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Abstract

We present 15 high-mass X-ray binary (HMXB) candidates in the disk of M31 for which we are able to infer
compact object type, spectral type of the donor star, and age using multiwavelength observations from NuSTAR,
Chandra, and the Hubble Space Telescope. The hard X-ray colors and luminosities from NuSTARpermit the
tentative classification of accreting X-ray binary systems by compact object type, distinguishing black hole from
neutron star systems. We find hard-state black holes, pulsars, and non-magnetized neutron stars associated with
optical point-source counterparts with similar frequency. We also find nine non-magnetized neutron stars
coincident with globular clusters and an equal number of pulsars with and without point-source optical
counterparts. We perform spectral energy distribution (SED) fitting for the most likely optical counterparts to the
HMXB candidates, finding seven likely high-mass stars and one possible red helium-burning star. The remaining
seven HMXB optical counterparts have poor SED fits, so their companion stars remain unclassified. Using
published star formation histories, we find that the majority of HMXB candidates—X-ray sources with UV-bright
point-source optical counterpart candidates—are found in regions with star formation bursts less than 50Myr ago,
and three are associated with young stellar ages (<10Myr). This is consistent with similar studies of HMXB
populations in the Magellanic Clouds, M33, NGC 300, and NGC 2403.

Key words: galaxies: individual (M31) – pulsars: general – stars: black holes – stars: neutron – X-rays: binaries –
X-rays: galaxies

1. Introduction

The production of extragalactic X-ray binaries (XRBs) is
closely related to properties of the galaxies in which they form,
such as the star formation rate (e.g., Ranalli et al. 2003;
Gilfanov et al. 2004; Mineo et al. 2012), stellar mass (Lehmer
et al. 2010), and metallicity (Basu-Zych et al. 2013; Brorby
et al. 2016). Population studies of XRBs probe the production
of these compact objects and their relationship to their host
galaxy properties. However, the fundamental properties of
XRBs, such as the compact object type and the physical
properties of the donors, have remained difficult to determine
given the limited information contained in the 0.5–10 keV
energy range covered by soft X-ray telescopes such as Chandra
and XMM-Newton. Broadening the observed energy range to
include data from the near-IR (Hubble Space Telescope (HST))

through hard X-rays (NuSTAR) allows us to determine the
compact object type and the physical properties of the donors,
and to place constraints on the age of XRBs using star
formation histories (SFHs) for their surrounding stellar
populations.

Conducting a galaxy-wide study of high-mass X-ray binaries
(HMXBs) in connection to their star-forming environments is
challenging in the Milky Way because of the distance
uncertainties, but there has been some successful work in this

area (Grimm et al. 2002). Additionally, Bodaghee et al. (2012)
used the spatial correlation between HMXBs and OB
associations in the Milky Way to determine ages of the
systems. It is expected that 5–10Myr elapse between the
formation of a high-mass star and the supernova that forms
the compact object in HMXBs (Schaller et al. 1992; Linden
et al. 2010). Thus, an HMXB cannot migrate far from its
birthplace, allowing its spatial correlation with an OB
association to be used to constrain its age. Bodaghee et al.
(2012) determined the time from supernova through the
HMXB phase (the “kinematic age”) using the spatial correla-
tion between HMXB candidates and OB associations. They
found that most systems have kinematic ages of ∼4Myr.
Detailed studies of XRBs in extragalactic star-forming

environments have been made previously in the Small
Magellanic Cloud (SMC), Large Magellanic Cloud (LMC),
NGC 300, NGC 2403, and M33. In the SMC, Be/X-ray
binaries are found in regions with star-forming bursts
25–60Myr ago (Antoniou et al. 2010). In the LMC, HMXBs
are found in areas with considerably more recent star
formation, between 6 and 25Myr ago (Antoniou & Zezas
2016). In NGC 300 and NGC 2403, HMXB candidates have
been found in regions with surrounding stellar populations
between 20 and 70Myr old (Williams et al. 2013) with a peak
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at 40–55Myr, which agrees with ages in the SMC. In M33, a
similar set of peaks is seen in the HMXB age distribution
(Garofali et al. 2018). These ages suggest two potential
formation channels: one that operates on the timescale of B-star
evolution (∼50Myr), and another that operates much more
promptly.

To better connect the properties of the XRBs themselves to
their parent populations, classifying the compact object in the
system is critical. However, compact object characterization
can be difficult because there are currently very few methods
available. If a low-mass XRB has an observed Type-I X-ray
burst, its compact object may be classified as a neutron star
(e.g., Lewin et al. 1993). Black holes can be classified as such
if the mass of the compact object can be confirmed using the
orbital period and mass of the companion (Orosz &
Bailyn 1997), but stellar companion orbits are not always
available, especially for extragalactic XRBs.

The hard X-ray coverage of NuSTAR allows compact objects
to be tentatively classified using their X-ray properties. With
X-ray observations that cover the hard band (4–25 keV),
compact objects can be classified as neutron stars or black holes
based on a combination of their X-ray colors and luminosities
(Wik et al. 2014; Yukita et al. 2016; A. Zezas et al. 2018, in
preparation). This can be done because neutron stars always
have hard emission associated with matter accreting onto the
surface, while black holes do not and are dominated by the disk
emission properties (Maccarone et al. 2016). Thus, an XRB’s
hard X-ray colors distinguish between neutron star and black
hole systems. Techniques involving hard X-rays are more
indirect but are critical to expand our tool kit for classifying
X-ray sources as black holes or neutron stars.

Andromeda (M31), the nearest spiral galaxy to the Milky
Way, is one of the best systems for studying X-ray binary
populations in the context of their star-forming environments
because of its proximity and the large number of multi-
wavelength data sets available. Observations with the sensitiv-
ity to detect faint point sources extend from near-IR
wavelengths up to hard X-rays (E50 keV; e.g., Vulic et al.
2014, 2016; Williams et al. 2014; Maccarone et al. 2016;
Yukita et al. 2017).

There has recently been a major improvement in the X-ray
coverage of Andromeda owing to two powerful and deep
surveys by NuSTAR and Chandra, both taken in 2015. NuSTAR
observed an ∼750 arcmin2 area of M31 with a total exposure
time of ∼1.4 Ms and average depth of ∼400 ks (D. Wik et al.
2018, in preparation). A Chandra Large Project survey covered
∼1800 arcmin2 to a depth of 50 ks (ChandraPHAT; Williams
et al. 2018).

We pair these X-ray observations with existing near-IR to
UV observations from Hubble (PHAT; Dalcanton et al. 2012;
Williams et al. 2014) to study hard X-ray emitting compact
objects and their optical counterparts in the context of their
star-forming environments. A total area of ∼570 arcmin2 is
covered by all three telescopes. This area comprises approxi-
mately 6% of the D25 area of M31.

The maturity of the PHAT project means that invaluable
secondary data products are available to characterize the star-
forming environments around X-ray sources. For example,
Lewis et al. (2015) spatially mapped the recent SFH of M31
and Gregersen et al. (2015) mapped the metallicity distribution.
Both properties allow the X-ray binary population to be placed
in the context of its environment. The code called Bayesian

extinction and stellar tool (BEAST) by Gordon et al. (2016) can
fit the spectral energy distribution (SED) of individual stars in
the disk of M31. The BEAST code provides a powerful tool for
understanding the physical characteristics of the companion
star in an XRB. Additionally, M31 allows us to study XRB
populations in their environments without the uncertainties in
the distance to each system that plague such studies in the
Milky Way.
In this paper we use the multiwavelength coverage from

NuSTAR, Chandra, and HST to investigate the HMXB
population in the northern disk of M31. In Section 2 we
describe the three data sets used in this study: NuSTAR
observations, two sets of Chandra observations, and reduced
HST photometry and imaging from the PHAT survey. We
describe the methods used to match sources between the three
data sets in Section 3. In Section 4 we describe our results: how
NuSTAR sources were classified using their X-ray colors and
luminosities, how we determined ages for HMXB candidates
using spatially resolved SFHs, and the SED fitting used to
determine spectral types for companion stars in HMXB
candidates. In Section 5 we discuss our results in the context
of previous studies, and in Section 6 we provide a brief
summary of our results.
We assume a Galactic column density, N 7 10 cmH

20 2= ´ - ,
and a photon index, Γ=1.7 (Stiele et al. 2011), to convert
count rates into absorbed energy flux. We assume a distance
of 776 kpc to M31 (Dalcanton et al. 2012) for luminosity
calculations.

2. Data

In this study we employ data from NuSTAR, Chandra, and
HST. We now describe each data set in more detail below. For
an overview of the area observed by each telescope, see
Figure 1.

