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Summary
The receiver operating characteristic (ROC) curve is used to evaluate a biomarker’s ability for
classifying disease status. The Youden Index (J), the maximum potential effectiveness of a
biomarker, is a common summary measure of the ROC curve. In biomarker development, levels may
be unquantifiable below a limit of detection (LOD) and missing from the overall dataset. Disregarding
these observations may negatively bias the ROC curve and thus J. Several correction methods have
been suggested for mean estimation and testing; however, little has been written about the ROC curve
or its summary measures. We adapt non-parametric (empirical) and semi-parametric (ROC-GLM
[generalized linear model]) methods and propose parametric methods (maximum likelihood (ML))
to estimate J and the optimal cut-point (c*) for a biomarker affected by a LOD. We develop unbiased
estimators of J and c* via ML for normally and gamma distributed biomarkers. Alpha level
confidence intervals are proposed using delta and bootstrap methods for the ML, semi-parametric,
and non-parametric approaches respectively. Simulation studies are conducted over a range of
distributional scenarios and sample sizes evaluating estimators’ bias, root-mean square error, and
coverage probability; the average bias was less than one percent for ML and GLM methods across
scenarios and decreases with increased sample size. An example using polychlorinated biphenyl
levels to classify women with and without endometriosis illustrates the potential benefits of these
methods. We address the limitations and usefulness of each method in order to give researchers
guidance in constructing appropriate estimates of biomarkers’ true discriminating capabilities.
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1 Introduction
Evaluating biomarker levels has become an important method in the investigation and
diagnosis of disease. Disease diagnosis by biomarkers is dependent upon a correlation between
biomarker levels and disease state, whereby biomarker levels for a certain diseased population
are different–usually higher–than in the corresponding non-diseased population. In order to
utilize a biomarker for such classification, a cut-point c is established and individuals with
biomarker values on one side of the cut-point are labeled as diseased and those with values on
the other side are labeled non-diseased or healthy. The accuracy of such a classification can
be determined by examining sensitivity (Se) and specificity (Sp), where Se and Sp are the
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probability of truly identifying diseased and non-diseased individuals respectively at a certain
c.

The receiver operating characteristic (ROC) curve can be used to evaluate the effectiveness of
a certain biomarker in the determination of a diseased and non-diseased population. The ROC
curve is a plot of (Se) versus (1-Sp) at all possible c. When estimating the ROC curve, non-
parametric, semi-parametric or parametric methods can be utilized. In previous literature (Pepe,
2003), non-parametric approaches have been developed to construct the ROC curve using
calculations of the cumulative density function based on ordered observations of diseased and
non-diseased biomarker levels. Semi-parametric, distribution-free methods have also been
developed that parameterize the form of the ROC curve without making assumptions about
the distributions of test results. In addition, a parametric model was developed by Ogilvie and
Creelman (1968) utilizing a finite number of parameters. One of the main obstacles in the
applications of the non-parametric, semi-parametric, and parametric approaches is accounting
for observations below some limit of detection (LOD), denoted here as d, resulting either from
a non-criterion standard or experimental error (Lambert, Peterson and Terpenning, 1991). The
result is an intrinsically biased sample, with unregistered observations potentially affecting the
estimation of the ROC curve and subsequent summary statistics. To account for the effect of
a LOD on the ROC curve, Perkins et al. (2007) adapted a parametric approach for estimating
ROC curves affected by an LOD and used this approach to estimate the area under the curve
(AUC).

