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Abstract
As more services have come to rely on sensor data such

as audio and photos collected by mobile phone users, verify-
ing the authenticity of this data has become critical for ser-
vice correctness. At the same time, clients require the flexi-
bility to tradeoff the fidelity of the data they contribute for re-
source efficiency or privacy. This paper describes YouProve,
a partnership between a mobile device’s trusted hardware
and software that allows untrusted client applications to di-
rectly control the fidelity of data they upload and services
to verify that the meaning of source data is preserved. The
key to our approach is trusted analysis of derived data, which
generates statements comparing the content of a derived data
item to its source. Experiments with a prototype implemen-
tation for Android demonstrate that YouProve is feasible.
Our photo analyzer is over 99% accurate at identifying re-
gions changed only through meaning-preserving modifica-
tions such as cropping, compression, and scaling. Our audio
analyzer is similarly accurate at detecting which sub-clips of
a source audio clip are present in a derived version, even in
the face of compression, normalization, splicing, and other
modifications. Finally, performance and power costs are rea-
sonable, with analyzers having little noticeable effect on in-
teractive applications and CPU-intensive analysis complet-
ing asynchronously in under 70 seconds for 5-minute audio
clips and under 30 seconds for 5-megapixel photos.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Sys-

tems]: Real-time and embedded systems
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1 Introduction
Mobile phones are fast becoming the eyes and ears of the

Internet by embedding digital communication, computation,
and sensing within the activities of daily life. The next gener-
ation of Internet platforms promises to support services like
citizen journalism, mobile social networking [13], environ-
mental monitoring [24], and traffic monitoring [17] by pair-
ing the ubiquitous sensing provided by mobile phones with
the large-scale data collection and dissemination capabilities
of the cloud.

Data authenticity is crucial for service correctness. Mo-
bile social services have already been gamed by partici-
pants claiming to be in places they were not [18], and
citizen-journalism services have been fooled by falsified im-
ages [20, 34]. Correctness is especially important for ser-
vices such as Al Jazeera’s Sharek and CNN’s iReport. De-
ploying trusted reporters and photographers into events such
as those recently experienced in Iran, Haiti, Tunisia, Egypt,
and Libya is difficult. Due to logistical obstacles, govern-
ment bans, and reprisals against journalists, anonymous lo-
cal citizens with camera phones were instrumental in docu-
menting these situations. Thus, given the increasingly large
role crowd-sourced content plays in world affairs and the dire
consequences that dissemination of falsified media could
have, verifying the authenticity of this data is paramount.

One proposed solution is to equip phones with trustwor-
thy sensors capable of signing their readings and to require
clients to return unmodified signed data to a service [10].
Unfortunately, requiring clients to send unmodified data is
impractical. Mobile clients require the flexibility to trade-off
data fidelity for efficient resource usage and greater privacy.
This is particularly true for media such as audio and pho-
tos. For example, a client may wish to upload a photo with
reduced resolution or under lossy compression to improve
energy-efficiency and performance [6], or a client may wish
to blur faces in a photo to conceal someone’s identity [26].
Resolving the tension between data authenticity and data fi-
delity is a key obstacle to realizing the vision of phone-based
distributed sensing.



Trusted hardware such as a Trusted Platform Module
(TPM) can serve as the foundation of a solution. A part-
nership between a device’s trustworthy hardware and its sys-
tem software can produce digitally-signed statements about
a data item’s “chain of custody” to a remote service. How-
ever, even given this outline of a solution, several questions
remain: What form should the partnership between device
hardware and software take? What statements should a client
present to a service? On what bases should a service trust a
client’s statements? What are the energy and performance
implications of generating those statements on a resource-
constrained mobile client?

In this paper, we address these questions by presenting
the design and implementation of YouProve, a framework
for verifying how data is captured and modified on a sensor-
equipped mobile phone. We believe that the ability to verify
that a derived data item preserves the meaning of an orig-
inal sensor reading is an important step for evaluating data
authenticity in domains such as citizen journalism. The key
to our approach is type-specific analysis of derived sensor
data. Type-specific analysis can be implemented by using
well-known audio-analysis and computer-vision libraries to
compare the content of a source item (e.g., an original audio
clip or photo) to the content of a derived version of the item.
The goal of type-specific analysis is to allow client appli-
cations to apply fidelity-reducing modifications to data and
to give services a basis for trusting that those modifications
preserved the meaning of the source.

To meet this goal, YouProve logs sensor data as it is re-
quested by an application, and uses TaintDroid [11] to tag
and track data as it flows through the application. If the ap-
plication generates an output that is derived from a logged
source, YouProve invokes the appropriate analyzer to com-
pare the output to its source. The result of type-specific anal-
ysis is a fidelity certificate, which summarizes the software
configuration of a device as well as how closely the content
of a derived data item matches its source. By providing trust-
worthy statements about the degree to which a derived item’s
content matches its source, YouProve allows a service to ver-
ify that the meaning of the source item was preserved with-
out requiring (1) clients to send the source, or (2) services to
trust the applications that generated the derived item.

We have implemented a YouProve prototype for Android
on a Nexus One and evaluated the performance and accuracy
of audio and photo analyzers. Our prototype photo analyzer
is over 99% accurate at identifying regions changed only
through meaning-preserving modifications such as cropping,
compression, and scaling. Our prototype audio analyzer is
similarly accurate at detecting which sub-clips of a source
audio clip are present in a derived version, even in the face
of compression, normalization, splicing, and other modifica-
tions. Finally, the performance and power costs of YouProve
are reasonable, with logging having little noticeable effect on
interactive applications and CPU-intensive analysis complet-
ing asynchronously in under 70 seconds for 5-minute audio
clips and under 30 seconds for 5-megapixel photos.

2 Design Considerations
Mobile sensing services (also called participatory sens-

ing [8]) consist of servers that collect, aggregate, and dissem-

inate geo-tagged sensor data such as audio and images from
volunteer mobile clients. The case for fidelity-aware mobile
clients is well established [6, 19, 12, 15, 27], while the case
for verifying the authenticity of sensing data has been made
more recently [10, 14, 21, 30, 31]. YouProve is a trustwor-
thy sensing platform built on Android that allows a client to
control the fidelity of data it submits and sensing services
to verify that the meaning of source data is preserved across
any modifications. In this section, we provide background
information on key aspects of YouProve’s design, including
descriptions of (1) the relationship between data authenticity
and fidelity, (2) Trusted Platform Modules (TPMs), and (3)
our underlying design principles.
2.1 Authenticity, fidelity, and trust

Two crucial concerns for a system that allows data fi-
delity to be traded off for energy, privacy, or other consider-
ations are (1) what code modifies a source data item, and (2)
what code consumes the derived item. An important part of
verifying the authenticity of a derived item is the process of
certifying that its content preserves the meaning of its source.
We further define the term “meaning” in the context of audio
and photo data in Section 5.

Fidelity has traditionally been studied in the context of
mobile clients retrieving data from servers over a wireless
network [12, 19, 27]. In these settings, a small set of servers
are trusted to maintain canonical copies of all source data and
generate reduced-fidelity versions at the request of a client.
Clients typically trust only a small set of servers based on
the reputations of the servers’ administrators. As long as a
server can prove to a client that it is a member of the trusted
set, the client considers the server’s data to be authentic.

In a mobile sensing service, clients use sensors such as
cameras, microphones, and GPS receivers to generate source
data items and may produce a derived item by reducing the
source’s fidelity. Servers receive derived data and interpret
its content to implement a service’s logic. However, unlike
in a traditional system like a distributed file system, a mobile
sensing service cannot always rely on reputations to verify
data authenticity. Data may be provided by clients without a
prior history, by those who wish to remain anonymous, or by
clients whose reputations are inaccurate due to Sybil-style
gaming [9]. Other potential bases of trust are also problem-
atic. Verifying authenticity by relying on a majority vote
among related items is vulnerable to Sybil attacks, in which
an attacker exercises disproportionate influence by creating
a large number of identities. Relying on co-located trusted
“witnesses” limits authenticity guarantees to data from loca-
tions with trustworthy infrastructure [21, 30].