2.1. NuSTAR Data

NuSTAR source catalogs and source classifications come
from Wik et al. (2018, in preparation). Observations were taken
between February and October 2015 covering the area outlined
in green in Figure 1 with an average exposure time of ∼400 ks,
and they were reduced using the nupipeline software.
Sources previously observed with Chandra were used for
astrometric alignment. For detailed information on data
reduction, source detection, and source classification, see Wik
et al. (2018, in preparation), who present the entire NuSTAR
M31 survey. The NuSTAR observations cover the nucleus and
inner disk regions of M31 at an energy range of 4–25 keV
using the 4–6 keV, 6–12 keV, and 12–25 keV energy bands.
The completeness of the NuSTAR observations starts to fall
off at a luminosity of ∼3×1036 erg s−1 and reaches zero at
∼2×1036 erg s−1.

2.2. Chandra Data

Chandra data used in this study are comprised of two data
sets: the ChandraPHAT data, a Chandra Large Project survey
by B. Williams et al. (2018, submitted), and one additional
Chandra field (obsid 18046, P.I. Hornschemeier), hereby
referenced as Field A, that was reduced for this paper. The
ChandraPHAT data set is comprised of seven Chandra
pointings, each with a depth of about 50 ks. The Field A data
consist of one Chandra pointing with a depth of 25 ks. The
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ChandraPHAT observations were taken in 2015 October and
the Field A observation was taken in 2016 August. The
completeness in the ChandraPHAT field starts to drop at a
luminosity of ∼3×1035 erg s−1 and reaches zero at ∼5×
1034 erg s−1. The completeness in Field A starts to drop at
∼7×1035 erg s−1 and reaches zero at ∼1×1035 erg s−1.

Field A is centered at (R.A., decl.)=(00:43:29.30,
+41:18:21.20) and was designed to overlap with NuSTAR

Field A in the observations by Wik et al. (2018, in preparation).
For a detailed description of the data reduction for Chandra
sources within the ChandraPHAT footprint, see Williams et al.
(2018, submitted). Sections 2.2.1 and 2.2.2 contain a detailed
description of the reduction of the Chandra Field A data, which
follows the methodology in Williams et al. (2018, submitted).

2.2.1. Source Detection

We generated the initial source list using the wavdetect

tool of CIAO version 4.9 and CALDB version 4.7.7 (Fruscione
et al. 2006). We produced the source image and exposure map
using the CIAO command fluximage and created the PSF
map using the CIAO tool mkpsfmap with the standard
parameters, energy=1.4967 and ecf=0.393. We then ran
wavdetect using the source image and PSF map to create a
source list. The wavelet scales were set to 1.0, 2.0, 3.0, 8.0, and
16.0 pixels.

We ran ACIS extract (AE) version 2016sept22 (Broos
et al. 2010) on the source list output from wavdetect. We
followed Section 3.2 of the AE users guide to prepare the event
files, aspect histogram file, aspect solution file, and mask file
for AE source extraction. With the input source list from
wavdetect, we extracted sources with energy limits of

0.35–8.0 keV. See Table 1 for the positions, off-axis angle, and
net counts output by AE.
We iterated AE four times in order to obtain the most precise

positions. The first AE run used the output positions from
CIAO wavdetect as the initial positions. Each subsequent
AE run used the data mean position output from the previous
run as the initial positions; this was repeated until the input and
output data mean positions converged (Figure 2).

2.2.2. Astrometric Alignment

After we obtained precise positions for the Chandra sources
with ACIS extract, we aligned the Field A observations to the
PHAT data set (Dalcanton et al. 2012). NuSTAR data were
previously aligned to the ChandraPHAT data by Wik et al.
(2018, in preparation).
We used eight bright globular clusters that were detected at

optical wavelengths by HST and at X-ray wavelengths by
Chandra for astrometric alignment. Clusters were identified by
visual inspection of the PHAT imaging. First, we measured the
centroids of the clusters using the centroid_1dg tool in the
photutils (v0.4) Python package. To find the astrometric
solution, we used the CIAO tool wcs_match that aligns
the Chandra sources in a given image to the measured
cluster positions from the PHAT images and outputs an
astrometric solution. The parameters used in wcs_match were
radius=5, residlim=0, residtype=0, and residfac=25
using the description in Vulic et al. (2016) as a guide. The
CIAO tool wcs_update was used to updated the header of
the Chandra images and update the R.A. and decl. of the
measured source positions.
Positional errors were calculated using the net counts in the

0.35–8.0 keV band and the off-axis angle using the formula in

N

E

Figure 1. Near-UV image of M31 from the Galaxy Evolution Explorer (GALEX; left; Gil de Paz et al. 2009) and three-color X-ray image of Chandra Field A (right),
see Section 2.2 for more information on Field A data reduction. Magenta regions outline the area observed by PHAT. Green outlines the NuSTAR observed region, and
cyan outlines the area observed by Chandra, with solid lines indicating ChandraPHAT observations and dashed lines indicating Field A observations. In the UV
image, the 64 sources observed by NuSTAR and Chandra that fall within the PHAT footprint are marked with white crosses, and a 5′ circle outlines the densest inner
bulge region of M31. In the X-ray image, all sources detected by wavdetect within Field A are marked with white ellipses (including sources that do not match
NuSTAR sources or are outside the PHAT footprint, and thus are not presented in our sample in Table 1).
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Table 1

All Sources Observed by NuSTAR and Chandra within the PHAT Footprint

NuSTAR Chandra Chandra Chandra Chandra Chandra Theta (′) Chandra Flux Stiele Stiele PHAT

ID Catalog Name R.A. Decl. R.A. err (″) Decl. err (″) (0.35–8.0 keV) ID Class. Cpt.

(×10−13 erg cm−2 s−1
)