As an extension, this paper focuses on the Youden Index (J), another main summary statistic
of the ROC curve used in the interpretation and evaluation of a biomarker, which defines the
maximum potential effectiveness of a biomarker. J can be formally defined as J = maxc {Se
(c) + Sp (c) − 1}. The cut-point that achieves this maximum is referred to as the optimal cut-
point (c*) because it is the cut-point that optimizes the biomarker’s differentiating ability when
equal weight is given to sensitivity and specificity (Youden, 1950; Faraggi, 2000; Reiser,
2000; Miller, 1981; Searle, 1971). This paper develops parametric methods as well as adapts
non-parametric (empirical) and semi-parametric (generalized linear model) methods to
estimate the ROC curve, J and c* when a biomarker of interest is affected by a LOD. Section
2.1 explores the non-parametric and semi-parametric methods for determining the ROC curve
and J. Section 2.2 introduces the maximum likelihood (ML) method and demonstrates
estimation of J and c* in the general case, the Normal case and the gamma case. Section 3
presents estimated confidence intervals to accompany the parametric, semi-parametric and
non-parametric point estimators of J and c*. Section 4 displays the results of simulations that
compare the effectiveness of the different methods. Section 5 presents an example using
polychlorinated biphenyl (PCB) levels to classify women with and without endometriosis to
illustrate the potential benefits of these methods. Section 6 offers conclusions, general remarks
and recommendations.

2 Methods
Let y1 ,…, yn represent a random sample of biomarker levels from the non-diseased (control)
population which come from a random variable (Y) that are sorted in increasing order, and
x1 , … , xm represent a random sample of biomarker levels from the diseased (case) population
which come from a random variable (X) that are sorted in increasing order, with cumulative
distributions F and G respectively. If k and j are the number of observations above the LOD
for non-diseased and diseased respectively, then there are yn−k+1 ,…, yn and xm−j+1 ,…, xm, k
≤ n and j ≤ m observations above d. Using these observations above the LOD, the different
approaches in estimating the ROC curve can be examined.
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2.1 Non-parametric and Semi-parametric methods
2.1.1 Empirical (EMP)—The first approach is the classical non-parametric empirical (EMP)
method as applied to censored observations, where ranks are used. By replacing missing values
below the LOD with a constant (common values are d/2 and ), J and c* can be estimated
by the classical ordering of the observations for non-diseased and diseased populations. This
alteration of the data in order to utilize the EMP method creates a mass of observations at a
specific place that are not intrinsic to the continuous nature of the biomarker but allow missing
observations to be included in the estimation. The ROC curve resulting from this replacement
technique would be consistent with an EMP ROC curve based on all the data from the points
(0, 0) to (1 − Sp (d), Se (d)) and then change to a straight line to (1, 1) (refer to Figure 1). As
a result, this estimate of the ROC curve is asymptotically unbiased for all c > d.

Empirical cumulative distributions can be calculated as:

where I(xi ≤ c)and I(yi ≤ c) are the indicator functions classifying whether an observation is
censored or below c (I(a)= 1 if a is true and 0 otherwise). Having calculated the empirical
cumulative distribution functions, J is estimated by:

(1)

The corresponding c* is obtained at the c where J̃E is determined and always occurs at c ≥ d.
As with all non-parametric methods, the EMP method has the benefit of being free of
distribution assumptions and thus completely robust to distribution misspecification.

2.1.2 ROC-GLM—The second approach is the semi-parametric ROC-GLM method
developed by Pepe for non-censored data sets (Pepe, 2003). In this approach, the ROC curve
is parameterized but no assumptions regarding the underlying distributions of diseased and
non-diseased populations are made. This approach is essentially a parametric smoothing of the
empirical ROC curve to establish estimates for J and c*. Since the empirical ROC curve is
biased due to a LOD, smoothing over the entire range of false posititves would create bias here.
Thus estimation of parameters is based only on the portion of empirical ROC curve
corresponding to actual observations, not replacement values, and these parameter estimates
are then applied across the entire range of specificity.

To perform the ROC-GLM method, a parametric form for the ROC curve can be constructed
using a link function g and specified functions h = {h1,…, hn }:

where ROC (t)= Se (c) and t = 1 − Sp (c). Through the link function, the ROC curve can be
parameterized based on specific functions. For example, the ROC curve can be modeled where
the link function is g = Φ−1 and the specified functions are h1(t) = 1 and h2(t) = Φ−1(t) where
Φ represents the standard normal distribution function.

