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Your American Dream is Not Mine!

A New Approach to Estimating Intergenerational Mobility Elasticities

Yonghong An∗ Le Wang† Ruli Xiao‡

August 2015

Abstract

This paper provides a new framework to estimate intergenerational mobility elasticities

(IGE) of children’s income with respect to parental income. Our approach is nonparametric

allowing for heterogeneity in IGEs and nonlinearity by leaving the relationship unspecified,

while acknowledging the latent nature of both child and parental permanent incomes. Our

approach also addresses life-cycle bias directly in estimation without requiring knowledge of

permanent income as the previous literature does. We confirm some of the previous findings

and also have some novel results. First, we uncover that the association between observed

annual income and permanent income varies over the life cycle; and that the observed patterns

differ over generations, although the latter result is statistically insignificant due to large

variances. Second, we find strong evidence that there exists substantial heterogeneity in IGEs

across population and that the mobility function is nonlinear. The implied IGE exhibits a U-

shape pattern with “twin-peaks”. Specifically, there is a considerable degree of mobility among

the broadly defined middle class, but both the children of high and low income fathers are

more likely to be high and low income adults, respectively. This result suggests that the U.S.

is indeed the “land of opportunity” to live out the “American Dream”, just not for everyone!

These results survive a battery of robustness checks. Finally, we also find that there exist a

great deal of within-group heterogeneity. Our approach is also immediately applicable in many

other similar contexts both within and outside labor economics.
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1 Introduction

Equality of opportunity, that individual success is determined by one’s effort and motivation, but

not one’s family background, is a value central to the so-called “American Dream”. In a society

with fair equality of opportunity, any observed measure of one’s success should be independent

of the success of her parents. To the extent that income is a good measure of success, the size

of the correlation between child income and parental income is often used to gauge the degree

of the equality of opportunity, and to provide important insights into the evolution of income

distributions over generations.1 A larger correlation, often called intergenerational mobility (IGM)

measure, implies a lower degree of equality of opportunity, and of mobility in moving up or down

the social ladder across generations. Economists and social scientists have long been interested

in documenting this measure (Black and Devereux, 2011; Durlauf and Shaorshadze, forthcoming),

and estimation of it presents much more than academic curiosity. In this paper, we advance the

literature by providing a new framework to estimate IGM.

Our paper is motivated by the often contradictory views on the size of the IGM in the U.S.

between the general public and economists, and even among economists ourselves. On the one

hand, popular writings on both the “underclass” and “the very wealthy” have emphasized the

stickiness in the intergenerational transmission of income, and hence the lack of mobility: the poor

have little opportunity to escape the poverty of their parents, while the very rich continue to enjoy

the same success as their parents. On the other hand, early estimates of the correlation between

the log of child and parental incomes (using linear regressions) in the economics literature are often

very low (0.2 or less), indicating a high degree of IGM in the U.S. (e.g., Behrman and Taubman,

1985; Table 1 of Becker and Tomes, 1986 for more examples). It was these estimates that led Becker

to conclude, in his influential presidential address to the American Economic Association, that “low

earnings as well as high earnings are not strongly transmitted from fathers to sons” (Becker, 1988);

and in Becker and Tomes (1986) that “Almost all the earnings advantages or disadvantages of

ancestors are wiped out in three generations.” The divergent views between popular writings and

academic works have long existed dating back to at least early 1980s (see Solon (1992) for a nice

summary).

We argue in this paper that the different views are not necessarily conflicting. Specifically,

the divergent views highlight the fact that there exists potential heterogeneity/nonlinearity in the

intergenerational transmission of income across the population: the views among the general public

focus on the correlation at both extremes of the income distribution, while the regression estimates

are better thought of as the correlation for “average” individuals (or average sizes of the correlations

in the population). It is well documented that the family plays a vital role in shaping child outcomes

1Occupation is another popular measure of success, especially in the sociology literature.
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through genetics, investment in human capital, and through choice of child environments (Cunha

and Heckman, 2007). Economic theories have predicted that families with different socio-economic

statuses differ in their resources and incentives to invest in their children, which in turn influence

the future success of their children. Various mechanisms such as education have also been shown

to give rise to heterogeneity in IGMs across socio-economic groups. As such, the correlations can

be drastically different across the population, and therefore it would not be surprising if the views

based on different sub-populations could differ from one another. Heterogeneity matters, but in a

priori unknown fashion, thereby calling for a necessarily nonparametric approach.

