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Abstract. This paper is devoted to the first initial boundary value problems of a

class of forward-backward convection-diffusion equations. The existence theorem and

the continuous dependence theorem of Young measure solutions are established.

1. Introduction. In this paper we consider the following first initial boundary value

problem

∂u

∂t
= div�Φ(∇u) + div �A(x, t, u) +B(x, t, u), (x, t) ∈ QT = Ω× (0, T ), (1.1)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where Ω is a bounded domain in R
n with appropriately smooth boundary ∂Ω, T > 0,

�Φ = ∇Ψ with some potential Ψ ∈ C1(Rn), and Ψ and �Φ satisfy

max{λ|ξ|2 − 1, 0} ≤ Ψ(ξ) ≤ Λ|ξ|2 + 1, |�Φ(ξ)| ≤ Λ|ξ|, ξ ∈ R
n (0 < λ ≤ Λ). (1.4)

It is noted that Ψ is not assumed to be convex, in which case the monotonicity

condition

(�Φ(ξ)− �Φ(ζ)) · (ξ − ζ) ≥ 0
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is violated for some ξ, ζ ∈ R
n. Therefore, (1.1) is a degenerate, forward-backward

convection-diffusion equation and admits no classical solutions in general. The non-

convexity of the potential is compatible with the usual requirement

�Φ(ξ) · ξ ≥ 0, ξ ∈ R
n,

which was imposed on the theory of thermal conductors by the Clausius-Duhem inequal-

ity ([4]). Further, (1.1) can be strongly degenerate to a first-order hyperbolic equation

since �Φ may vanish in a bounded domain. Equations like (1.1) arise in modeling the phe-

nomena in melting or freezing when superheating or supercooling occurs and in modeling

phase transitions when unstable and metastable states are allowed ([7, 21]).

In the one-dimensional case, if there are no convection or source terms, then (1.1) is

simplified into

∂u

∂t
=

∂

∂x
Φ
(∂u
∂x

)
, (x, t) ∈ (0, 1)× (0, T ). (1.5)

The original motivation for studying (1.5) comes from the Clausius-Duhem inequality.

For the second initial boundary value problem of (1.5), in the pioneering works of Höllig

and Nohel [11] and Höllig [10], infinitely many weak solutions were constructed under the

main constitutive assumption that Φ is piecewise affine, which was relaxed in a recent

work of Zhang [24]. However, Lair [15] proved that there exists at most one smooth

solution. The asymptotic behavior of measure-valued solutions of the first or second

initial boundary value problem of (1.5) was studied in Slemrod [17].

Young measure representation was applied to forward-backward diffusion equations in

[14], where Kinderlehrer and Pedregal studied (1.1) with �A = �0 and B = 0, i.e.

∂u

∂t
= div�Φ(∇u), (x, t) ∈ QT . (1.6)

Useful discussions of Young measures were given by Young [23], Tartar [18,19], DiPerna

[6], Ball [1] and Evans [9]. In [14], a Young measure solution u ∈ L∞((0, T );H1
0 (Ω)) with

∂u

∂t
∈ L2(QT ) to the problem (1.6), (1.2) and (1.3) is defined as follows:

∂u

∂t
(x, t) = div

∫
Rn

�Φ(ξ)dνx,t(ξ), in H−1(QT ),

∇u(x, t) =

∫
Rn

ξdνx,t(ξ), a.e. (x, t) ∈ QT

and (1.3) holds in the sense of trace, where (νx,t)(x,t)∈QT
is a W 1,2(QT )–gradient Young

measure in R
n. Kinderlehrer and Pedregal [14] proved the existence of Young measure

solutions to the problem (1.6), (1.2) and (1.3) using Rothe’s method and variational

method with the relaxation theorem. However, there is no uniqueness theorem in this

paper. Demoulini [5] deeply investigated the properties of Young measure solutions ob-

tained in [14] and found that the uniqueness of the Young measure solution is contingent

upon the following independence property:∫
Rn

�Φ(ξ) · ξdνx,t(ξ) =
∫
Rn

�Φ(ξ)dνx,t(ξ) ·
∫
Rn

ξdνx,t(ξ), a.e. (x, t) ∈ QT ,
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namely the heat flux �Φ and the gradient ∇u of the solution being independent with

respect to the Young measure ν. The asymptotic behavior of Young measure solutions

was also studied in [5]. Subsequently, Yin and Wang [22] considered the problem (1.6),

(1.2) and (1.3) when �Φ is of sublinear growth and when �Φ is bounded. Particularly, in

the case when �Φ is bounded, the equation (1.6) is singular and Young measure solutions

should be considered in L∞((0, T );BV (Ω)). Moreover, if �Φ is taken as

�Φ(ξ) =
ξ

1 + |ξ|2 , ξ ∈ R
n,

(1.6) is just the nonlinear scale-space model in signal processing (one-dimensional case)

or image processing (two-dimensional case) proposed by Perona and Malik [16] (see also

[2, 8, 12, 25]).

In this paper, we investigate Young measure solutions of the problem (1.1)–(1.3). A

motivation arises from image processing. Just like the Perona-Malik model, forward-

backward equations can be regarded as a model with the effect of both edge detection

and noise removal. It should be noticed that diffusion, either forward or backward, can

always destroy the correct position of the edge of an image. However, it is possible

to construct an appropriate convection-diffusion model to avoid the appearance of this

unexpected phenomenon ([20]).