Now, to estimate ROC (t), a placement value, which is the location of an observation in a given
population, must first be defined. Utilizing F as the reference distribution for the non-diseased
population, the placement value of a test result y in the non-diseased population is:
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where SF(y) is the non-diseased survivor function at y. The placement value is used to define
the location of y in the distribution of interest. With this definition, the ROC curve can be
defined as the distribution of diseased (X) placement values in the non-diseased distribution
(F):

Having adopted this formation for the ROC curve, a set T where t is an element of T can be
chosen to fit the model over. Pepe suggests that T be chosen such that T = {1/m, …, (m − 1)/
m } (Alonzo and Pepe, 2002). With this form, a binary variable can be defined denoting whether
or not the placement value exceeds t and binary regression methods can be subsequently utilized
to estimate the αs to generate a full ROC curve based on values above the LOD.

Having established the ROC-GLM curve with estimates of αs, the estimate of J can be found
utilizing the basic formal definition presented in the introduction and is J̃G = maxt (ROC (t) −
t). With J, a weighted cut-point can be established by mapping the corresponding ROC (t)
(where c* occurs) at which the maximum takes place back to the empirical curve. One is able
to situate ROC (t*) within the given diseased distribution and find Se (xi) ≤ ROC (t*) ≤ Se
(x(i+1). The c* based on a mapping back to the diseased (Se) population is found by weighting
the placement of ROC (t) within this interval:

A mapping back to the non-diseased (1 − Sp) population can be performed in a similar manner.
In practice, if sample sizes are equal (m = n) then the choice of Se or Sp is arbitrary but if

unequal, then  should be found by mapping back through the one corresponding to the larger
sample size as it will provide a finer mapping.

2.2 Maximum likelihood (ML)
The third parametric approach considered is the maximum likelihood (ML) as it applies to
censored observations. This approach attempts to parameterize an observed distribution in
order to estimate J. Considering the non-diseased population, y1 ,…, yn which comes from a
random variable (Y) with distribution F(y; θY)with unknown parameter θY, let Z be defined by:

The likelihood of each observation zj can be thought of as starting out Bernoulli, reflecting
whether the observation is missing (denoted as not available, N/A), or not of the indicator
function (I). If the observation is not missing, the likelihood of θY given zj can be determined.
Consequently, ordering the observations starting with the k missing values, the likelihood
function is:

where f(y; θY) is the probability density function of Y. To calculate the maximum likelihood
estimate (MLE) θ̂Y of θ ̂Y, maximize L(θ ̂Y; z) with respect to the parameter. In the case where
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θY is a vector parameter, maximize L(θ ̂Y; z) with respect to each of it’s elements, separately.
(Perkins et al., 2007).

Logically extending the procedure described above for the diseased population, the MLE’s
θ ̂x (distribution parameter(s) for diseased) and θ ̂Y (distribution parameter(s) for non-diseased)
are obtained. Now, because the MLE is equivariant, substituting θ ̂x and θ ̂Y for their respective
parameters yields the estimate ^J= J (θ̂X, θ̂Y) and ĉ* = c(θ ̂X, θ̂Y) which are the MLE’s for J and
c* (Refer to Perkins and Schisterman, 2005 for explicit formulas for Ĵ and ĉ*).

Having adopted a general method for determining MLE’s for J and c*, we now apply this
method to the specific cases of normal and gamma distributed biomarker levels to obtain ĉ*
and Ĵ. The details of these developments for normal and gamma assumptions are left to the
Appendix.

3 Estimation of Variance and Confidence Intervals
3.1 Maximum likelihood

Since ĉ* and Ĵ are functions of the MLE’s θ̂X and θ̂Y, they are consistent and asymptotically
normally distributed. Explicitly, ĉ* and Ĵ are asymptotically normally distributed such that

 ~ Normal  and  ~ Normal  respectively, where N equals
the sum of the diseased and non-diseased observations. Utilizing these distributional properties,
α level two-tailed confidence intervals (CI) for c* and J are constructed from

 and  respectively. When  and  are unknown, the
estimators  and  can be used to compute the approximate α level CI for c* and J (refer to
Perkins and Schisterman, 2005 and Perkins et al., 2007 for development of these estimators
for the normal and gamma cases).