Several groups have sought to decouple client reputa-
tions from data authenticity using trusted hardware such as a
Trusted Platform Module (TPM) [10, 14, 25, 31, 37] or ARM
TrustZone [29]. TPMs are included in most PCs sold to-
day, and a specification for a Mobile Trusted Module (MTM)
for mobile phones has been released [5]. Similarly, most
shipping ARM processors support TrustZone, which is a
hardware-isolated, secure-execution environment that could
be leveraged by phone manufacturers to implement function-
ality similar to a TPM’s [4]. We take the presence of trusted
hardware on mobile clients as a given, and we have designed



OSOS

Refactored App

D

App

D'

OS says: FR says: D  D'

Trusted
Untrusted Reduce(D,D')

D

App

Fidelity 
reducer D'

OS says: App says: D  D'

Trusted

Sign(D  D')

Trusted App

D

App

Fidelity 
reducer

D'

OS says: Analyzer says: D Δ D'

Trusted
Untrusted

Type-
specific 
analysis

YouProve

Fidelity 
reducer

OS

Figure 1. Possible locations of fidelity-reduction code. Modules below each gray line are trusted by the remote service.

YouProve as a set of software services running on top of such
hardware.

2.2 TPM background
TPMs provide a root of trust on each YouProve client. A

TPM can be used to provide a verifiable boot sequence, in
which each piece of code that runs during boot is measured
by the cryptographic hash of its content prior to being exe-
cuted. Each measurement is extended into a Platform Con-
figuration Register (PCR) by the TPM such that the value of
a PCR is loaded with a hash of its current value concatenated
with the new measurement. Each TPM includes an array of
PCRs that can be updated only through the extend operation
and reset only by rebooting the device.

A TPM can attest to the state of its PCRs by generating
a quote that is signed with a private key. Each TPM contains
a unique public-private key pair called an Endorsement Key
(EK) that is installed at manufacture time. Each EK uniquely
identifies an individual device. To perform anonymous quot-
ing, a TPM can generate new public-private key pairs called
Attestation Identity Keys (AIKs). In order for services to
trust an AIK, a trusted third-party privacy certificate author-
ity (privacy CA) must generate a certificate for the public
half of the AIK. We assume that trusted privacy CAs will
only certify a small number of AIKs for each EK to limit the
scope of Sybil attacks.

A service can verify that a device’s system software is
trusted by checking that the PCR values reported in a quote
match known values for a trusted configuration. A client’s
software configuration is trusted by a service if it ensures a
trustworthy chain of custody for sensor data. As many have
noted [25, 36, 37], verifying that the software platform of a
mobile phone matches a trusted configuation is a promising
technique because phone manufacturers release a relatively
small number of read-only firmware updates that encapsulate
the entire trusted codebase (TCB) of a device. Third-party
applications are typically excluded from the TCB via an iso-
lated execution environment. Furthermore, mobile devices
do not give users root access by default, limiting opportuni-
ties for modifying the TCB configuation. This results in a
high degree of homogeneity among TCB configurations on

mobile devices. In contrast, traditional PC systems are more
amenable to customization, resulting in numerous possible
TCB configurations that must be evaluated.

While a user can gain root access on her phone by flash-
ing a customized firmware with relative ease, such changes
would be exposed to a remote verifier by a TPM’s measure-
ment of the boot sequence. Furthermore, users who root their
phones are in the minority, allowing a service to reason about
the trustworthiness of the vast majority of devices by estab-
lishing trust in a manageable number of configurations.

2.3 Design principles
The trusted chain of custody for sensor data must mini-

mally include a trustworthy bootloader, OS kernel or hyper-
visor, and device drivers. There are a number of tradeoffs
to consider in choosing the bases of trust for the rest of the
chain. In particular, the critical challenge for YouProve is
handling the code that performs fidelity reductions on source
data. With this challenge in mind, we designed YouProve
using the following principles:
Build on deployed systems.

We could have taken a clean-slate approach to YouProve
by developing a new operating system or by using an exper-
imental OS for trusted hardware like Nexus [32]. For exam-
ple, alternative architectures using virtual machines provide
a smaller trusted computing base than YouProve by remov-
ing components inessential to handling sensor data [14, 16,
31]. Instead we designed YouProve as a new set of trusted
services for Android. Building on top of Android is simple,
creates a lower barrier to deployment, and allows us to take
advantage of existing Android tools. The disadvantage of
our approach is that YouProve must be secured within An-
droid’s security model. We describe the process of securing
YouProve in greater detail in Section 4.
Allow applications to directly modify data.

Verifying a data item’s authenticity involves proving that
it was derived from source data in a trustworthy way. One
way to enable verification is to refactor applications by re-
quiring trusted code to reduce the fidelity of source data on
applications’ behalf. Fidelity-reducing code would be in-
cluded in the kernel or run as a trusted server in user space,



and would use the trusted hardware to generate statements
describing the reductions it performed. This approach is
shown as Refactored App in Figure 1. The appeal of this ap-
proach is that it simplifies verification by limiting the number
fidelity-reducing codebases that a service needs to trust.

APIs for controlling some forms of data fidelity at cap-
ture time already exist. For example, Android apps can ad-
just the fidelity of the location readings it receives via the
location.Criteria class, the resolution and quality of the
photos they receive via the Camera.Parameters class, and
the sampling rate of audio via the MediaRecorder class.
However, extending these existing APIs to support (1) a
broader range of fidelity-reducing operations (e.g., cropping
or blurring subregions of an image) and (2) data modifica-
tions during post-processing would require significant mod-
ifications to thousands of apps.

For example, there are nearly 6,000 apps under the “Pho-
tography” category of Apple’s App Store, and many are me-
dia editors that operate on data captured in the past. Cam-
era+, iMovie, and Garageband are several high profile edi-
tors. Similarly, Adobe Photoshop Express for Android has
been installed over one million times. Furthermore, stand-
alone media editors are not the only apps that perform fi-
delity reduction on data after it has been captured. Images
taken using an iPhone 4 have a resolution of 2592x1936 pix-
els, but the Facebook API documentation strongly recom-
mends that third-party apps resize images to a maximum of
2048 pixels along the longest edge before uploading [28].
Similarly, Instagram, a popular photo-sharing service which
recently surpassed 2 million users [23], requires users to
scale and crop images using the app to fit within a 612x612
pixel square before uploading.

As a result, rather than force existing apps to be refac-
tored, YouProve allows unmodified third-party apps to con-
tinue to directly perform fidelity reduction at any point in a
data item’s lifetime.
Trust analysis rather than synthesis.

Another option is to allow apps to perform fidelity re-
duction themselves, but to provide a system API for generat-
ing signed statements about the app and its execution. This
approach is exemplified by CertiPics, a trustworthy image-
editing application developed for Nexus [32]. As long as a
service trusts a program to correctly modify source data and
to correctly describe what it did, then the service can verify
the authenticity of the program’s output. This approach is
shown as Trusted App in Figure 1.

The primary disadvantage of this approach is that either
(1) a user must restrict herself to using the small number of
apps that her services trust, or (2) a service must establish
trust in each of the thousands of apps a user might wish to
use. Forcing clients to use a small number of apps deemed
trustworthy by her services undermines the surge of develop-
ment activity that has made consumer mobile devices popu-
lar and useful. On the other hand, forcing services to reason
about the trustworthiness of the thousands of apps that di-
rectly manage data fidelity is impractical. Mobile apps are
generally closed source (making them difficult to inspect),
and verifying the trustworthiness of tens of thousands of mo-
bile developers is infeasible.

