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Abstract

We present a parsimonious and tractable general equilibrium model featuring a

continuum of overlapping generations, as in Blanchard (1985). In addition, we assume

that agents have standard utilities exhibiting constant relative risk aversion and can

be born with differing risk aversions and endowments. We show that equilibrium asset

prices are determined as if the economy was populated by a single representative agent

with time-varying risk aversion that follows a stationary process. Moreover, the riskless

rate is low and non-volatile. Therefore, despite its standard micro-foundation, our

model is observationally similar to the external habit formation model of Campbell

and Cochrane (1999), and is therefore successful at addressing a number of stylized

facts about asset prices.
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1 Introduction

A significant body of research over the last two decades has focused on uncovering the link

between variation in asset prices and fundamental macroeconomic risks. This has proven to

be a challenging task. The baseline textbook consumption-smoothing model predicts too low

equity premia, too high risk-free rates, and asset prices that are substantially less volatile

than in the data, to name just a few of the widely documented failures. This has led many

researchers to become pessimistic about the potential of rational consumption-based pricing

models to explain observed asset valuations.

In this paper we argue that many of the failures of the standard consumption-based

asset-pricing paradigm are linked to some of the simplifying assumptions behind it. Once

we extend the standard textbook model of consumption smoothing in several simple and

realistic dimensions, we find that the model can account reasonably well for many of the

perceived failures of the consumption-based asset pricing model.

In particular, we take the following four main departures from the textbook model: a)

Instead of assuming infinitely-lived agents, we acknowledge the fact that lives are finite and

generations may not be altruistically linked through gifts or bequests; b) agents age, and their

ability to produce declines with age; c) Moreover, they need not have the same endowments;

some agents are workers, whereas some other agents run their own firms, and d) (aggregate)

consumption and (aggregate) dividends are not equal — in particular, dividends are more

volatile than consumption, but the two quantities are cointegrated over the long run.

All four extensions appear realistic and plausible. Furthermore, despite the vast diversity

in the population that is introduced by the continuous arrival and departure of agents, their

aging, and the differences in their preferences and endowments, we are able to obtain a fairly

tractable model that addresses several asset-pricing puzzles in a transparent fashion.

The model is an extension of the perpetual youth model of Blanchard (1985). As in Blan-

chard (1985), agents arrive and die according to independent Poisson processes with constant

intensity. In contrast to Blanchard (1985), however, firms are faced with a stochastic pro-

ductivity process following a random walk. Hence, in contrast to Blanchard (1985), our
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model is stochastic, so that we can analyze equity premia.

An advantage of assuming overlapping generations, as opposed to a single representative

agent, is that the model can address the risk-free-rate puzzle. Since agents are faced with

declining labor income over their life cycles, there is a constant pressure to save when they

are young. The resulting increase in savings reduces the real interest rate and helps resolve

the low risk-free rate puzzle.

A further departure from the standard model is that agents can have different risk aver-

sions, and can derive their incomes from different sources. Less risk averse agents are more

exposed to aggregate risk. Because of this, their relative importance in the wealth distribu-

tion increases (declines) in response to positive (negative) news. Thus, during good times,

they are relatively more important in the economy and Sharpe ratios reflect their low risk-

aversion levels. By contrast, in bad times, the economic importance of the less risk averse

agents declines, and risky assets need to be held by the more risk averse agents, making

Sharpe ratios reflect the high risk aversion of the latter group. Hence, even though each

agent has constant relative risk aversion, assets are priced as if there existed a representative

agent with time-varying risk aversion.

Importantly, because of the birth and death of agents, the wealth and the consumption

distribution follow stationary processes. Similarly, risk premia, interest rates and valuation

ratios are stationary. This stationarity can easily fail in models where agents are infinitely

lived,1 making it hard to compare these models to the data.

Another important feature of the model is the low volatility of the risk-less rates. This

is driven by the fact that agents have different endowments and hence saving behaviors.

In the model, the less risk averse agents are entrepreneurs rather than workers. Assuming

that entrepreneurial income is on average higher but also more ephemeral than a worker’s

income, the less risk averse/entrepreneurial agents have a stronger propensity to save in

order to smooth consumption intertemporally. On the other hand, the more risk averse/non-

entrepreneurial agents have stronger precautionary motives for saving. As a consequence,

1See e.g. Dumas (1989) and Wang (1996).
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even if the relative importance of the two types of agents changes in response to productivity

shocks, aggregate savings (and the equilibrium interest rate) are unaffected. Hence, as in

the Campbell and Cochrane (1999) model, almost all variation in discount rates is driven by

changes in excess returns.

Additionally, by introducing an explicit labor-leisure choice and a production function

with non-constant dividend and labor shares, we can reproduce the fact that dividends

are more volatile than consumption, even though they are cointegrated over the long run.

The higher volatility of dividends compared to consumption, along with the countercyclical

variation in discount rates due to changing risk aversion, makes the volatility of the stock

market high, which helps us obtain a reasonably high equity premium. Furthermore, because

of the time-varying price of risk, the model can produce substantial predictability of excess

returns.

Last, but not least, the model is quite tractable and easy to compute and analyze.

Technically, the paper exploits the agents’ ability to trade dynamically in order to derive the

dynamics of the cross-sectional consumption distribution, an object that is easier to analyze

than the wealth distribution.2 Utilizing this insight, we are able to fully analyze properties

of the equilibrium. Solving the model numerically amounts to computing the solution to

a system of ordinary differential equations, a task that a modern computer can perform

almost instantaneously. Moreover, there is no need for approximate solution concepts, whose

accuracy is hard to assess.

The paper is related to various strands of the literature. There exists a vast literature

on asset pricing that explains some of the stylized asset-pricing facts by utilizing habit

formation. Constantinides (1990) and Abel (1990) were early contributions in this literature.

Campbell and Cochrane (1999), in a highly influential paper, pursued the idea of external

habit formation further. They succeeded in engineering a utility function exhibiting external

habit formation that addresses several asset-pricing puzzles simultaneously.

2See also Basak and Cuoco (1998), who use a similar idea in the context of a model with limited-

participation.
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In the model that we propose, the state variable that governs time variation in asset prices

resembles in many ways the “surplus” ratio of Campbell and Cochrane (1999). Hence, we are

able to obtain a model that is observationally similar to Campbell and Cochrane (1999), but

whose economic mechanisms and justification are substantially more standard. Therefore,

besides being useful for understanding asset prices our model can also be used as a workhorse

for performing welfare exercises, policy experiments, etc., inside a framework where asset

prices are reasonably well matched, and the standard welfare theorems are not invalidated

by substantial externalities.

Additionally, in our model dividends and consumption are different, yet co-integrated, so

that the model can provide a laboratory to investigate the net present values of consumption,

dividends, and labor income as separate quantities. These distinctions have attracted the

attention of the recent asset-pricing literature.3

We also relate to Chan and Kogan (2002). Chan and Kogan (2002) present an interesting

and insightful approach to obtaining a stationary wealth distribution in the presence of

heterogeneity, based on habit-formation preferences. An advantage of their approach is that

it allows for a continuum of risk aversions. However, it also produces substantial variability

in interest rates, so that a substantial fraction of the equity premium is due to a pure term

premium.

Several papers utilize variations in the cross-sectional wealth distribution due to some

incompleteness to obtain implications for asset prices. This literature is vast and we do

not attempt to summarize it. The papers that relate more closely to ours include Basak

and Cuoco (1998), Guvenen (2005), Storesletten, Telmer, and Yaron (2007), and Gomes

and Michaelides (2007). The first two of these papers assume infinitely lived agents, and

the presence of limited participation allows the time variation of the wealth distribution to

3See, for instance, the work of Lettau and Ludvigson (2005), and Lustig and Van Nieuwerburgh (2007).

We further relate to Santos and Veronesi (2006) and Menzly, Santos, and Veronesi (2004), since both these

papers produce a dividend process that is not identical to consumption in the short run, but is cointegrated

over the long run. The important difference is that in our paper this share process arises endogenously and

jointly with the time variation in discount rates.
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affect returns. A common tendency of models with infinitely lived agents is that wealth

eventually concentrates in the hands of stock market participants. Even though ours is

not a model of limited stock market participation, the presence of differing risk aversions

has observationally similar implications. More importantly, the assumption of overlapping

generations implies that all agents start and end life with zero wealth, so that the equity

premium does not reflect, asymptotically, only the risk aversion of one group. Furthermore,

an improvement over Guvenen (2005) is that our interest-rate volatility is very low and

our consumption process exhibits growth and is practically unpredictable. Storesletten,

Telmer, and Yaron (2007) and Gomes and Michaelides (2007) study overlapping generations

models and introduce frictions. Storesletten, Telmer, and Yaron (2007) study changes in

the cross-sectional variation of consumption shocks as Constantinides and Duffie (1996).

Gomes and Michaelides (2007) analyze a rich setup (costly participation, heterogeneity in

both preferences and income, etc.) and focus on understanding individual portfolio holdings

in general equilibrium. However, both Storesletten, Telmer, and Yaron (2007) and Gomes

and Michaelides (2007) impose effectively an exogenous stock market volatility, by adopting

a setup that is closer in spirit to Cox, Ingersoll, and Ross (1985) than to Lucas (1978). In

such a framework the quantity rather than the price of capital absorbs all economic shocks,

since Tobin’s q equals 1. Hence, the volatility in stock valuations results from exogenous

assumptions on stochastic depreciation, and the volatility of aggregate output is driven to

a large extent by changes in the capital stock, rather than total factor productivity. As

Storesletten, Telmer, and Yaron (2007) admit, “solving the analogous endowment economy

is substantially more difficult”. The reason is that, in an endowment economy of the Lucas

(1978) kind, volatility in asset prices is endogenous, since it is the price rather than the

quantity of capital that absorbs all shocks. Because volatility is both challenging and central

for many other asset pricing moments (such as the equity premium, the predictability of

returns, etc.), we believe that our framework allows us to address a broader set of asset-

pricing puzzles compared to previous literature.

Moreover, because of the analytical tractability of our framework, we can inspect more

6



closely how heterogeneity affects asset prices. In this sense our work is complementary to

quantitative exercises, that feature a richer setup, but at the cost of making the mechanisms

less transparent.

There is a vast literature on overlapping-generations models. A partial listing of inter-

esting applications of OLG frameworks to asset pricing include Abel (2003), Constantinides,

Donaldson, and Mehra (2002), and Heaton and Lucas (2000b). Most models in the OLG

tradition share the feature that the smallest time periods of the model correspond to decades.

The advantage of using a Blanchard (1985) framework is that the model produces implica-

tions for any time interval of interest. Given that most empirical regressions are run with

monthly, quarterly, or yearly data, this makes it easier to relate the model to the empirical

asset-pricing literature.

Finally, there is a large literature on entrepreneurship and inequality in general equi-

librium, which we do not attempt to summarize here. This literature has a fundamentally

different focus than this paper. The goal of this literature is to understand decisions of

entrepreneurs and their implications for inequality. Typically, these papers abstract from

aggregate uncertainty so as to preserve tractability. Because of our focus on asset pricing, we

cannot do the same. Instead, we abstract from many realistic aspects of entrepreneurship and

focus on the asset pricing implications of the model. For our purposes, the most important

aspect of entrepreneurship is the fact that entrepreneurs save more than non-entrepreneurs,

and that entrepreneurial income is more correlated with aggregate output and the stock

market. Both of these facts are consistent with the data4and reproduced by the model.

Section 2 describes the model. Section 3 presents the solution of the model. Section 4

presents a qualitative discussion and Section 5 contains quantitative implications. Section

6 contains a brief discussion of the model’s implications beyond asset pricing. Section 7

concludes. All proofs are contained in the appendix.