The structure condition (1.4) shows that (1.1) not only is of forward-backward convec-

tion-diffusion type, but also can be strongly degenerate to a first-order hyperbolic equa-

tion. Therefore, the convection term can bring some essential differences and difficulties,

and we must seek a way to estimate the convection term. In the present paper, we define

Young measure solutions of the problem (1.1)–(1.3) and establish its existence and con-

tinuous dependence theorems in a similar way as [5,14]. The existence theorem is proved

by using Rothe’s method and variational method with the relaxation theorem. As to

the continuous dependence theorem, its basis is on an independence property which is

satisfied by the Young measure solution constructed in the existence theorem.

The paper is organized as follows. Some preliminaries on Young measure are recalled

in Section 2. Subsequently, in Section 3, we show the well-posedness of the problem

(1.1)–(1.3), where the existence and the continuous dependence of the Young measure

solution is proved.

2. Some preliminaries on Young measure. In this section, let us recall some

definitions and results on Young measure.

We use C0(R
n) to denote the closure of continuous functions in R

n with compact

supports. The dual of C0(R
n) can be identified with the space M (Rn) of signed Radon

measures with finite mass via the pairing

〈μ, f〉 =
∫
Rn

fdμ, f ∈ C0(R
n), μ ∈ M (Rn).

LetD ⊂ R
n orD ⊂ R

n×R be a measurable set of finite measure. A map ν : D → M (Rn)

is called weakly ∗ measurable if

〈ν, f〉 : D → R, x �−→
∫
Rn

fdνx (νx = ν(x))
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is measurable for each f ∈ C0(R
n).

Lemma 2.1 (Fundamental Theorem on Young Measure). Let zk : D → R
n (k = 1, 2, · · · )

be a sequence of measurable functions. Then there exists a subsequence {zki
}∞i=1 and a

weakly ∗ measurable map ν : D → M (Rn) such that

(i) ν(x) ≥ 0, ‖ν(x)‖M (Rn) =

∫
Rn

dνx ≤ 1, a.e. x ∈ D;

(ii) For each f ∈ C0(R
n), f(zki

) converges weakly ∗ to 〈ν, f〉 in L∞(D).

Furthermore, one has ‖ν(x)‖M (Rn) = 1 a.e. x ∈ D if and only if the subsequence does

not escape to infinity.

Definition 2.1. The map ν : D → M (Rn) in Lemma 2.1 is called the Young measure

in R
n generated by the sequence {zki

}∞i=1.

For p ≥ 1, define

E p
0 (R

n) =

{
φ ∈ C(Rn) : lim

|ξ|→+∞

|φ(ξ)|
1 + |ξ|p exists

}
,

E p(Rn) =

{
φ ∈ C(Rn) : sup

ξ∈Rn

|φ(ξ)|
1 + |ξ|p < +∞

}
.

Under the norm

‖φ‖E p(Rn) = sup
ξ∈Rn

|φ(ξ)|
1 + |ξ|p , φ ∈ E p(Rn),

E p
0 (R

n) is a separable Banach space while E p(Rn) is an inseparable space ([13]).

Definition 2.2. Let p ≥ 1. A Young measure ν = (νx)x∈D in R
n is called a W 1,p(D)–

gradient Young measure if

(i) For each bounded continuous function f in R
n, 〈ν, f〉 is measurable in D;

(ii) There is a sequence {uk}∞k=1 ⊂ W 1,p(D) for which the representation formula

lim
k→∞

∫
E

φ(∇uk(x))dx =

∫
E

〈νx, φ〉dx

holds for any measurable set E ⊂ D and any function φ ∈ E p
0 (R

n).

We also say that ν is the W 1,p(D)–gradient Young measure generated by {∇uk}∞k=1

and {∇uk}∞k=1 the W 1,p(D)–gradient generating sequence of ν. In addition, the repre-

sentation formula also holds for φ ∈ E p(Rn), and it follows from Lemma 2.1 that

‖ν(x)‖M (Rn) = 1, a.e. x ∈ D.

We state the following three lemmas, whose proofs can be found in [5, 13, 14, 22].

Lemma 2.2. Let ν = (νx)x∈D be a Young measure in R
n. Then ν = (νx)x∈D is a

W 1,p(D)–gradient Young measure if and only if

(i) There exists u ∈ W 1,p(D) such that

∇u(x) = 〈νx, id〉, a.e. x ∈ D,

where id is the unit mapping in R
n;

(ii) For each continuous, quasiconvex and bounded below function φ ∈ E p(Rn), the

Jensen inequality

φ(∇u(x)) ≤ 〈νx, φ〉, a.e. x ∈ D
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holds;

(iii) 〈νx, φp〉 ∈ L1(D), where

φp(ξ) = |ξ|p, ξ ∈ R
n.

Lemma 2.3. Suppose that f ∈ E p(Rn) is continuous, quasiconvex and bounded below

and that {uk}∞k=1 converges weakly to u in W 1,p(D). Then for any measurable E ⊂ D,∫
E

f(∇u)dx ≤ lim
k→∞

∫
E

f(∇uk)dx.

If, in addition,

lim
k→∞

∫
D

f(∇uk)dx =

∫
D

f(∇u)dx,

then there exists a subsequence {uki
}∞i=1 such that {f(∇uki

)}∞i=1 converges weakly to

f(∇u) in L1(D); furthermore, if

max{c|ξ|p − 1, 0} ≤ f(ξ) ≤ C|ξ|p + 1 (0 < c ≤ C)

then the Young measure ν generated by {∇uki
}∞i=1 is a W 1,p(D)–gradient Young mea-

sure.

