

sync error in the broadcast video, which can be crucial for

precisely locating the corresponding mouth image for the

audio sample.

Spatial Registration In order to establish spatial correspon-

dance between the input face (that provides the identity to the

encoder) and the output face (from the decoder) in training

from the ground truth frames, we register the facial land-

marks between the two images. This is done by performing

a similarity transformation (scale, rotation and translation)

between the faces and an exemplar face with canonical posi-

tion (Fig. 10 middle). Only the landmarks on the eyes and

the nose are used to align the face image, since they are most

affected by the head pose and rather than by facial expres-
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Fig. 10 Left pair: Face images before registration; Middle: Canonical face; Right pair: Face images after registration with the canonical face

Table 1 Data statistics

Set Source # Hours # Samples

Train LRS2 39.0 701,744

Val LRS2 2.3 41,874

Test VoxCeleb2 – 9287

sions. Since the data used as input are aligned, we find that

the output of the trained model is always consistent in coor-

dinate which allows us to easily re-align the generated output

back to the original space; see Sect. 6.

Training Data Statistics We use the train-validation split

(by broadcast date) given in the LRS2 dataset for training.

For every valid face track, we extract every 5th frame and the

corresponding audio as samples for training and validation,

since adding frames in between will not be of much help

adding variety to the training. Statistics on the dataset is given

in Table 1.

5 Experiments

In this section, we perform several experiments to assess the

contribution of various design decisions to the performance

of the method. We evaluate the results both quantitativaly and

qualititatively. The testing data consists of video clips from

the VoxCeleb2 (Chung et al. 2018) dataset. Note, VoxCeleb2

is completely independent from the LRS2 dataset used during

training. The results are best seen in video format. Please refer

to the online examples.

Figure 11 shows a visualization of the output of the model

(the frames of the two segments highlighted in the captions

“major” and “based on”). Note, the movement of the mouths

of the two examples reflect the sound of each word not unlike

phoneme-to-viseme correspondences.

In Fig. 12, it is also interesting to note that the network

learns to only move the lower half of the face (i.e. the mouth

and surrounding areas), even though the network was trained

on the full facial images and the corresponding audio seg-

ments.

5.1 Quantitative Analysis

We evaluate the performance of the models using three inde-

pendent metrics: (1) the pixel-level similarity between the

ground truth and the generated image is measured by the MSE

distance from the ground truth; (2) the identity preservation

is measured by the feature-wise distance between the gener-

ated image and the real image using a network pre-trained

for face recognition; (3) the correctness of the generated lip

shape is tested by retrieving audio samples from the generated

image using a network trained for cross-modal lip-to-audio

retrieval on real images. The following paragraphs describe

the evaluation protocol in more detail.

Pixel-Level Similarity Here, we look at the distance between

the generated sample against the ground truth. We also look

at changing certain components of the model e.g. using trans-

posed convolution or upsampling and convolution in the

decoders. The distances we looked at are pixel-to-pixel mean

squared error (MSE) and MSE of the generated samples

against the embedding of a VGG Face network.

Table 2 shows quantitative results on 9,287 audio-image

pairs from the VoxCeleb2 (Chung et al. 2018) dataset; the

audio-image pairs and some identities in this dataset are

completely new to our trained network. Unsurprisingly, net-

works trained using L1, a direct pixel-to-pixel distance loss,

generally fared better when looking at mean squared error

than networks trained on content loss which minimised the

distance between embeddings. This makes sense, as MSE

measures direct pixel-to-pixel distance between the ground

truth and the generated samples, which is exactly what the L1

networks were trained for; this however does not guarantee

realistic generations. Interestingly, our best network trained

on content loss still outperforms the best L1 network (327

→ 333) albeit by a narrow margin.

Identity Preservation We also look at the embedding dis-

tance of the generated sample and the ground truth using a

pre-trained VGG Face network (Parkhi 2015). In the ideal

case, the embedding distance between the ground truth and

the generated sample would be zero, as we are generating

the image of the same person albeit with a different mouth

shape. By this measure, we can see that the sharpening net-
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Fig. 11 Top row: Identity 1 and

the corresponding generated

frames; Middle row: Identity 2

and the corresponding generated

frames; Bottom row: Captions

of the audio segment

Fig. 12 From left to right: (1) Original input still image to animate; (2)

Output frames without skip connection; (3) Output frames with skip

connection and one input image; (4) Output frames with skip connec-

tion and five input images; (5) Output frames with skip connection

and five input images, trained with VGG Face content loss; (6) Output

frames with skip connection, five input images and bilinear upsampling

instead of transposed convolution, trained with VGG Face content loss.