Traditional nonparametric approach is, however, not applicable in this context. What makes

estimation of IGM uniquely challenging is that neither the dependent nor the independent vari-

ables are observed. In his seminal work (attempting to reconcile the aforementioned differences),

Solon (1992) points out this more fundamental problem with estimation: the relevant income mea-

sure is permanent income instead of annual income (which can be thought of as a combination of

both permanent and transitory incomes). Solon’s significant contribution to this literature is to

acknowledge the latent nature of permanent income, and to recast the estimation problem as a

standard, linear error-in-variables model, in which any measure of income in a given year is a less

than perfect representation of permanent income, measured with error. Treating this issue as a

classical measurement error problem, Solon finds much larger estimates and hence lower mobility,

which reconciles the divergent views to some extent. His research has since spawned much of the

subsequent literature to pay more attention to this issue. We need to emphasize that while data of

better quality (such as federal income tax records used in Chetty et al. (2014a)) can help reduce

self-reported errors in observed annual income, it cannot necessarily eliminate the error due to the

fact that such observed annual income is an imperfect measure of permanent income. Due to the

difficulties in addressing this problem, the literature within economics has found vastly different

degrees of mobility in the U.S., even for the same cohort of children (Durlauf and Shaorshadze,

forthcoming).2

This paper is among the first attempts to provide a unified framework confronting both mea-

surement error and heterogeneity/nonlinearity issues surrounding estimation of IGM. Most of the

previous literature has only dealt with each issue separately, using different approaches that are

not necessarily comparable. On the one hand, the literature on estimation of IGE typically em-

ploys simple regression methods and follows Solon’s method that averages parental annual income

across all time periods to reduce the measure error issue. The average method assumes that the

association between annual and permanent income is the same over the life cycle, an assumption

challenged by Haider and Solon (2006) and others (e.g., Grawe, 2006) using the non-classical mea-

2For example, for the cohorts of children born in the 1950s and 1960s, the estimates vary from 0.2, 0.4, to 0.6
(Durlauf and Shaorshadze, forthcoming).
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surement error framework; violation of the assumption leads to the life-cycle bias in estimates of

IGE. On the other hand, a typical solution to get at heterogeneity is to employ the transition matrix

approach, whose results heavily depend on the discretization of the income distribution and are not

directly comparable to the regression estimates of IGE. We review each approach in detail below to

highlight potential shortcomings with the existing approaches. Building on recent advances in the

literature on nonparametric identification of errors-in-variables models, especially those by Hu and

Sasaki (2014), we overcome many of the shortcomings associated with the existing approaches. Our

approach is nonparametric allowing for nonlinearity by leaving the relationship unspecified, while

acknowledging the unobservable nature of both dependent and key independent variables (i.e., child

and parental permanent incomes). This approach can accommodate non-classical measurement er-

ror, and hence, addresses the life-cycle bias directly in estimation. Additionally, this nonparametric

approach has a closed-form estimator, which is practically more convenient and is preferred to many

alternative estimators relying on numerical optimizations.

We further extend the analytical form of the approach to derive an explicit expression of the

life-cycle bias for our nonparametric framework, which nests many interesting cases such as linear

models. This expression allows us to relax the normalization assumption, typically assumed in the

broad literature on measurement error or factor models, to bound the true function. This extension

itself is a novel contribution to the econometrics literature. Our approach is immediately applicable

in many other similar contexts both within and outside labor economics. Monte Carlo simulation

exercises indeed indicate superior finite-sample performances of this approach.