In the terminology of the Nexus Authentication Logic,
both refactoring apps and certifying statements generated
by trusted apps offer synthetic bases of trust. In both ap-
proaches, trusted code transforms source data and gener-
ates a signed statement about its output. This is similar to
a trusted compiler generating a signed statement about the
type safety of executable code that it outputs. However, as
we have observed, synthetic bases of trust force developers
to make significant modifications to existing apps, constrain
which apps a user can use, or impose an impractical trust-
management burden on services.

As a result, YouProve eschews synthetic bases of trust in
favor of analytic bases of trust. An analytic basis for trust
requires verifiers to trust code to analyze inputs as opposed
to trusting code to synthesize an output. Trusted analyzers
can be included in a device’s firmware and allow untrusted
apps to handle fidelity reduction. At a high level, an ana-
lyzer generates a report comparing the content of an applica-
tion’s output to the content of the original source. YouProve
can then embed the analyzer’s report and a measurement of
the device’s software configuration in a signed fidelity cer-
tificate. Services use fidelity certificates to reason about both
the trustworthiness of a device and whether a derived data
item preserves the meaning of its source.

Relying on trusted analysis rather than trusted synthesis
allows YouProve to (1) simplify verification by placing all
trusted code within the device firmware, (2) preserve the au-
tonomy of apps to directly perform fidelity reduction, and
(3) maximize users’ choice of applications. This approach is
shown as YouProve in Figure 1.

3 Trust and Threat Model
In this section, we discuss assumptions made by You-

Prove about a device’s hardware and software configuration.

3.1 Trust assumptions
As stated in Section 2.2, the root of trust for each

YouProve client is a TPM. If the private half of a TPM’s EK
or the private half of an AIK becomes compromised through
an attack against the TPM hardware, then an attacker can
generate arbitrary TPM quotes. However, as long as the pri-
vacy CAs that certify AIKs are not compromised, then an
attacker will only be able to generate arbitrary quotes using
the limited number of AIKs certified by the privacy CAs.
Thus, as long as privacy CAs remain trustworthy, a single at-
tacker cannot successfully masquerade as a large number of
devices unless it compromises a large number of TPMs.

Building YouProve on top of Android instead of an ex-
perimental operating system was an explicit design choice,
and a consequence of this choice is that YouProve inherits
Android’s security model. Thus, YouProve relies on An-
droid’s existing mechanisms to thwart attacks against the
platform. The essential components of Android’s security
model are a Linux kernel, user-space daemons called ser-
vices running under privileged UIDs, and an IPC framework
called Binder. Each Android app is signed by its devel-
oper and runs as a Linux process with its own unique, un-
privileged UID. Apps access protected resources such as the
camera service through library code that makes IPC calls.
Platform services limit interactions with untrusted applica-



tion code by applying UID-based access-control policies on
Binder communication.

YouProve assumes that modified firmware allowing users
to execute code as root can be detected by inspecting a de-
vice’s TPM quotes. Stock Android firmware typically does
not give users root access, although some users will reflash
their device to gain root access. As long as the bootloader
remains uncompromised, any changes to the user-modifiable
firmware, which includes the trusted software platform, will
be apparent to a remote service via the TPM quote embedded
in a fidelity certificate.

Eliminating all software vulnerabilities is beyond the
scope of this paper—attacks against specific vulnerabilities
in the implementation of a secure platform such as Android
are long-standing and serious problems that are unlikely to
disappear anytime soon. If an attacker manages to gain root
access through a runtime exploit without modifying a de-
vice’s trusted firmware, then the attacker can generate false
analyses of sensor data. Nonetheless, as we will describe in
Section 4, our design applies the principle of least privilege
to isolate the effects of attacks against specific system com-
ponents such as the camera and audio services and the log of
source sensor data.

Other side-channel attacks that take advantage of phys-
ical access are beyond the scope of this work. YouProve
stores encryption keys in memory and is therefore suscep-
tible to “cold boot” attacks, in which an attacker retrieves
residual data values from RAM after a hard reboot. An at-
tacker could also inject false sensor readings while avoiding
detection by physically interposing on the bus used for inter-
device communication inside the phone. Specific hardware
support would be needed to prevent these attacks.

Finally, “analog” attacks such as staged photos, photos
of photos, or forged GPS signals are beyond the scope of
YouProve. Incorporating data from multiple sensors into au-
thenticity analysis could be helpful in detecting photos of
photos or forged GPS signals; for example, it may be possi-
ble to identify a forged GPS location by checking if a con-
temporaneous temperature reading has a compatible value.
However, there is only so much that a computer system can
do to ensure data authenticity. Approaches like YouProve
that consider original sensor readings as the “root” of au-
thenticity cannot ensure that the event captured in a photo or
audio recording was not staged.
3.2 Privacy implications

Previous work on trustworthy mobile sensing has sug-
gested that a fundamental tradeoff exists between data au-
thenticity and user privacy [14]. However, YouProve seeks
to enhance both data authenticity and privacy by allowing a
user to provide verifiable proof that a data item is authen-
tic, even after fidelity reductions have been applied locally to
remove identifying information. Rather than relying on the
identity or reputation of a data contributor as a basis for trust,
services can instead verify properties of a device’s underly-
ing software and hardware configuration. Thus, YouProve
allows a device owner to attest to the authenticity of sensor
data without revealing her identity.

On the other hand, YouProve’s design also introduces
new potential privacy risks for users. When a user pub-

lishes a fidelity certificate, she exposes detailed information
about the hardware and software configuration of her device.
However, it is important to note that the decision to upload
a fidelity certificate is an explicit choice that remains under
the user’s control. We see YouProve as an opt-in service for
users who wish to prove that data they generate is authentic.

While YouProve supports anonymous submissions, a de-
sign choice mentioned in Section 2.3 affects the extent to
which a YouProve user can remain anonymous: reuse of an
AIK when generating multiple certificates. Because TPM
quotes signed with the same AIK can be attributed to the
same physical device, anonymity may be compromised when
a YouProve client reuses an AIK for multiple submissions.
As previously mentioned, a privacy CA will certify only a
small number of AIKs for a given device to limit the scope
of Sybil attacks, in which a single device masquerades as
multiple devices submitting data. Thus, a tradeoff exists be-
tween preventing Sybil attacks and enabling individual users
to generate many unlinkable certificates. As a compromise,
YouProve allows several AIKs to be certified for a device
and leaves to the user the responsibility of managing multi-
ple identities associated with different AIKs. The choice of
how many AIKs to certify for a device should be based on the
potential damage to service quality due to Sybil attacks—we
expect that the degree to which Sybil attacks can be tolerated
will vary for different mobile sensing domains. The task of
assisting users in managing multiple identities to prevent de-
anonymization is left for future work.
4 YouProve

YouProve consists of four trusted software components
responsible for performing the following tasks:

• Logging sensor data returned by the Android platform
in response to requests from apps,

• Tracking data derived from sensor readings as it is ma-
nipulated by untrusted third-party apps,

• Analyzing the content of a derived data item and its
source reading, and

• Attesting to the results of content analysis and the in-
tegrity of the software platform.

The rest of this section describes the design of each of
these components.
4.1 Design overview

When an Android app wants to access sensor
data it submits a request via a platform API (e.g.,
Camera.takePicture). YouProve interposes on such
requests, assigning each request a unique identifier and
inserting the response data along with its identifier into a
secure log. YouProve must then track this data as it is modi-
fied by untrusted apps until a final data item is uploaded to a
service provider. Standard meta-data tags are not sufficient
for this purpose because sensor data may propagate through
multiple file formats and representations. For example,
consider an audio clip that is received by a third-party app
as uncompressed samples in a memory buffer, processed by
the app, converted to MP3 format, and then written to disk.