19 004220.96+411520.3 10.587329 41.255773 2.0 2.0 13.0 4.2 0.4

0.4

-
+

L L n

24 004231.27+411937.5 10.630292 41.327141 2.0 2.0 10.0 1.9 0.2

0.3

-
+ 923 GlC c

26 004235.20+412005.0 10.646687 41.334782 1.0 0.9 9.5 3.4 0.3

0.3

-
+ 952 hardá ñ n

27 004240.31+411845.3 10.667979 41.312682 2.0 1.0 8.6 0.90 0.14

0.15

-
+ 972 hardá ñ p

41 004243.81+411631.0 10.682538 41.275371 0.7 0.4 8.3 13.0 0.6

0.7

-
+ 1005 XRBá ñ n

43 004244.27+411607.6 10.684498 41.268868 0.7 0.4 8.4 19.0 0.9

0.9

-
+ 1010 XRBá ñ n

44 004246.19+411543.2 10.692552 41.262086 2.0 2.0 8.2 0.76 0.21

0.25

-
+

L L n

45 004246.97+411615.3 10.695737 41.271019 0.6 0.4 7.9 13.0 0.6

0.6

-
+ 1023 AGNá ñ n

46 004247.18+411628.0 10.696608 41.274542 0.6 0.3 7.8 26.0 0.8

0.8

-
+ 1024 XRBá ñ n

47 004248.56+411520.8 10.702332 41.255889 0.6 0.3 8.0 51.0 1.0

1.0

-
+ 1036 XRBá ña n

54 004249.22+411815.5 10.70509 41.304395 0.8 0.5 6.9 1.5 0.1

0.2

-
+ 1041 hardá ñ p

55 004252.53+411854.0 10.718888 41.315082 0.5 0.2 6.3 19.0 0.5

0.5

-
+ 1060 XRBá ñ n

65 004254.93+411602.8 10.728903 41.267544 0.5 0.2 6.6 16.0 0.5

0.5

-
+ 1075 XRBá ña n

57 004255.19+411835.4 10.729964 41.309922 0.7 0.5 5.8 0.83 0.10

0.12

-
+ 1078 hardá ñ n

57 004255.60+411834.5 10.731708 41.309676 0.7 0.4 5.7 0.91 0.11

0.12

-
+ 1078 hardá ñ c

59 004259.66+411918.9 10.748579 41.322021 0.4 0.2 4.9 11.0 0.4

0.4

-
+ 1102 GlC c

68 004259.88+411605.3 10.749525 41.268225 0.5 0.2 5.8 10.0 0.4

0.4

-
+ 1103 GlC c

70 004302.94+411522.2 10.762284 41.256263 0.5 0.2 5.8 6.4 0.3

0.3

-
+ 1116 GlC c

77 004303.03+412041.6 10.762621 41.344983 0.6 0.4 4.5 0.50 0.07

0.09

-
+ 1115 hardá ñ n

70 004303.23+411527.3 10.763472 41.257677 0.5 0.2 5.7 13.0 0.4

0.4

-
+ 1116 GlC n

78 004303.29+412121.5 10.763713 41.35607 0.5 0.2 4.7 2.3 0.2

0.2

-
+ 1118 GlC c

60 004303.87+411804.5 10.766124 41.301336 0.4 0.2 4.3 6.0 0.3

0.3

-
+ 1122 GlC c

71 004304.25+411600.7 10.767706 41.266967 0.7 0.5 5.2 0.59 0.09

0.10

-
+ 1124 GlCá ñ n

79 004307.51+412019.4 10.781315 41.338806 0.5 0.3 3.6 0.58 0.08

0.09

-
+ 1137 GlCá ñ c

80 004308.62+411248.0 10.785948 41.213448 0.8 0.5 7.2 3.2 0.3

0.3

-
+ 1146 XRB p

81 004310.62+411451.0 10.794248 41.247599 0.4 0.2 5.2 23.0 0.6

0.6

-
+ 1157 GlC c

82 004311.37+411809.3 10.797389 41.302675 0.5 0.2 2.9 0.78 0.09

0.10

-
+ 1160 hardá ñ n

85 004313.88+411711.5 10.807835 41.286615 0.7 0.5 3.0 0.13 0.04

0.05

-
+

L L n

86 004316.10+411841.2 10.817115 41.311543 0.4 0.2 1.9 0.35 0.07

0.06

-
+ 1180 XRBá ñ p

88 004321.07+411750.2 10.837815 41.297389 0.4 0.1 1.7 1.1 0.1

0.1

-
+ 1203 hardá ñ p

87 004321.48+411556.5 10.839501 41.265805 0.7 0.4 3.4 0.21 0.06

0.05

-
+

L L p

89 004324.84+411726.9 10.853509 41.290917 0.4 0.2 1.8 0.47 0.07

0.08

-
+ 1216 hardá ñ n

90 004326.33+411911.4 10.859718 41.31994 0.4 0.1 0.11 0.38 0.07

0.09

-
+ 1224 AGNá ñ g

91 004332.38+411040.9 10.884951 41.178136 0.7 0.4 8.7 15.0 0.5

0.5

-
+ 1253 hardá ña n

92 004334.33+411323.1 10.893064 41.223187 0.5 0.3 6.1 5.4 0.3

0.3

-
+ 1261 hardá ñ n

93 004335.91+411433.0 10.899635 41.2426 0.8 0.6 5.1 0.41 0.07

0.09

-
+ 1262 p

94 004337.28+411443.1 10.905322 41.245424 0.4 0.2 5.0 16.0 0.4

0.4

-
+ 1267 GlC c

95 004339.06+412116.7 10.912737 41.354885 0.7 0.7 7.2 0.73 0.06

0.07

-
+

L L p

96 004345.83+411203.7 10.940976 41.201128 2.0 2.0 8.1 0.39 0.09

0.11

-
+ 1298 hardá ñ n

99 004350.76+412117.4 10.961516 41.355033 0.4 0.4 5.1 0.65 0.05

0.06

-
+ 1319 hardá ñ p

97 004353.65+411654.6 10.973526 41.282044 0.4 0.4 7.6 6.6 0.2

0.2

-
+ 1327 GlCá ñ n

98 004356.43+412202.3 10.985126 41.367503 0.4 0.4 3.8 0.45 0.05

0.05

-
+ 1340 GlC c

105 004402.72+411711.3 11.011322 41.28666 1.0 1.0 6.5 0.18 0.03

0.04

-
+

L L n

101 004404.75+412126.5 11.019799 41.35756 0.3 0.3 2.7 0.75 0.06

0.06

-
+ 1373 AGNá ñ p

102 004416.02+413057.3 11.066667 41.516147 0.4 0.4 4.3 1.7 0.1

0.1

-
+ 1420 XRB n

103 004425.73+412241.8 11.107221 41.378442 0.3 0.3 2.0 0.22 0.03

0.03

-
+ 1450 hardá ñ p

104 004429.57+412135.1 11.123203 41.359913 0.3 0.3 3.1 18.0 0.3

0.3

-
+ 1463 GlC c

105 004429.73+412257.4 11.123878 41.382771 0.5 0.5 2.6 0.09 0.02

0.02

-
+

L L n

109 004430.16+412301.1 11.125694 41.383802 0.6 0.6 2.7 0.04 0.01

0.02

-
+

L L g

105 004430.45+412310.1 11.126901 41.3863 0.4 0.4 2.8 0.21 0.03

0.03

-
+ 1468 hardá ñ n

106 004437.08+411951.1 11.154504 41.331024 0.5 0.5 5.3 0.42 0.05

0.05

-
+ 1488 hardá ñ g

100 004448.13+412247.4 11.200545 41.379973 0.7 0.7 6.1 0.27 0.04

0.04

-
+ 1525 hardá ñ p

110 004455.53+413440.3 11.231167 41.57808 0.3 0.3 2.7 0.45 0.04

0.05

-
+ 1547 AGNá ñ n

108 004457.39+412247.9 11.239115 41.380094 0.7 0.7 7.8 1.0 0.1

0.1

-
+ 1553 XRBá ñ n

111 004513.82+413806.4 11.307524 41.635323 0.8 0.8 6.1 0.24 0.04

0.04

-
+ 1598 hardá ñ g

112 004518.39+413936.0 11.326586 41.66018 0.5 0.5 4.4 0.28 0.04

0.04

-
+ 1611 hardá ñ p
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Hong et al. (2005), listed as Equation (5). Instead of using the
0 25 baseline error in that equation, we added the residuals
from astrometric alignment to PHAT, which were 0 29 in R.A.
and 0 03 in decl.

We merged the Field A catalog prepared for this paper with
the ChandraPHAT catalog from Williams et al. (2018,
submitted) for source matching with the NuSTAR source
catalog by Wik et al. (2018, in preparation) and PHAT, detailed
in Section 3.

2.3. HST Data: Panchromatic Hubble Andromeda Treasury

The HST data come from the published Panchromatic
Hubble Andromeda Treasury (PHAT) data set (Dalcanton
et al. 2012). The PHAT survey imaged roughly a third of the

disk of M31 in six HST filters ranging from near-IR to
UV wavelengths: F160W, F110W, F814W, F475W, F336W,
and F275W (central λ=1.150 μ, 1.545 μ, 8353Å, 4750Å,
3375Å, 2750Å). We use published photometry catalogs by
Williams et al. (2014) for optical counterpart analysis. PHAT
observations were taken in 2010 and 2011. The PHAT data
have a limiting F475W magnitude of ∼28 in the outer disk and
∼25 in the more crowded inner disk region.

3. Source Matching between Data Sets

We first matched NuSTAR sources to Chandra to find precise
positions. We then used the Chandra positions to identify
optical counterparts in the PHAT data.

3.1. Source Matching between NuSTAR and Chandra

We identified 60 NuSTAR sources with positions inside the
PHAT observed area that positionally match Chandra sources.
These 60 sources have 64 associated Chandra-detected X-ray
sources. We cross-matched NuSTAR and Chandra sources
within 10″ so we could use the more precise Chandra positions
to identify optical counterparts.
We chose a 10″ match radius to account for the 9″ full width

at half-maximum of the NuSTAR point-spread function (PSF)

and the ∼0 5 mean Chandra positional errors for sources in
our sample. We measured the Chandra exposure time at the
position of each detected NuSTAR source to confirm that if a
source was observed by both telescopes, there was a match.
In order to quantify the confidence level of these matches,

we investigated the false-match probability between NuSTAR
and Chandra. To do this, we adjusted the NuSTAR source
positions for the full 121-source NuSTAR M31 catalog (Wik
et al. 2018, in preparation) by 10″ in both R.A. and decl. We
performed this adjustment four times, using all permutations of
adding and subtracting 10″ from the R.A. and decl. of NuSTAR
sources. We re-matched the NuSTAR and Chandra source
positions each time to see how many Chandra sources matched
the adjusted NuSTAR source positions. We found an average of
five matches between the adjusted NuSTAR source positions
and the Chandra source positions. Out of 121 NuSTAR sources,
this equals a false-match probability of 4.1%. This means that
two to three of the NuSTAR sources in our sample could have
false matches to Chandra sources.

Table 1

(Continued)

NuSTAR Chandra Chandra Chandra Chandra Chandra Theta (′) Chandra Flux Stiele Stiele PHAT

ID Catalog Name R.A. Decl. R.A. err (″) Decl. err (″) (0.35–8.0 keV) ID Class. Cpt.

(×10−13 erg cm−2 s−1
)

113 004520.74+413932.1 11.336316 41.659109 0.6 0.6 4.3 0.14 0.03

0.03

-
+

L L g

117 004526.86+413216.8 11.361729 41.538161 0.6 0.6 5.2 0.27 0.03

0.04

-
+ 1631 AGNá ñ n

118 004527.34+413253.5 11.363743 41.548363 0.4 0.4 5.4 2.2 0.1

0.1

-
+ 1634 hardá ñ g

114 004527.89+413904.9 11.366179 41.651539 0.4 0.4 4.3 0.43 0.04

0.05

-
+ 1635 hardá ñ p

119 004528.29+412943.4 11.367681 41.495538 0.4 0.4 6.0 1.9 0.1

0.1

-
+ 1636 hardá ñ p

115 004529.35+413751.6 11.37223 41.631176 1.0 1.0 5.6 0.06 0.02

0.02

-
+

L L g

116 004530.65+413559.8 11.377557 41.600135 0.9 0.9 7.1 0.38 0.05

0.06

-
+ 1643 hardá ñ g

120 004545.57+413941.5 11.439867 41.661701 0.3 0.3 4.7 71.0 0.6

0.6

-
+ 1692 GlC c

Notes. List of all NuSTAR–Chandra sources within the PHAT footprint. Optical counterparts to X-ray sources are listed in the PHAT Cpt. column: g=galaxy,

n=no optical counterpart, c=cluster, and p=point source. See Section 3.2 for further discussion of optical counterpart determination. Stiele ID and classifications

from Stiele et al. (2011).
a
Sources have updated Stiele classifications from Stiele & Kong (2018).

