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In 1805, Thomas Young was the first to propose an equation to predict the value of the equilibrium

contact angle of a liquid on a solid. Today, the force exerted by a liquid on a solid, such as a flat plate or

fiber, is routinely used to assess this angle. Moreover, it has recently become possible to study wetting at

the nanoscale using an atomic force microscope. Here, we report the use of molecular-dynamics

simulations to investigate the force distribution along a 15 nm fiber dipped into a liquid meniscus. We

find very good agreement between the measured force and that predicted by Young’s equation.
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As is well known, for a partially wetting liquid in contact

with a solid and its vapor at a three-phase contact line,

Young’s equation [1] predicts that

�SV � �SL ¼ �LV cos�
0: (1)

Here, �SV , �SL, and �LV are, respectively, the solid-vapor,

solid-liquid, and liquid-vapor interfacial tensions and �0 is
the equilibrium contact angle measured through the liquid.

Although thermodynamically sound [2,3], this equation

cannot be verified experimentally, since the surface ten-

sions of solids can only be inferred and not measured

directly. Partly as a result, but also because of the apparent

neglect of the normal component of the surface tension

force �LV sin�
0, the equation has been periodically chal-

lenged [4], and its validity at the nanoscale remains an

open question [5,6], although evidence for this was

recently demonstrated in a Monte Carlo study of a sym-

metric binary fluid mixture in a nanoscopic slit pore [7].

Nevertheless, Young’s equation now plays a crucial role in

nanotechnology, as the contact angle is being used to

characterize the interactions of liquids with solids of near

molecular dimensions, such as carbon nanotubes [8] and

nanocones [9]. However, in these experiments, the equa-

tion is used on trust, with limited detailed evidence of its

validity for these small systems.

At the nanoscale, a typical contact angle measurement

consists of dipping a solid into a liquid and recording the

force F acting on the solid using an atomic force micro-

scope (AFM). From a macroscopic thermodynamic per-

spective, withdrawal of the solid is associated with an

increase in the solid-vapor interface and a corresponding

decrease in the solid-liquid interface. As a result, the total

net force exerted on the solid per unit length of the contact

line is

F

P
¼ �SV � �SL; (2)

where P is the effective perimeter of contact. From

Young’s equation, it follows that

F

P
¼ �LV cos�

0: (3)

In order to be sure that this macroscopic thermodynamic

model is still justified in AFM measurements, we need to

show that the forces are the same in both cases when

applied at this scale. However, the situation is not quite

as straightforward as Eq. (1) might suggest.

Recent thermodynamic arguments based on our modern

understanding of the molecular origin of interfacial tension

[10] show that the tangential force exerted by the liquid

on a partially immersed smooth solid such as a plate or

cylindrical rod is zero everywhere, except at not one but

two locations: the three-phase contact line and the base of

the solid. This is illustrated in Fig. 1. Furthermore, it turns

out that at the contact line, the tangential force exerted by

the liquid on the solid is not �SV � �SL, as might be

expected from Eqs. (1) and (2), but

�SV � �SL þ �LV : (4)

This quantity is equivalent to the reversible work of

adhesion between a liquid and a solid Wa0, which is

defined as the energy required to destroy unit area of a

solid-liquid interface and create equivalent areas of solid-

vapor and liquid-vapor interfaces at constant temperature

and pressure. Substituting for �SV � �SL using Eq. (1)

gives the Dupré equation [11]

FIG. 1. Schematic illustration of the tangential forces exerted

on a partially immersed rod.
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Wa0 ¼ �LVð1þ cos�0Þ: (5)

The existence of the force �LVð1þ cos�0Þ at the contact
line has recently been confirmed by density functional

theory [12] and molecular dynamics [13].