To track sensor data independently of its format,
YouProve uses the TaintDroid [11] information-flow moni-
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Figure 2. Logging sensor readings.

tor to tag the response data with the identifier and propagate
the tag to derived data in program memory, files, and IPC.
TaintDroid is not used as a security mechanism. Rather, it
is used to expose dependencies between source data and ap-
plications’ outputs. The only consequence of TaintDroid’s
losing track of a taint tag would be that the authenticity of an
application’s output could not be verified with a fidelity cer-
tificate since the output would not be mappable to a source
reading for analysis.

When an app generates an output such as a file write,
YouProve inspects the output’s taint tag. If the tag can be
mapped to a logged data request, YouProve forwards the
app’s tagged output and its logged input to a type-specific
analyzer. The analyzer synchronously generates an identifier
for the output (e.g., by computing its cryptographic hash). At
that point, YouProve can explicitly return the certificate iden-
tifier to the app or transparently embed it in the meta-data of
the output such as an image’s Exif data. The analyzer then
asynchronously generates a report comparing the app’s input
and output. YouProve then embeds the report in a fidelity
certificate and posts it to a remote hosting service.

A service that receives a data item can retrieve the item’s
fidelity certificate from a hosting service using the appropri-
ate identifier, and can decide whether the data is authentic
based on the content of the certificate.

This overview raises a number of questions: How does
YouProve secure the log of responses and the type-specific
analyzers? How do services establish trust in fidelity certifi-
cates? What information is included in a fidelity certificate?
4.2 Logging sensor readings

YouProve makes trustworthy statements about the con-
tent of a derived data item by comparing it to source data
captured by a sensor. To support this analysis, it is necessary
for the trusted platform to collect a full-fidelity copy of any
sensor reading returned to an application and to protect the
integrity of the stored copy as long as a user wishes to gen-
erate fidelity certificates for data derived from the reading.
YouProve’s logging service provides this functionality.

The logging service assigns a unique ID to each sensor
reading and stores the original copy to a file. It also writes a
database entry with a timestamp and type-specific metadata,
as well as a pointer to the original copy on the filesystem and
a digest of its contents. The database is stored on internal
flash storage, while the actual data contents are stored on
external storage (i.e., an SD card) due to the limited amount
of built-in storage available on many smartphones.

The accuracy of the timestamp recorded for an original
sensor reading is a critical part of data authenticity for many
services. Because YouProve’s timestamps are generated us-
ing a device’s local clock, we must ensure that the clock is
synchronized with a trustworthy source and protected from
tampering. For this purpose, YouProve synchronizes the de-
vice’s local clock with a trusted time server at boot-time us-
ing authenticated NTP [3].

On a typical smartphone platform, sensor data passes
through a number of software layers between a hardware
sensor and application code, including device drivers and
user-level platform code. Choosing the level at which to
log full-fidelity source data has implications for the size of
the TCB, the performance and storage overheads of logging,
and portability to different hardware devices. To minimize
performance and storage overheads and maximize portabil-
ity, YouProve captures data at a high level in the software
stack, immediately before it enters an untrusted app’s ad-
dress space. As a result, full-fidelity copies have the same
format, including encoding and possibly compression, as the
data received by an app, and all platform code that handles
sensor data prior to handoff to the app is included in the TCB.
We discuss this tradeoff further in Section 6.

Android provides Java interfaces to apps for accessing
camera, microphone, and location data. This Java library
code runs in an app’s address space and communicates via
IPC with a system service designated to handle the specific
type of sensor data. Android only allows the system ser-
vices cameraservice and audioflinger to communicate
with the camera and microphone device drivers, respectively.
The LocationManagerService handles GPS and network-
based location data. We instrumented these three system
services to report sensor readings to the YouProve logging
service via IPC before returning data to a requesting app.
Figure 2 depicts the interaction between Android platform
services and the YouProve logging service.

Ensuring the integrity of data recorded by the logging ser-
vice is critical. If an attacker can impersonate one of the An-
droid services entrusted to handle sensor data (i.e., camera-
service, audioflinger, or LocationManagerService)
and submit inauthentic data to the logging service, fidelity
reports will not be trustworthy. Trustworthiness will also
be undermined if sensor readings or metadata in the log
database can be modified by untrusted code without detec-
tion. As a result, YouProve must verify the identity of the
services providing sensor data and verify the integrity of sen-
sor data and metadata when it is read from persistent storage.

To authenticate requests to insert sensor data into the
log, YouProve relies on Android’s UID-based privilege-
separation model and the process-identity information pro-
vided by Android’s Binder IPC subsystem. Binder tells each
endpoint of an IPC connection the UID of the other com-
municating process. A special UID “media” is assigned to
the mediaserver process that hosts cameraservice and
audioflinger. LocationManagerService runs under the
UID “system”, which is shared by a number of trusted ser-
vices. Android executes only trusted system code under
the “system” UID, and no process may run under the ”me-
dia” UID after the mediaserver launches during Android’s
boot sequence. YouProve leverages the restrictions placed on
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Figure 3. Overview of photo and audio content analysis.

these UIDs by the kernel to authenticate requests to log data.
The logging service only accepts requests to log photo and
audio data from processes with the “media” UID (i.e., the
mediaserver) and requests to log location data from pro-
cesses with the “system” UID (i.e., the LocationManager-
Service and other privileged services).

In addition to authenticating requests to the logging ser-
vice, YouProve must also protect the integrity of the log
database and the full-fidelity copies stored on disk. Full-
fidelity copies are kept on external storage and may be vul-
nerable to external modification. YouProve ensures that
modifications to these copies will be detected by verifying
the SHA-1 digest of the data against the value stored in the
log. To protect the integrity of the log database, YouProve
signs each log entry with the private half of a key pair gener-
ated at install-time and bound to a trusted software configu-
ration using a TPM’s sealed storage functionality.

Sealed storage allows the system to submit arbitrary data
to the TPM to be “sealed” to the current values of selected
PCRs. Upon such a request, the TPM returns an encrypted
blob that can later be “unsealed” only when the same PCRs
are in the same state. This ensures that the private key used
to sign log entries will be accessible to device software only
after the trusted platform has booted into a known, trusted
state. Note that YouProve does not attempt to prevent denial
of service attacks wherein a user deletes full-fidelity copies
or log entries—these attacks simply result in the user being
unable to attest to fidelity-reduced data.

4.3 Tracking derived data
YouProve’s type-specific analyzers operate on two data

items: a full-fidelity source item and a derived version of
the source. To enable comparisons YouProve relies on the
TaintDroid [11] information-flow monitoring framework as
a lightweight means for tracking data dependencies through-
out the Android system. Before the platform returns sensor
data to a user app, it attaches a taint tag encoding the 32-bit
unique ID assigned to the sensor reading—this ID serves as
the primary key for the entry in the log database. If tainted
data is appended to a file or IPC message already marked
with a different ID, the file or message is marked with a
newly allocated ID and the mapping to the two previous IDs
is recorded in the log. In this way, YouProve can properly

<cert dev id="device pseudonym" cert id="unique per device">
<report>

<content digest>SHA1(content)</content digest>

<timestamp>from original sensor reading</timestamp>

<analysis>type-specific content analysis results</analysis>

</report>

<report digest>SHA1(report)</report digest>

<platform>

<pcr0>

<boot>SHA1(boot partition)</boot>

<system>SHA1(system partition)</system>

</pcr0>

<aik pub>AIKpub</aik pub>

<tpm quote>sig{PCR0,report digest}AIKpriv </tpm quote>

</platform>

</cert>

Figure 4. Format of a fidelity certificate.

track all dependencies for high-level data items such as geo-
tagged images. Due to space constraints, we have left out
a longer discussion of handling data items whose taint tags
map to multiple sensor readings. Our YouProve prototype
currently supports geo-tagged camera and microphone data.

4.4 Analyzing content
YouProve’s type-specific analyzers report the differences

between an original sensor reading and a derived data item.
Analyzers implement a simple, common interface: they take
as input two files containing sensor data, and they output a
human-readable report identifying portions of the modified
data item that preserve “meaning” from the original sensor
reading. Additional information may be provided about the
differences between corresponding regions in the source and
derived items when their contents do not match.