Figure 2. Results of ACIS extract iteration to improve Chandra source
positions in Field A observations (see Section 2.2.1). The top panel shows the
change in source position between the input source list from wavdetect and the
output AE positions. The bottom panel shows the change between the input and
output source positions for the fourth iteration of AE. Note that most of the
sources with an off-axis angle >10′ have more than 100 counts. These belong
to the nucleus of M31, which is far off axis in the Field A observations and has
a high source density. The source with an off-axis angle of ∼17 5 in the
bottom panel is not shown in the top panel because it has a Δ position >2″
between the input position from wavdetect and the output position from AE.
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We note that while our sample covers an area ∼75% of the
NuSTAR total observed area, it only contains ∼50% of the
NuSTAR sources in the full 121-source catalog. This is because
our sample only contains sources observed with NuSTAR,
Chandra, and HST, which excludes part of the bulge of M31,
in an area with high NuSTAR source density.

Five NuSTAR sources lie within the Chandra Field A
footprint that were not detected by Chandra. Given that the
Chandra Field A and NuSTAR observations were taken a year
apart, we believe this discrepancy is due to variability.

There are three NuSTAR sources whose positions are
compatible with multiple Chandra sources. This is not
surprising as NuSTAR can blend Chandra sources together
because of its large PSF. The PSF of NuSTAR has a core with a
full width at half-maximum of 18″ and a half-power diameter
of 58″ (Harrison et al. 2013). This is quite large compared to
the Chandra PSF, which is ∼0 5 on-axis to ∼10″ at the edge
of the field (Williams et al. 2004).

NuSTAR source 105 matched to three Chandra sources, and
NuSTAR sources 70 and 57 matched to two Chandra sources.
In these instances, we kept all Chandra-detected sources in our
total list of 64 X-ray sources. When comparing NuSTAR
classifications with optical counterpart types, we only used the
optical counterpart associated with the Chandra source with the
largest number of counts in the 0.35–8.0 keV band.

To further confirm associations between the NuSTAR and
Chandra sources, we compared the flux of each match in the
4–8 keV energy range, as shown in Figure 3. We converted
from count rates into fluxes for each telescope using the NASA
High Energy Astrophysics Science Research Archive Center’s
(HEASARC) web-based Portable, Interactive Multi-Mission
Simulator (WebPIMMS) tool.12

3.2. Identifying Optical Counterparts in PHAT

We determined optical counterparts to X-ray sources using a
combination of positional matching, UV magnitude cuts, and
visual inspection. We initially determined optical counterpart

candidates by looking at both optical and UV images of the

PHAT data within the 1σ Chandra positional error circles of a

hard X-ray source. This method allowed for initial detection of

likely counterparts such as background galaxies and globular

clusters (e.g., Galleti et al. 2003). If a source had a clear point

source in the UV F336W image within the 1σ Chandra

positional errors, it was noted as a point-source counterpart

candidate and its PHAT photometry was retrieved and is listed

in Table 2.
We investigated the false-match probability for the PHAT

counterparts. The PHAT survey area is divided into 23 “bricks”

(see Dalcanton et al. (2012) for a description of brick

boundaries). We calculated the source density of O/B stars

in the PHAT survey in the bricks (9 bricks total) covered by

Chandra and NuSTAR observations. We used only stars with

good data in at least three of the HST photometric bands used

by PHAT and an F336W magnitude lower than 23. Dividing

the number of O/B stars by the total area of the 9 bricks gives a

density of O/B stars per area. We then multiply this source

density by the area of the average Chandra 1σ error circle to

determine the probability of finding an O/B star within the 1σ

error circle of an X-ray source. We find a false-match

probability of about 2%. Accounting for the 64 X-ray sources

in our combined NuSTAR–Chandra sample within the PHAT

footprint, we expect one to two false matches.
We used finding charts and CMDs to identify optical

counterparts. Figure 4 shows a representative figure for source

004335.91+411433.4, an X-ray source with a point-source

optical counterpart. The optical counterpart is marked in the

UV image (lower left) with a cyan circle and is visible as a very

bright star in the 1σ Chandra positional errors of the optical

finder (lower right). The counterpart is also plotted on two

color–magnitude diagrams (CMDs) in the top row of the figure

as a cyan star. It falls along the massive end of the main

sequence in both CMDs. Note that there are far fewer stars in

the upper left CMD because there are not as many stars in the

PHAT survey that have well-measured UV (F336W) magni-

tudes. The very populated region of the upper right CMD is the

red giant branch, which is too faint in the UV to be detected in

the PHAT data, so that this feature is not as prominent in the

UV CMD.
We looked for optical counterparts for the NuSTAR–

Chandra sources, 64 of which are within the area of M31

observed by PHAT. We determined the following optical

counterparts: 15 point sources, 13 globular clusters, and 8

background galaxies. The remaining 28 NuSTAR–Chandra

sources do not have clear optical counterparts. Optical

counterparts for all sources are listed in the last column of

Table 1.
We expect to find seven to eight background AGN in our

NuSTAR sample. Wik et al. (2018, in preparation) identified

NuSTAR sources with luminosities greater than ∼2×
1036 erg s−1, and used the published log(N)-log(S) relationship

from Harrison et al. (2016) to calculate the expected

contamination of background AGN. We scale this relation to

the area of the NuSTAR field also covered by Chandra and

HST. We identify eight background galaxies using the PHAT

imaging (listed in Table 1), which is consistent with this

prediction, suggesting that all AGN with NuSTAR detections

were visible in the optical PHAT data.

Figure 3. Comparison of NuSTAR and Chandra measured fluxes for 60 hard
X-ray sources observed by both telescopes. Sources were matched positionally
to within 10″.

12
https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3pimms/w3pimms.pl
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Table 2

PHAT Photometry for HMXB Optical Counterpart Candidates

Catalog Name Chandra Chandra PHAT PHAT F275W F336W F475W F814W F110W F160W

R.A. Decl. R.A. Decl.

004240.31+411845.3 10.667979 41.312682 10.667543 41.312546 22.03±0.04 21.31±0.01 20.940±0.003 19.799±0.003 19.263 0.003 18.512±0.003

004249.22+411815.5 10.70509 41.304395 10.705035 41.304478 L 25.2±0.2 22.119±0.006 19.314±0.002 18.552±0.002 17.586±0.002

004308.62+411248.0 10.785948 41.213448 10.785837 41.213419 23.19±0.07 22.97±0.03 23.41±0.01 23.09±0.02 23.26±0.04 22.63±0.05

004316.10+411841.2 10.817115 41.311543 10.817102 41.31151 24.1±0.1 23.15±0.04 24.43±0.02 22.15±0.01 21.43±0.01 19.906±0.007
004321.07+411750.2 10.837815 41.297389 10.837831 41.297466 24.9±0.2 24.04±0.06 24.43±0.02 24.48±0.06 25.0±0.2 L

004321.48+411556.5 10.839501 41.265805 10.839394 41.265853 23.8±0.1 23.20±0.05 23.79±0.01 23.19±0.02 22.90±0.03 21.72±0.02

004335.91+411433.0 10.899635 41.2426 10.899774 41.242598 22.62±0.05 22.80±0.03 24.04±0.01 23.53±0.02 22.97±0.04 23.29±0.09

004339.06+412116.7 10.912737 41.354885 10.912961 41.354867 23.8±0.1 23.23±0.04 23.87±0.01 23.63±0.03 23.60±0.04 23.27±0.06
004350.76+412117.4 10.961516 41.355033 10.961508 41.355045 22.78±0.06 21.16±0.01 21.694±0.004 19.843±0.002 19.129±0.002 18.252±0.002

004404.75+412126.5 11.019799 41.35756 11.019758 41.357577 23.51±0.09 22.36±0.02 22.150±0.005 19.938±0.003 18.735±0.002 17.790±0.002

004425.73+412241.8 11.107221 41.378442 11.107175 41.378477 26.1±0.6 24.9±0.1 24.65±0.02 22.62±0.01 21.880±0.009 21.45±0.01
004448.13+412247.4 11.200545 41.379973 11.200584 41.380057 23.48±0.08 23.39±0.04 24.59±0.02 22.95±0.01 21.851±0.009 20.448±0.006

004518.39+413936.0 11.326586 41.66018 11.326624 41.660177 25.6±0.4 24.8±0.1 25.28±0.03 24.70±0.04 24.10±0.05 23.27±0.05

004527.89+413904.9 11.366179 41.651539 11.36618 41.651542 24.3±0.2 22.81±0.03 23.405±0.009 20.870±0.004 19.971±0.003 18.819±0.002

004528.29+412943.4 11.367681 41.495538 11.367687 41.495535 19.76±0.01 19.202±0.005 20.231±0.002 19.014±0.002 18.526±0.001 17.754±0.001

Note. PHAT photometry for all point-source optical counterparts to NuSTAR hard X-ray sources. Sources are identified by their Chandra catalog name, which corresponds to the Chandra Catalog Name column in

Table 1. Ellipses indicate that the source was not detected in that filter.
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4. Results

4.1. NuSTAR Source Classification

Wik et al. (2018, in preparation) classified the hard X-ray
sources in this sample by comparing their X-ray colors and
luminosities to those of Galactic XRBs with known compact
object types. This method is presented in A. Zezas et al. (2018,
in preparation) and has previously been used to classify sources
in NGC 253 (Wik et al. 2014).