Lemma 2.4. Suppose that 1 ≤ q < p and νm = (νmx )x∈D is a W 1,p(D)–gradient Young

measure generated by {∇um,k}∞k=1 for m = 1, 2, · · · , where um,k is uniformly bounded in

W 1,p(D) with respect to m and k. Then there exist a subsequence of {νm}∞m=1, denoted

by {νmi}∞i=1, and a W 1,p(D)-gradient Young measure ν such that

(i) {νmi}∞i=1 converges to ν weakly ∗ in L∞(D;M (Rn)) and weakly in

L1(D; (E q
0 (R

n))′);

(ii) {νmi}∞i=1 converges weakly to ν in the biting sense in L1(D; (E p
0 (R

n))′). Here, we

say that {zi}∞i=1 ⊂ L1(D) converges weakly to z ∈ L1(D) in the biting sense in L1(D), if

there is a decreasing sequence of subsets {Ej}∞j=1 of D with lim
j→∞

measEj = 0 such that

{zi}∞i=1 converges weakly to z in L1(D\Ej) for each j = 1, 2, · · · .

3. Existence and continuous dependence of Young measure solutions. In

this section, we investigate the Young measure solution to the problem (1.1)–(1.3) and

show the problem is well posed.

3.1. Definition of Young measure solutions. DenoteΨ∗ the convexification ofΨ . Since

Ψ ∈ C1(Rn), Ψ∗ ∈ C1(Rn) is convex. Set

�Φ∗ = ∇Ψ∗.

Note that �Φ∗ = �Φ on the set {ξ ∈ R
n : Ψ(ξ) = Ψ∗(ξ)}. Furthermore, Ψ∗ and �Φ∗ satisfy

the same structure condition (1.4) as Ψ and �Φ, i.e.

max{λ|ξ|2 − 1, 0} ≤ Ψ∗(ξ) ≤ Λ|ξ|2 + 1, |�Φ∗(ξ)| ≤ Λ|ξ|, ξ ∈ R
n. (3.1)

Definition 3.1. A function u ∈ L∞((0, T );H1
0 (Ω)) with

∂u

∂t
∈ L2(QT ) is said to be a

Young measure solution to the problem (1.1)–(1.3), if there exists a W 1,2(QT )–gradient
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Young measure ν = (νx,t)(x,t)∈QT
in R

n such that∫∫
QT

(∂u
∂t

ϕ+ 〈ν, �Φ〉 · ∇ϕ+ �A(x, t, u) · ∇ϕ−B(x, t, u)ϕ
)
dxdt = 0 (3.2)

for any ϕ ∈ L∞((0, T );H1
0 (Ω)), and

∇u(x, t) = 〈νx,t, id〉, a.e. (x, t) ∈ QT , (3.3)∫
Ω

〈νx,t, �Φ · id〉dx =

∫
Ω

〈νx,t, �Φ〉 · 〈νx,t, id〉dx, a.e. t ∈ (0, T ), (3.4)

suppνx,t ⊂ {ξ ∈ R
n : Ψ(ξ) = Ψ∗(ξ)}, a.e. (x, t) ∈ QT , (3.5)

and (1.3) holds in the sense of trace.

3.2. Existence of Young measure solutions. We first establish the existence theorem.

Here, some structure conditions on �A and B are needed. For convenience, it is assumed

that

| �A(x, t, z)|+ |div �A(x, t, z)|+ |B(x, t, z)| ≤ M(1 + |z|),
∣∣∣∂ �A

∂z
(x, t, z)

∣∣∣ ≤ M (3.6)

for each (x, t, z) ∈ QT × R, where M > 0.

Theorem 3.1. Assume that �A ∈ C(1,0,1)(QT ×R) and B ∈ C(QT ×R) satisfy (3.6). For

any u0 ∈ H1
0 (Ω), the problem (1.1)–(1.3) admits at least one Young measure solution.

Proof. We prove the existence theorem by using Rothe’s method and variational

method with the relaxation theorem.

Step 1. Solve the difference equations.

Let m be a positive integer. Define

Fm(v;uj−1
m ) =

∫
Ω

( m

2T
(v − uj−1

m )2 +Ψ(∇v)−
(
div �A

(
x, (j − 1)T/m, uj−1

m

)
+B

(
x, (j − 1)T/m, uj−1

m

))
v
)
dx, v ∈ H1

0 (Ω),

F ∗
m(v;uj−1

m ) =

∫
Ω

( m

2T
(v − uj−1

m )2 +Ψ∗(∇v)−
(
div �A

(
x, (j − 1)T/m, uj−1

m

)
+B

(
x, (j − 1)T/m, uj−1

m

))
v
)
dx, v ∈ H1

0 (Ω),

where uj−1
m ∈ H1

0 (Ω), j = 1, 2, · · · ,m. The two functionals are both lower bounded

owing to (1.4) and (3.1). Furthermore, it follows from the relaxation theorem ([3]) that

inf{Fm(v;uj−1
m ) : v ∈ H1

0 (Ω)} = inf{F ∗
m(v;uj−1

m ) : v ∈ H1
0 (Ω)}. (3.7)

Let {uj,k
m }∞k=1 ⊂ H1

0 (Ω) be a minimizing sequence of Fm(·;uj−1
m ) satisfying

Fm(uj,k
m ;uj−1

m ) = min
θ∈R

Fm(θuj,k
m ;uj−1

m ), k = 1, 2, · · · , (3.8)

Fm(uj,k
m ;uj−1

m ) < inf{Fm(v;uj−1
m ) : v ∈ H1

0 (Ω)}+
1

mk
, k = 1, 2, · · · . (3.9)