3.2 EMP and ROC-GLM

The estimated standard errors and confidence intervals of the empirical estimators  and J̃E

and ROC-GLM estimators J̃G and  can be found using the basic percentile (BP) bootstrap
method. The bootstrap method is utilized to construct confidence intervals when the
distribution of the given estimator is unknown. The BP bootstrap method performed here is a
non-parametric re-sampling of the data where all observations of diseased individuals are re-
sampled with replacement and all observations of non-diseased are re-sampled with
replacement. The empirical estimates of J and c* were then found using the non-parametric
empirical or semi-parametric ROC-GLM method, and this process was repeated S times,

calculating  and  per sample (j = 1 , …, S). With these estimates, (1 − α) 100% CI are

constructed by taking the α/2 and 1 − α/2 percentiles of the  and  (Wasserman, 2004).

4 Simulations
A simulation study was performed consisting of B = 2000 independent samples of diseased
and non-diseased populations (sample sizes of diseased and non-diseased populations equal
m = n = 50, 100, 200) to assess the non-parametric and parametric techniques illustrated above
over varying sample sizes and populations.

The Normal simulations were executed first, with non-diseased values drawn randomly from
a Normal distribution with μY = 2 and . The variance of the diseased population was set
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at  and then repeated at  with the mean μX generated numerically to achieve an ROC
curve with J equal to 0.2, 0.4, 0.6 and 0.8.

In the second set of simulations, non-diseased biomarker levels were generated from a gamma
distribution with αY = 1:5 and βY = 1. Samples of diseased levels were found from a gamma
distribution with αX = 1.5 and repeated with αX = 2 and βX found numerically to achieve an
ROC curve with a J of 0.2, 0.4, 0.6 and 0.8.

Having generated these samples, J and c* were estimated using the non-parametric EMP (J̃E

and ) and semi-parametric ROC-GLM (J̃G and ) methods, as well as the parametric ML
(Ĵ and ĉ*) method. These estimates were found with varying amounts of data subject to a LOD;
scenarios were considered with 0, 20, 40, 60, and 80 percent of the non-diseased observations
missing or below the fixed d. In addition, 95% confidence intervals were constructed according
to techniques described in Section 3.

Percent bias (bias as a percent of the value of the parameter of interest) and root mean square
error (RMSE) were calculated for all point estimates of J and c*. Confidence intervals were
assessed using the average width of the interval and coverage, the proportion of confidence
intervals that include the true parameter. Tables 1–4 display excerpts of these simulation results
for the Normal and gamma cases, respectively, and are representative of the overall relations
seen in all simulations (full simulation results can be provided with request).

From these results, the effectiveness of the non-parametric, semi-parametric, and parametric
methods in estimating J and c* as well as the effect of sample size on the different methods
can be evaluated. The average percent bias of J estimators across all distributional scenarios
and levels of missing observations was found to be less than one percent of the true J. The ML
and ROC-GLM method show smaller bias and RMSE – except with J = 0.2, 0.4 and a LOD
with 80 percent missing – than that of the EMP method (average percent bias Ĵ, J̃G,J̃E: 1.85%,
2.58%, 9.46% and average RMSEĴ, J̃G, J=E: 0.0083, 0.0075, 0.0090 respectively over all
simulations). For the average percent bias of estimates of c* (refer to Tables 2 and 4), the ML
method shows smaller bias and RMSE than the EMP method except at large LOD and small

J (average percent bias c*̃, : −0.53%, 3.86% and average RMSE c*̃, : 0.1271, 0.4605 over
all simulations). Comparing the average percent bias for estimates of c* from the ML and ROC-

GLM methods where  occurs above d, the ML has comparable bias and smaller RMSE –
except at large J and 80 percent of controls missing – than the ROC-GLM method (average

percent bias ĉ*,  [sensitivity],  [specificity]: 0.22, 5.76, 4.90 and average RMSE ĉ*, 

[sensitivity],  [specificity]: 0.1278, 0.3764, 0.3462). Again, we can not compare estimates
of c* from the ML and ROC-GLM methods when J̃G corresponds to a cut-point below the
LOD because mapping back from the estimated ROC curve to the biomarker scale is not
possible. Figures 2 summarize trends in the percent bias and RMSE of J and c* for the different
methods utilizing a Normal sample with equal variances for the diseased and non-diseased
populations corresponding to a true J = 0.4. The results for this scenario are representative of
the complete simulation results.