Black hole XRBs are known to exhibit different accretion
states that are manifested by their different broad-band X-ray
spectra (especially above 10 keV) and power-spectra (e.g.,
Done et al. 2004; Remillard & McClintock 2006). The main
differences between these spectral states are identified at
energies above 8.0 keV, i.e., energies that can be probed with
NuSTAR.

In order to develop a diagnostic tool that can be used to
characterize NuSTAR observations of extragalactic XRBs,
Zezas et al. (2018, in preparation) used the extensive library
of black hole spectra of Sobolewska et al. (2009). This library
includes includes a set of 1772 Rossi-XTE—PCA observations
of six Galactic black hole X-ray binaries. These observations
were performed during different accretion states, and in some
cases, they cover the complete evolution of a system during an
outburst. Each spectrum was modeled with a Comptonized disk
blackbody model (Sobolewska et al. 2009). The state
characterization was based on the spectral shape (see
Sobolewska et al. 2009, for more details).

Based on this model and the NuSTAR response files,
A. Zezas et al. (2018, in preparation) simulated NuSTAR
observations and calculated the expected count rates in

different bands. Extensive tests showed that hardness ratios

involving the 4.0–6.0 keV (soft), 6.0–12.0 keV (medium),

12.0–25.0 keV (hard), and 4.0–25.0 keV (full) bands give the

optimal separation of spectral states, while maximizing the

number of counts in each band. Luminosities and count rates of

Galactic XRBs were scaled to the distance of M31 for

comparison with XRBs in our sample.
We note that the highest energy of the NuSTAR data

(25 keV) is well within the range of the RXTE-PCA spectra,

ensuring high-quality input spectral models. Figure 5 shows the

locus of the different black hole accretion states on the

intensity-hardness ratio and hardness-ratio diagrams (red,

Figure 4. Color–magnitude diagrams (top) and finding charts (bottom) from
the PHAT data set for the 10″×10″ region surrounding source 004335.91
+411433.4. The top two panels show the UV and optical CMDs. The bottom
two panels show a UV image in the F336W filter and an RGB optical image
with the F160W filter as red, F814W as green, and F336W as blue. The plotted
ellipses represent the 1 and 3σ Chandra positional errors. The optical
counterpart is identified in the UV finder (lower left) with a cyan circle and on
the CMDs with a cyan star. The black points in the background represent
other stars in the PHAT photometry catalog within 5″ of the X-ray source
position.

Figure 5. Hardness-intensity diagram and hardness-ratio plots used to classify
NuSTAR sources. These plots show sources classified as HMXB candidates as
black diamonds. Circles outlined in orange are the two background galaxies
with NuSTAR classifications that were identified using HST imaging, described
further in Section 5.1. Squares outlined in magenta are globular clusters, which
occupy the non-magnetized neutron star region of both diagrams (see
Section 5.5 for a further discussion of X-ray sources in clusters). The bands
are defined as follows: soft (S=4–6 keV), medium (M=6–12 keV), and hard
(H=12–25 keV). Sources are labeled by NuSTAR ID. Background colored
sources represent modeled evolutionary tracks of Galactic X-ray binaries with
known compact object types, adjusted for the distance of M31 (see A. Zezas
et al., 2018 in preparation for information on the Galactic XRB diagnostic
regions). NuSTAR data and source classifications for M31 sources from Wik
et al. (2018, in preparation).
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green, and blue correspond to the soft, intermediate, and hard
accretion states, respectively).

In these diagrams we also include accreting Be-XRB pulsars
with available RXTE-PCA spectra (e.g., Reig 2011) following
the same procedure as for the black hole X-ray binaries. Their
intrinsically hard X-ray spectra clearly separate them even from
the locus of the hard-state black hole X-ray binaries (A. Zezas
et al. 2018, in preparation). Finally, we include spectra of
Z-track neutron star Low-mass X-ray binaries (LMXBs).

Determining background AGN contamination is difficult
as their hard X-ray colors and luminosities can be similar to
those of compact objects in the disk of M31 (see e.g., Tozzi
et al. 2006). While most background galaxies do not have
NuSTAR classifications because they do not have enough
counts in the hard (12–25 keV) band, they can occupy similar
regions of the hardness ratio and hardness-intensity diagrams as
compact objects in M31. Two sources that were determined to
be background galaxies using PHAT imaging are plotted as
black circles outlined in orange in Figure 5. This highlights the
importance of incorporating data at optical wavelengths to
remove these sources from our hard X-ray sample.

4.2. SED Fitting of Stellar Optical Counterparts

We obtained SED fits of 15 point-source optical counterparts
using the code BEAST (Gordon et al. 2016). The BEAST code
fits the observed SED of an individual star in M31 with
theoretical SEDs from the Padova stellar evolution models
(Marigo et al. 2008) using a Bayesian statistical approach. The
code assumes single-star evolution and that sources are in M31.
Photometric bias and uncertainty are applied from artificial star
tests performed on the data. The input for the BEAST code is
the six-band photometry and artificial star tests of the star
measured by the PHAT survey. The code uses upper limits as
constraints. Output parameters include several primary and
derived quantities. Primary fit outputs include initial stellar
mass, A(V ) (dust extinction), and stellar metallicity. Derived

quantities include luminosity, effective temperature, and stellar
surface gravity. Output physical parameters for the 15 point-
source optical counterpart candidates in our sample are listed in
Table 3.
As part of the fitting, χ2 values are computed assuming

multi-variate Gaussian uncertainties, either uncorrelated or
correlated. The probability of a given model is proportional to
χ2, letting us use the χ2 value as a relative assessment of the
“goodness of fit.”
In most HMXBs, the donor star is much brighter than the

accretion disk at optical wavelengths, so the fits with low χ2

values should be robust. The BEAST code is designed to fit
individual stars, and so it will return a poor fit if a point source
is not an individual star. Examples of systems that might return
a poor fit include parts of a multiple star system, background
AGN, companions in XRBs that have been irradiated by their
associated X-ray source (Phillips & Podsiadlowski 2002), stars
contaminated with light from the compact object’s accretion
disk, chance superpositions of sources, or Be star donors with a
red excess from the accretion disk relative to the underlying B-
star spectrum.
Table 3 shows a clear division in χ2 values: χ212 or

χ250. Examples of these two categories are shown in
Figure 6. The lower χ2

fit appears similar to a stellar SED
model, while the high χ2 appears to have a flat SED. Based on
the clear division in fit quality as well as SED appearance, we
decided that fits with χ212 likely have SEDs consistent with
stars in M31, while fits with higher χ2 values do not. Thus, we
did not determine a spectral type for sources with χ2 values
above ∼12.
Table 3 lists the probable spectral type given the best-fit

physical parameters. We determine masses, temperatures, and
luminosities for 7 of the 15 point sources that are consistent
with a B-type star, and therefore very strong HMXB
candidates. B-type stellar classification was determined for
4MeM17Me and 4.0 Klog(Teff)4.5 K (e.g., Silaj
et al. 2010). Figure 6 shows the SED fit for the optical

Table 3

Output Best-fit Parameters for Stellar Optical Counterparts from the BEAST SED Fitting Code

Catalog Name log(L) log(g) log(T) AV Mass χ2 Best-fit Spectral Type

(Le) (cm s−2
) (K) (Me)