Top row: before sharpening; Bottom row: after sharpening

Table 2 Quantitative results
SC # id. Loss GM MSE ↓ Embedding dist. ↓ Retrieval Acc. ↑

Sharpening ✗ ✓ ✗ ✓ ✗ ✓

Ground truth 0 0 89.5%

Chance – – 9.7%

✗ 1 L1 TC 705 700 0.434 0.433 79.7% 79.7%

✓ 1 L1 TC 527 533 0.260 0.256 82.7% 82.8%

✓ 5 L1 TC 331 333 0.139 0.131 83.9% 83.4%

✓ 5 CL TC 398 403 0.126 0.125 83.4% 83.0%

✓ 5 CL C+U 327 346 0.118 0.115 82.8% 82.4%

↓ lower is better, ↑ higher is better, Numbers in bold represent best performance

SC skip connection, id. identity images, GM generation method, CL content loss, TC transposed convolution,

C+U convolution + upsampling
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work generally improves performance. This might be due to

the fact that a sharper image tends to be more realistic; blur

seems to be a good tell that an image is generated. For the

decoders, the model using convolution and upsampling per-

forms consistently better than transposed convolution in our

experiments.

Correctness of the Generated Lip Shape In order to make

sure that the generated lip shape corresponds to the speech,

we check that the input audio frame can be correctly retrieved

from the generated image. We use the network of (Chung

et al. 2019) pre-trained for audio-to-video synchronisation

and retrieval on real videos. The task is to determine the

correct synchronisation within a ±15 frame window, and the

synchronisation is determined to be correct if the predicted

offset is within ±1 frame of the ground truth. A random

prediction would therefore give 9.7% accuracy. The test is

performed on the test split of the LRS2 dataset, so that the

results can be compared directly to the results on real videos

reported in Chung et al. (2019).

The results are given in Table 2. Although the performance

on the generated frames are slightly less than on the ground

truth videos, this margin is relatively small and it can be seen

that the performance is well above chance. The variation in

accuracy among the different models is small.

5.2 Preserving Identity with Skip Connections

Figure 12 shows a set of generated faces and various target

identities (original stills). We observe that the skip connec-

tions are crucial to carry facial features from the input image

to the generated output—without these, the generated images

lose defining facial features of target identities, as shown in

the middle column. The skip connections at earlier layers

(e.g. after conv1) were not used as it encouraged the output

image to be too similar to the still input, often restricting the

mouth shapes that we want to animate.

5.3 Preserving Identity UsingMultiple Still Images

As can be seen in Fig. 12, having multiple (five in this case)

image examples for the unique identity enhances the qual-

ity of the generated faces compared to only having a single

example. There are two reasons for this: first, with multiple

example images as input, it is likely that the network now has

access to images of the person showing the mouth open as

well as closed. Thus, it has to hallucinate less in generation

as, in principle, more can be sourced directly from the input

images; Second, although the faces are aligned prior to the

identity encoder, there are minor variations in the movement

of the face other than the lips that are not relevant to the

speech, from blinking and microexpression. The impact of

these minor variations when extracting unique identity fea-

tures is reduced by having multiple still images of the same

person.

6 Re-dubbing Videos

In this section, we propose methods to visually re-dub a

source video with a different segment of spoken audio. We

develop a multi-stream CNN that can be used to naturally

blend the generated mouth shape into the source video frame,

and compare the results to a traditional method based on Pois-

son editing.

6.1 Baseline: Poisson Editing

A method based on Poisson editing is used to blend the output

of Speech2Vid model back into the source video.

The key stages are as follows: (i) obtain still images from

the source video for identity; (ii) generate the face video for

the given audio and identity using the Speech2Vid model; (iii)

re-align the landmarks of the generated video to the source

video frames, and (iv) visually blend the aligned face with

the source video frame.

Alignment Facial landmarks in the target video is determined

using the method of Kazemi and Sullivan (2014). A similarity

transformation is used to align the generated face with the

original face in the target image. Figure 13 (right) shows the

generated face in alignment with the original face.