The coverage probabilities using ML techniques are nominal, showing a slight decrease in the
coverage probability with small J (J = 0.2, 0.4) and a large LOD corresponding to 60 and 80
percent missing. In terms of the coverage probability of J for the ML method with respect to
the EMP method, while the two methods have comparable confidence interval widths, the
coverage probabilities for the ML method are much closer to nominal than those of the EMP
method except at small J and a LOD yielding 80 percent missing (average coverage Ĵ, J̃E,:
0.9368, 0.8280 over all simulations). In addition, the coverage probabilities of J for the EMP
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method increase slightly to the nominal as the LOD becomes larger. The coverage probabilities
for c* using the EMP and ML methods are comparable and nominal, except for small J (J =
0.2, 0.4) and large LOD where the EMP is unable to cover the true J at all. In addition, the ML
generally produces confidence interval widths for c* that are substantially smaller than the
EMP method.

The coverage probabilities and confidence intervals for the ROC-GLM method were computed
only for J = 0.4 for the gamma (αX = 1:5) and Normal  and for LODs of 0, 20, 40, 60
and 80 percent of the controls missing due to the computationally intensive nature of the ROC-
GLM method and its nested loops. The coverage probabilities for J of the ROC-GLM method
are nominal across Normal and gamma simulations and similar to those of the corresponding
ML method and cover better than the corresponding EMP method (average coverage
probability Ĵ, J̃G, J̃E: 0.9406, 0.9424, 0.8530). For c*, the ROC-GLM method produces
confidence interval widths that are slightly larger than the ML method but smaller than the
EMP method except for large LOD. The coverage probabilities for the ROC-GLM method are
comparable to the EMP and ML methods and nominal, except for 80 percent missing where
the ROC-GLM method is unable to cover c* at all because no mapping back to the distributions
is possible. Figure 2 also summarizes trends in the coverage probability of J and c* for the
different methods utilizing a Normal sample with equal variances for the diseased and non-
diseased populations corresponding to a true J = 0.4. The results for this scenario are
representative of the complete simulation results.

In addition, as the sample size increases, the confidence interval widths for the ML and EMP
methods decrease and the coverage probabilities increase to the nominal. The bias and RMSE
of all methods (ML, ROC-GLM, EMP) decrease as the sample size increases.

In order to assess the robustness of the ML method, we generated Student’s t distributed data
(5, 10, and 25df) and lognormally distributed data and performed estimation based on normal
and gamma assumptions, respectively. The means and variances of the alternative distributions
were matched to those of the normals and gammas in the original simulations. The average
percent bias for Ĵ over all simulations (bias Ĵ/true J) of the Student’s t and lognormally
distributed data was 0.56 percent and 1.76 percent respectively. The average RMSE of Ĵ for
the Student’s t and lognormally distributed data was found to be comparable to that based on
data from the actual normal and gamma distributions. The coverage probability of Ĵ was
nominal at small d for both types of data and decreased slightly with larger d. The average
percent bias for ĉ* over all simulations (bias ĉ*/true c*) of the Student’s t and lognormally
distributed data was 1.07 percent and 11.7 percent respectively. The 11.7 percent relative bias
demonstrates how sensitive ĉ*, location of optimal differentiation, is to the assumed shape of
distributions in contrast to the relatively robust Ĵ, level of optimal differentiation. The average
RMSE of ĉ* for the Student’s t distributed data was again found to be comparable to that based
on data from actual normal distributions and the coverage probability was found to be nominal
at small d and decrease slightly with fewer degrees of freedom, smaller J, and larger d. The
average RMSE of ĉ* for the lognormally distributed data was substantially larger then that
based on the actual gamma distributions and the coverage probabilities ranged from 0.90 to as
low as almost no coverage. Higher coverages corresponded to scenarios of high missingness
and low sample sizes but coverages decreased as sample sizes increased and missingness
decreased, scenarios where correct distributional assumptions should be easier to formulate.
As a result, while misspecifying the true distribution of the data does introduce bias, the ML
method was robust to this departure for estimating Ĵ and differentially affected in the estimation
of ĉ*.
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5 Example
Endometriosis is a gynecological disorder that occurs primarily in women of reproductive age.
Symptoms of endometriosis may include pain, discomfort and infertility. The causes of this
condition remain unclear, and diagnosis is difficult, usually requiring invasive confirmation
by laparoscopy. It is a disease exclusive to species that menstruate such as humans and primates.
Much of the experimental evidence regards a potential association between dioxin and
polychlorinated biphenyls (PCBs) and endometriosis and includes data from experimental
animal, primate and human studies (Louis et al., 2005).