For both photo and audio data, YouProve’s approach is
to divide a derived data item into smaller regions and then
attempt to match the content of each region to that of a cor-
responding region in the source sensor reading. Photos are
divided by rectangular grid, while audio analysis considers
time segments. An overview YouProve’s approach and the
basic format of the output of analysis is shown in Figure 3.
Our prototype analyzers for photo and audio content are de-
scribed in detail in Section 5.
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Figure 5. Steps for attestation.

4.5 Attesting to analysis and platform
To enable data consumers to reason about the trustwor-

thiness of a data item, YouProve’s attestation service gener-
ates fidelity certificates that report the results of type-specific
analysis and a timestamp for the original reading. Fidelity
certificates also contain information about the device’s soft-
ware platform, allowing remote verifiers to decide whether
or not to trust reports generated by the device. The format for
fidelity certificates is shown in Figure 4. The two basic parts
are (1) a report that describes a data item and is bound to the
data by a content digest, and (2) a description of the platform
software configuration, including a TPM quote that attests to
the state of the software platform and binds the platform-
specific part of the certificate to the content-analysis part.

Fidelity certificates are posted by a YouProve client to a
remote certificate hosting service—a simple key-value store
that makes submitted certificates available through well-
known public URLs. YouProve generates fidelity certificates
in response to explicit requests by the user, or by monitor-
ing the user filesystem for writes to files with supported data
types (e.g., jpegs and mp3s). If desired, a link to the URL
where the certificate will eventually be available can be em-
bedded as metadata in the media file before uploading to a
sensing service. The basic steps performed by YouProve to
generate a fidelity certificate are shown in Figure 5.

To verify a certificate, a service first verifies the signa-
tures and hashes. Next it uses the analysis report to evaluate a
service-defined policy regarding the authenticity of received
data. We imagine that an analyzer’s report will most com-
monly be used to strengthen the case for an item’s authen-
ticity. Items with ambiguous reports leave services in their
current positions of relying strictly on other means to ver-
ify data’s authenticity. We discuss the kind of information
analyzers embed in their reports in the following section.

5 Type-specific Analyzers
In this section, we describe YouProve’s analyzers for

photo and audio content. The central design challenge was
to apply state-of-the-art content analysis techniques without
incurring excessive runtime or energy overheads.

5.1 Photo content
The goal of YouProve’s photo analysis is to identity re-

gions of a derived photo that preserve meaning from a source
photo captured by the camera hardware. We consider the
meaning of a photo to be preserved if its appearance re-
mains roughly unchanged. Thus, transformations that typ-

ically preserve the meaning of photo content include image
compression, relatively small adjustments to image param-
eters such as brightness and contrast, and fixed-aspect ratio
scaling. Furthermore, cropping preserves the appearance of
any regions which are not removed. We consider manipu-
lations that distort the image or significantly change regions
in other ways (e.g., pasting in content from another photo)
to alter the meaning of the sub-region of the photo. Ulti-
mately, we seek to allow a viewer to categorize sub-regions
of a modified photo based on whether they preserve meaning
from a corresponding region in the source photo.

Our analysis utilizes two well-known techniques from
computer vision: Speeded-Up Robust Features [7] (SURF)
and Sum of Squared Differences (SSD). SURF facilitates
matching regions in two images by locating “keypoints” such
as corners, and then computing a feature vector called a de-
scriptor to represent each keypoint. A “matching” between
the descriptors in two images can be found by computing the
distance between the vectors. SSD is useful for approximat-
ing the visual similarity of two equal-sized blocks of image
content. It is a simple metric that computes the difference
between the value of a pixel in the first image and the corre-
sponding pixel in the second image, and then sums the square
of these differences over all pixels in the block.
Analysis procedure

Before comparing a derived photo with its source, we
scale down both photos as necessary so that each fits inside a
1024x768 pixel bounding box. The maximum resolution for
the Nexus One camera is 2592x1944; thus, source photos
will be scaled down by a factor of at most 2.5. This is neces-
sary due to the memory requirements of our analysis routines
and the limited memory available on our target mobile device
(512MB RAM for a Nexus One). As device RAM increases
we will not need to scale images as drastically.

In addition, all analysis operates on grayscale versions
of the photos, produced by taking a weighted average of the
RGB channels. We believe that scaling down source photos
to 1024x768 and converting to grayscale should not hinder
our ability to recognize preserved regions and localize trans-
formations that alter the source’s meaning. If color modifi-
cations not apparent in the grayscale version are a concern,
we can perform the same analysis on each of the three RGB
channels at the expected expense of a 3x increase in runtime.

After resizing the input photos, the analysis proceeds in
two phases. In the first phase, the analyzer attempts to find
a correspondence between the derived photo and a region in
the source photo. Note that in some cases the entire modi-
fied photo will map to a sub-region of the source photo due
to cropping. To find this mapping, we use SURF to ex-
tract descriptors from each photo and then compute the set
of matching descriptors. We then find the minimum-sized
rectangular region (with sides parallel to the coordinate axes)
in the source photo containing the keypoints of all matching
features—this is the region that the analyzer considers for
further investigation. At this point, we scale down the larger
of the matching region and the derived photo to make their
sizes equal. If no mapping is found between the content of
the modified photo and the source photo, we continue analy-
sis assuming that the entire source maps to the derived photo.



After identifying the matching region of the source
photo the analyzer subdivides both the derived photo and
the matching region into equal-sized, approximately-square
blocks, with eight blocks along the longer dimension, subject
to a minimum block size of 32x32 pixels. This heuristic is
intended to localize content-altering modifications with suf-
ficient precision, while ensuring a reasonable number of pix-
els for computing SSD. Once the images have been divided
into blocks, we compute the SSD of corresponding blocks.

A caveat of SSD’s pixel-by-pixel comparison is that it is
highly sensitive to alignments of image regions off by even a
single pixel. To account for potentially imprecise alignments
found using SURF, for each block we take a sub-image from
the center 12% smaller in each dimension and compare it to
each equal-sized sub-image in the corresponding block from
the other photo. For example, if the block size is 128x128
pixels, we take a 112x112-pixel sub-image from one block
and compare it with each of the 256 possible equal-sized sub-
images from the other block. We record the minimum of the
computed SSD values for each pair of blocks.

To account for different block sizes, we define a block
size-independent metric, per-pixel sum of squared differ-
ences (PPSSD), as the SSD value for a block divided by its
area in pixels. In Section 7, we report PPSSD values result-
ing from various modifications and show that it is possible to
define a threshold on PPSSD values which segregates blocks
of a photo preserving meaning from the source from those
containing content-altering local modifications.
5.2 Audio content

Similar to our photo analysis approach, the goal of
YouProve’s audio analysis is to identify contiguous time seg-
ments of audio which were modified only in ways that do
not alter the way the audio will be perceived by a listener.
Transformations that typically preserve the meaning of au-
dio content include compression, slight changes to volume,
and “enhancing” filters such as normalize. Other manipula-
tions such as time distortion and splicing in audio from other
sources are considered to alter the meaning of the audio clip.

At a high level, YouProve’s audio analyzer extracts se-
quences of spectral peak frequencies from the source and
derived audio clips and applies local sequence alignment to
find matching time segments. The use of spectral peak anal-
ysis to compare audio data was inspired by the Shazam au-
dio recognition system [35]. The technique is well-suited for
our analysis because spectral peaks are a central feature in
human hearing and thus are independent of audio encoding.
They are largely maintained across transformations that pre-
serve the way audio will be perceived (e.g., compression). To
identify time segments in a modified clip which preserve se-
quences of spectral peak frequencies from a source clip, we
use a modified version of the well-known Smith-Waterman
algorithm [33] for local sequence alignment.