Since Ψ∗(·) ≤ Ψ(·), (3.7) and (3.9) yield

F ∗
m(uj,k

m ;uj−1
m ) < inf{F ∗

m(v;uj−1
m ) : v ∈ H1

0 (Ω)}+
1

mk
, k = 1, 2, · · · , (3.10)
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which, together with the Hölder inequality, implies that∫
Ω

( m

2T
(uj,k

m − uj−1
m )2 +Ψ∗(∇uj,k

m )
)
dx− 1

mk

≤
∫
Ω

(
div �A

(
x, (j − 1)T/m, uj−1

m

)
+B

(
x, (j − 1)T/m, uj−1

m

))
uj,k
m dx+ F ∗

m(uj−1
m ;uj−1

m )

≤
∫
Ω

(
Ψ∗(∇uj−1

m ) +
(
div �A

(
x, (j − 1)T/m, uj−1

m

)
+B

(
x, (j − 1)T/m, uj−1

m

))
· (uj,k

m − uj−1
m )

)
dx

≤
∫
Ω

Ψ∗(∇uj−1
m )dx+

T

m

∫
Ω

(
div �A

(
x, (j − 1)T/m, uj−1

m

)
+B

(
x, (j − 1)T/m, uj−1

m

))2

dx

+
m

4T

∫
Ω

(uj,k
m − uj−1

m )2dx, k = 1, 2, · · · .

Using this formula, (3.6) and the Poincaré inequality, one gets that∫
Ω

( m

4T
(uj,k

m − uj−1
m )2 +Ψ∗(∇uj,k

m )
)
dx

≤
∫
Ω

Ψ∗(∇uj−1
m )dx+

T

m

∫
Ω

(
div �A

(
x, (j − 1)T/m, uj−1

m

)
+B

(
x, (j − 1)T/m, uj−1

m

))2

dx

+
1

mk

≤
∫
Ω

Ψ∗(∇uj−1
m )dx+

C1

m

∫
Ω

(1 + |uj−1
m |2 + |∇uj−1

m |2)dx+
1

mk

≤
∫
Ω

Ψ∗(∇uj−1
m )dx+

C2

m

∫
Ω

|∇uj−1
m |2dx+

C2

m

≤
(
1 +

C0

m

)∫
Ω

Ψ∗(∇uj−1
m )dx+

C0

m
, j = 1, 2, · · · ,m, k = 1, 2, · · · , (3.11)

where C1, C2, and C0 depend only on Ω, T , λ, Λ and M .

Take u0
m = u0. Then (3.11) with j = 1 shows that {u1,k

m }∞k=1 is uniformly bounded

in H1
0 (Ω). Hence there exist a convergent subsequence of {u1,k

m }∞k=1 and a function

u1
m ∈ H1

0 (Ω), such that

∇u1,k
m ⇀ ∇u1

m weakly in L2(Ω) and u1,k
m → u1

m strongly in L2(Ω) as k → ∞. (3.12)

Here and in the proof of this theorem, we always denote a convergent subsequence of a

sequence by itself for convenience. It follows from (3.10) and (3.12) that∫
Ω

Ψ∗(∇u1
m)dx = lim

k→∞

∫
Ω

Ψ∗(∇u1,k
m )dx,∫

Ω

( m

4T
(u1

m − u0
m)2 +Ψ∗(∇u1

m)
)
dx ≤

(
1 +

C0

m

)∫
Ω

Ψ∗(∇u0
m)dx+

C0

m
.

Repeating the above process in turn, we get uj
m ∈ H1

0 (Ω) for j = 1, 2, · · · ,m, which

satisfies

∇uj,k
m ⇀ ∇uj

m weakly in L2(Ω) and uj,k
m → uj

m strongly in L2(Ω) as k → ∞, (3.13)
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Ω

Ψ∗(∇uj
m)dx = lim

k→∞

∫
Ω

Ψ∗(∇uj,k
m )dx, (3.14)∫

Ω

( m

4T
(uj

m − uj−1
m )2 +Ψ∗(∇uj

m)
)
dx ≤

(
1 +

C0

m

)∫
Ω

Ψ∗(∇uj−1
m )dx+

C0

m
. (3.15)

Direct calculation shows that(
1 +

C0

m

)m

≤ eC0 ,

m−1∑
i=0

(
1 +

C0

m

)i

≤ m

C0
eC0 .

Then, one gets from (3.11) and (3.15) that∫
Ω

Ψ∗(∇uj,k
m )dx ≤ eC0

∫
Ω

Ψ∗(∇u0)dx+ eC0 , j = 1, 2, · · · ,m, k = 1, 2, · · · , (3.16)∫
Ω

Ψ∗(∇uj
m)dx ≤ eC0

∫
Ω

Ψ∗(∇u0)dx+ eC0 , j = 1, 2, · · · ,m. (3.17)

Summing up (3.15) from 1 to m leads to

m

4T

m∑
j=1

∫
Ω

(uj
m − uj−1

m )2dx+
m∑
j=1

∫
Ω

Ψ∗(∇uj
m)dx ≤

(
1 +

C0

m

) m∑
j=1

∫
Ω

Ψ∗(∇uj−1
m )dx+ C0,

which, together with (3.17), implies that

m

4T

m∑
j=1

∫
Ω

(uj
m − uj−1

m )2dx ≤C0

m

m∑
j=1

∫
Ω

Ψ∗(∇uj−1
m )dx+

∫
Ω

Ψ∗(∇u0
m)dx+ C0

≤
(
C0e

C0 + 1
)∫

Ω

Ψ∗(∇u0)dx+ C0e
C0 + C0. (3.18)

For j = 1, 2, · · · ,m, denote νm,j = (νm,j
x )x∈Ω the Young measure generated by

{∇uj,k
m }∞k=1. By Lemma 2.3 with (3.13) and (3.14), νm,j is a W 1,2(Ω)–gradient Young

measure and

∇uj
m(x) = lim

k→∞
∇uj,k

m (x) = 〈νm,j
x , id〉, a.e. x ∈ Ω. (3.19)

Since Ψ∗(·) ≤ Ψ(·), one gets from (3.7), (3.9), (3.10) and (3.13) that

lim
k→∞

∫
Ω

Ψ∗(∇uj,k
m )dx = lim

k→∞

∫
Ω

Ψ(∇uj,k
m )dx, j = 1, 2, · · · ,m.