4For evidence on the first fact see Gentry and Hubbard (2002) and for evidence on the latter see e.g.

Heaton and Lucas (2000a).
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2 Model

2.1 Agents’ Preferences and Endowments

There is a continuum of agents whose mass we normalize to 1. Existing agents face a constant

hazard rate of death π > 0 throughout their lives. Furthermore, newly born agents also arrive

at a rate of π per unit of time, so that the population remains constant. These demographic

assumptions are identical to Blanchard (1985) and are key for the tractability of all the

aggregation results.

As is standard in the literature, we furthermore assume that agents have constant relative

risk aversion. A key departure from prevailing representative-agent approaches is that we

explicitly allow for the possibility that agents have heterogenous preferences. The most

parsimonious way to introduce heterogeneity is to follow Dumas (1989) and Wang (1996)

and assume the presence of two types of agents, which we label as “type-A” and “type-B”

agents.

Letting s denote the time of an agent’s birth and τ the (stochastic) time of her death,

type-A agents have mass υ and preferences of the form

Es

∫ τ

s

e−ρ
A(t−s)

(

cAt,s
)1−γA

1 − γA
dt. (1)

ρA > 0 is the subjective discount rate and γA > 0 the relative risk aversion of type-A

agents. Throughout we follow the notational convention that cit1,t2 denotes the time t1

consumption by an agent of type i ∈ {A,B} who was born at time t2 ≤ t1. By integrating

over the (exponential) distribution of the time of death in (1), the agent’s problem amounts

to maximizing5

Es

∫ ∞

s

e−(ρA+π)(t−s)

(

cAt,s
)1−γA

1 − γA
dt. (2)

Type-A agents come into life endowed with units of non-tradeable (human) capital. We

postpone a more detailed discussion of a type-A agent’s endowment until the next section,

when we describe the production technology.

5This is a standard property of the Blanchard-Yaari model. See Blanchard (1985).
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The second type of agents (type-B agents) have mass 1 − υ. They arrive in life with an

endowment of hours, which they can supply in markets in exchange for wage income. We

follow Blanchard (1985) and assume that the agents’ endowments of hours decline exponen-

tially over the life-cycle at the rate χ. Blanchard (1985) argues that this simple assumption

captures the idea that agents retire,6 so that their income over the life cycle is downward-

sloping.7

Type-B agents maximize an objective of the form

Es

∫ ∞

s

e−(ρB+π)(t−s)

(

(

cBt,s
)ψ (π+χ

π
1

1−υ
e−χ(t−s) − hBt,s

)1−ψ
)1−γB

ψ (1 − γB)
dt. (3)

ρB > 0 is the subjective discount rate and γB > 0 the relative risk aversion of type-B

agents. The constant ψ ∈ (0, 1] controls how much type-B agents care about leisure, and

hBt,s refers to the time-t hours that are supplied by an agent who was born at time s. The

term π+χ
π

1
1−υ

e−χ(t−s) gives the time t endowment of hours for an agent who was born at time

s. The normalizing constant π+χ
π

1
1−υ

that multiplies a type-B agent’s endowment implies

that the aggregate endowment of hours in the economy is unity, since

(1 − υ)

∫ t

−∞

πe−π(t−s)π + χ

π

1

1 − υ
e−χ(t−s)ds = 1. (4)

Note that Equation (4) accounts for the mass of type-B agents (1 − υ) and their age distri-

bution by the term πe−π(t−s) inside the integral.

6Admittedly, even though the Blanchard (1985) assumption captures the idea that agents save for retire-

ment, it cannot capture the full richness of realistic life cycle income profiles, that tend to be upward sloping

in the early stages of the life cycle. However, it is reasonable to conjecture that agents are also borrowing

constrained in the early stages of their life cycles, so that they do not accumulate assets and hence their

effect on asset prices is likely to be limited.
7We remark here that our results would be unchanged if we assumed that agents have a constant en-

dowment of hours that they lose for ever at some random exponentially distributed time that arrives with

intensity χ. One could interpret such a situation as a health shock that leads to retirement. If we interpret

the model in this way, we need to also assume the existence of health insurance markets, in order to preserve

tractability. In those markets agents would be able to enter contracts that deliver payoffs contingent on the

arrival of the health shock.
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Throughout, we shall assume that γA ≤ γB, so that type-B agents are at least as risk

averse as type-A agents.

2.2 Technology

Firms come in two varieties: publicly traded and privately held. We start by describing the

first kind and then turn to the second kind.

The publicly traded firms are competitive and identical to each other, and own a total

(physical) capital stock equal to Kpub
t . Assuming constant returns to scale, we can therefore

proceed as if there was a single “representative” firm that owns Kpub
t units of the (physical)

capital stock. This firm produces output Y pub
t by utilizing a technology of the form

Y pub
t = ZtK

pub
t f

(

Hpub
t

Kpub
t

)

, (5)

where Zt follows a geometric Brownian motion

dZt
Zt

= µZdt+ σZdBt

for two positive constants µZ and σZ . Hpub
t denotes the aggregate hours worked at the

representative public firm.

The function f(·) in (5) is an increasing and concave function of the hours-to-capital

ratio ηt ≡ Hpub
t /Kpub

t . In particular, we assume that f (ηt) solves the following ordinary

differential equation:

f ′(η) =
α(η)f(η)

η
, f(0) = 0 (6)

and that α(η) is a continuous function satisfying

α(η) ∈ (0, 1) , α′(η) ≤ 0. (7)

First, note that f ′(η) > 0, given the above assumptions. Second, differentiating both

sides of (6) and using (7), it follows that f ′′(η) < 0. Furthermore, in the special case where

α(η) is constant and equal to α, the resulting solution to (6) is the familiar Cobb-Douglas
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production function f(η) = ηα. When α(η) is chosen as α(η) = (1−b)η−ν

(1−b)η−ν+b
for some ν > 0 and

some 0 < b < 1, then f(η) specializes to the CES production function. As in Lucas (1978),

we assume that Kpub
t = Kpub remains constant throughout, i.e., the (physical) capital stock

does not depreciate. Finally, publicly traded firms are fully equity financed with the total

supply of their equity normalized to 1.

We now turn to privately held firms. We think of these as entrepreneurial firms whose

existence at time t depends on some crucial skill of an agent who is alive at time t. Once

a type-A agent is born, an entrepreneurial firm is born, and when a type-A agent dies,

her firm perishes as well. In the baseline model we simply assume that type A agents are

simultaneously entrepreneurial and have lower risk aversion than type B agents. We revisit

this issue in section 6.2, and show how to obtain the link between entrepreneurship and lower

risk aversion in an extended model with uncertain and idiosyncratic entrepreneurial skills.

Given these simplifying assumptions, it is possible to think of the present setup as a situ-

ation where type-A agents arrive in life endowed with units of human/entrepreneurial “capi-

tal”stock Kpriv
s,s . Following a popular approach in the literature8, we think of entrepreneurial

capital as a productive factor in a broad sense, i.e., as an idea or managerial talent, that

can be used to produce output once combined with labor. Purely for parsimony, we assume

that entrepreneurial capital gives entrepreneurs access to a technology that produces output

(once combined with labor) according to a production technology that is similar to (5), i.e.,9

Y priv
t,s = ZtK

priv
t,s f

(

hAt,s

Kpriv
t,s

)

, (8)

where hAt,s are the time-t hours that are demanded by the firm of a type-A agent who was born

at time s. To capture the idea that the ongoing arrival of new entrepreneurial firms may make

the ideas and skills of previous entrepreneurs partially obsolete, we allow the capital stock

of entrepreneurs to depreciate with their age at the rate δ ≥ 0, so that Kpriv
t,s = e−δ(t−s)Kpriv

s,s .

8See, e.g., Quadrini (2000).
9One possible interpretation of equation (8) is that entrepreneurs can run their firms more efficiently than

public firms, and hence can use their skill to economize on physical capital. In that interpretation physical

and entrepreneurial capital are (perfect) substitutes.
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Type A agents cannot trade the units of the (human) capital stock that they are endowed

with. For them, the output Y priv
t (net of the wages that they pay to the workers that they

hire) corresponds to their non-traded income. All generations of type-A agents come endowed

with the same (human) capital stock, and we will simplify notation by writing Kpriv
s,s = Kpriv.

Finally, as a matter of normalization, we assume that Kpub ∈ (0, 1) and that Kpriv =

1
υ
π+δ
π

(

1 −Kpub
)

. Given these assumptions, the total capital stock Kt in the economy is

constant and given by

Kt = υKpriv

∫ t

−∞

πe−(π+δ)(t−s)ds+Kpub = υKpriv π

π + δ
+Kpub = 1. (9)

The integral in equation (9) adds up the capital stock that belongs to all surviving generations

of type-A agents, taking into account the mass υ of these agents and their age distribution.

Given that the capital stock adds up to 1, Kpub can be interpreted as the fraction of the

capital stock that belongs to the publicly traded firm.

2.3 Budget Constraints

A type-B agent who supplies hBt,s hours of labor at time t earns a labor income of wth
B
t,s,

where wt is the prevailing wage at time t. Similarly, a type-A agent receives dividends

from her firm that are equal to Y priv
t,s − wth

A
t,s. Hence, the time-t income of an agent of type

i = {A,B} who was born at time s is given by

yit,s =







Y priv
t,s − wth

A
t,s, if i = A;

wth
B
t,s, if i = B.

(10)

Both agents can also trade in a risk-less bond, a stock, and competitively priced annuities

as in Blanchard (1985). The rate of return on bonds is given by rt. The stock is a claim that

delivers a dividend flow given by Dt ≡ Y pub
t − wtH

pub
t . It is reasonable to conjecture that

the stock-price process follows a diffusion:

dSt = (µtSt −Dt)dt+ σtStdBt (11)
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for some processes µt and σt. The processes for wt, rt, µt, and σt will be jointly determined

later so that markets clear. Finally, competition amongst competitive life insurers will drive

the annuity income per dollar annuitized toward the actuarially fair flow of π per unit of

time.10

For future reference, it is convenient to define the stochastic discount factor process as

dξt
ξt

≡ −rtdt− κtdBt, (12)

where κt is the Sharpe ratio in the market defined as κt = µt−rt
σt

. Given the assumptions, the

financial wealth W j
t,s of agent i = {A,B} evolves as

dW i
t,s =

(

rtW
i
t,s + πW i

t,s − cit,s + θit,s(µt − rt) + yit,s
)

dt+ θit,sσtdBt, (13)

where θit,s denotes the dollar investment in publicly traded stocks. Equation (13) is a standard

dynamic budget constraint. The term πW i
t,s captures the fact that the agent has no bequest

motive and hence will choose to annuitize her entire wealth11. Letting Wt denote aggregate

wealth, insurance companies collect πWt per unit of time from agents who die, and hence can

deliver payments equal to πWt to the survivors. As a result of that, Blanchard (1985) shows

that insurance companies break even at each point in time and the competitive annuity price

is identical to the actuarially fair price. For the rest of the paper, we will be concerned with

clearing the remaining markets.

2.4 Markets and Equilibrium

There are four markets that must clear in equilibrium: 1) the labor market; 2) the current-

consumption-good market; 3) the bond market, where agents trade a zero net supply bond,

10See Blanchard (1985) for details.
11To be more specific, annuities work as follows in this context. The agent signs an instantaneous contract

that delivers competitive insurers a fraction ηi
t,s of her wealth upon death in exchange for an income of

π̂tη
i
t,sWt,s while the agent is alive. Since the agent has no bequest motives, and annuities are fairly priced

(i.e., π̂t = π), it follows that ηi
t,s = 1. For details see Blanchard (1985).
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and 4) the stock market, where agents trade claims to the dividend of the publicly traded

company.