An incident case-control study of 28 cases and 50 controls, as determined by laparoscopy, was
evaluated to determine how various PCBs classified endometriosis status. Investigators were
interested specifically in polychlorinated biphenyl 114. The LOD was experimentally set at
d = 0.005 resulting in a censoring of 76 percent of the controls and 36 percent of the cases. The
observed cases had a mean of 0.0194 and standard deviation of 0.0110 while the observed
controls had a mean of 0.0144 and a standard deviation of 0.0072. Empirical analysis led to
the non-smooth ROC curve in Figure 1 with J̃E = 0.4029 (95% confidence interval: 0.2043,

0.6214) and  (95% confidence interval: 0.0070, 0.0160). The ROC-GLM and ML
techniques developed here were also applied. The ROC-GLM method produced the solid line
in Figure 1 with J̃G = 0.3441 (95% confidence interval 0.1184 0.6125). However, because the
ROC-GLM method estimated a J with a corresponding cut-point below the LOD, the method
was unable to extrapolate back to the empirical curve and estimate c*. Prior to employing the
ML technique, histograms (see Histogram 1) of the diseased and non-diseased distributions
and quantile plots were examined. These showed the Normal distribution to be a poor choice,
and suggested that gamma distributions with parameters equal to ML estimates fit well. In
addition, PCB levels are naturally restricted to non-negative numbers, which is intrinsic to the
gamma and not the Normal distribution. The dashed ROC curve in Figure 1 is based on cases
and controls following gamma distributions with ML estimates substituted for parameters. The
ML method found Ĵ = 0.4059 (95% confidence interval: 0.1744, 0.6400) and the subsequent
ĉ*= 0.00329 (95% confidence interval: 0.0011, 0.0055).

The simulation closest to this scenario, m = n = 50 with J = 0:4 and 80% missing, shows that
percent bias (Ĵ, J̃G, J̃E: 6.18, 8.00, 7.68) and RMSE (Ĵ, J̃G, J̃E: 0.033, 0.028, 0.015) for estimates
of J are similar with ML confidence intervals providing slightly better coverage than EMP.
Notable results of estimates of c* for this level of censoring are that while the confidence
interval based on ML has coverage probability of 0.85, due to bias from relatively small sample
size, it overwhelmingly out performed that based on EMP, coverage probability of 0.0 due to
the true cut-point being below the LOD. This is likely to be the case with a J = 0:4 and 80%
of our controls below the LOD.

The results of the above example show that the EMP, ROC-GLM, and ML methods give
estimates for J with similar width confidence intervals. In addition, the ROC-GLM and ML
methods establish that the c* giving rise to J is below the LOD while the EMP approach reports
J occurs above the LOD. Also, this example shows a significant limitation in the ROC-GLM
method, that while it is able to estimate a J below d, it is unable to establish a corresponding
cut-point. The overall result of this example is that the ROC-GLM and ML methods, unlike
the EMP method, suggest the need for improved laboratory measurements for the marker
PCB114 to reach its maximum discriminatory power, as it occurs below the experimentally
determined LOD.
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6 Discussion
In a review of current practices, it has become standard to utilize the non-parametric empirical
method to obtain J and c*. However, as shown in the simulations and example, the ML and
ROC-GLM methods perform much better in terms of coverage probability, bias, and RMSE
than the positively-biased EMP method in estimating J in the presence of LOD, especially for
a relatively small LOD.