Poisson Editing The Poisson image editing algorithm (Perez

et al. 2003) blends two images together by matching gradients

with boundary conditions. We use this technique to match

the generated face with the source video frame, as shown in

Fig. 13. This can be used to blend the face from the same, or

different identity to the source video frame.

Discussion This method can be used to blend the generated

face as a whole, or to match only the lower half of the face.

We qualitatively find that we strike the best balance between

image naturalness and movement naturalness by only blend-

ing the lower half of the face. However, this method results

in unnatural-looking images when the faces are not front-

facing, as shown in Fig. 16.

6.2 Network-Based Blending

Here, we propose a modification to the Speech2Vid model,

such that it generates an output frame taking account of ‘con-

text’ from the source video, rather than just ‘identity’ images.

Architecture The network is the same as the Speech2Vid

model described in Sect. 3, but we add another ‘context’

encoder to capture the information from the source video.

The context encoder takes in an image frame with occluded

123



1776 International Journal of Computer Vision (2019) 127:1767–1779

Fig. 13 Re-blending with the baseline method Top left: Original still image; Top right: Generated mouth region, aligned with the original (target)

face; Bottom left: Generated mouth region, superimposed on the original face. Bottom right: Generated mouth region, blended with the original

face

Fig. 14 The Speech2Vid model, with the context encoder. The top 3 rows are identical to Fig. 4, apart from the input dimension

mouth. The network diagram is shown in Fig. 14. The input

and output dimensions are larger than that of the original

Speech2Vid model at 224 × 224, since the images are of a

larger area.
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Fig. 15 Input images to the blending network. Left: ‘Identity’ image ;

Middle: ‘Context’ image; Right: Ground truth image

Inputs There are three main inputs to the re-dubbing net-

work: the audio, the ‘identity’ images and the ‘context’

image. The audio and ‘identity’ inputs are identical to the

inputs of the architecture described in Fig. 4 while the

‘context’ image is the target frame (with the mouth region

occluded using in-painting). As before the identity images

encode facial features, but the ‘context’ image is added to aid

the network by providing it with information on the desired

face orientation, background and lighting. To produce the

‘context’ image, we use the detected facial landmarks and

in-paint the mouth region with the median colour of the face.

This occluded mouth region is similar to the area replaced in

the baseline Poisson editing method.

During training, the ‘context’ image is the occluded ver-

sion of the ground truth image, i.e. the image corresponding

to the middle of the sampling window. At test time, the same

‘context’ image is fed into the network which is made from

the current middle image, aligned via face orientation, of the

sample. Figure 15 shows examples of the ‘identity’, ‘con-

text’ and ground truth images. As before, the pose of the

input face is restricted to near-frontal as in the LRS2 dataset

and the face images are registered prior to generating the

mouth, see Fig. 10.

Fig. 16 Blending results. Left: Using Poisson editing; Right: Using the blending network
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Re-blending Since the output of the network corresponds

exactly to the detected frame used to generate the ‘con-

text’ image (i.e. the current image with occluded mouth),

the re-dubbed generated frame can be trivially replaced with

the output of the network. The only post-processing done

is a series of simple transforms, translation and rotation,

of the output to the reference frame which in this case is

the ‘context’ image. For comparison, the baseline method

re-transform only the mouth region while for the blending

network, we re-transform the whole frame of the generated

face back to the original image space.

Results and Discussion We find that the results from the

network blending are consistently better than the Poisson

editing-based method, particularly for off-frontal cases. See

Fig. 16 for comparison of Poisson editing with the generated

output.

The CNN-based method is very effective in naturally

blending the generated mouth shape into the target image

for both frontal and off-frontal faces. However, the common

limitation of both methods is the difficulty in making the

chins move with the mouth. This problem is particularly chal-

lenging since the network has to learn to fill the area of the

background occluded in the target video frame.

7 Summary and Extensions

We have demonstrated that the Speech2Vid model is able

to generate videos of any identity speaking from any source

of input audio. This work shows that there is promise in

generating video data straight from an audio source. We have

also shown that re-dubbing videos from a different audio

source (independent of the original speaker) is possible.

Moving forward, this model can be applied to computer

facial animation relying only on audio.
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