The definition of equilibrium is standard:

Definition 1 An equilibrium is defined as a set of progressively measurable processes {cit,s, θ
i
t,s, h

i
t,s}

for i ∈ {A,B} and a set of progressively measurable processes for the rate of return in the

bond market (rt) , wages (wt) and an appropriate stock market process of the form (11) with

progressively measurable coefficients µt, σt such that:

1. Given the process for {rt, wt, µt, σt}, for all s and t with t ≥ s, the processes {cit,s, θ
i
t,s, h

i
t,s}

for i = A,B maximize (2) (objective [3] respectively) subject to (13), the initial condi-

tion W i
s,s = 0 and the transversality condition Es limt→∞ e−πtξtW

i
t,s = 0 for all s.

2. Given wt, public firms12 choose hours so as to maximize profits:

Hpub
t = arg max

H
pub
t

Dt (14)

3. Given cit,s, h
i
t,s, θ

i
t,s for i ∈ {A,B}, markets for goods and labor clear, i.e.,

(1 − υ)

∫ t

−∞
πe−π(t−s)hBt,sds = Hpub

t + υ

∫ t

−∞
πe−π(t−s)hAt,sds (15)

∫ t

−∞
πe−π(t−s)

(

υcAt,s + (1 − υ) cBt,s
)

ds = Y pub
t + υ

∫ t

−∞
πe−π(t−s)Y priv

t,s ds (16)

and markets for stocks and bonds clear, as well:

∫ t

−∞
πe−π(t−s)

(

υθAt,s + (1 − υ) θBt,s
)

ds = St (17)

∫ t

−∞
πe−π(t−s)

(

υ
(

WA
t,s − θAt,s

)

+ (1 − υ)
(

WB
t,s − θBt,s

))

ds = 0. (18)

12Note that it is sufficient to require that public firms maximize profits. The requirement that private

firms should also maximize profits is implied by the first part of the definition. The reason is that type-A

agents choose the hours demanded by their firms in an expected-utility maximizing way. As is shown in the

next section, this is equivalent to maximizing the flow of profits at each state and date.
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Equation (15) states that the aggregate hours supplied by type-B agents alive at time t

equal the total hours demanded by publicly traded and privately held firms. Equations (16),

(17), and (18) capture the analogous requirements for the goods market, the stock market,

and the bond market.

3 Solution

In this section we construct an equilibrium. We start by letting Yt = Y pub
t +

∫ t

−∞
πe−π(t−s)Y priv

t,s ds

denote the aggregate output in the economy, and Xt denote the consumption share of type-A

agents, namely

Xt ≡
υ
∫ t

−∞
πe−π(t−s)cAt,sds

Yt
. (19)

Since the consumption of both types of agents is non-negative, the goods-market clearing

condition (16) implies that Xt ∈ [0, 1]. In the remainder of this section we construct an

equilibrium with the following properties: a) Xt is a Markov process b) rt, µt, σt, κt are

functions of Xt exclusively, and wt has the form wt = Ztω (Xt) for an appropriate function ω

that we determine explicitly. In practical terms, this implies that a single variable, namely

Xt is sufficient to characterize the equilibrium interest rate, expected stock market returns

and volatility.

3.1 Labor Markets

To establish the claims above, we start by examining the labor market. Labor supply by

type-B agents is determined by the familiar condition that the marginal rate of substitution

between leisure and consumption should be equal to the real wage. Letting u(cBt,s, h
B
t,s) denote

the utility of a type-B agent, we obtain

−
uh
(

cBt,s, h
B
t,s

)

uc
(

cBt,s, h
B
t,s

) = wt. (20)
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Using the functional-form of u
(

cBt,s, h
B
t,s

)

and (20) gives the following relationship between

hours, consumption, and wages:

hBt,s =
1

1 − υ

π + χ

π
e−χ(t−s) −

(1 − ψ)

ψ

cBt,s
wt

for i ∈ {A,B} . (21)

Letting Ht denote the aggregate hours supplied in the economy and using (21) along with

(19) gives

Ht =

∫ t

−∞

πe−π(t−s) (1 − υ)hBt,sds = 1 −
Yt
wt

(1 − ψ)

ψ
(1 −Xt) . (22)

This expression gives the aggregate labor-supply relation implied by the model. To clear the

labor market, we turn attention to the aggregate labor demand. Whether privately held or

publicly traded, a firm can maximize its profits state by state by simply setting the marginal

product of labor equal to the real wage. For both publicly traded and privately held firms

this leads to the first order conditions

Ztf
′

(

Hpub
t

Kpub

)

= Ztf
′

(

hAt,s
KA
t,s

)

= wt. (23)

An implication of (23) is that all firms in the economy will have the same hours-to-capital

ratio, which in turn will be equal to the aggregate hours-to-capital ratio. Letting that ratio

be denoted by ηaggr
t , it follows that in equilibrium ηaggr

t =
H

pub
t

Kpub =
hAt,s

KA
t,s

= Ht
Kt

= Ht since

Kt = 1. Using these observations to compute aggregate output gives

Yt = Y pub
t + υ

∫ t

−∞

πe−π(t−s)Y priv
t,s ds =

= ZtK
pubf

(

Hpub
t

Kpub

)

+ υZtK
priv

∫ t

−∞

πe−(π+δ)(t−s)f

(

hAt,s
KA
t,s

)

ds

= Ztf(Ht)

[

Kpub + υKpriv

∫ t

−∞

πe−(π+δ)(t−s)ds

]

= Ztf(Ht)Kt = Ztf(Ht). (24)

Using Yt = Ztf(Ht) together with (6), (5), and (23) and noting that f ′
(

Hpub
t /Kpub

)

=

f ′(Ht) leads to

Yt
wt

=
Ht

α(Ht)
. (25)
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Using (25) inside (22) results in

Ht = 1 −
Ht

α(Ht)

(1 − ψ)

ψ
(1 −Xt) . (26)

Given a value of Xt, equation (26) determines the equilibrium quantity of hours implied

by the model. We shall therefore write Ht = H(Xt) to denote the dependence of hours

on Xt. Furthermore, equation (23) implies that the equilibrium wage can be written in the

form wt = Ztf
′(H(Xt)). It will be useful to define ω (Xt) ≡ f ′(H(Xt)), so that the resulting

equilibrium wage can be expressed as wt = Ztω(Xt) as we conjectured at the beginning of

section 3.

3.2 Intertemporal Consumption Allocations

To study agents’ intertemporal consumption decisions, we start by assuming that there exists

a stochastic discount factor ξt. Given that agents can trade dynamically in stocks and bonds

and there is a single source of uncertainty, agent A’s optimal consumption choices satisfy

the intertemporal first order condition13

e−(π+ρA)(t−s)

(

cAt,s
cAs,s

)−γA

= e−π(t−s) ξt
ξs
. (27)

Equation (27) captures the intertemporal aspect of agent A’s problem. Roughly speaking,

it states that the marginal benefit of an additional unit of consumption in a given state

(as measured by the marginal utility of consumption) should equal the “cost” of a unit of

consumption in that state. In turn this “cost” is measured by the product of the stochastic

discount factor and the probability that the consumer will live until time t (namely e−π(t−s)).

Agent B’s intertemporal first order condition is given by

e−(π+ρB)(t−s)

(

π+χ
π

1
1−υ

e−χ(t−s) − hBt,s
π+χ
π

1
1−υ

− hBs,s

)(1−γB)(1−ψ)(

cBt,s
cBs,s

)ψ(1−γB)−1

= e−π(t−s) ξt
ξs
. (28)

13For details see Karatzas and Shreve (1998), Chapter 3.
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Equation (28) is similar to equation (27), modified by the fact that the marginal utility

of consumption depends also on leisure when ψ < 1. Re-arranging (28) leads to

cBt,s
cBs,s

= e
− ρB

1−ψ(1−γB)
(t−s)

(

π+χ
π

1
1−υ

e−χ(t−s) − hBt,s
π+χ
π

1
1−υ

− hBs,s

)−
(1−ψ)(γB−1)
1−ψ(1−γB) ( ξt

ξs

)− 1

1−ψ(1−γB)
. (29)

We observe that, since (21) has to hold at all dates and states, it implies the following

relation between consumption, hours, and wages between two different points in time:

π+χ
π

1
1−υ

e−χ(t−s) − hBt,s
π+χ
π

1
1−υ

− hBs,s
=
cBt,s
cBs,s

ws
wt
. (30)

Combining (29) with (30) and rearranging leads to

cBt,s
cBs,s

= e
− ρB

γB
(t−s)

(

wt
ws

)

(1−ψ)(γB−1)
γB

(

ξt
ξs

)− 1

γB

. (31)

Similarly, rearranging (27) leads to

cAt,s
cAs,s

= e
− ρA

γA
(t−s)

(

ξt
ξs

)− 1

γA

. (32)

Given cAs,s, c
B
s,s equations (31) and (32) give the entire stochastic process of any agent’s

consumption profile as a function of wages and the stochastic discount factor. In order to

determine the initial consumption (cis,s) for i ∈ {A,B} we use the definition of income yit,s

in equation (10) along with the inter-temporal budget constraint to obtain

Es

∫ ∞

s

e−π(t−s)cit,s

(

ξt
ξs

)

dt = Es

∫ ∞

s

e−π(t−s)yit,s

(

ξt
ξs

)

dt. (33)

This states that the consumer’s net present value of consumption over the life cycle should

equal the net present value of her non-traded income (since she is born with zero financial

wealth).

Letting ΦA
s denote the time s net present value of non-traded income for a newly-

born type-A agent, substituting (10) into (33), using (8), (6) and (23) along with Kpriv
t,s =

Kprive−δ(t−s) and recalling that Kt = 1 we obtain

ΦA
s ≡ Es

∫ ∞

s

e−π(t−s)yit,s

(

ξt
ξs

)

dt = KprivEs

∫ ∞

s

e−(π+δ)(t−s)Yt (1 − α(Ht))

(

ξt
ξs

)

dt . (34)
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Similarly, for agents of type B using (10), and (21) inside the right hand side of (33) and

rearranging gives

Es

∫ ∞

s

e−π(t−s)cBt,s

(

ξt
ξs

)

dt = ψ
1

1 − υ

π + χ

π
Es

∫ ∞

s

e−(π+χ)(t−s)wt

(

ξt
ξs

)

dt. (35)

In light of this equation, we shall define ΦB
s (the net present value of a type B agent’s

income) as:

ΦB
s ≡ ψ

1

1 − υ

π + χ

π
Es

∫ ∞

s

e−(π+χ)(t−s)wt

(

ξt
ξs

)

dt. (36)

An implication of our conjecture that Xt is a Markov process and that rt and κt are functions

of Xt is the following Lemma.

Lemma 1 Assuming that Xt is a Markov process and that rt and κt are functions of Xt ,

there exist four functions φi(Xt) and βi(Xt) for i ∈ {A,B}, such that Φi
s = φi(Xs)Ys and

cis,s = βi (Xs) Ys.

The next sub-section derives the dynamics of Xt, rt, κt and confirms the conjecture that

Xt is Markov, along with the conjecture that rt, κt are functions of Xt.

3.3 Dynamics of the Stochastic-Discount Factor and the Con-

sumption Share

We start by determining the processes for the drift µX (t) and diffusion coefficients σX (t) of

dXt = µXdt+ σXdBt. (37)

To simplify notation we will use the short-hand notation (µX , σX) instead of (µX (t) , σX (t)).