The apparent paradox raised by Eq. (4) is resolved once

it is recognized [10,14] that there is an additional force at

the base of the solid acting upwards. This is identical to

�LV and arises because of the Laplace pressure generated

over the submerged base of the solid. Once this is sub-

tracted from the force at the contact line, Eq. (2) is recov-

ered. Another way of rationalizing this force from the

macroscopic thermodynamic standpoint is to notice that

as the solid is withdrawn from the liquid and the solid-

liquid interface is destroyed, a new liquid-liquid interface

is created by bringing together two liquid surfaces, liberat-

ing the work of cohesion 2�LV .

The aim of the work described in this Letter is to inves-

tigate the magnitude and distribution of these forces at a

scale similar to that of the AFM experiments. To do this,

we use large-scale molecular dynamics to simulate the

capillary rise of a liquid meniscus around a cylindrical

rigid nanofiber, as illustrated in Fig. 2. The simulations

allow us to measure the tangential force per unit length

exerted by the liquid along the total immersed height of the

fiber, together with the equilibrium contact angle. We also

measure �LV in an independent simulation using a planar

liquid film. This gives us all the information required to

calculate both �SV � �SL and �LV cos�
0 in Eqs. (2) and (3)

and compare the values obtained.

As we will show, our results do indeed confirm that

Eqs. (2) and (3) yield the same result and, therefore, that

Young’s equation may be applied at this scale. As far as

we are aware, the forces exerted by a liquid on a

cylindrical nanofiber have not previously been studied

by molecular dynamics. In particular, we believe that

this is the first time that the force acting at the base

of an immersed solid has been resolved and shown to

be equal to the surface tension of the liquid and

independent of the strength of solid-liquid interactions

and the contact angle.

Simulation model.—The main elements of the simula-

tions, including geometry, potentials, specific parameters,

and procedures, are set out below. Most of them have

already been applied successfully to study both the

statics and the dynamics of wetting for simple liquids in

various geometries [15–18]. The key parameters are the

potentials between the solid (S) and liquid (L) atoms,

which are modeled by standard pairwise Lennard-Jones

12-6 interactions:

UðrijÞ ¼ 4CA�B�ij

��

�ij

rij

�

12

�

�

�ij

rij

�

6
�

; (6)

where rij is the distance between any pair of atoms i and j.

The coupling parameter CA�B enables us to control the

relative affinities between the atoms. The subscript A� B
stands for the various possible interaction pairs: L-L, L-S,
and S-S. The parameters �ij and �ij are related, respec-

tively, to the depth of the potential well and an effective

atomic diameter. For both solid and liquid atoms, �ij ¼

0:267� 103 J=mol and �ij ¼ 0:35 nm. The pair potential

is set to zero for rij ¼ 2:5�ij. CA�B is given the value 1.0

for L-L and S-S interactions, but the S-L coupling is varied

from 0.4 to 1.05 to explore a wide range of equilibrium

contact angles. To limit evaporation, the liquid is modeled

at a molecular level as eight-atom chains, with a confining

potential between nearest neighbors i and j: UconfðrijÞ ¼

Ar6ij. The constant A is set to �ij=�
6
ij.

The nanofiber is built as a vertical stack of 39 square

lattices and comprises 12 675 atoms, with the distance

between atoms initially set to the equilibrium distance

given by the Lennard-Jones potential, i.e., 21=6�ij. To

create a realistic solid, the atoms are allowed to vibrate

around their equilibrium positions according to a harmonic

potential Uhð ~riÞ ¼ D j ~ri � ~r0i j
2 with ~ri the instantaneous

position of a solid atom i and ~r0i its initial position. The

constant D is set to 2500ð�ij=�
2
ijÞ. It guarantees that the

solid is rigid. The resulting fiber has a height of 15 nm and

an effective radial perimeter of 31.4 nm. The masses of

both liquid and solid atoms are set to that of carbon

(12 g=mol). The time step of the simulation is 5 fs. The

successive configurations of the system, i.e., the positions

of the atoms, are recorded every 1000 time steps, at a

reduced temperature T� ¼ kBT=�ij ¼ 1:0. During the

simulations, only the temperature of the solid is kept

constant, allowing us to mimic an isothermal solid. Our

previous work has shown that although this model is

simple, it captures the essential physics of wetting.