004240.31+411845.6 4.5 0.1

0.1

-
+

2.2 0.1

0.1

-
+

4.03 0.02

0.02

-
+

2.0 0.1

0.1

-
+

13 1

1

-
+ 49 2c too high to trust fit

004249.22+411815.8 3.8 0.1

0.1

-
+

0.7 0.3

0.2

-
+

3.61 0.03

0.02

-
+

0.7 0.4

0.3

-
+

5 3

2

-
+ 11 possible He burning star

004308.63+411248.4 3.1 0.3

0.5

-
+

3.6 0.1

0.2

-
+

4.2 0.1

0.1

-
+

0.7 0.3

0.5

-
+

5 1

2

-
+ 1 B

004316.11+411841.5 5.7 1.1

0.3

-
+

3.8 0.8

0.3

-
+

4.6 0.4

0.1

-
+

4.3 0.3

0.2

-
+

45 35

34

-
+ 50 high 2c , flat SED

004321.08+411750.6 3.0 0.4

0.5

-
+

4.1 0.3

0.2

-
+

4.2 0.1

0.1

-
+

1.2 0.5

0.4

-
+

5 1

2

-
+ 6 B

004321.48+411556.9 3.6 0.4

0.5

-
+

4.1 0.2

0.3

-
+

4.4 0.1

0.1

-
+

1.2 0.2

0.2

-
+

7 3

4

-
+ 1 B

004335.91+411433.4 4.0 0.6

0.3

-
+

4.2 0.3

0.2

-
+

4.5 0.1

0.1

-
+

1.7 0.2

0.2

-
+

10 4

3

-
+ 5 B

004339.06+412117.6 3.4 0.4

0.4

-
+

4.1 0.2

0.2

-
+

4.3 0.1

0.1

-
+

1.0 0.2

0.2

-
+

6 2

3

-
+ 5 B

004350.76+412118.1 6.5 0.1

0.1

-
+

3.8 0.1

0.1

-
+

4.72 0.02

0.02

-
+

3.2 0.1

0.1

-
+

106 7

8

-
+ 1756 2c too high to trust fit

004404.75+412127.2 5.2 0.1

0.1

-
+

1.9 0.1

0.1

-
+

4.06 0.02

0.02

-
+

4.4 0.1

0.1

-
+

19 2

2

-
+ 459 2c too high to trust fit

004425.73+412242.4 4.6 0.7

0.6

-
+

3.4 0.3

0.5

-
+

4.4 0.2

0.2

-
+

3.8 0.2

0.2

-
+

14 8

11

-
+ 8 B

004448.13+412247.9 5.7 0.1

0.1

-
+

3.9 0.1

0.1

-
+

4.63 0.02

0.02

-
+

4.6 0.1

0.1

-
+

49 3

4

-
+ 940 high 2c , flat SED

004518.38+413936.6 2.8 0.4

0.5

-
+

4.1 0.2

0.2

-
+

4.2 0.1

0.1

-
+

1.4 0.6

0.6

-
+

4 1

2

-
+ 10 B

004527.88+413905.5 6.5 0.1

0.1

-
+

3.8 0.1

0.1

-
+

4.70 0.04

0.03

-
+

5.2 0.1

0.1

-
+

158 25

39

-
+ 667 2c too high to trust fit

004528.24+412943. 5.4 0.1

0.1

-
+

2.5 0.1

0.1

-
+

4.28 0.02

0.02

-
+

2.8 0.1

0.1

-
+

26 2

2

-
+ 3409 2c too high to trust fit

Note. Output best-fit parameters for stellar optical counterparts using the BEAST SED fitting code for all point sources listed in Table 2. Median values ±33% are

listed. After the posterior distribution is complete, the BEAST code calculates the 2c value for the most likely model, listed here. Fits are considered robust for

122c < . The Probable Spectral Type column lists the most likely spectral type of each source, based on its best-fit physical properties. See Section 4.2 for a more

detailed description of BEAST SED fitting.
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counterpart to 004321.48+411556.9, an example of a good fit
for a B-type star.

One optical counterpart (004249.22+411815.8) is classified
as a possible red helium-burning star given its high luminosity,
low temperature, and low surface gravity. The hard X-ray
source associated with this optical counterpart does not have a
NuSTAR classification.

We do not rule sources out as HMXB candidates due to fits
because a poor fit may be returned for stars that have been
irradiated by their associated X-ray source or contaminated
with light from their compact object’s accretion disk, as
discussed previously in this section. However, sources with
good fits to stars in M31 may be stronger than those that do not.

We find two point sources that have relatively flat SEDs,
noted in Table 3. Figure 6 illustrates the BEAST fit for the
optical counterpart of one of these sources, 004448.13
+412247.9. The BEAST attempts to fit the point source as a
hot star with a high A(V ) (e.g., 4.6 mag of extinction, as shown
in Figure 6, compared to the 1.2 mag of dust extinction shown
for a star that has a robust fit to a B-type star) and still returns a
poor fit. The other source that has an optical counterpart with a
flat SED is 004316.11+411841.5. Such a flat SED may be
indicative of a background AGN.

4.3. SFHs of HMXB Candidates

We used the spatially resolved recent SFH of M31 by Lewis
et al. (2015) to determine likely ages of HMXB candidates in
our sample. Lewis et al. (2015) inferred these SFHs using
CMDs of 100 pc by 100 pc regions in the M31 disk.

We assume that HMXBs contain secondary stars more massive
than 7Me, which have lifetimes of 10Myr. Thus we conserva-
tively restrict our age distribution analysis to < 60Myr. The time
resolution of the SFHs is log(time)=0.1 year. SFHs are not
available for regions too close to the bulge of M31 (in PHAT
bricks 1 and 3) because crowding does not allow for accurate
CMD fitting, and so not all HMXB candidates are included in our
analysis. For that reason, 8 of the 15 HMXB candidates are
used in the SFH analysis: 004335.91+411433.4, 004350.76
+412118.1, 004404.75+412127.2, 004404.75+ 412127.2,

004425.73+412242.4, 004448.13+412247.9, 004518.38+
413936.6, 004527.88+413905.5, and 004528.24+412943.9.
For each HMXB region containing an HMXB candidate, we

calculated the total stellar mass formed in the past 60Myr. For
each time bin younger than 60Myr, we calculated the fraction
of the mass formed in that bin. This fraction gives the
normalized probability that the given HMXB candidate formed
in that time bin. We take the uncertainties in the SFH into
account by sampling the SFH 1000 times and recalculating the
age distribution. We take the 16th and 84th percentile in each
time bin to determine uncertainties. The number of HMXB

Figure 6. BEAST SED fits for the optical counterparts of two HMXB candidates, 004321.48+411556.9 (left) and 004448.13+412247.9 (right). The counterpart in
the left panel has a robust fit and is most likely a B-type star. The counterpart in the right panel returns a poor fit. Black points show measured photometry for the
optical counterparts from the PHAT data set, listed in Table 2. The colored lines show the median fit ±33% errors of the three different models. Yellow shows the
stellar-only model, red shows a stellar+dust model, and blue shows a stellar+dust+bias model. The observational bias is determined using artificial star tests.

Figure 7. Histogram showing the number of HMXB candidates associated with
each time bin based on their spatially resolved star formation histories from
Lewis et al. (2015). The time bins are defined by the age resolution of the
SFHs. The black line represents the average of 100 random samples of regions
in M31 not associated with HMXB candidates, providing a reference for the
overall SFH of M31.
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candidates expected to form in each time bin is shown in
Figure 7 in teal.

We then compare the probability distribution for regions with
HMXB candidates to the rest of the M31 disk. We do this by
randomly selecting 8 regions from a sample of ∼49 regions
containing known background galaxies identified by Williams
et al. (2018, submitted) in the PHAT bricks observed by
Chandra and NuSTAR and immediately adjacent. We use the
SFH for regions around background galaxies because these
should be randomly distributed throughout the disk and not
correlated with the HMXB population. We perform this random
selection 100 times and plot the average expected number of
candidates in each time bin in black in Figure 7.

Using the subsample of eight HMXB candidates with SFHs,
we were able to determine that about three HMXBs in our
sample have an age of ∼25–50Myr, 2 are ∼10Myr old, and 1
is ∼4Myr old. Two of the HMXB candidates analyzed,
004350.76+412118.1 and 004404.75+412127.2, are found in
regions without significant star formation in the last 60Myr,
making them weaker HMXB candidates.

The ages of candidates between 25 and 50Myr are fairly
consistent with random draws from the disk of M31. This
indicates that the regions with these HMXB candidates do not
appear to be a different age than the average population. The
peak in star formation in regions surrounding HMXB
candidates in the 10–12Myr and 4Myr time bins are more
significant deviations from the overall SFH of M31, as
demonstrated in Figure 7. These may be probing the prompt
HMXB formation channel in M31.

5. Discussion

Our measurements allow many detailed comparisons of the
X-ray sources in this region of M31. First, we can compare the
optical and X-ray characteristics of the sources with counter-
parts. Next, we can compare those characteristics with the age
distribution of the surrounding stellar populations as an
additional consistency check, and finally we can consider the
sources in globular clusters to look for X-ray characteristics
unique to that specific subclass. We discuss all of these
comparisons below.