We note that the naive approach of simply performing se-
quence alignment on audio samples is unsuitable for two rea-
sons. First, sample values are completely changed by even
simple transformations such as normalization, which adjusts
volume and therefore the value of all samples. Second, the
sequence alignment algorithm runs in time proportional to
the product of the sequence lengths. Because there are gen-
erally hundreds to thousands of samples in a 0.1-second seg-

ment of audio (the interval over which we compute each
spectral peak frequency value), the naive approach would be
slower by a factor of 104 to 106 for sequence alignment.

Analysis procedure
Our analysis begins by verifying that the two input audio

clips have the same sampling rate and audio format to en-
sure an equal number of samples for a given time duration.
The audioflinger service, which supplies the full-fidelity
source clip to YouProve’s logging service, outputs raw PCM
samples in WAV format. If the modified clip is stored in a
compressed format, we first decompress it to raw PCM data.
At this point, we proceed with analysis only if the sampling
rates of the source and derived clips are equal. In practice,
the sampling rate of a modified clip rarely differs from that
of the source clip, because the Android audio recording API
allows applications to request a particular sampling rate from
the audioflinger service. YouProve’s logging service cap-
tures the source clip at this requested sampling rate, and we
assume that applications will not change the sampling rate of
a clip once it has been captured.

After verifying the aforementioned assumptions, we con-
tinue by computing the frequencies of spectral peaks for each
audio clip as follows. First, we compute N, the number of
samples in 0.1 seconds of audio. For each region of N sam-
ples in the clip, we perform a windowed Fourier transform to
convert the samples into a collection of frequency bins and
their amplitudes. We then find the frequency bin with the
greatest amplitude and output that frequency. The result is a
sequence of frequencies for each clip.

To facilitate finding multiple matching time segments, we
modify Smith-Waterman to make the gap penalty infinite and
then examine local alignments with scores above a certain
threshold (which we set), rather than simply the max scor-
ing (optimal) local alignment. To deal with limited floating-
point precision and to allow for some variation due to com-
pression, we consider two frequencies a match for scoring
purposes if the frequencies are within 10 Hz of each other.
This value was chosen because at a 44.1 kHz sampling rate,
adjacent frequency bands roughly differ by 10 Hz.

Each local alignment maps a specific range of audio sam-
ples (technically 0.1-second length clusters of samples) in
one audio clip to a specific range of samples in the sec-
ond. We order these alignments by descending score, and
add them, in order, to our output set of alignments as long
as there is no overlap with pre-existing alignments in either
of the sequences. For the final output, we convert ranges of
samples to regions of time.

As long as the edits performed to produce a modified clip
do not sub-divide the source clip at finer than 0.1-second
granularity, we expect to be able to identify preserved seg-
ments from the source clip. Moreover, even if edits splice at
finer than 0.1-second granularity, this should not cause us to
falsely label time segments in the modified clip that do not
actually preserve content from the source clip.

6 Implementation
In this section, we describe our prototype implementation

of YouProve for Nexus One smartphones and Android 2.2.
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Figure 6. YouProve prototype architecture.

YouProve’s logging and attestation services are imple-
mented in approximately 2,000 lines of Java code. Like
all other commodity smartphones of which we are aware,
the Nexus One does not include a TPM chip. Instead, we
ported a popular open-source TPM emulator [1] to Android,
along with the TrouSerS open-source TCG stack [2]. Our
prototype photo and audio analyzers are written in C++ and
C, respectively. The audio analyzer uses the open-source
LibXtract and FFTW libraries for converting audio samples
into frequency bins. We ported these libraries to the An-
droid platform. The photo analyzer uses the SURF imple-
mentation from the popular open-source computer-vision li-
brary OpenCV. In addition, we use the open-source Taint-
Droid information-flow tracking framework [11], which we
updated from Android 2.1 to 2.2.

As discussed in Section 2, YouProve builds upon the se-
curity model offered by the underlying Android platform.
An important feature of this model is that any code that runs
with elevated privileges must be loaded from the device’s
read-only firmware. Android partitions the device’s internal
flash storage into at least three partitions: the “boot” partition
contains the Linux kernel and an initial ramdisk, the “sys-
tem” partition includes all user-level Android platform code,
and the “user data” partition stores the user’s apps and data.
The boot and system partitions comprise the read-only por-
tions of the firmware. Effectively, all trusted code is loaded
from these two partitions.

All trusted YouProve code is added to the read-only
firmware. The arrangement of YouProve’s software compo-
nents and relevant Android platform components is shown
in Figure 6. To enable an Android device to attest to the
state of its TCB, YouProve modifies Android’s boot proce-
dure to measure the boot and system partitions when they
are mounted. Because Android’s bootloader does not pro-
vide support for measured boot, our prototype actually mea-
sures both partitions after the boot partition is loaded by the
bootloader and control has passed from the bootloader, to
the kernel, and finally to the first user task, init. These
measurements are extended into one of the TPM’s PCRs to
support subsequent attestation using TPM quotes.

The TPM quote included in a fidelity certificate attests
only to the value of the bits of the firmware booted by the
device. The trustworthiness of fidelity certificate contents
depends on whether the booted firmware provides sufficient
protection for the TCB.
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7 Evaluation
In evaluating YouProve, we sought to answer two ques-

tions: (1) Can YouProve’s type-specific analyzers accurately
identify modified portions of a data item that preserve the
meaning of its source? and (2) What are the performance
and power costs of running YouProve?
7.1 Analyzer Accuracy

Current mobile sensing services have no way to verify
the authenticity of the data they accept. YouProve’s goal is
to improve on this state by identifying regions of a derived
data item that preserve the meaning of its source, while min-
imizing the number of incorrectly categorized regions.
7.1.1 Photo analysis

As described in Section 5.1, YouProve’s photo analysis
compares two photos block-by-block and reports a per-pixel
SSD (PPSSD) value for each block of the derived photo. The
first goal of our evaluation was to determine whether paired-
block PPSSD values provide a good metric for identifying
blocks that preserve the meaning of their source. We also
sought a guideline PPSSD threshold for categorizing blocks.

The basis for our test dataset was a diverse collection of
sixty-nine photos taken on a college campus using a Nexus
One. Subject matter included individual students, crowds,
buildings, offices, landscapes, walls with flyers, and book-
shelves full of books. The photos varied in level of detail,
level of focus, and quality of lighting. All photos were taken
at the default resolution of 1944x2592 pixels. We then used
the ImageMagick image-editing tool to apply two classes of
modifications to our photos.

Global modifications included cropping, scaling, and
JPEG compression. We consider these modifications to pre-
serve the meaning of the source. Cropping test cases were
created by cropping out either the top, bottom, left, or right
half of an image, leaving a rectangular half-image. Scaling
maintained aspect ratio while reducing each dimension to ei-
ther 75%, 50%, or 25% of its original size. Compression
produced JPEGs at 75%, 50%, and 25% quality.

Local modifications included overlaying a black box,
pasting in a small photo, pasting in a large photo, or blurring
a region. We consider these modifications to alter the mean-
ing of the source. Our goal was to determine whether our
photo analyzer could identify blocks containing local modi-
fications, possibly even if global modifications had also been
applied. To generate a test case containing a local modifica-
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Figure 8. Results of photo analysis accuracy experiments.

tion, we applied one of the four types to a random, fixed lo-
cation of the source. The black box, small photo, and blur re-
gions were scaled with the dimensions of the photo to cover
approximately 3% of the photo’s area. The large photo cov-
ered approximately 30% of the area. Blocks that were un-
touched by a local modification were considered clean, even
if they were transformed by a global modification.

As a basic test of the ability of YouProve’s photo anal-
ysis to identify local modifications, we included in our first
experiment only local modifications and no global modifica-
tions. We ran photo analysis on these photos and measured
the PPSSD of locally-modified blocks and clean blocks.