The liquid bath is a cylindrical annulus with a radius and

height of 15 nm; it contains 20 721 eight-atom chains. It is

anchored around its circumference by a monolayer of frozen

liquid, within which it equilibrates. The nanofiber is posi-

tioned just above themeniscus and thenpartially immersed at

a steady velocity, before stopping. The meniscus is allowed

2 nm

z

FIG. 2 (color). Front and top views showing our molecular-

dynamics simulations of a cylindrical rod (red atoms) dipping

into a cylindrical liquid bath (green molecules) held in place

within a frozen liquid annulus. The configuration shows the

equilibrium configuration for CS�L ¼ 1:0.
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to relax until it reaches equilibrium. The static contact angle

and the tangential forces exerted by the liquid on the nano-

fiber in the z direction are then calculated.
Contact angle measurements.—To ensure that equilib-

rium is reached, we determine the evolution of the contact

angle and contact-line position with time as the meniscus

relaxes. For each configuration, we locate the liquid-vapor

interface by a density calculation and record its position.

We then approximate the meniscus shape by a catenoid

[17] and fit it to the James equation [19]. Examples of

contact angle dynamics observed during meniscus relaxa-

tion are illustrated in Fig. 3 for CS�L ¼ 0:4, 0.6, 0.8, 0.9,
and 1.0. The equilibrium contact angle is obtained once

there is no further change with time within the precision

allowed by thermal fluctuations.

Interfacial tension measurement.—To determine �LV ,

we run independent simulations with a planar liquid film.

The interfacial tension is calculated from the pressure

tensor using the formula [20,21]

� ¼
1

2S

*

X

N

i¼1

X

N

j>i

�

1�
3r2ijz

r2ij

�

rij
@UðrijÞ

@rij

+

; (7)

where rijz is the z component of the separationvector ~ri � ~rj
and S the area of the film. The sum over allN liquid atoms is

such that only the atoms at the interfacial region contribute.

The value obtained for �LV was 2:49� 0:5 mN=m.

Force measurements.—The forces exerted by the liquid

on the nanofiber are obtained by differentiation of Eq. (6)

for the Lennard-Jones potential between the fiber and liquid

atoms. The calculations are done once the system has

reached equilibrium. For each solid-liquid coupling CS�L,

we determine the force per unit length of the radial perime-

ter of the fiber in the z direction as a function of the distance
from the bottom of the fiber. The increment in z is taken as

the distance between adjacent layers of the fiber, so that

each value calculated corresponds to the force acting on a

single layer. We then average these values over the configu-

rations generated at equilibrium to produce the complete

distribution of forces along the fiber. Two examples, for

couplings CS�L ¼ 0:8 and 1.0, are given in Fig. 4. Because
we measure the forces in the z direction, attractive forces

between the liquid and the solid have a minus sign.

Figure 4 confirms that, as predicted, the forces are

located entirely at the bottom of the fiber and in the area

where the liquid-vapor interface meets the fiber, across the

three-phase contact zone (TPZ). At the bottom of the fiber,

we see that the first solid layer is repelled by the liquid

(positive force); i.e., the liquid is trying to expel the fiber.

However, the force on the second layer is attractive.

The following layers do not provide any additional con-

tribution until the TPZ is reached. The force then becomes

progressively more attractive, reaching a maximum before

smoothly vanishing once again.