To determine the dynamics of Xt, we start by defining the function g (Xt) as

g (Xt) ≡
Yt
Zt

= f (H(Xt)) . (38)

Using (24), (38), and Ito’s Lemma implies that dYt/Yt = µY dt+ σY dBt, where

µY = µZ +
g′

g
(µX + σXσZ) +

σ2
X

2

g′′

g
(39)

σY = σZ +
g′

g
σX . (40)
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Combining (32), Lemma 1, the definition of g in equation (38), and the definition of Xt in

equation (19) leads to

XtYt = υ

∫ t

−∞

πe
−

(

π+ ρA

γA

)

(t−s)
βAs Zsgs

(

ξt
ξs

)− 1

γA

ds, (41)

where we have used the shorthand notation gs = g(Xs), β
A
s = βA(Xs). Applying Ito’s Lemma

on both sides of (41), using (12), and matching the resulting diffusion coefficients on the left-

and the right-hand sides implies that

σX
Xt

+ σY =
κt
γA
. (42)

Similarly, matching the drift coefficients on both sides gives

µX + µYXt + σY σX = Xt

[

rt − ρA

γA
+
κ2
t

2

γA + 1

(γA)2 − π

]

+ υπβAt ,. (43)

To solve for µX and σX from equations (42) and (43) we need to obtain expressions

for rt and κt, which we do by using the goods-market clearing condition (16). Specifically,

combining (16) with (31) and (32) gives

Yt =

∫ t

−∞
πe

−

(

π+ ρA

γA

)

(t−s)
υβAs Zsgs

(

ξt
ξs

)− 1

γA

ds+ (44)

∫ t

−∞
πe

−

(

π+ ρB

γB

)

(t−s)
(1 − υ) βBs Zsgs

(

Ztωt
Zsωs

)

(1−ψ)(γB−1)
γB

(

ξt
ξs

)− 1

γB

ds.

Once again, applying Ito’s Lemma to both sides of (44) and matching diffusion terms on the

left- and the right-hand sides yield

σY = Xt

κt
γA

+ (1 −Xt)

[

κt
γB

+
(1 − ψ)

(

γB − 1
)

γB

(

ω′

ω
σX + σZ

)

]

. (45)

Similarly, by matching drift coefficients we obtain

µY =
∑

i∈{A,B}

υiπβit +Xt

[

rt − ρA

γA
+
κ2
t

2

γA + 1

(γA)2 − π

]

+ (46)

(1 −Xt)

[

D

(

w
(1−ψ)(γB−1)

γB ξ
− 1

γB

)

−

(

π +
ρB

γB

)

]

,
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where we have used the shorthand notation υA = υ, υB = 1 − υ, and

D
(

waξb
)

≡ a

(

µZ +
σ2
Z

2
(a− 1) +

ω′

ω
(µX + aσZσX − κtbσX) − bκtσZ

)

(47)

+
σ2
X

2

(

a (a− 1)

(

ω′

ω

)2

+ a
ω

′′

ω

)

− b

(

rt +
κ2
t

2
(1 − b)

)

.

Fixing a value of Xt, equations (42) and (45) form a linear system in σX and κt that can

be solved explicitly. This yields σX and κt as functions of Xt. Having obtained σX and κt,

equations (43) and (46) also form a linear system in rt and µX that can be solved explicitly,

yielding rt and µX as functions of Xt, as conjectured at the beginning of the section. Since

both µX and σX are functions of Xt, the consumption-share process Xt is a Markov process,

verifying the guess at the beginning of section 3.

The last step in the construction of the equilibrium stochastic discount factor is the

explicit determination of the functions φi (Xt) and βi (Xt). The following Lemma shows how

to obtain these functions.

Lemma 2 Let σX(Xt), κ(Xt), µX(Xt), and r(Xt) denote the solution to the linear system of

equations (42), (43), (45), (46). Then the function φA(Xt) and φB(Xt) are the solutions to

the differential equations

0 =
σ2
X

2

(

φA
)
′′

+
(

φA
)′

(µX + σX(σY − κ)) + φA(µY − r − σY κ− π − δ) +Kpriv (1 − α(Ht)) (48)

0 =
σ2
X

2

(

φB
)
′′

+
(

φB
)′

(µX + σX(σY − κ)) + φB(µY − r − σY κ− π − χ) + ψ
1

1 − υ

π + χ

π

ω(Xt)

g(Xt)
, (49)

where we have used the simpler notation σX , µX , r, κ, rather than σX(Xt), µX(Xt), etc. Fi-

nally, the functions βi, i ∈ {A,B}, are given as βi(Xt) = φi(Xt)/ζ
i(Xt), where ζA(Xt) and

ζB(Xt) solve the differential equations

−1 =
σ2
X

2

(

ζA
)
′′

+
(

ζA
)
′

(

µX − σX
γA − 1

γA
κ

)

− ζA

(

π + r +
ρA − r

γA
+
γA − 1

(γA)2
κ2

2

)

, (50)

−1 =
σ2
X

2

(

ζB
)
′′

+
(

ζB
)
′

(

µX + σX
(1 − ψ)

(

γB − 1
)

γB

(

σZ +
ω′ (Xt)

ω (Xt)
σX

)

− σX
γB − 1

γB
κ

)

+ζB



D



w

(1−ψ)(γB−1)
γB

t ξ
1− 1

γB

t



−

(

π +
ρB

γB

)



 . (51)

21



From the solution ζ i(Xt), φ
i(Xt) to the differential equations above we obtain βi(Xt) =

φi(Xt)/ζ
i(Xt), and then solve for rt, κt, µX and σX as functions of Xt. As we illustrate in

section 4.1, in some special cases it is even possible to obtain closed-form expressions for

some of these quantities. Before doing this, we determine the value of the stock market.

3.4 Stock Price

Given ξt, it is possible to define the stock market value as follows

St ≡ Et

∫ ∞

t

(

ξu
ξt

)

Dudu. (52)

To verify that the constructed allocation forms an equilibrium, it remains to verify con-

ditions (17) and (18).14 Adding up these two equations, and using Walras’ law it suffices to

verify that the aggregate financial wealth is equal to the stock market value

υ

∫ t

−∞

πe−π(t−s)WA
t,sds+ (1 − υ)

∫ t

−∞

πe−π(t−s)WB
t,sds = St (53)

The next Lemma confirms that equation (53) holds.

Lemma 3 Let St be defined as (52). Then equation (53) holds.

It is also possible to give a simple expression for St in terms of the functions ζ i, φi.

Lemma 4 The stock market value is given as

St = Yt

[

ζA (Xt)Xt +
ζB (Xt)

ψ
(1 −Xt) − υφA(Xt)

π

π + δ
− (1 − υ)

φB (Xt)

ψ

π

π + χ

]

(54)

From (54) we obtain the price-dividend ratio as

p(Xt) =
St
Dt

=
St

YtKpub [1 − α (H(Xt))]
.

Finally, applying Ito’s lemma to (54) together with the definitions of p (Xt) , Dt, Yt gives

the stock-market volatility and the stock market expected return as

σt = σ(Xt) = σZ +

(

p′

p
−

α′H′

(1 − α)
+
g′

g

)

σX (55)

µt = µ(Xt) = rt + κtσt. (56)

14We assume throughout that St <∞.
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4 Qualitative Features of the Model

Before proceeding with an analysis of the quantitative implications of the model, it is instruc-

tive to start by examining some special cases that clarify the channels behind the model.

4.1 Overlapping Generations and the Risk-Free Rate Puzzle

We start our analysis with the special case γA = γB = γ, ψ = 1, and ρA = ρB = ρ, so that

agents of type A and agents of type B have identical preferences, but different endowments.

Then we obtain the following result.

Lemma 5 An equilibrium is characterized by the following properties: (1) Ht = 1, and σX =

0, so that the evolution of Xt is deterministic. (2) κt is constant and given by κt = κ = γσZ ,

(3) In steady state, the interest rate r is constant and is given by the solution to the equation

0 =
π + r + ρ−r

γ
+

σ2
Z

2 (γ − 1)

r + γσ2
Z + π + δ − µZ

(1 −Kpub) (π + δ) (1 − α(1)) +
π + r + ρ−r

γ
+

σ2
Z

2 (γ − 1)

r + γσ2
Z + π + χ− µZ

(π + χ)α(1)

+
r − ρ

γ
+
σ2
Z

2
(γ + 1) − (π + µZ) . (57)

Figure 1 plots the solution to (57) and illustrates the effects of changing χ and δ on the

equilibrium interest rate for various degrees of risk aversion. There are two conclusions that

follow from Figure 1. First, the interest rate declines as either χ or δ increases. Second,

this decline in the interest rate can be substantive. The graph reconfirms (in a stochastic

environment) the observations originally made by Blanchard (1985) (in a deterministic set-

ting): If agents face a downward sloping profile of earnings over the life cycle (say, because

of retirement), interest rates are substantially lower in equilibrium, even for high levels of γ.

This is intuitive. In the standard infinite-horizon representative-agent framework, there

is little need to save for the future, as the representative agent is entitled to the aggregate

endowment both presently and in the future. In contrast, in an OLG framework an agent

with income constituting a decreasing fraction of the aggregate endowment over her life cycle

will need to save in order to sustain her standard of living. This effect increases savings and

hence reduces the equilibrium interest rate.
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Figure 1: Equilibrium interest rates for different levels of χ, δ, and γ = γA = γB . The rest of

the parameters are ρ = 0.01, π = 0.01, µ = 0.0172, σ = 0.041, α(1) = 0.75, and Kpub = 0.4. The

horizontal line denoted by π = χ = δ = 0 corresponds to the infinite-horizon representative-agent

model.

Even though the decline of income over the life cycle can help explain the low real rates

that are observed in reality, the fact that agents have identical preferences implies that

the price to dividend ratio is constant in the long run. Hence, the model cannot explain
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why the stock market is more volatile than dividends, which in turn are more volatile than

consumption. Next, we utilize the heterogeneity of preferences to introduce variation in

discount rates and the price-to-dividend ratio.

4.2 Heterogenous Agents

4.2.1 Sharpe Ratio

In what follows we keep the same assumptions as in section 4.1, except that we allow for the

possibility that γA < γB. This special case is particularly attractive for comparison purposes,

because now Xt is a time-varying stochastic process with a non-degenerate stationary dis-

tribution. However, since ψ = 1, equation (26) continues to imply that Ht = 1. Since hours

are constant, this implies that the aggregate output Yt satisfies dYt/Yt = dZt/Zt, so that

the aggregate endowment follows a geometric Brownian motion, as is commonly assumed in

the literature. Furthermore, since hours are not time varying, both g (Xt) = f(H(Xt)) and

ω (Xt) = f ′ (H(Xt)) are constant functions, and so is the fraction of output that accrues to

labor, i.e., α(H(Xt)) = α(1).

We start our analysis by defining Γ(Xt) as the weighted harmonic average of agents’ risk

aversions:

Γ (Xt) ≡
1

Xt
γA

+ (1−Xt)
γB

. (58)

Using this definition and the fact that hours are constant, equation (45) simplifies to

κt = Γ (Xt) σZ . (59)

Since Γ′(Xt) < 0, if follows that κt is a declining function of Xt. Furthermore, equations (42)

and (59) lead to the following expression for σX :

σX
Xt

= σZ

(

Γ (Xt)

γA
− 1

)

. (60)

Since Xt ∈ [0, 1], equation (58) implies that Γ(Xt) > γA, so that σX ≥ 0. Hence, the

state variable Xt increases in response to positive innovations to the exogenous productivity
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process Zt and hence to positive news about the aggregate endowment Yt. Since κt is

declining in Xt, this implies that the Sharpe ratio in the economy is countercyclical.