This experiment showed a clear separation between the
PPSSD values of locally modified blocks and clean blocks:
all clean blocks exhibited PPSSD values of less than 25, in-
dicating a high degree of similarity to the source. However,
slightly more than 3% of locally modified blocks also had
PPSSD values of less than 50. To understand the cause of
these low PPSSD values, we separated the PPSSD distribu-
tion of each local modification, as shown in Figure 7. Note
that the y-axis of Figure 7 shows the percentage of blocks
that were modified in a particular way, not the percentage of
all locally-modified blocks.

The histogram shows that blocks containing blurred re-
gions often exhibit low PPSSD values: over 15% of blurred
blocks exhibited a PPSSD value of less than 25 and only 60%
of blurred blocks exhibited a PPSSD value of greater than
100. The reason for these numbers is that blurring a region of
nearly solid color produces very little change, and we did not
bias our choice of region to blur based on its level of detail.
Manual inspection of blurred blocks with low PPSSD values
indicated that many arose from blurring already blurry re-
gions, or blurring solid colors such as white office walls and
the blue sky. In other words, the appearance of the blurred
region was not significantly changed in these cases.

Next, we evaluated the accuracy of YouProve’s photo
analysis in the presence of global modifications. The ana-
lyzer’s ability to handle cropping depends on the accuracy of
our SURF-based approach for mapping a derived photo to a
region of the source. Thus, we applied local modifications
to a set of cropped photos and then compared the PPSSD
values for clean blocks and locally-modified blocks within a
cropped region. Figure 8 shows that all of the clean blocks
within our cropped regions registered a PPSSD of less than
25. Furthermore, less than .5% of locally-modified blocks

Clean, L-Modified,
Global modification PPSSD>50 PPSSD≤50
None 0.0% 3.10%
Cropping 0.0% 0.43%
JPEG quality: 75% 0.0% 2.50%
JPEG quality: 50% 0.0% 2.37%
JPEG quality: 25% 0.09% 2.11%
Scaling, 75% 0.0% 2.17%
Scaling, 50% 7.79% 1.52%
Scaling, 25% 16.94% 0.99%

Table 1. Miscategorized blocks, PPSSD threshold = 50.

exhibited PPSSDs of less than 50. This demonstrates that
SURF is highly accurate in mapping a cropped photo to the
corresponding region in the source.

It is interesting to note that the percentage of locally-
modified blocks in cropped images with PPSSDs of less than
50 decreased by a factor of more than 7 compared to the
case in which there were no global modifications. The rea-
son for this is that cropping re-allocates blocks to the smaller
area so that there are more blocks covering the same area
of the image. For example, a face that was covered by one
block before cropping might be covered by four blocks after
cropping. In general, this will lead to a smaller proportion
of “barely-changed” blocks, i.e., blocks with almost all pre-
served content and a small piece of locally-modified content.
Because we only considered blocks that were completely un-
touched by local modifications to be clean, fewer blocks with
only minor changes reduced the number of locally modified
blocks with low PPSSD values.

Finally, we evaluated our photo analyzer’s robustness
to compression and scaling. To better understand how the
PPSSD distribution of clean blocks is affected by these
global transformations, we investigated several degrees of
scaling and compression. From Figure 7, we observe that the
degree of compression has almost no impact on the PPSSD
distributions. However, the PPSSD distribution for clean,
scaled blocks shifts to the right as the degree of scaling in-
creases. Luckily, it is straightforward for the photo analyzer
to include the scaling factor exhibited by a derived photo in
its report so that services can increase their PPSSD threshold
for more scaled-down images.

In light of our results, we believe that a threshold of 50
PPSSD is reasonable for identifying photo blocks that pre-



No additional compression Compress+decompress before applying modification
Music Comedy Speech Lecture Music Comedy Speech Lecture

Modification correct false correct false correct false correct false correct false correct false correct false correct false
None 1.0 0.0 1.0 0.0 0.999 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.999 0.0 1.0 0.0
MP3, 128 kbit/s 0.999 0.0 0.956 0.0 0.996 0.0 0.949 0.0 1.0 0.0 1.0 0.0 0.77 0.0 1.0 0.0
MP3, 64 kbit/s 0.999 0.0 0.887 0.0 0.998 0.0 0.949 0.0 1.0 0.0 1.0 0.0 0.77 0.0 1.0 0.0
Dither 1.0 0.0 1.0 0.0 0.999 0.0 1.0 0.0 0.999 0.0 0.956 0.0 0.996 0.0 0.949 0.0
Double pad 1.0 0.0 1.0 0.0 0.833 0.0 1.0 0.0 0.999 0.0 0.822 0.0 0.984 0.0 0.939 0.0
Normalize 1.0 0.0 1.0 0.0 0.999 0.0 1.0 0.0 0.999 0.0 0.956 0.0 0.996 0.0 0.949 0.0
Replace w/ noise - 0.066 - 0.0 - 0.0 - 0.0 - 0.065 - 0.0 - 0.0 - 0.0
Lower pitch - 0.073 - 0.0 - 0.0 - 0.017 - 0.057 - 0.0 - 0.0 - 0.02
Raise pitch - 0.054 - 0.0 - 0.0 - 0.0 - 0.053 - 0.0 - 0.0 - 0.0
Remove middle 1.0 0.0 1.0 0.0 0.999 0.0 1.0 0.0 0.999 0.0 0.809 0.0 0.993 0.0 0.919 0.0
Remove multiple 1.0 0.0 1.0 0.0 0.988 0.0 1.0 0.0 0.999 0.0 0.753 0.0 0.992 0.0 0.9 0.0
Segment splice 1.0 0.014 1.0 0.0 0.998 0.0 1.0 0.0 0.999 0.013 0.762 0.0 0.984 0.0 0.903 0.0
Crop 1.0 0.0 1.0 0.0 0.998 0.0 1.0 0.0 0.98 0.0 0.58 0.0 0.784 0.0 0.982 0.0

correct: proportion of preserved regions correctly identified
false: proportion of modified regions incorrectly identified as preserved
Table 2. Results of audio analysis accuracy experiments.

serve the meaning of their source for photos that are not
scaled down by more than 50%. The rates of miscatego-
rization for a threshold of 50 PPSSD for all experiments are
summarized in Table 1. For photos scaled down to 25%, a
higher threshold of 100 PPSSD greatly improves our overall
accuracy. Using this threshold, only 6.16% of clean blocks
are miscategorized as modified, while 2.83% of locally mod-
ified blocks are miscategorized as clean.

We further observe that that the PPSSD accuracy loss we
suffer in scaling test cases does not appear to afflict us during
the scaling phase of our analysis, as demonstrated by the low
SSD values of the clean blocks in the other experiments. We
attribute this to the fact that our photo analyzer scales both
images with the same algorithm using the OpenCV library,
while ImageMagick uses a different scaling algorithm.

7.1.2 Audio analysis
As described in Section 5.2, our audio analyzer compares

two audio files, and reports time regions in one file that it
determines to be derived from the other.

We aim to evaluate its accuracy at identifying regions de-
rived through content-preserving modifications such as lossy
compression, normalization, and dithering, while ignoring
regions modified through content-altering effects such as
pitch changes and spliced-in audio from other sources.

The test cases used to evaluate audio analysis were de-
rived from 5-minute clips of an excerpt from Vivaldi’s The
Four Seasons, a stand-up comedy show, an excerpt from the
iconic “I Have A Dream” speech, and an undergraduate lec-
ture. Starting with these four clips, we used the Sound eX-
change (SoX) tool to generate derivations from the following
transformations: extracting and removing subclips, splicing
in other audio, inserting silences, applying lossy (MP3) com-
pression, dithering, normalizing, and pitch altering.

For each test case, we examined the output of our analy-
sis and compared it with ground truth to compute a propor-
tion of actually-preserved regions that were correctly iden-
tified. We refer to these as correct. We also computed the

proportion of modified regions that we incorrectly identified
as preserved, which we label as false. The results are sum-
marized in the left half of Table 2. A ‘-’ is displayed in place
of a correct percentage in those tests where no region of the
audio clip was actually preserved from the original.