Figure 5 shows the integrated force (a) at the bottom of

the fiber and (b) across the TPZ for each solid-liquid

coupling investigated, plotted as a function of the associ-

ated equilibrium contact angle. Also shown are solid lines

representing �LV and ��LVð1þ cos�0Þ based on the in-

dependent measurements of the contact angle and interfa-

cial tension. Evidently, the forces at the two critical

locations are in close agreement with theory over the

very wide range of contact angles investigated. It is par-

ticularly notable that the force at the bottom of the fiber is

almost exactly equal to the surface tension of the liquid and

independent of the contact angle. The agreement with

Eq. (5) is significantly better than that obtained previously

with molecular dynamics [13]. Moreover, since Eq. (5) is

derived via Young’s equation, the latter’s validity appears
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FIG. 3. Contact angle versus time for five different liquid-solid

interactions (from top to bottom, CS�L ¼ 0:4, 0.6, 0.8, 0.9, and
1.0 with, respectively, �0 ¼ 133:0� � 3:3�, 108:8� � 3:3�,
85:7� � 3:4�, 70:0� � 3:5�, and 51:0� � 3:5�). Each point is

the average of 50 successive values, and the error bars are the

standard deviations.
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FIG. 4. Tangential force distribution at equilibrium along the

nanofiber obtained from the simulations at two solid-liquid

couplings: CS�L ¼ 0:8 (triangles) and 1.0 (squares). The inset

shows an enlarged view of the force distribution at the contact

line. The error bars are the standard deviations on the average

values of the forces calculated for each layer of the fiber.
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to be confirmed at the scale of the simulations. Further

support is provided by (c) the intermediate plot in Fig. 5.

This directly compares the sum of the forces measured at

the two locations (i.e., the net force) with that predicted by

Eq. (3):��LV cos�
0 (because we measure the forces in the

z direction, attractive forces between the liquid and the

solid have a minus sign). The latter is indicated by the solid

line through the data. The excellent agreement justifies the

use of Young’s equation in the AFM experiments with

nanofibers and nanocones. In each case, the lines through

the data lie well within error bars based on the standard

deviation of the data.

Strictly speaking, our simulations have not really proved

Young’s equation, since we have measured neither �SL nor

�SV . What we have measured is their difference, or more

particularly what Gibbs [2] called the superficial tension of

the liquid in contact with the solid &LS ¼ �SL � �S, where

�S is the surface tension of the bare solid in contact with a

vacuum and the solid is assumed to be immutable, i.e.,

unaffected by the fluid phase with which it is in contact.

The liquid in our simulations is essentially nonvolatile, due

to the use of eight-atom chains, so the part of the fiber that

is not immersed is in contact with a vacuum. It may,

therefore, be assumed to have the thermodynamic surface

tension �S. Furthermore, the solid is sufficiently rigid as to

be effectively immutable, as required by Gibbs. Thus, what

we have really demonstrated is that &LS ¼ �LS cos�
0.

Conclusions.—This Letter describes the use of large-

scale molecular dynamics simulations to measure the

tangential force distribution along nanoscale fibers

dipped into a liquid meniscus together with independent

measurements of the equilibrium contact angle �0 and

the liquid-vapor interfacial tension�SV . The results confirm

that the force at the contact line is equal to �LVð1þ cos�0Þ
and that there is an additional force at the base of the fiber

equal to �LV . This yields a net force �SV � �SL. Moreover,

the force �LV cos�
0 exerted by the liquid-vapor interface

at the contact line is equal to this same net tangential

force. Taken together, these results provide compelling

evidence that the use of Young’s equation is justified at

the nanoscale and, in particular, in wetting experiments

with carbon nanotubes and nanocones [8,9].
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FIG. 5. The total force (a) at the bottom of the fiber and

(b) across the three-phase zone for CS�L ¼ 0:4 to 1.05, plotted

as a function of the equilibrium contact angle. The solid lines

through the data represent (a) �LV and (b) ��LVð1þ cos�0Þ.
(c) The intermediate plot compares the sum of the measured

forces at both locations with that predicted by Eq. (3):

��LV cos�
0 (because we measure the forces in the z direction,

attractive forces between the liquid and the solid have a

minus sign).
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