Therefore, ∫
Ω

〈νm,j ,Ψ∗〉dx =

∫
Ω

〈νm,j ,Ψ〉dx, j = 1, 2, · · · ,m,

which implies

suppνm,j
x ⊂ {ξ ∈ R

n : Ψ(ξ) = Ψ∗(ξ)}, a.e. x ∈ Ω, j = 1, 2, · · · ,m. (3.20)

Now we deduce the equilibrium equation. Fix j = 1, 2, · · · ,m. It follows from (3.10),

(3.13) and (3.14) that uj
m is just a minimum of F ∗

m(·;uj−1
m ). Take the Gâteaux derivative

to yield ∫
Ω

(m
T
(uj

m − uj−1
m )η + �Φ∗(∇uj

m) · ∇η −
(
div �A

(
x, (j − 1)T/m, uj−1

m

)
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+B
(
x, (j − 1)T/m, uj−1

m

))
η
)
dx = 0, η ∈ H1

0 (Ω). (3.21)

Since

F ∗
m(uj

m;uj−1
m ) ≤ F ∗

m(uj
m + εη;uj−1

m ), η ∈ H1
0 (Ω), ε ∈ R,

one can derive that∫
Ω

(m
T
(uj

m − uj−1
m )η + 〈νm,j , �Φ∗〉 · ∇η −

(
div �A

(
x, (j − 1)T/m, uj−1

m

)
+B

(
x, (j − 1)T/m, uj−1

m

))
η
)
dx = 0, η ∈ H1

0 (Ω). (3.22)

Then, (3.20)–(3.22) show that

〈νm,j
x , �Φ〉 = 〈νm,j

x , �Φ∗〉 = �Φ∗(∇uj
m(x)), a.e. x ∈ Ω, j = 1, 2, · · · ,m (3.23)

and ∫
Ω

(m
T
(uj

m − uj−1
m )η + 〈νm,j , �Φ〉 · ∇η + �A

(
x, (j − 1)T/m, uj−1

m

)
· ∇η

−B
(
x, (j − 1)T/m, uj−1

m

)
η
)
dx = 0, η ∈ H1

0 (Ω), j = 1, 2, · · · ,m. (3.24)

Below we derive the following independence property∫
Ω

〈νm,j
x , �Φ · id〉dx =

∫
Ω

〈νm,j
x , �Φ〉 · 〈νm,j

x , id〉dx, j = 1, 2, · · · ,m. (3.25)

For j = 1, 2, · · · ,m, (3.8) implies∫
Ω

�Φ(∇uj,k
m ) · ∇uj,k

m dx =

∫
Ω

(
− m

T
(uj,k

m − uj−1
m )uj,k

m +
(
div �A

(
x, (j − 1)T/m, uj−1

m

)
+B

(
x, (j − 1)T/m, uj−1

m

))
uj,k
m

)
dx, k = 1, 2, · · · .

(3.26)

Rewrite (3.24) with η = uj
m into∫

Ω

〈νm,j , �Φ〉 · ∇uj
mdx =

∫
Ω

(
− m

T
(uj

m − uj−1
m )uj

m +
(
div �A

(
x, (j − 1)T/m, uj−1

m

)
+B

(
x, (j − 1)T/m, uj−1

m

))
uj
m

)
dx. (3.27)

Then, it follows from (3.26), (3.23), (3.19) and (3.21) with η = uj
m that∫

Ω

〈νm,j , �Φ · id〉dx−
∫
Ω

〈νm,j , �Φ〉 · 〈νm,j , id〉dx

= lim
k→∞

∫
Ω

�Φ(∇uj,k
m ) · ∇uj,k

m dx−
∫
Ω

〈νm,j , �Φ〉 · ∇uj
mdx

=− lim
k→∞

∫
Ω

(m
T
(uj,k

m − uj−1
m )uj,k

m − m

T
(uj

m − uj−1
m )uj

m

)
dx

+ lim
k→∞

∫
Ω

(
div �A

(
x, (j − 1)T/m, uj−1

m

)
+B

(
x, (j − 1)T/m, uj−1

m

))(
uj,k
m − uj

m

)
dx

=0,

which, together with (3.13), leads to (3.25).

Step 2. Construct the approximate solutions.
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Let m be the positive integer given in Step 1. For j = 1, 2, · · · ,m, denote χj
m the

characteristic function of
[
(j − 1)T/m, jT/m

)
and denote

γj
m(t) =

(mt

T
− (j − 1)

)
χj
m(t), 0 ≤ t ≤ T.