This property of the model is a first illustration of the consequences of aggregation: Less

risk-averse agents (type-A agents) are more exposed to to aggregate productivity risks. As a

result, their (total) wealth increases more than the (total) wealth of more risk-averse agents

(type-B agents) in response to positive economic news, and so does their relative importance

in the economy, which is captured by Xt. Furthermore, by equation (59), the Sharpe ratio

is proportional to the (harmonic) weighted average of the risk aversions of the two agents,

where the weights are given by Xt and 1 − Xt. Accordingly, the Sharpe ratio declines in

response to good news.

Interpreting Γ (Xt) as the risk aversion of the “representative agent” shows the analogy

to Campbell and Cochrane (1999). Even though in our framework each agent has constant

relative risk aversion, equation (59) shows that assets are priced as if there exists a single

representative agent with countercyclical risk aversion. Importantly, the interaction of het-

erogeneity with overlapping generations ensures that Xt is stationary, a property that may

fail in economies with heterogeneous but infinitely lived agents.15 Stationarity of Xt implies

stationarity of valuation ratios, interest rates etc., making it possible to calibrate the model

to the data.

4.2.2 Interest Rate

One of the most challenging facts for asset pricing models is that interest rates do not seem

to vary as much as risk premia.16 One of the main innovations of the Campbell and Cochrane

(1999) model was to engineer a consumption-based stochastic discount factor where precau-

15The reason is intuitive. Given a positive risk premium, and the fact that less risk averse agents hold

more stock implies that the expected growth rate of the less risk averse agents’ wealth is higher than that of

the more risk averse. Over sufficiently long horizons, this leads to the “extinction” of the more risk averse

agents.
16For instance, the original habit-formation models (see e.g. Abel (1990), Constantinides (1990)) were

successful at reproducing high equity premia, but at the cost of fairly volatile interest rates.
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tionary savings motives exactly cancel variations in the intertemporal smoothing motive, so

that interest rates remain constant.

In the present model, it is possible to maintain interest-rate volatility at low levels, but

through a different channel. To gain intuition on this issue and simplify the formulae, we

make the same parametric assumptions as in section 4.2.1. Substituting (59) into (46) and

solving for rt gives

rt = ρ+ Γ(Xt)
[

µZ + π
(

1 − υβA(Xt) − (1 − υ)βB(Xt)
)]

−
σ2
Z

2
Γ3(Xt)∆(Xt), (61)

where ∆(Xt) is defined as

∆(Xt) ≡

{

Xt

γA

(

γA + 1

γA

)

+
1 −Xt

γB

(

γB + 1

γB

)}

=
1

Γ(Xt)
+
Xt

γ2
A

+
(1 −Xt)

γ2
B

.

Notice that, for large values of γA and γB, Γ(Xt)∆(Xt) is approximately equal to 1. 17Hence

(61) is approximated by

rt ≈ ρ+ Γ(Xt)µZ −
σ2
Z

2
Γ2(Xt) + Γ(Xt)

[

π
(

1 − υβA(Xt) − (1 − υ)βB(Xt)
)]

. (62)

Equation (62) is similar to the expressions that are typically obtained in infinite horizon

representative agent models. The first term on the right hand side of (62) is the subjective

discount rate, the second term is related to the intertemporal smoothing motive, and the

third term is related to the precautionary-savings motive of consumers. The major difference

between the infinite horizon representative agent model and the present OLG model is the

last term, and specifically the term inside the square brackets. Intuitively, this term adjusts

for the fact that aggregate consumption growth and the consumption growth of the surviving

agents (who matter for asset pricing) are not identical. On the one hand, agents that are alive

at date t perish at the rate π, and this increases the expected growth rate of consumption

to the survivors. On the other hand, new agents also arrive at the rate π, and claim a share

υβA(Xt)+(1−υ)βB(Xt) of output Yt as their consumption. Adding up the two effects gives

the term inside square brackets in equation (62).

17Mathematically, limmin(γA,γB)→∞ Γ(Xt)∆(Xt) = 1.
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Equation (62) is useful in showing how the model can produce low levels of interest-rate

volatility. Collecting terms inside (62) gives

rt ≈ ρ+ Γ(Xt)

[

µZ −
σ2
Z

2
Γ(Xt) + π

(

1 − υβA(Xt) − (1 − υ)βB(Xt)
)

]

. (63)

Equation (62) shows that in order to obtain interest rates that are low and non-volatile,

there are two conditions that need to be satisfied. First, in order to obtain low interest rates,

the term inside square brackets in equation (63) needs to be relatively small. Otherwise, the

“representative” risk aversion Γ(Xt) that premultiplies this term (and that typically is high,

in order to account for the Sharpe ratio in the data) makes the interest rate implausibly large.

Second, in order to obtain roughly constant interest rates, the term inside the square brackets

in equation (63) needs to be increasing in Xt, since the term Γ(Xt) that pre-multiplies the

expression inside square brackets is declining in Xt.

The first property typically obtains with a declining labor income over the life cycle, as

we discussed in section 4.1. The second property requires that υβA(Xt) + (1 − υ)βB(Xt) is

increasing in Xt, to counteract the fact that
σ2
Z

2
Γ(Xt) is declining in Xt .

Intuitively phrased, variations in Xt have two effects on the term inside square brackets

in equation (62). On the one hand, they change the risk aversion of the representative

agent, and hence the extent of precautionary savings. On the other hand, they affect the

survivors’ consumption growth rate, by determining the fraction of aggregate consumption

that accrues to newly born agents of each type, namely βi(Xt). If an increase (decrease) in

precautionary savings is counterbalanced by an increase (decrease) in survivors’ consumption

growth rates, then aggregate savings and interest rates will be roughly unaffected by changes

in the representative agent’s risk aversion. Hence, changes in Xt will affect mostly the Sharpe

ratio and not the interest rate, as in the Campbell and Cochrane (1999) model.

In the next section we study circumstances under which υβA(Xt) + (1 − υ)βB(Xt) is

increasing in Xt.
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4.3 Dividends and Labor

Since the two types of agents are endowed with different income streams, a first step towards

examining υβA(Xt) + (1 − υ)βB(Xt) is to investigate the properties of dividends and labor

income in the model.

To obtain non-trivial variation in hours and hence in the labor and the dividend share of

output we need to assume ψ < 1. Applying the implicit function theorem to (26) shows that

1

Ht

dHt

dXt

=

(

1 − 1
ψ

)

α′(Ht) (1 −Ht) −
α(Ht)
Ht

. (64)

Since α′(Ht) ≤ 0, α(Ht) ≥ 0 and Ht ≤ 1, the denominator on the right hand side of (64)

is negative. When ψ < 1, then the numerator is also negative and hours are procyclical,

i.e., an increasing function of Xt. The existence of stationary variation in hours implies that

the model endogenously produces some cyclical variation in output alongside the variation

caused by shocks to the (random walk) productivity process Zt. Using the definition of g

in equation (38), the fact that Ht is an increasing function of Xt also implies that output is

increasing in Xt. Mathematically, g′ (Xt) > 0.

Since we are interested in the asset-pricing implications of the model, we do not focus

on these effects. Instead, we calibrate the model so as to ensure that hours supplied are

roughly constant and as a result consumption is approximately a random walk. To achieve

this, we choose ψ close to 1. The resulting small and procyclical variation in hours, in

conjunction with our assumptions on the production function (equations [ 6] and [7]), results

in a countercyclical labor share α(Xt) and hence a procyclical dividend share 1 − α(Xt) of

output. More specifically, the definition of dividends for either publicly traded or privately

held firms, together with (6), implies that the volatility of (log) dividends σD for either type

of firm is given by

σD ≡ σY −
α′H′

1 − α(H(Xt))
σX . (65)

Given the assumption ψ < 1, all three terms in the above expression are positive, since

α′ ≤ 0, σX > 0, and H′ > 0 by equation (64). This means that dividends are more volatile
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than output (and hence consumption).18 However, over longer horizons, (log) aggregate

dividends and (log) output are cointegrated, since (1 − α(Xt)) is stationary.

Another observation concerning (64) is that the extra volatility in dividends is driven by

variation in Xt. (For instance if σX were 0, then σD = σZ). This dependence of the dividend

share on variation in Xt translates into an increased sensitivity of the value of type A’s

endowment φi(Xt) to variation inXt, since type A agents arrive in life with a dividend income

stream. Since βi(Xt) = φi(Xt)/ζ
i(Xt), in calibrated versions of the model this increased

sensitivity of φA to variation inXt is sufficiently strong to ensure that υβA(Xt)+(1−υ)βB(Xt)

is increasing in Xt. This is particularly the case when the entrepreneurial and less risk averse

type-A agents save and accumulate more assets over their lifetimes, so that it is mostly the

variation in βA(Xt) that drives the variation in υβA(Xt) + (1 − υ)βB(Xt).

To conclude our discussion of dividends and labor, we also note that the assumption of

a countercyclical labor share together with a countercyclical Sharpe Ratio makes the model

consistent with the three observations about labor-income growth reported in Lustig and

Van Nieuwerburgh (2007). First, dividend growth and labor-income growth are negatively

correlated in our framework.19 Second, anticipated labor-income growth is positively corre-

lated with “current” shocks to the productivity process.20 Third, periods of high expected

return coincide with periods of low anticipated income growth.21

18The property σY < σD follows from (40).
19Hence, when α(Xt) is above (below) its stationary mean, it can be expected to decline (increase).

Therefore dividends can be expected to increase (decline) as a fraction of the aggregate endowment, while

labor income can be expected to decline (increase).
20Shocks to the productivity shock Zt increase Xt (by equation [60]) and hence make α(Xt) decline since

α′(Xt) ≤ 0. Because α(Xt) can be expected to mean revert after such a shock, anticipated labor-income

growth is positively correlated with “current” shocks to the productivity process.
21Periods of high expected returns occur when Xt is below its stationary mean. Therefore α(Xt) is above

its stationary mean and can be expected to mean revert.
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µZ 0.0172 γA 4 β1 0.98

σZ 0.041 γB 12 β2 0.60

π 0.01 ψ 0.95 β3 1.2

χ 0.0054 ρA 0.001 β4 0.34

δ 0.08 ρB 0.001 Kpub 0.4

υ 0.1

Table 1: Parameters used in the calibration.

5 Quantitative Results

5.1 Parameter Choice and Calibration

To calibrate the model we need to choose eleven parameters along with a functional form

for α(Ht) = α(H(Xt)).

The parameters that we use for the calibration are given in Table 1. The parameters µZ

and σZ are chosen so as to match the mean growth rate and the volatility of consumption

growth respectively. As in Chan and Kogan (2002), we choose the volatility of instantaneous

consumption to be higher than in yearly discrete-time data, in order to account for the effects

of time aggregation.

The parameter π is chosen so that the median agent dies at age 69. As we have already

discussed in section 2.1, χ can be interpreted as the arrival rate of a health shock that

eliminates an agent’s ability to work.22 By letting χ = 0.0054, a type B agent has on average

the ability to work for π
π+χ

= 65% of her lifetime. Admittedly, the stylized assumptions

of the model make it hard to calibrate π and χ. In real life neither π nor χ are constant.

Nevertheless, given the tractability of aggregation that is allowed by these assumptions, we

believe that our choices for π and χ are reasonable quantitatively.

The model assumes that a type-A agent arrives with an idea that is modeled as a unit

of entrepreneurial capital stock. The parameter δ controls the economic depreciation of

22See in particular footnote 7.
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such entrepreneurial capital - a parameter that is not immediately observable in the data.