For variations of subclip splicing, our approach correctly
identified all preserved regions of audio in all cases, demon-
strating that it is as robust as naive matching on binary-
encoded raw PCM samples. For dithering and normalization,
our approach also achieved close to perfect results.

For MP3 compression, our analysis is fairly robust for
those regions of audio where volume is not so high that many
samples are clipped during transformation. In both the com-
edy show and the speech recordings, there were samples in
which the volume was sufficiently high that clipping could
not be avoided during compression and decompression. On
these tests our success rate was lower, but our failure rate did
not increase. However, for the music and the lecture clips
which did not have such irregularities, our analysis proved
very robust to compression.

We expect that a common use case for audio editing will
be for an application to both edit and compress a file, so we
also evaluated our approach against a combination of com-
pression and the other transformations. We created test cases
by compressing the original audio clips to MP3 at 128 kbps,
decompressing back to WAV, and then applying the other
transformations. Analysis results are summarized in the right
half of Table 2. As previously discussed, we are primarily
concerned with keeping the false rate low. We note that for
almost all tests, the false rate is close to zero while maintain-
ing a high success rate.

Moreover, for the entire set of results, when we manu-
ally examined the regions which were falsely recognized as
preserved, we observed that they are almost all moments of
silence. We expect the data consumer to be able to recognize
this when she listens to the actual derived audio.



Data item Latency in sec (stddev)
JPEG, 1296x972 28.0 (0.12)
JPEG, 2592x1944 28.9 (0.34)
MP3, 30 sec 20.2 (0.12)
MP3, 60 sec 23.9 (0.59)
MP3, 5 min 64.1 (2.25)

Table 3. Latency of generating fidelity certificates.

7.2 Performance evaluation
Our primary goal in evaluating YouProve’s performance

was to measure the latency and power overheads of generat-
ing fidelity certificates. We expect the major contributor to
be the computationally-expensive content analysis routines.
We used our Nexus One YouProve prototype to produce fi-
delity certificates for a variety of data items, while measuring
power using a Monsoon Power Monitor. Latencies are re-
ported in Table 3. For photos ranging in size from 1296x972
to 2592x1944, it took just under 30 seconds to generate a fi-
delity certificate. For audio clips, latency ranged from about
20 seconds for a 30-second modified clip to about 64 sec-
onds for a 5-minute clip. In all cases, the modified clip was
encoded as MP3 and was compared against a 5-minute orig-
inal clip. All reported data is an average over ten trials.

The average power consumption while generating fi-
delity certificates for both photo and audio content was rel-
atively constant, between 1000 mW and 1100 mW for all
trials. For comparison, we measured the power consump-
tion of common tasks such as playing music (∼600 mW)
and recording video (∼1800 mW). All measurements were
performed with the screen dimmed but not powered off.

The other question we sought to answer is whether any
overheads imposed by YouProve negatively affect the user
experience of using a mobile phone to gather sensor data.
Specifically, does YouProve’s logging increase the perceived
latency of snapping a photo or recording an audio clip?

We found YouProve’s impact on user experience to be
minimal, presumably due to the asynchronous interfaces pro-
vided by Android’s sensor APIs. Anecdotally, we did not
perceive an increase to the delay of restoring the viewfinder
after snapping a photo with the Camera app. While Android
does not package a standard audio recording app, we did
not notice any slowdown for the handful of recording apps
we tested. The time to boot, or the delay from pressing the
power button until the user interface becomes available, in-
creased from 26 seconds with Nexus One stock firmware to
90 seconds for the YouProve prototype, mostly due to the
SHA-1 digest computed over the read-only firmware.

We feel that these small and infrequent overheads are
well worth YouProve’s added authenticity guarantees.

8 Related work
Fidelity has traditionally been studied in the context of

mobile clients retrieving data from servers over a wireless
network [12, 19, 27]. In these settings, a small set of trusted
servers maintain canonical copies of all source data and can
generate reduced-fidelity versions at the request of a client.
In a mobile sensing service, the roles of clients and servers
are reversed: clients use sensors to generate original data and

may reduce its fidelity locally before sending it to a server
which operates on the data to implement the service logic.

Several groups have identified data authenticity as a crit-
ical problem in mobile sensing. Dua et al. [10] proposed
pairing a mobile device with a trustworthy sensing periph-
eral that can attest to its software configuration and sign its
sensor readings. This approach only applies to raw sensor
readings and cannot ensure the authenticity of locally modi-
fied data. Other groups have proposed deploying trustworthy
signing infrastructure that can accept sensor readings from
nearby devices and provide signed timestamps and location
coordinates [21, 30]. However, this approach can only prove
that a data item existed at a particular time and place.

Two recent position papers made the case for trustwor-
thy sensing on mobile devices [14, 31]. Saroiu et al. [31]
describe two architectures for signing sensor readings from
a device. One is similar to Dua’s approach[10] and embeds
signing hardware in the sensors themselves so that services
do not need to make any trust assumptions about a device’s
software. The other proposed approach utilizes a TPM and
virtual machines (VMs) to minimize the TCB by including
sensor drivers in the hypervisor and placing all other func-
tionality in untrusted VMs. Not-a-bot [16] used a similar
architecture to minimize the TCB and certify when outgoing
network messages were temporally correlated with keyboard
activity. Both approaches provide a smaller attack surface
than YouProve, but neither provides authenticity guarantees
for modified data, which is our primary goal.

Gilbert et al. [14] also proposed an architecture that uti-
lizes VMs and a TPM. In this approach an application that
is trusted to modify sensor data is encapsulated within a VM
along with any relevant device drivers. As we discussed in
Section 2.3, the main disadvantage of this approach is that
it limits choice by forcing users to modify their sensor data
with applications that a service deems trustworthy.

There have been several recent projects aimed at de-
signing new trustworthy software architectures leveraging a
TPM [22, 25, 32]. Nauman et al. [25] describe how a TPM
can be leveraged to attest to the individual java classes that
Android’s Dalvik virtual machine loads. Nexus [32] is a
micro-kernel OS for TPM-enabled machines that provides
a general framework for generating and reasoning about cer-
tifiable statements. YouProve could be implemented on top
of Nexus. Flicker [22] can attest to having executed a pro-
gram, including its inputs and outputs, even if the machine’s
BIOS and OS have become compromised. It does this by
relying on a small TCB of hundreds of lines of code and
the late launch feature of a TPM. It may be possible to lever-
age architectures such as Flicker to provide stronger integrity
guarantees for the sensor log and fidelity certificates.

CertiPics [32] is a trusted image editor for Nexus struc-
tured as a pipeline of small, stand-alone programs imple-
menting a single operation such as cropping or resizing. To
capture how an image was modified, each program invokes
the Nexus kernel to generate a signed statement describing
the hash of the program and a semantically-rich description
of the operation it performed. As mentioned in Section 2.3,
this approach either limits users’ choice or places an unman-
ageable trust-management burden on services.



9 Conclusion
This paper has presented the design and implementation

of YouProve, a system that enables mobile sensing services
to verify that contributed data has not been manipulated in
a way that alters its original meaning while allowing clients
to use untrusted editing applications to directly control the
fidelity of data they upload. Verifying that contributed data
preserves the meaning of original sensor readings is a key re-
quirement for ensuring data authenticity in domains such as
citizen journalism. The key to YouProve’s approach is pro-
viding analytic bases of trust for remote services. YouProve
relies on trusted, content type-specific analyzers running on
the mobile device to generate reports summarizing differ-
ences between a derived data item and an original sensor
reading. Results of experiments with a prototype are promis-
ing. Logging source data does not noticeably affect applica-
tion responsiveness, and our content analyzers are accurate
and complete their tasks in under 70 seconds for 5-minute
audio clips and under 30 seconds for 5-megapixel photos.
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