Define

um(x, t) =

m∑
j=1

χj
m(t)uj−1

m (x) + γj
m(t)(uj

m(x)− uj−1
m (x)), (x, t) ∈ QT ,

wm(x, t) =

m∑
j=1

χj
m(t)uj

m(x), (x, t) ∈ QT ,

wk
m(x, t) =

m∑
j=1

χj
m(t)uj,k

m (x), (x, t) ∈ QT , k = 1, 2, · · · ,

�Am(x, t, z) =

m∑
j=1

χj
m(t) �A

(
x, (j − 1)T/m, z

)
, (x, t, z) ∈ QT × R,

Bm(x, t, z) =

m∑
j=1

χj
m(t)B

(
x, (j − 1)T/m, z

)
, (x, t, z) ∈ QT × R

and

νm = (νmx,t)(x,t)∈QT
, νmx,t =

m∑
j=1

χj
m(t)νm,j

x , (x, t) ∈ QT .

From the definitions of uj
m, uj,k

m and νm,j , we get that um, wm, wk
m ∈ L∞((0, T );H1

0 (Ω))

with
∂um

∂t
∈ L2(QT ) and νm ∈ L∞((0, T ); (E 2(Rn))′) is the W 1,2(QT )–gradient Young

measure generated by {wk
m}∞k=1. It follows from (3.1), (3.16)–(3.18) that

‖um‖L∞((0,T );H1
0 (Ω)) ≤ C, ‖wm‖L∞((0,T );H1

0 (Ω)) ≤ C, ‖wk
m‖L∞((0,T );H1

0 (Ω)) ≤ C,

(3.28)∥∥∥∂um

∂t

∥∥∥
L2(QT )

=
(m
T

m∑
j=1

∫
Ω

(uj
m(x)− uj−1

m (x))2dx
)1/2

≤ C, (3.29)

‖um − wm‖L2(QT ) ≤
( T

m

m∑
j=1

∫
Ω

(uj
m(x)− uj−1

m (x))2dx
)1/2

≤ C

m
, (3.30)

where C > 0 depends only on Ω, T , λ, Λ and M . In addition, (3.19), (3.20) and (3.25)

yield

∇wm(x, t) = 〈νmx,t, id〉, a.e. (x, t) ∈ QT , (3.31)

suppνmx,t ⊂ {ξ ∈ R
n : Ψ(ξ) = Ψ∗(ξ)}, a.e. (x, t) ∈ QT , (3.32)∫

Ω

〈νmx,t, �Φ · id〉dx =

∫
Ω

〈νmx,t, �Φ〉 · 〈νmx,t, id〉dx, a.e. t ∈ (0, T ). (3.33)

Furthermore, one can get from (3.24) that∫∫
QT

(∂um

∂t
ϕ+ 〈νm, �Φ〉 · ∇ϕ+ �Am(x, t, wm) · ∇ϕ− Bm(x, t, wm)ϕ

)
dxdt = 0,
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ϕ ∈ L∞((0, T );H1
0 (Ω)). (3.34)

Step 3. Complete the limiting process.

Owing to (3.28) and (3.29), there exist u,w ∈ L∞((0, T );H1
0 (Ω)) with

∂u

∂t
∈ L2(QT )

such that

∇um ⇀ ∇u,
∂um

∂t
⇀

∂u

∂t
, ∇wm ⇀ ∇w, wm ⇀ w weakly in L2(QT )

and um → u strongly in L2(QT ) as m → ∞. (3.35)

Noting (3.30) implies

lim
m→∞

‖um − wm‖L2(QT ) = 0,

one can subsequently get that

u(x, t) = w(x, t), a.e. (x, t) ∈ QT . (3.36)

Then, (3.35), (3.36) and (3.6) yield that

�Am(x, t, wm(x, t)) → �A(x, t, u(x, t)), Bm(x, t, wm(x, t)) → B(x, t, u(x, t))

strongly in L2(QT ) as m → ∞. (3.37)

Due to Lemma 2.4 with (3.28), there exists a W 1,2(QT )–gradient Young measure ν ∈
L∞((0, T ); (E 2(Rn))′) such that

νm ⇀ ν weakly ∗ in L∞(QT ;M (Rn)), weakly in L1(QT ; (E
1
0 (R

n))′)

and weakly in the biting sense in L1(QT ; (E
2
0 (R

n))′) as m → ∞. (3.38)

Now we are ready to verify that u with ν is a Young measure solution to the problem

(1.1)–(1.3). First, letting m → ∞ in (3.34) with (3.35)–(3.38) leads to (3.2) for any

ϕ ∈ L∞((0, T );H1
0 (Ω)). Second, (3.3) follows from (3.31), (3.35), (3.36) and (3.38).

Third, (3.34) implies

div〈νm, �Φ〉 = ∂um

∂t
− div �Am(x, t, wm)−Bm(x, t, wm)

in the sense of distribution in QT , which, together with (3.28), (3.29) and (3.6), shows

that div〈νm, �Φ〉 ∈ L2(QT ) satisfies

‖div〈νm, �Φ〉‖L2(QT ) ≤ C, m = 1, 2, · · · , (3.39)

where C > 0 depends only on Ω, T , λ, Λ and M . Additionally, (3.31) gives

curl〈νm, id〉 = curl∇wm = 0, a.e. (x, t) ∈ QT , m = 1, 2, · · · . (3.40)

Using the div-curl lemma with (3.38)–(3.40), one gets

〈νmx,t, �Φ〉 · 〈νmx,t, id〉 ⇀ 〈νx,t, �Φ〉 · 〈νx,t, id〉 weakly in L1(QT ) as m → ∞. (3.41)

Moreover, (3.38) implies

〈νmx,t, �Φ · id〉 ⇀ 〈νx,t, �Φ · id〉 weakly in the biting sense in L1(QT ) as m → ∞. (3.42)

Then, (3.4) follows from (3.33), (3.41) and (3.42). Finally, (3.5) can be deduced from

(3.32) and (3.38), while (3.29) guarantees that (1.3) holds in the sense of trace. �
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3.3. Continuous dependence of Young measure solutions. Let us turn to the contin-

uous dependence theorem. As mentioned in the introduction, there is no uniqueness

result for the forward-backward equation in general. Here, the independence property

(3.4) plays the important and key role in the uniqueness theorem. Furthermore, there

also needs to be some structure conditions on �A and B such that the convection and

source terms can be controlled.