We use a common choice for depreciation by setting δ = 0.08. This choice implies that

entrepreneurial income is on average higher but also more ephemeral than labor income, so

that type A agents save more than type B agents. Therefore, we can reproduce and study

the general equilibrium consequences of the empirical finding23 that entrepreneurial saving

is higher than non-entrepreneurial saving. Moreover, this assumption is consistent with the

fact that entrepreneurial businesses seem to have a short life-span in the data24.

The parameter υ controls the fraction of the population that is comprised of the less risk

averse / entrepreneurial agents. We set that number to 10%, which is close to the fraction of

entrepreneurs in the population as reported in Gentry and Hubbard (2002).25 Kpub controls

the fraction of the capital stock that is owned by publicly traded corporations. To choose a

value of Kpub, we use annual NIPA data since 1929. In NIPA data the ratio of “income from

assets” to “proprietors’ income” is roughly one to one. Interpreting proprietors’ income as

proceeds of entrepreneurial equity, this suggests a value of Kpub close to one half. However,

to allow for the possibility that some entrepreneurial businesses are incorporated we choose

Kpub = 0.4.

The parameters that pertain to agent preferences are given in the second column of Table

1. We set type-A agents’ risk aversion to 4 and type-B agents’ risk aversion to 12, with two

motivations in mind. First, we want to match the average Sharpe ratio in the data and,

second, we want to match the evidence in Malloy, Moskowitz, and Vissing-Jorgensen (2007),

who argue that the “long-run” covariance between consumption and returns for wealthier,

stock-holding households is up to 4 times larger than the equivalent covariance for the rest

of the households. One can show that in our setup type-A agents have a covariance between

long run consumption growth and returns that is γB/γA = 3 times higher than the equivalent

quantity for type-B agents, well within the reasonable range of values supported by the data.

23See in particular Gentry and Hubbard (2002).
24See Gentry and Hubbard (2002).
25Gentry and Hubbard (2002) report numbers between 8.7% and 11.5% depending on the definition used

to classify entrepreneurs.
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For parsimony, we choose ρA = ρB = 0.001. The low value of the discount rate is

motivated by the fact that in our OLG framework the “effective” discount rate is ρ + π =

0.011.

Finally, the parameter ψ that controls type-B agents’ disutility of work is intentionally

chosen very close to one. As we have discussed, equation (26) implies that when ψ ≈ 1, hours

do not vary considerably, and hence the predictable components of consumption growth

become negligible. In particular, by combining values of ψ ≈ 1 with a steeply declining

α (H(Xt)) we can ensure that the volatility inXt affects almost exclusively the dividend share

of output, and not the predictable components of consumption. To have enough flexibility

to obtain these properties, we parameterize α(H(Xt)) as

α(H(Xt)) = (β1 − β2)N (β3(β4 −X)) + β2, (66)

where N is the cumulative normal distribution function and β1, β2, β3, and β4 are constants

that we can choose to match certain properties of the data. Equation (66) implies that

α ∈ (β1, β2) for any value of Xt, so that β1 and β2 control the range of α. The constants β3

and β4 control the steepness of the function and the point at which it achieves its maximum

slope (in absolute value).

Our choices of β1, β2, β3, and β4 control the production function of the economy, and hence

the dividend and labor shares of output. We choose these numbers so as to approximately

match (i) the average dividend and labor share of national income and (ii) the year-to-

year volatility of the dividend share. In computing this dividend share we include both

proprietors’ income and income from assets.26
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Data Model

Mean annual consumption growth 1.7 1.7

Volatility of consumption growth 3.3 3.4

Mean riskless rate 2.9 2.5

Standard deviation of riskless rate 3.0 0.2

Mean equity premium (logarithmic returns) 3.9 2.6

Standard deviation of stock market returns 18.0 10.8

Sharpe ratio 0.22 0.28

Mean dividend share of output 24.4 22.1

Standard deviation of first differenced dividend share 0.9 0.9

Standard deviation of dividend growth rate 11.8 8.4

Table 2: Unconditional annual moments of the data. With the exception of the fourth, the

eighth, and the ninth row, all data are from the long sample of Campbell and Cochrane (1999).

The volatility of the interest rate is from Chan and Kogan (2002) and it refers to the volatility

of the ex-post real rate. Hence, it overstates the volatility of the ex-ante riskless rate, because it

doesn’t account for inflation surprises. The eighth and ninth row are from NIPA data provided by

the Bureau of Economic Analysis, spanning the years 1929-2005. We add proprietors’ income and

income from assets and divide by national income in computing the “dividend share” in the data.

Simulation data are based on 10,000 simulated years of data for publicly traded companies, using

a time increment of one month. Data are time-aggregated to yield yearly data.

5.2 Unconditional Moments

Table 2 compares the model’s performance with some key moments in the data. As Mehra

and Prescott (1985) and Chan and Kogan (2002), we calibrated the model to the century

26However, we excluded rental income of persons. The model has no role for land, and the asset pricing

focus of the paper implies that one should match as closely as possible the fraction of income that is paid

out to entrepreneurs and holders of corporate claims in the economy. Including rental income of land as

part of the income that accrues to shareholders raises the “dividend share” from 24.4 percent to 29.7. As a

robustness check, we also calibrated the model to this higher number, and obtained similar results.
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long-sample data on consumption and returns that are reported in Campbell and Cochrane

(1999).27 The model’s performance is not as good as in Campbell and Cochrane (1999),

but it does explain a significant fraction of some asset-pricing facts. Most moments are

within a reasonable distance from their empirical counterparts. The main moment that is

underpredicted by the model is the volatility of equity.

There are three remarks about these results.

First, the model does not assume any financial leverage. We have made this assumption

in order to investigate how much dividend volatility can be generated by the procyclicality

of the dividend share. As Table 2 shows, the resulting dividend volatility is 8.4%, which is

about 70% of the dividend volatility in the data. Hence, it should not be surprising that

the model can only replicate 60% of the volatility of asset prices and 2/3 of the equity

premium. Even though throughout the paper we compare the model’s predictions to the

observed stock prices in the data, it is worth noting that in the data equity is levered and

the debt to equity ratio averages 0.56 in postwar data. Therefore, as Barro (2006) shows28

the (implied) equity premium on unlevered equity is 1/ (1 + 0.56) ≈ 64% of the (observed)

equity premium on levered equity. A similar argument applies to the volatility of unlevered

equity. Given the model’s simplifying assumption that firms have no financial leverage, it

seems reasonable to compare the imputed unlevered equity prices in the data to the equity

prices implied by the model. Such a comparison shows that the model matches closely the

(imputed) unlevered equity premium and volatility implied by the data. Having noted the

distinction between levered and unlevered equity, for the rest of the paper we compare the

27Besides providing more accurate estimates of moments in the data, the century-long sample captures

turbulent times for the US economy, such as the great depression. Moreover, as Siegel (1992) has shown

with data since 1800, the post-world war II period is unusual by historical standards for the behavior of

real interest rates and equity premia. However, the drawback of the long sample is that consumption data

prior to world-war II are likely to be measured with some error. Nevertheless, even after accounting for

such measurement error, there is broad agreement that macroeconomic data in the interwar period are

substantially more volatile than post world-war II data, and there is debate only about the 30 years prior

to world-war I. For a discussion, see Romer (1999) and Blake and Gordon (1989).
28See Barro (2006), Section III.
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model-implied (unlevered) equity returns to the raw data on equity returns, without making

any adjustments for leverage.

Second, in both the model and the data the volatility of stock prices is higher than

the volatility of dividends, which in turn is substantially higher than the volatility of con-

sumption. As we discuss in the next section, this implies that the variability of anticipated

discount rate changes is larger than the variability of anticipated dividend growth, a fact

with important implications for the predictability of excess returns.

Third, the stationary standard deviation of the interest rate is about 20 basis points in

the model, i.e., the interest rate is practically constant. This implies that the variability in

discount rates is almost exclusively driven by changes in excess returns, not interest rates.

The main conclusion is that the model explains a significant fraction of the unconditional

asset-pricing moments commonly studied, despite the usage of standard expected-utility

specifications and without relying on excessive interest-rate volatility.

5.3 Conditional Moments

Figure 2 gives a depiction of the instantaneous Sharpe ratio, risk-free rate, conditional

volatility, and equity premium as functions of Xt. The range of values of Xt corresponds to

±1 (stationary) standard deviations around its stationary mean. Figure 2 shows that the

range of values for the conditional equity premium is substantially larger than the equivalent

range for the riskless rate. Hence, it confirms that most of the variation in discount rates is

related to variations of the equity premium, not the interest rate, consistent with the data.

Figure 3 addresses another feature of the model that is consistent with the data and

presents a challenge for many models: the joint presence of a procyclical dividend share29

and a procyclical price-to-dividend ratio. Figure 3 presents the P/D ratio as a function of

Xt. Note that the P/D is increasing in Xt. This picture implies that there is time variation

in anticipated changes to discount rates, and that this time variation is sufficiently strong to

offset the time variation in anticipated dividend growth rates.

29Since α is decreasing in Xt, 1 − α is increasing in Xt

36



0.25 0.3 0.35 0.4 0.45

0.26

0.28

0.3

0.32
Sharpe Ratio

x
0.25 0.3 0.35 0.4 0.45

0.024

0.025

0.026

0.027

Interest rate

x

0.25 0.3 0.35 0.4 0.45

0.09

0.1

0.11

0.12

Stock Vol

x
0.25 0.3 0.35 0.4 0.45

0.025

0.03

0.035

Equity Premium

x

Figure 2: The four panels depict the Sharpe ratio, the interest rate, the stock volatility and

the equity premium respectively as a function of the consumption share of type A agents (less risk

averse agents), which is denoted as X. The range of X values corresponds approximately to ±1

standard deviations around the stationary mean of X.

To see this point more clearly, consider figure 4. To simplify matters, assume that con-

sumption is a random walk in logs, which is a close approximation to our model. The figure

shows the effects of a 1 percent increase in current consumption. Since this effect is perma-

nent, it shifts permanently the path of consumption at all future dates. Furthermore, since

the dividend share is procyclical, dividends rise by k > 1 in the short run. However, because

of co-integration, we also know that in the long run dividends will rise by 1 percent. These

simple observations imply that in response to a positive shock to aggregate consumption, the
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Figure 3: Price-to-dividend ratio as a function of the consumption share of type-A agents (less

risk averse agents), which is denoted as X

anticipated growth rate of dividends will decline instead of increase, as is illustrated by the

declining line in figure 4. If discount rates were constant, this would imply that the price-to-

dividend ratio would decline in response to good news. Alternatively put, in response to a

one percent increase in consumption, prices would rise by a percentage strictly smaller than

k and, hence, dividends would be more volatile than asset prices.

In our setup, however, discount rates are not constant: Instead, they decline in response

to positive shocks, as explained in section 4.2.1. In the calibrated version of the model, the

decline in the anticipated dividend growth is smaller than the decline in discount rates, and

thus the price-to-dividend ratio is procyclical, as in the data. This is consistent with the

evidence in Lettau and Ludvigson (2005), who point out that the comovement of discount

rates with the anticipated growth rate in dividends can help account for the observed inability

of the price-to-dividend ratio to predict dividend growth.

Additionally, the model can help explain the finding that the price-dividend ratio typically

predicts dividend growth with the wrong sign. (See e.g. Cochrane (2005), p. 392). Table 3

shows a direct implication of figure 4. Since both the P/D ratio and the dividend share are

increasing in Xt, mean reversion in Xt implies that high P/D ratios anticipate a moderation
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Figure 4: The implications of co-integration between dividends and consumption.

in dividend growth. Table 3 shows how this can help explain the puzzling finding that

Campbell-Shiller type decompositions in the data assign a negative fraction of the variation

in the P/D ratio to changes in dividend growth.