Another common practice is to replace measurements below the LOD with some value and
then estimate J and c* as if the data were real observations. Using a replacement value with
the empirical method is acceptable because censored measurements are treated as ties already.
The standard ROC-GLM approach based on replacement values assumed to be true biomarker
levels would lead to negatively biased estimates of the ROC curve and J. Replacement values
in conjunction with ML techniques result in bias, the direction of which would be unpredictable
due to the complexity of the parameters of interest and the degree would worsen with increases
in sample size.

However, even when using these three methods correctly there are limitations. In order to
utilize ML techniques, assumptions must be made about the underlying distributions of the
diseased and non-diseased populations. This leads to a not insignificant assumption that the
biomarker is modeled by a known distribution. Although this presents as a theoretical
limitation, in practice most continuous biomarkers can be modeled quite well by known
distributions, and considering the Normal and Gamma families provides some flexibility in
this assumption. While not evaluated here, other continuous distributions (i.e., Weibull,
Student’s t) could be handled similarly if thought to be more appropriate and it is also possible
to log-transform skewed data to attempt to use normal ML techniques. However, as censoring
below the LOD increases, this necessary distributional assumption becomes increasingly
difficult to accurately assess. This difficulty was exemplified here by the substantial censoring,
76 percent of the levels of controls, of PCB 114 in the example. As we showed in Section 4,
the ML estimators are robust to small departures from normal and gamma distributions with
the caveat that ĉ* is more susceptible to bias because of its intrinsic dependence on the shape
of the distributions. Other authors have shown that parametric ROC estimates do not perform
well under gross violations of distributional assumptions (Molodianovitch et al., 2006).

For the non-parametric EMP and semi-parametric ROC-GLM method it is not necessary to
model the underlying distribution and thus frees investigators from possible misspecification.
However, neither method can estimate a c* below a LOD. The EMP method can only estimate
the location of J, c*, as low as the boundary and while the ROC-GLM can estimate J below
the LOD, a corresponding c* estimate is unattainable because we can not map back through
the empirical distribution. Interestingly, because of this limitation in the empirical method, as
the LOD increases, the bias and RMSE of J̃E decrease and the coverage probability for J
increases because the method is positively biased when there is no LOD. As a result, the
simulation study (represented in Figure 2) shows that when the true J occurs below the LOD,
the EMP method can perform well estimating J̃E at a biased ĉ*.

Whether or not these limitations are acceptable depends on many factors. When estimating
only J, our tables and simulation section give sound advice regarding the levels of bias and
RMSE to expect, with the caveat the EMP method limits our capability to assess potential
discriminatory ability because J̃E can never occur below the LOD. If, as in the example, a
researcher uses the EMP method and J̃E occurs at the LOD, additional resources to develop
improved measurement techniques, thus lowering the LOD and realizing the potential
discriminatory ability of the biomarker, would not be warranted unless the potential was
adequately estimated using the ROC-GLM and/or the ML methods. Now say the ROC-GLM
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is utilized and J̃G occurs below the LOD. Allocation of resources to improve measurements of

biomarker levels may now be warranted but because one is unable to map back to a , there
is no estimate of the magnitude of measurement improvement necessary to realize the J̃G. If

the unknown  is unattainable by any level of additional resources then attempting to achieve
J̃G would be blindly futile. The ML method is the only method of the three that consistently
estimates J and c* below the LOD. While the ML method requires distributional assumptions,
we have shown this method to be robust to minor distributional misspecification in estimating
J for both normal and gamma distributed biomarker levels. In addition, the methods developed
here can logically be extended to upper limits of detection as well as cases involving both lower
and upper detection limits.