Theorem 3.2. Assume that �A and B satisfy

�A(x, t, z) = �a(x, t)z, |div�a(x, t)| ≤ M,
∣∣∣∂B(x, t, z)

∂z

∣∣∣ ≤ M, (x, t, z) ∈ QT × R

with some M > 0. Let u, v ∈ L∞((0, T );H1
0 (Ω)) with

∂u

∂t
,
∂v

∂t
∈ L2(QT ) be the

Young measure solutions to the problem (1.1)–(1.3) corresponding to the initial data

u0, v0, respectively. Then there exists C > 0 depending only on ‖div�a‖L∞(QT ) and∥∥∥∂B
∂z

∥∥∥
L∞(QT×R)

such that

∫
Ω

(u(x, t)− v(x, t))2dx ≤ eCt

∫
Ω

(u0(x)− v0(x))
2dx, 0 ≤ t ≤ T. (3.43)

Proof. Let ν and μ be the W 1,2(QT )–gradient Young measure with respect to u and

v, respectively. For any s ∈ [0, T ], choosing

ϕ(x, t) = (u(x, t)− v(x, t))χ[0,s](t), (x, t) ∈ QT

in (3.2), one gets that∫∫
Qs

(∂u
∂t

(u− v) + 〈ν, �Φ〉 · ∇(u− v) + �a(x, t)u · ∇(u− v)−B(x, t, u)(u− v)
)
dxdt = 0

and∫∫
Qs

(∂v
∂t

(u− v) + 〈μ, �Φ〉 · ∇(u− v) + �a(x, t)v · ∇(u− v)−B(x, t, v)(u− v)
)
dxdt = 0.

Combine these two equalities to get that∫∫
Qs

(1
2

∂

∂t
(u− v)2 +

(
〈ν, �Φ〉 − 〈μ, �Φ〉

)
· ∇(u− v)

+ �a(x, t)(u− v) · ∇(u− v)−
(
B(x, t, u)−B(x, t, v)

)
(u− v)

)
dxdt = 0,

i.e. ∫
Ω

(u(x, s)− v(x, s))2dx−
∫
Ω

(u0(x)− v0(x))
2dx

=− 2

∫∫
Qs

(
〈ν, �Φ〉 − 〈μ, �Φ〉

)
· ∇(u− v)dxdt−

∫∫
Qs

�a(x, t) · ∇(u− v)2dxdt

+ 2

∫∫
Qs

(
B(x, t, u)−B(x, t, v)

)
(u− v)dxdt. (3.44)
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We estimate the terms on the right side of (3.44). On the one hand, it follows from

(3.3)–(3.5) that∫∫
Qs

(
〈ν, �Φ〉 − 〈μ, �Φ〉

)
· ∇(u− v)dxdt

=

∫∫
Qs

(
〈ν, �Φ〉 − 〈μ, �Φ〉

)
·
(
〈ν, id〉 − 〈μ, id〉

)
dxdt

=

∫∫
Qs

(
〈ν, �Φ〉 · 〈ν, id〉 − 〈ν, �Φ〉 · 〈μ, id〉 − 〈μ, �Φ〉 · 〈ν, id〉+ 〈μ, �Φ〉 · 〈μ, id〉

)
dxdt

=

∫∫
Qs

(
〈ν, �Φ · id〉 − 〈ν, �Φ〉 · 〈μ, id〉 − 〈μ, �Φ〉 · 〈ν, id〉+ 〈μ, �Φ · id〉

)
dxdt

=

∫∫
Qs

∫
Rn

∫
Rn

(
�Φ(ξ)− �Φ(ζ)

)
· (ξ − ζ)dνx,t(ξ)dμx,t(ζ)dxdt

=

∫∫
Qs

∫
Rn

∫
Rn

(
�Φ∗(ξ)− �Φ∗(ζ)

)
· (ξ − ζ)dνx,t(ξ)dμx,t(ζ)dxdt

=

∫∫
Qs

∫
Rn

∫
Rn

(
∇Ψ∗(ξ)−∇Ψ∗(ζ)

)
· (ξ − ζ)dνx,t(ξ)dμx,t(ζ)dxdt, (3.45)

which implies ∫∫
Qs

(
〈ν, �Φ〉 − 〈μ, �Φ〉

)
· ∇(u− v)dxdt ≥ 0 (3.46)

since Ψ∗ is quasiconvex. On the other hand, integrating the second term on the right

side of (3.44), one gets that

−
∫∫

Qs

�a(x, t) · ∇(u− v)2dxdt+ 2

∫∫
Qs

(
B(x, t, u)−B(x, t, v)

)
(u− v)dxdt

=

∫∫
Qs

div�a(x, t)(u− v)2dxdt+ 2

∫∫
Qs

∫ 1

0

∂B

∂z
(x, t, σu+ (1− σ)v)dσ(u− v)2dxdt

≤ sup
QT

(
div�a(x, t) + 2

∫ 1

0

∂B

∂z
(x, t, σu(x, t) + (1− σ)v(x, t))dσ

)∫∫
Qs

(u− v)2dxdt

≤
(
‖div�a‖L∞(QT ) + 2

∥∥∥∂B
∂z

∥∥∥
L∞(QT×R)

)∫∫
Qs

(u− v)2dxdt. (3.47)

Substituting (3.46) and (3.47) into (3.44), one obtains∫
Ω

(u(x, s)− v(x, s))2dx−
∫
Ω

(u0(x)− v0(x))
2dx

≤
(
‖div�a‖L∞(QT ) + 2

∥∥∥∂B
∂z

∥∥∥
L∞(QT×R)

)∫∫
Qs

(u(x, t)− v(x, t))2dxdt, s ∈ [0, T ],

which leads to (3.43) by using the Gronwall inequality. �
In Theorem 3.2, �A is linear, which can be relaxed if Ψ is strictly convex in the set

where Ψ∗ = Ψ .