Table 4 gives yet a different perspective on these effects by showing the strong predictive

ability of the P/D ratio for excess returns. The model overpredicts the absolute value of the

coefficients in the predictive regressions for excess returns. This is partly driven by the fact

that the model underpredicts the volatility of the (log) P/D ratio. This is to be expected,

because of the offsetting effects of dividend growth on the time variation in discount rates.

The R2 of the regression, which is less affected by this issue, has the right order of magnitude
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Data Model

Dividends -10 -35

Returns 101 128

Table 3: Campbell-Shiller Variance Decompositions. The data are from the long sample of

Campbell and Cochrane (1999). Simulation data are based on 10,000 simulated years of data for

publicly traded companies. Time increments are monthly and are time-aggregated to yearly data.

Horizon (Years) Data (Long Sample) Model

Coefficient R2 Coefficient R2

1 -0.13 0.04 -0.20 0.02

2 -0.28 0.08 -0.38 0.05

3 -0.35 0.09 -0.58 0.07

5 -0.60 0.18 -0.96 0.11

7 -0.75 0.23 -1.37 0.16

Table 4: Long Horizon Regressions of excess returns on the log P/D ratio. To account for the

well documented finite sample biases that are driven by the high autocorrelation of the P/D ratio,

the simulated data are based on 1000 independent simulations of 100-year long samples, where the

initial condition for X0 for each of these simulation paths is drawn from the stationary distribution

of Xt. For each of these 100-year long simulated samples, we run predictive regressions of the form

Rt→t+h = α + β log (Pt/Dt) , where h is the horizon for returns in years. We report the median

values for the coefficient β and the R2 of these regressions.

when compared with the data.

As an additional “goodness of fit” test, we also estimated the autocorrelation of the P/D

ratio, and compared it to the data. To account for well known finite-sample biases, we

adopted the same design setup as in Table 4, and estimated this autocorrelation in repeated

100-year long simulated samples. We obtained a median autocorrelation coefficient of 0.94.30

30The 95% coverage interval for this parameter was [0.79, 1.01].
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In the data, Campbell and Cochrane (1999) report an autocorrelation of 0.87 based on CRSP

data and an autocorrelation of 0.78 based on the S&P sample. Therefore, even though the

autocorrelation of the P/D ratio in the model is somewhat higher than in the data, it seems

to be roughly consistent with the empirical magnitude of persistence.

6 Discussion and Extensions

6.1 The Dynamics of Cross-Sectional Inequality

The focus of the present model is on asset pricing. Nevertheless, it is interesting to check

that the asset-pricing predictions of the model are not driven by counterfactual dynamics of

cross-sectional consumption and wealth inequality.

As a first pass, the model’s key mechanism, namely that the wealthier (type A) agents

become comparatively richer when the stock market performs well and poorer agents become

comparatively poorer when the stock market performs badly, is consistent with the data.31

However, does the model need “too much” high-frequency variation in cross-sectional in-

equality to explain returns? This question is a common concern in all asset-pricing models

that feature heterogeneity, since high-frequency changes in inequality are small.

Figure 5 depicts the stationary distribution of the share of consumption of type-A agents

(Xt) in the top panel and the diffusion coefficient σX in the bottom panel. Intuitively, the

bottom panel depicts how much one can expect the consumption share of type-A agents to

change from year to year. The bottom panel of Figure 5 shows that the consumption share

of type-A agents changes by about ±1 percent from year to year. In simulations we find

that this translates into a yearly change in the Gini coefficient of consumption inequality of

31Wolff (1992) provides some direct evidence to that effect. With data that go back to the twenties

he shows that the wealth distribution becomes more uneven in response to positive excess stock market

returns, even after controlling for changes in the income distribution. Furthermore, Malloy, Moskowitz, and

Vissing-Jorgensen (2007) present evidence that the consumption share of shareholders is useful in predicting

subsequent excess returns.
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Figure 5: Stationary distribution (top figure) and instantaneous volatility (bottom figure) of Xt.

about 0.68 percent. This is consistent with the numbers given in Cutler and Katz (1992),

based on repeated CES samples in the seventies and eighties.32

To understand how small year-to-year changes in inequality can have substantial effects on

asset prices it is important to examine the persistence of Xt. Figure 5 depicts the stationary

distribution of Xt. There are two observations from this figure. First, type-A agents account

for about 37% of aggregate consumption, even though they are just 10% of the population.

32Cutler and Katz (1992) report the Gini coefficient for consumption inequality for the years 1960, 1972,

1980, 1984, and 1988. Computing the differences in Gini coefficients between those years, dividing by the

square root of the time distance between the years (to account for heteroskedasticity in the observations) and

then computing the standard deviation gives 0.70 percent. As a check that this number has the right order

of magnitude, we also fitted an AR(1) to yearly post-war CPS Gini coefficient data on income inequality,

since yearly consumption inequality data are not available for such a long period of time. We isolated the

residuals and estimated their standard deviation to obtain 0.56 percent. Even though this number is for

income rather than consumption inequality, it confirms that the year-to-year variability of inequality that is

produced by the model is reasonable.
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Second, the stationary distribution of Xt is substantially more “spread out” than the year-

to-year increments to Xt. This illustrates that the state variable Xt is highly persistent. This

is consistent with the data, where cross-sectional inequality behaves almost like a random

walk.33

We conclude by noting that, despite the model’s main focus on asset pricing, it makes

two additional predictions about inequality that are consistent with the data: a) Inequality

increases over the life cycle as documented by Deaton and Paxson (1994), and b) Type-

A agents (entrepreneurs) have higher saving rates than type-B agents (non-entrepreneurs),

as has been documented by Gentry and Hubbard (2002). Specifically, Deaton and Paxson

(1994) impute a Gini coefficient for consumption inequality of 0.29 for 25-year olds and 0.38

for 55-year olds. In our model the equivalent Gini coefficients are about 0.20 for 25-year

olds and about 0.24 for 55-year olds. What drives this increase in consumption inequality

over the life cycle is that type-A agents both save more and bear more aggregate risk than

type-B agents. The latter effect is clearly due to their lower risk aversion and it implies that

type-A agents’ wealth increases faster than that of type-B agents’, due to the positive equity

premium. The higher savings owe to the combination of an income profile that decays faster

for type-A than for type-B agents (δ > χ) and an intertemporal elasticity of substitution34

that is higher for type-A than for type-B agents
(

1/γA > 1/γB
)

.

Clearly, the model is too simple to facilitate a thorough study of consumption and income

inequality. Such a theory would require the introduction of time-varying idiosyncratic shocks.

However, as this section has shown, the model’s prediction for inequality are qualitatively

consistent with the data. We believe that the introduction of time-varying idiosyncratic

33The Gini coefficient of income inequality in the CPS data behaves almost like a random walk (auto-

correlation coefficient 0.996). This is approximately equal to the autocorrelation of Xt in the model, which

is about 0.99. Admittedly, this comparison between the model and the data is not exact, because the data

refer to income inequality, whereas Xt is about consumption inequality. However, as Cutler and Katz (1992)

argue, consumption and income inequality behave similarly over longer horizons.
34For expected utility preferences, the intertemporal elasticity of substitution is simply the inverse of risk

aversion.
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shocks would further strengthen the mechanisms of the paper, since entrepreneurs would

have further incentives to save for precautionary reasons. However, such a model would be

substantially less tractable.35

Even though a model with both time varying idiosyncratic and aggregate risk is unlikely

to be tractable, it is straightforward to introduce individual-specific and time-invariant dif-

ferences in earnings. The next subsection shows how to introduce such differences, and

discusses how the uncertainty associated with such idiosyncratic effects induces less risk

averse agents to become entrepreneurs and more risk averse agents to become workers.

6.2 The Link Between Low Risk Aversion and Entrepreneurship

Our baseline model simply assumes that agents with low risk aversion are entrepreneurs and

agents with high risk aversion are workers, so that there is no occupational choice. Here we

sketch how to extend the model in a simple way to allow for occupational choice without

changing any of the asset pricing implications of the model.

Specifically, assume that at time s (i.e., the time of their birth) agents can choose whether

to become entrepreneurs or workers.36 Since the purpose of this subsection is illustrative, it

will simplify matters to assume that this choice is irreversible (say because costs to switching

professions are prohibitively large). Also, extend the model to allow for an individual-specific

entrepreneurial skill Θi, so that an entrepreneur’s human capital is given by Θie−δ(t−s)Kpriv
s,s .

The shock Θi is drawn from a log-normal distribution with mean 1 and variance Σ. Im-

35Angeletos and Calvet (2006) present such a model, which is analytically tractable, and show that id-

iosyncratic risk raises precautionary savings. However, they have to assume constant absolute risk aversion

and no aggregate uncertainty, so that their model cannot be used for quantitatively studying the pricing of

aggregate risk.
36If a type A agent chooses to become a worker, then she supplies all hours inelastically, since she has no

utility for leisure. If a type B agent chooses to become an entrepreneur, then she can “purchase ”hours on

the market, since being an entrepreneur gives her no endowment of hours that can be used for leisure. An

interpretation of ”purchasing” hours is that an agent can hire outside help for household tasks, if she chooses

to become an entrepreneur.
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portantly, the realization of this random variable becomes known at time s+, after and only

if the agent made her choice to become an entrepreneur. Finally, suppose that becom-

ing an entrepreneur is associated with a (multiplicative) utility benefit of
(

UE
)(1−γi)

, where

UE > 1. That is, the ratio of an agent’s felicity function assuming that she chooses to be-

come an entrepreneur to the same agent’s felicity if she chooses to become a worker is given

by
(

UE
)(1−γi)

for i ∈ A,B. A motivation for this assumption is that agents (of both types)

don’t like to work for others, and enjoy the independence of entrepreneurship.

In such a modified setup it is possible to show that37 there always exist values of Σ and

UE > 1, such that type-A agents always choose to become entrepreneurs and type-B agents

always choose to become workers, given the equilibrium prices of section 3. The intuition is

that the uncertainty introduced by Θi deters more risk averse agents from entrepreneurship,

but not type-A agents.

Even though this simple extension makes the link between risk aversion and entrepreneur-

ship endogenous, it does not affect any of the asset pricing implications of the model. The

reason is simple and intuitive. Because of homogeneity, the consumption of entrepreneur i

scales proportionately with Θi, which is not time varying. Since Θi has a mean of 1, the con-

sumption share that accrues to entrepreneurs (i.e., type-A agents) collectively is not affected

by Θi shocks. Therefore, the dynamics of Xt are unchanged and the equilibrium prices of

Section 3 still clear markets.

7 Conclusion

In this paper we have presented a model that addresses a number of stylized facts about asset

prices. The model combines three key ingredients: a) Agents are finitely lived, b) they can

be heterogeneous in their preferences and endowments and c) consumption and dividends

may differ.

These natural assumptions help explain simultaneously several asset-pricing phenomena:

37To keep the paper within a manageable size, we make the proof of this statement available upon request.

45



a) Risk-less rates are low, since life-cycle motivations enhance agents’ incentive to save.

b) The Sharpe ratio is volatile, since variations in the wealth and consumption distribution

make our model resemble an economy populated by a representative agent with time-varying

and countercyclical risk aversion. c) Since dividends are procyclical, more volatile than

consumption, and discount rates vary countercyclically, stock market prices are volatile and

the equity premium is reasonably high. d) Most of the variation in discount rates is due

to changes in equity premia, not interest rates. e) The price-to-dividend ratio predicts

excess returns. f) Even though dividends are predictable, the time variation in expected

dividend growth is offset by changes in the stochastic discount factor, making the P/D ratio

procyclical. g) Dividends are more volatile than consumption in the short run, but the two

quantities are cointegrated over the long run. h) Consumption is practically a random walk.