5.1. Comparing NuSTAR and HST Source Classification

In Figure 8 we compare the classification of the compact
object determined by NuSTAR colors with the type of the
associated optical counterpart. Sources that fall within the
“none” NuSTAR classification did not have enough counts in all
three X-ray bands to be accurately classified. Sources with the
“none” optical counterpart classification did not have a clear
optical counterpart in PHAT imaging.

Nine NuSTAR classified non-magnetized neutron stars in our
sample are found within globular clusters, and we find no
pulsars or hard-state black holes in globular clusters. Roughly
equal numbers of pulsars, non-magnetized neutron stars, and
hard-state black holes have point sources as optical counter-
parts. We also find that four pulsars in our sample are HMXB
candidates with point-source optical counterparts, while four
have no optical counterpart. Pulsars without optical counter-
parts could be part of a low- or intermediate-mass X-ray binary
system. This suggests that the pulsars in our sample are not
preferentially in HMXB systems. When we compare the
NuSTAR source classifications with the results of the BEAST

SED fitting (summarized in Table 4), we note that none of the
HMXB candidates with classified hard-state black holes have
good SED fits to B-type stars.
It is important to note NuSTAR sources 57 and 70, which are

each blends of two Chandra sources (see Section 3.1). In both
cases, one Chandra source has a globular cluster optical
counterpart and the other has no optical counterpart. Source 70
is classified as a non-magnetized neutron star, suggesting that
the Chandra source associated with a globular cluster may
dominate the light detected by NuSTAR. Source 57 is classified
as an intermediate-state black hole, for which it would be
unusual if it were associated with a globular cluster. We

Figure 8. Comparing the NuSTAR X-ray classification and optical counterpart
of sources observed with NuSTAR, Chandra, and PHAT. NuSTAR classifica-
tions are defined as follows: NS=non-magnetized neutron star, PUL=pul-
sar, HBH=hard-state black hole, and IBH=intermediate-state black hole.
For a further discussion of the NuSTAR classified intermediate-state black hole
associated with a cluster, see Section 5.5.

Table 4

HMXB Candidate Classification Data

Catalog

Good

BEAST SFH Indicates

NuSTAR

Classified

Name Fit Young SF HBH/Pulsar/NS

004240.31+411845.6 L ✓ (hbh)

004249.22+411815.8 ✓ L

004308.63+411248.4 ✓ L ✓ (pul)

004316.11+411841.5 L ✓ (hbh)

004321.08+411750.6 ✓ L ✓ (ns)

004321.48+411556.9 ✓ L

004335.91+411433.4 ✓ ✓

004339.06+412117.6 ✓ L ✓ (pul)

004350.76+412118.1 ✓ (ns)

004404.75+412127.2 ✓ (hbh)

004425.73+412242.4 ✓ ✓ ✓ (pul)

004448.13+412247.9 ✓ ✓ (ns)

004518.38+413936.6 ✓ ✓

004527.88+413905.5 ✓ ✓ (pul)

004528.24+412943.9 ✓ ✓ (hbh)

Note. Table evaluating likelihood of HMXB candidates based on BEAST fits,

SFH, and NuSTAR classification of compact objects. Check marks are given

when a source is likely to be an HMXB using the given criteria: the source has

a good BEAST SED fit to a stellar companion, the source is in a region with

young (within the last 60 Myr) star formation, or the NuSTAR classification of

the compact object is a pulsar, non-magenetized neutron star, or a pulsar.

Ellipses in the SFH column indicate that no star formation history is available

for the region around the source because of crowding near the bulge of M31.
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compared the 4–8 keV Chandra flux of the two Chandra
sources that matched NuSTAR source 70 and 57. The energy
fluxes were consistent within errors, so we could not determine
which source dominated the flux observed by NuSTAR. The
NuSTAR source classification may be affected by the blend of
the two Chandra sources, and thus additional investigation is
needed to confirm if the source classification is a result of the
blend.

We compare PHAT imaging with NuSTAR classifications to
remove background AGN contamination from our sample. We
find two cases where sources classified as compact objects in
the disk of M31 were determined to be background galaxies
using PHAT imaging. See Figure 9 for PHAT images used to
identify these background galaxies. The apparent misclassifica-
tion of these two sources does not affect the conclusions of this
paper, but illustrates the power and necessity of combining
NuSTAR observations with HST data to eliminate background
AGN contamination. These two sources are 004527.30
+413254.1 (NuSTAR source 118, discussed in more detail in
Section 5.5), which is classified as a hard-state black hole, and
004530.61+413600.4 (NuSTAR source 116), which is classi-
fied as a non-magnetized neutron star. Both sources have
resolved background galaxies as optical counterparts in the
PHAT imaging.

5.2. Evaluation of HMXB Candidates

Table 4 summarizes our investigation of HMXB candidates,
identified by selecting for hard X-ray sources spatially
coincident with UV-bright point-source optical counterparts.
We evaluate whether a source is a likely HMXB using three
methods: (1) SED fitting with the BEAST code to determine if
a massive, young star appears to be the donor, (2) age
estimation using spatially resolved SFHs, and (3) compact
object classification using NuSTAR hard X-ray colors and
luminosities.

We consider any hard X-ray source with a UV-bright point-
source optical counterpart an HMXB candidate, even if it does
not satisfy all three criteria. For example, the optical counter-
part could have a poor SED fit because of irradiation from the
compact object or mass transfer, as discussed in Section 4.2.
Additionally, not having a NuSTAR compact object classifica-
tion does not rule out an HMXB candidate. Sources must have
enough flux in all three NuSTAR bands to be classified, so a
source could remain unclassified if it is too faint or there is too
much absorption to be detected in all bands. We comment that
having a NuSTAR compact object classification or good optical
companion SED fit makes an HMXB a stronger candidate
because we have more information about the system.

We find that HMXB candidate 004425.73+412242.4
satisfies all three criteria. It has a good SED fit indicating a
B-type donor star and the SFH in the region around this source
shows star formation bursts within the last 60Myr. The
NuSTAR colors and luminosities of this source indicate that it is
likely a pulsar.

Three HMXB candidates in our sample, 004308.63
+411248.4, 004321.08+411750.6, and 004339.06+412117.6,
have optical counterparts that have good SED fits to B-type stars
and have a NuSTAR classification of pulsar or non-magnetized
neutron star. However, because they are located close to the
bulge of M31, spatially resolved SFHs are not available for the
region surrounding these candidates.

Four HMXB candidates in our sample, 004448.13+412247.9,

004518.38+413936.6, 004527.88+413905.5, and 004528.24

+412943.9, satisfy two of the three criteria listed in Table 4. All

of these sources are found in regions with recent star formation,

but are either lacking a good SED fit to a B-type star or do not

have a compact object classification from NuSTAR.
Four HMXB candidates in our sample have either a good

SED fit for a B-type donor star (004249.22+411815.8 and

Figure 9. Images showing background galaxies associated with NuSTAR

source 118 (left) and 116 (right). These color images were created with HST

imaging from the PHAT survey and use the F160W filter as red, F814W as
green, and F336W as blue. Images are 10″ on a side. White circles indicate the
1 and 3σ Chandra positional errors. The 1σ error is not visible on the image on
the left as it lies on top of the bright galaxy. The galaxy on the left is bright,
extended, and elliptical in shape. The galaxy on the right is much fainter. It is
visible as a faint, red, extended source within the 1σ error error circle, indicated
with an arrow. For more discussion of background galaxies, see Section 5.1.
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004321.48+411556.9) or NuSTAR classified compact object
(004240.31+411845.6 and 004316.11+411841.5). No SFHs
are available for these sources because of their proximity to the
bulge of M31.

Two HMXB candidates in our sample lack good SED fits to
B-type companion stars and are found in regions with no
significant star formation in the last 60Myr. These sources are
indicated as HMXB candidates because they have UV-bright
point sources associated with a NuSTAR-detected hard X-ray
source. Source 004350.76+412118.1 is classified as a non-
magnetized neutron star and source 004404.75+412127.2 is
classified as a hard-state black hole. The lack of star formation
and poor SED fits could indicate that these sources are
background AGN. Thus, further multiwavelength observations
are needed.

5.3. Comparison with Other Hard X-Ray Observations of M31

Three sources in our sample were investigated in detail by
Stiele & Kong (2018) in a NuSTAR survey of the central region
of M31. This study was designed to overlap with a previous
XMM-Newton survey of M31 (Stiele et al. 2011). Stiele &
Kong (2018) use hardness ratios to classify four X-ray sources
previously classified only as “hard” using XMM-Newton data as
X-ray binaries. Two of these new XRB candidates are in our
sample: NuSTAR sources 47 and 65. We classify these sources
as non-magnetized neutron stars and find no optical counter-
part, suggesting that they could be LMXBs because these types
of stars would be too faint to be observed in the PHAT survey.
Additionally, Stiele & Kong (2018) discuss several sources that
are too hard to be located in the XRB area of their hardness-
ratio diagrams. One of these sources is in our sample (NuSTAR
source 91) and is classified as a pulsar with no optical
counterpart.