It should be noted that it is impossible to determine whether or not c* actual occurs below the
LOD. However, one could test this hypothesis in a fairly straight forward manner using the
standard error of c* and the fixed LOD.

Accounting for a biomarker’s potential discriminating ability is important when comparing
biomarkers. In comparison of biomarkers affected and unaffected by an LOD, underestimation
of the discriminatory ability of the affected marker may lead to choosing the less discriminatory
biomarker without an LOD. However, the ML or the ROC-GLM methods have the ability to
account for a biomarker’s potential with an LOD and suggest the need for improved
measurement techniques. The ML and ROC-GLM method developed here properly account
for the missingness of observations below the LOD and provide investigators with consistent
estimates of biomarkers’ true discriminating capabilities.

Appendix

Normal Case
Gupta (1952) and Cohen (1950) independently examined the situation of a normally sampled
population censored above some value. From this censored sample, Gupta developed a
likelihood function and subsequently, MLE’s for the mean, μ, and standard deviation, σ.
Utilizing this method for a biomarker censored below a fixed d, the log likelihood function for
the normally distributed non-diseased population is found to be (Gupta, 1952):

with ηY = (d − μY)/σY and C a constant. The maximization of the log likelihood function can
be performed by differentiating with respect to μY and σY. Setting the maximized equations
equal to zero, they can be combined such that  where

. This can be written as  and
solved for σ̂Y numerically and μ̂Y by substitution. Performing these steps similarly for cases
and controls yield MLE’s for all four parameters necessary to calculate Ĵ and ĉ*.

Subsequently, if the diseased and non-diseased populations are normally distributed (a ROC
curve formed by normally distributed diseased and non-diseased biomarker levels is called a
binormal curve), the MLE’s for μ and σ can be obtained for both populations. Thus Ĵ is found
to be:
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(2)

and ĉ* with unequal variances (refer to Perkins and Schisterman, 2005 for derivation of c*):

(3)

With equal variances, ĉ* is found to be:

Gamma Case
Given that biomarker values sometimes follow a skewed distribution, it is prudent to consider
the case of diseased and non-diseased populations having gamma distributions. The log
likelihood equation for the censored gamma non-diseased population, zy, is (Harter and Moore,
1967):

where C is a constant,  and .

Since the two equations formed by differentiating with respect to alpha and beta cannot be
combined to solve for one parameter, the likelihood function needs to be maximized with
respect to both parameters simultaneously. This maximizing can be easy solved numerically
by standard software and the MLE’s for αy and βY obtained. By extending the above process,
the MLE’s for the diseased population parameters αx and βx can be found.

As a result, ĉ* must be found numerically (f(c; θ̂Y)= g(c; θ̂X)) in most instances because no
closed form solution exists, except when αX = αY or βX = βY (Schisterman and Perkins, 2007).
ĉ* is obtained at this intersection because it is the cut-point that optimizes the biomarker’s
differentiating ability when equal weight is given to sensitivity and specificity. Letting F and
G be the cumulative distribution functions for their respective status, the MLE for J is:

(4)

By substituting the MLE’s α̂X; β̂X, α̂Y and β̂Y into F and G, respectively, ĉ* is estimated
numerically and Ĵ can be estimated utilizing Eq. (4).
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Figure 1.
Empirical (solid and jumpy), ROC-GLM (solid and smooth) and Parametric (dashed and
smooth) ROC curves based on PCB114 levels for classification of women with and without
endometriosis. The data are affected by a limit of detection where measurements are
unquantifiable below a level of 0.005. The parametric curve is based on gamma distributions
with parameters estimated using maximum likelihood.
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Figure 2.
Percent Bias, RMSE and coverage probability of 95% confidence intervals for estimator of J
= 0.4 and c* = 2.25 from MLE (circle), GLM (J : triangle; c*: triangle and cross), EMP (smooth)
methods as a function of percent below the limit of detection. Graphs display sample sizes of
50 (solid lines), 100 (dashed lines), and 200 (dotted lines).
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Histogram 1.
Histogram of diseased and non-diseased observations for example.
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