These facts are consistent with the data. Moreover, calibrated versions of the model

produce a satisfactory, albeit not perfect, quantitative fit.

Accordingly, we believe that the broad conclusion of the model is that overlapping gen-

erations along with preference and endowment heterogeneity can go a long way towards ex-

plaining prevailing asset-pricing puzzles. Observationally, our framework resembles a model

of exogenous habit formation of the type proposed by Campbell and Cochrane (1999). How-

ever, the economic mechanisms of the models differ fundamentally. In our model, the stylized

asset pricing facts emerge as a result of aggregating standard life cycle consumption prob-

lems.

Last but not least, an important advantage of the model is its analytic tractability. It

provides us with a simple way of reproducing some key asset-pricing facts in a framework

that can be used in various applications. For instance, the model could be expanded to

investigate the effect of demographic shocks (such as a baby boom) on asset prices within

a model that reproduces key asset-pricing facts. The conventional utilities that we use also

facilitate policy experiments, such as the effects of a switch from pay-as-you-go to a fully

funded system. We leave such extensions and applications for future research.
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A Appendix

Proof of Lemma 1. Re-write ΦA
s as ΦA

s = φAYs, where

φA = KprivEs

∫ ∞

s

e−(π+δ)(t−s)

(

Yt
Ys

)

(1 − α(Ht))

(

ξt
ξs

)

dt. (67)

Now note that (24) implies that Yt
Ys

= Zt
Zs

f(Ht)
f(Hs)

= f(Ht)
f(Hs)

e

(

µZ−
σ2
Z
2

)

(t−s)+σZ (Bt−Bs)
. By (26) Ht is a

function of Xt, while the exponential e

(

µZ−
σ2
Z
2

)

(t−s)+σZ (Bt−Bs)
does not depend on Yt. Similarly,

because rt and κt are functions of Xt only, ξt
ξs

does not depend on Yt. Finally (1 − α(Ht)) is

independent of Yt, since Ht is a function of Xt. Therefore, φA is independent of Yt. Since φA is

an expected integral of elements that depend on future values of Xt and Xt is Markovian (by

assumption), it follows that φA is a function of Xs.

A similar argument shows that ΦB
s can be written as φBYs, where

φB ≡ ψ
π + χ

π
Es

∫ ∞

s

e−(π+χ)(t−s)wt
Yt

(

ξt
ξs

)

dt. (68)

Noting that wt = Ztf
′(Ht) and Yt = Ztf(Ht) shows that wt/Yt is a function of Ht and hence of Xt

only. Therefore, the same arguments as the ones we gave above show that φB is a function of Xt

only. To show that cis,s = βi (Xs)Ys note that

Es

∫ ∞

s

e−π(t−s)cit,s

(

ξt
ξs

)

dt = cis,s

[

Es

∫ ∞

s

e−π(t−s)
cit,s
cis,s

(

ξt
ξs

)

dt

]

. (69)

Equations (32) and (31) imply that the term inside square brackets depends exclusively on

Xt. Therefore equations (33) and (35) together with the fact that Φi
s = φi(Xs)Ys imply that

cis,s = βi (Xs)Ys.

Proof of Lemma 2. Fix a time s. For any T < s, equation (67) implies that

e−(π+δ)sφ
A(Xs)

Kpriv
Ysξs +

∫ s

T

e−(π+δ)tYt (1 − α(Ht)) ξt dt = Es

∫ ∞

T

e−(π+δ)tYt (1 − α(Ht)) ξtdt.

The right hand side of this expression is a martingale, since it is a conditional expectation. Letting

s denote the time argument, applying Ito’s Lemma to the left hand side of the above equation and

setting the drift coefficient equal to zero implies (48). Applying a similar argument to (68) leads

to (49). To obtain the functions βi,define

ζi ≡ Es

∫ ∞

s

e−π(t−s)
cit,s
cis,s

ξt
ξs
dt. (70)
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Next use (69) along with equation (33), and Φi = φiYs to obtain βi(Xt) = φi(Xt)
ζi(Xt)

.Furthermore,

equations (32) and (31) imply

ζA = Es

∫ ∞

s

e
−

(

π+ ρA

γA

)

(t−s)
(

ξt
ξs

)1− 1

γA

dt.

ζB = Es

∫ ∞

s

e
−

(

π+ ρB

γB

)

(t−s)
(

wt
ws

)

(1−ψ)(γB−1)
γB

(

ξt
ξs

)1− 1

γB

dt.

By applying a similar argument to the one given for φA, φB we arrive at (50), (51).

Proof of Lemma 3. Using (13), applying Ito’s lemma to compute d
(

e−πsξsW
i
s

)

, integrating

and using the transversality condition leads to

W i
t,s = Et

∫ ∞

t

e−π(u−t) ξu
ξt

(

ciu,s − yiu,s
)

du (71)

We next observe that generations that are born after t neither consume, nor supply hours, nor own

any wealth at time t. This means that for any i ∈ {A,B},W i
t,s = 0, cit,s = 0, yit,s = 0 as long as

s > t. Combining this observation with (71) and using the short-hand notation υA = υ, υB = 1−υ,

we obtain

∑

i∈{A,B}

∫ t

−∞
πe−π(t−s)υiW i

t,sds =
∑

i∈{A,B}

∫ +∞

−∞
πe−π(t−s)υiW i

t,sds

=
∑

i∈{A,B}

πe−π(t−s)υi
∫ +∞

−∞

(

Et

∫ ∞

t

e−π(u−t) ξu
ξt

(

ciu,s − yiu,s
)

du

)

ds

= Et

∫ ∞

t

ξu
ξt





∑

i∈{A,B}

∫ +∞

−∞
πe−π(u−s)υi

(

ciu,s − yiu,s
)

ds



 du

= Et

∫ ∞

t

ξu
ξt





∑

i∈{A,B}

∫ u

−∞
πe−π(u−s)υi

(

ciu,s − yiu,s
)

ds



 du =

= Et

∫ ∞

t

ξu
ξt
Dudu,

where the last line follows from the equilibrium condition (16), (15), (10) and the definition of Dt.
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Proof of Lemma 4. As we have shown in Lemma 3,

St =
∑

i∈{A,B}

∫ t

−∞
πe−π(t−s)υiW i

t,sds (72)

=
∑

i∈{A,B}

∫ t

−∞
πe−π(t−s)υi

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt
ciu,sdu

]

ds (73)

−
∑

i∈{A,B}

∫ t

−∞
πe−π(t−s)υi

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt
yiu,sdu

]

ds,

where we have used the short-hand notation υA = υ, υB = 1− υ.We can compute the first term in

(73) as

∑

i∈{A,B}

∫ t

−∞
πe−π(t−s)υi

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt
ciu,sdu

]

ds

=
∑

i∈{A,B}

υi
∫ t

−∞
πe−π(t−s)cit,s

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt

ciu,s
cit,s

du

]

ds

Now note that equation (31) and (32) implies that ciu,s/c
i
t,s for i ∈ {A,B} is independent of s38

i.e.,
ciu,s
cit,s

=
ciu,t
cit,t
. Using this observation together with (70) leads to

∑

i∈{A,B}

∫ t

−∞
πe−π(t−s)υi

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt
ciu,sdu

]

ds =

=
∑

i∈{A,B}

υi
∫ t

−∞
πe−π(t−s)cit,sζ

i (Xt) ds = Yt
[

ζA (Xt)Xt + ζB (Xt) (1 −Xt)
]

. (74)

Similarly we can compute the second term in (73) separately for each agent. By using (34) and

Φi(Xt) = φi(Xt)Yt, we obtain for agent A

υ

∫ t

−∞
πe−π(t−s)

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt
yAu,sdu

]

ds =

= Kprivυ

∫ t

−∞
πe−π(t−s)

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt
e−δ(u−s)Yu (1 − α(Hu)) du

]

ds

= Kprivυ

∫ t

−∞
πe−(π+δ)(t−s)

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt
e−δ(u−t)Yu (1 − α(Hu)) du

]

ds

= Ytφ
A(Xt)

[

υ

∫ t

−∞
πe−(π+δ)(t−s)ds

]

= Yt

[

φA(Xt)
υπ

π + δ

]

. (75)

38To see this, fix a time of birth s, apply equation (31) at two different points in time, say u and t, and

then derive ciu,s/c
i
t,s which is independent of s.
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Similarly, by using (21) we obtain for agent B

(1 − υ)

∫ t

−∞
πe−π(t−s)

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt
yBu,sdu

]

ds

= (1 − υ)

∫ t

−∞
πe−π(t−s)

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt

(

π + χ

π
e−χ(u−s)wu −

(1 − ψ)

ψ
cBu,s

)

du

]

ds

= (1 − υ)

∫ t

−∞
πe−π(t−s)

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt

(

π + χ

π
e−χ(u−s)

)

wudu

]

ds (76)

−Yt
(1 − ψ)

ψ
ζB (Xt) (1 −Xt).

Using (36), the first term in (76) can be further rewritten as

(1 − υ)

∫ t

−∞
πe−π(t−s)

[

Et

∫ ∞

t

e−π(u−t) ξu
ξt

(

π + χ

π
e−χ(u−s)

)

wudu

]

ds

= (1 − υ)

∫ t

−∞
e−(π+χ)(t−s)

[

Et

∫ ∞

t

e−(π+χ)(u−t) ξu
ξt

(π + χ)wudu

]

ds

= (1 − υ)Yt

[

φB (Xt)

ψ
π

(
∫ t

−∞
e−(π+χ)(t−s)ds

)]

= Yt
π (1 − υ)

π + χ

φB (Xt)

ψ
(77)

Combining (77) with (76), (74), and (75), we arrive at (54).

Proof of Lemma 5. Solving for σX and κt from equations (42) and (45) gives σX = 0 and

κt = γσZ . Therefore, Xt is deterministic. Moreover, equation (26) implies that Ht = 1 for all X.

By (24) it follows that σY = σz, µY = µZ . Furthermore, since hours do not vary with Xt, it also

follows that g′, g′′, ω′, ω′′ are all zero. Using these observations inside equations (43) and (46) gives

µX + µZXt = Xt

[

rt − ρ

γ
+
κ2
t

2

γ + 1

γ2
− π

]

+ υπβAt (78)

µZ =
∑

i∈{A,B}

υiπβit +
rt − ρ

γ
+
κ2
t

2

γ + 1

γ2
− π. (79)

Given knowledge of βit = βi(Xt), the above two equations form a system in rt, µX . We are interested

in determining the steady state value of r. Since Ht = 1, equation (6) implies that ω(H(Xt))
g(H(Xt))

≡ f ′(1)
f(1) =

α(1)
1 = α(1). Also, in steady state µX = 0, and hence equations (48) and (49) imply

φA =
Kpriv (1 − α(1))

r + σZκ+ π + δ − µZ
, φB =

1
1−υ

π+χ
π
α(1)

r + σZκ+ π + χ− µZ
(80)

ζA = ζB =
1

π + r + ρ−r
γ

+ γ−1
γ2

κ2

2

(81)

Substituting κ = γσZ andKpriv = 1
υ
π+δ
π

(

1 −Kpub
)

inside (80) and (81), using βi(Xt) = φi(Xt)/ζ
i(Xt),

and then substituting into (79) gives (57).
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