Theorem 3.3. Assume that(
∇Ψ(ξ)−∇Ψ(ζ)

)
· (ξ − ζ) ≥ δ(ξ − ζ)2, ξ, ζ ∈ G, (δ > 0) (3.48)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



190 CHUNPENG WANG, YUANYUAN NIE, AND JINGXUE YIN

∣∣∣∂ �A(x, t, z)

∂z

∣∣∣ ≤ M,
∣∣∣∂B(x, t, z)

∂z

∣∣∣ ≤ M, (x, t, z) ∈ QT × R, (M > 0) (3.49)

where G = {ξ ∈ R
n : Ψ(ξ) = Ψ∗(ξ)}. Let u, v ∈ L∞((0, T );H1

0 (Ω)) with
∂u

∂t
,
∂v

∂t
∈

L2(QT ) be the Young measure solutions to the problem (1.1)–(1.3) corresponding to the

initial data u0, v0, respectively. Then there exists C > 0 depending only on δ and M

such that∫
Ω

(u(x, t)− v(x, t))2dx ≤ eCt

∫
Ω

(u0(x)− v0(x))
2dx, 0 ≤ t ≤ T. (3.50)

Proof. Let ν and μ be the W 1,2(QT )–gradient Young measure with respect to u and

v, respectively. Similar to the proof of (3.44), one can get that∫
Ω

(u(x, s)− v(x, s))2dx−
∫
Ω

(u0(x)− v0(x))
2dx

=− 2

∫∫
Qs

(
〈ν, �Φ〉 − 〈μ, �Φ〉

)
· ∇(u− v)dxdt

− 2

∫∫
Qs

( �A(x, t, u)− �A(x, t, v)) · (∇u−∇v)dxdt

+ 2

∫∫
Qs

(
B(x, t, u)−B(x, t, v)

)
(u− v)dxdt. (3.51)

Let us estimate each term on the right side of (3.51). First, it follows from (3.45), (3.4)

and (3.48) that∫∫
Qs

(
〈ν, �Φ〉 − 〈μ, �Φ〉

)
· ∇(u− v)dxdt

=

∫∫
Qs

∫
Rn

∫
Rn

(
∇Ψ∗(ξ)−∇Ψ∗(ζ)

)
· (ξ − ζ)dνx,t(ξ)dμx,t(ζ)dxdt

=

∫∫
Qs

∫
G

∫
G

(
∇Ψ∗(ξ)−∇Ψ∗(ζ)

)
· (ξ − ζ)dνx,t(ξ)dμx,t(ζ)dxdt

≥δ

∫∫
Qs

∫
G

∫
G

|ξ − ζ|2dνx,t(ξ)dμx,t(ζ)dxdt. (3.52)

Second, using (3.3), (3.4), (3.49) and the Hölder inequality yields

−
∫∫

Qs

( �A(x, t, u)− �A(x, t, v)) · (∇u−∇v)dxdt

=−
∫∫

Qs

( �A(x, t, u)− �A(x, t, v)) ·
∫
Rn

∫
Rn

(ξ − ζ)dνx,t(ξ)dμx,t(ζ)dxdt

=−
∫∫

Qs

( �A(x, t, u)− �A(x, t, v)) ·
∫
G

∫
G

(ξ − ζ)dνx,t(ξ)dμx,t(ζ)dxdt

≤ 1

4δ

∫∫
Qs

| �A(x, t, u)− �A(x, t, v))|2dxdt+ δ

∫∫
Qs

(∫
G

∫
G

|ξ − ζ|dνx,t(ξ)dμx,t(ζ)
)2

dxdt

≤ 1

4δ

∫∫
Qs

∫ 1

0

∣∣∣∂ �A

∂z
(x, t, σu+ (1− σ)v)dσ(u− v)

∣∣∣2dxdt
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+ δ

∫∫
Qs

∫
G

∫
G

|ξ − ζ|2dνx,t(ξ)dμx,t(ζ)dxdt

≤ 1

4δ
M2

∫∫
Qs

(u− v)2dxdt+ δ

∫∫
Qs

∫
G

∫
G

|ξ − ζ|2dνx,t(ξ)dμx,t(ζ)dxdt. (3.53)

Finally, (3.49) leads to∫∫
Qs

(
B(x, t, u)−B(x, t, v)

)
(u− v)dxdt

=

∫∫
Qs

∫ 1

0

∂B

∂z
(x, t, σu+ (1− σ)v)dσ(u− v)2dxdt

≤M

∫∫
Qs

(u− v)2dxdt. (3.54)

Substituting (3.52)–(3.54) into (3.51), one obtains∫
Ω

(u(x, s)− v(x, s))2dx−
∫
Ω

(u0(x)− v0(x))
2dx

≤
( 1

2δ
M2 + 2M

)∫∫
Qs

(u(x, t)− v(x, t))2dxdt, s ∈ [0, T ],

which leads to (3.50) by using the Gronwall inequality. �
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