5.4. Ages of Stellar Populations Hosting HMXBs

The ages (20–50Myr) of the regions surrounding most
HMXB candidates in this study are consistent with the results
seen in the Small Magellanic Cloud (SMC; Antoniou et al.
2010). In the SMC, Be/X-ray binaries are the most numerous
subclass of HMXBs, and they are found in regions with star
bursts that occurred between 25 and 60Myr ago. In the LMC,
X-ray binaries were found associated with younger regions,
between 6 and 25Myr old (Antoniou & Zezas 2016). The
statistically significant increase in the number of HMXB
candidates we found in M31 in regions with a star formation
burst 10Myr ago (Figure 7) aligns with the young ages found
in the LMC.

We examined the three sources in regions with a strong peak
in star formation rate in the 10Myr bin, since this is a 1.5σ
deviation from the background population (as shown in
Figure 7). The stellar population surrounding one source in
particular, 004425.73+4122241.8, experienced almost all of its
star formation in the 10Myr time bin. This HMXB candidate
has been classified as a pulsar with a B-type stellar companion,
determined by its NuSTAR colors and BEAST SED fit. Two
other sources are also located in regions with SFR peaks in this
time bin: 004518.38+413936.6 and 004448.13+412247.9.
Source 004518.38+413936.6 has an optical counterpart that
is classified as a B-type star with no NuSTAR classification for
the compact object. Source 004448.13+412247.9 is classified
as a neutron star by NuSTAR, but the BEAST SED fit quality is

too low to determine the spectral type of the companion, but it
is probably not a single star in M31.
Source 004518.38+413936.6 (with a B-type stellar optical

counterpart) is located in a region that also experienced
significant star formation in the 4Myr time bin. Note that
connecting HMXB populations to stellar ages is important to
constrain formation models of compact objects. Rappaport
et al. (2005) and Justham & Schawinski (2012) predict that a
time delay of 10Myr (assuming instantaneous burst of star
formation) or 200Myr (continuous star formation) may be
expected between the onset of star formation and the
production of X-rays, depending on SFH. XRB pulsars have
been found with similar ages in the Magellanic Clouds. Li et al.
(2016) found an X-ray pulsar with an O-type counterpart star in
the SMC, suggesting that the system is ∼5–6Myr old, and
Belczynski et al. (2008) find that XRB pulsars can form at ages
as young as ∼5Myr. HMXBs associated with very young
stellar ages (10Myr or younger) but with B-star secondaries
can place a particularly important constraint on initial mass
ratios of HMXBs, as such an object must have had a much
more massive companion with a lifetime short enough to have
become the accreting compact object.

5.5. X-Ray Sources in Clusters

Maccarone et al. (2016) investigated hard X-ray sources in
globular clusters using combined Swift-NuSTAR spectroscopy.
Our sample of 64 X-ray sources observed by NuSTAR,
Chandra, and HST includes four of the five sources in that
study. These sources are not HMXB candidates as they were
found to be spatially coincident with globular clusters, not
point sources. We find that three of these sources (NuSTAR
sources 65, 104, and 120 in our sample) are classified as
neutron stars and one (NuSTAR source 118) is classified as a
hard-state black hole.
We determine the hard-state black hole has a background

galaxy optical counterpart rather than a globular cluster, using
its PHAT imaging. We also cross-reference the globular cluster
and background galaxy catalogs published by the PHAT survey
and find that this source is classified as a galaxy based on its
morphology (Johnson et al. 2015).
This source was investigated in detail by Dorn-Wallenstein

et al. (2017), who found that it has a spectroscopic redshift,
which agrees with our classification as a background galaxy.
This source highlights the importance of incorporating data at
optical wavelengths to remove background AGN contamination.
We identify one source (NuSTAR source 57) classified as an

intermediate-state black hole that may be associated with a
globular cluster. Some caution is warranted in interpreting this
source because it is associated with two separate Chandra
sources, 004255.61+411834.8 and 004255.19+411835.7, and
hence the NuSTAR spectrum is probably a superposition of two
different source spectra. The former of the two Chandra
sources has a globular cluster optical counterpart, while we do
not see evidence for a globular cluster associated with the latter
source.
The potential connection between the globular cluster and a

black hole is intriguing. For quite some time, it was thought
that the Spitzer (1969) instability would lead to mass
segregation that would, in turn, expel most or all stellar mass
black holes from globular clusters from globular clusters
(Kulkarni et al. 1993; Sigurdsson & Hernquist 1993). The
discoveries of strong candidate globular cluster black holes in
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external galaxies (e.g., Maccarone et al. 2007) and in the Milky
Way (e.g., Strader et al. 2012; Chomiuk et al. 2013; Giesers
et al. 2018) has helped motivate and support theoretical work
that has shown that globular cluster may retain black holes
(e.g., Mackey et al. 2008; Sippel & Hurley 2013; Morscher
et al. 2015).

The globular cluster G1 is of special interest as it has been
suggested to contain an intermediate-mass black hole (IMBH)

on the basis of stellar dynamical evidence (Gebhardt
et al. 2002; Baumgardt et al. 2003, for an alternative view).
Its X-ray source is consistent with accretion from the putative
IMBH (Pooley & Rappaport 2006). It appeared as a detectable
radio source in VLA data (Ulvestad et al. 2007), but sensitive
radio data later found only deep upper limits (Miller-Jones
et al. 2012), again providing an ambiguous determination of
whether the cluster contains an IMBH. The IMBH classifica-
tion is highly uncertain, as the X-ray observations are also
consistent with emission from an LMXB (Kong et al. 2010;
Miller-Jones et al. 2012). Potentially, deep NuSTAR imaging
could provide some additional clues about this interesting
globular cluster source as well.

Still, the total number of strong candidate black holes in
globular clusters remains relatively small, especially at
distances where the structural parameters of the clusters are
measurable, which means that NuSTAR source 57 in our sample
merits follow-up work to further test the black hole hypothesis.

6. Conclusions

In this work we present 15 HMXB candidates: hard X-ray
sources observed by NuSTAR and Chandra that are spatially
associated with UV-bright point sources from the PHAT
catalog.

We investigated the correlation between the NuSTAR
determined compact object type and the optical counterpart
determined with PHAT imaging. We find nine NuSTAR
classified non-magnetized neutron stars associated with star
clusters, making this the strongest correlation in our sample,
and this also agrees with the findings in Maccarone et al.
(2016).

We did not find any pulsars or hard-state black holes
associated with star clusters. There did not appear to be a
preference for non-magnetized neutron stars, pulsars, or hard-
state black holes associated with UV-bright point-source
optical counterparts. None of the HMXB candidates in our
sample with hard-state black hole compact objects have a
companion star with a good SED fit to a B-type star.

We also find an equal number of pulsars in HMXB and
LMXB systems. For the pulsars, this may point toward an
interesting result, but our source statistics are too small to tell;
further observations are needed. However, either the pulsars are
not HMXBs and might have intermediate donor masses such as
those found in other M31 pulsar systems (e.g., Esposito et al.
2016; Yukita et al. 2017), or perhaps their pulsar identifications
are not as secure.

We determined likely ages for HMXB candidates using
published SFHs. We find that three HMXBs in our sample are
associated with stellar populations between 25 and 50Myr old,
and two to three HMXB candidates are associated with
younger stellar populations: one to two are ∼10Myr old, and
one is ∼4Myr old. These ages agree with findings in the
Magellanic Clouds, M33, NGC 300, and NGC 2403. The ages

we find in M31 and those found in other galaxies suggest two
potential formation channels for HMXBs.
Beyond our results from investigating individual X-ray

sources, this study demonstrates the ability to study both the
compact object and companion star in an XRB from the hard
X-rays to the near-IR using NuSTAR, Chandra, and HST. We
were able to use classifications by Wik et al. (2018, in
preparation) of hard X-ray sources as neutron stars or black
holes based on their X-ray colors and luminosities. Matching
the NuSTAR sources to Chandra allowed us to determine the
positions of these X-ray sources with increased accuracy, and
thus find and classify their optical counterparts using the PHAT
data set. This study is an exciting foray into the combination of
hard X-ray and deep optical observations in nearby galaxies.
Given the maturity of the PHAT data set, we are able to harness
the data products created by the many scientists on the PHAT
team to determine ages and spectral types.
We look forward to continuing this work in other local

galaxies as more deep HST and NuSTAR observations are
made. We also plan to compare these observational XRB
population data to the predictions of theoretical population
synthesis codes (e.g., Sørensen et al. 2017) to place constraints
on models of the formation and evolution of these systems.
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Observatory Center, which is operated by the Smithsonian
Astrophysical Observatory for and on behalf of the National
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