Our approach has some additional advantages. First, a by-product of our approach is a model-

free way to estimate life-cycle variation in the association between annual and permanent incomes,

subject to a required normalization. The association is also allowed to vary across generations.

This result has important implications for many influential economic studies where the relevant

economic variable is permanent income, but only short-term or annual incomes are available for

estimations. Second, although this literature is primarily descriptive, our approach can be easily

adapted to include covariates to control for potential mechanisms through which parental income

is correlated with child income, which has not been systematically done in the previous literature,

especially when dealing with nonlinearity.

To facilitate the comparison to the existing literature, we also use data from Panel Studies

of Income Dynamics (PSID), a commonly used data in the literature. As noted in Corak and

Heisz (1999), “[t]he data for all of the U.S. surveys is based on only two different surveys (either

the Panel Study of Income Dynamics or the National Longitudinal Survey).” We reach several

important conclusions, some of which are new findings in the literature. First, we uncover that

the association between single-year and permanent incomes varies over the life cycle. Specifically,

the single-year income in younger years generally underestimate the permanent income, while the
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opposite is true for the single-year income in one’s later stages. In addition, the life-cycle patterns

has changed between generations (fathers and children). Second, we find that there exists substantial

heterogeneity in IGMs across population. The mobility function is nonlinear. The degree of mobility

differs greatly at the two extremes of the earnings distribution. Specifically, there is a considerable

degree of mobility among the broadly defined middle earnings group, but both the children of

high and low earning fathers are more likely to grow up to be, respectively, high and low earning

adults. These results survive a battery of robustness checks. Finally, we also find evidence of

substantial within-group (as opposed to between-group) heterogeneity in IGMs, which is previously

undocumented.

Our methodology is related to the literature on nonlinear models with measurement error.

For nonlinear models with classical measurement error, Li (2002) and Schennach (2004a,b) use

double measurements of explanatory variables for identification and estimation, Schennach and Hu

(2013) show nonparametric identification and semiparametric estimation without side information

of explanatory variables. On the other hand, if explanatory variables are subject to non-classical

measurement error, Hu (2008) and Hu and Schennach (2008) provide general identification results

for nonlinear models with misclassification and measurement error, respectively, using instrumental

variables. The methodology of our paper is closely related to and based on the results in Hu

and Sasaki (2014), who propose closed-form estimators for nonparametric regressions using two

measurements with non-classical errors. Our approach differs from Hu and Sasaki (2014) in several

aspects. First, we allow for the case that both dependent and explanatory variables may be subject

to measurement errors; whereas only explanatory variables are mis-measured in their model. The

impacts of mis-measured dependent variable on estimation of nonlinear models are no longer trivial

when the measurement error is nonclassical. Second, we relax the normalization assumption, which

is typically assumed in the broad literature on measurement error or factor models to bound the

latent function. This is a novel result in the literature.

The next section has a lengthy discussion of the literature, where we highlight both important

and some of the more subtle issues that motivate our method. Section 3 lays out the theoretical

results about our method and Section 4 conducts some Monte Carlo simulation exercises to assess

its finite-sample performances. Section 5 describes the data and Section 6 presents the results.

Section 7 discuss the further implications of our results. Finally, Section 8 concludes this paper.

Proofs, tables and figures are included in the Appendix.

2 Related Empirical Literature

Due to its importance, the literature on estimation of IGM measures is abundant. Solon (1999),

Björklund and Jäntti (2009), and Black and Devereux (2011) provide excellent reviews of a sub-

5



stantial body of work on this topic. Here we will focus only on the empirical issues that motivate

our approach, as well as the limitations common to this literature including this work.

2.1 Issues with Different Approaches

The literature has typically focused on the following benchmark regression:

Y ∗ = α + βX∗ + ε

where Y ∗ and X∗ are the log of permanent income of children and parents, respectively. In this log-

log specification, β is the parameter of interest, often called intergenerational elasticity of income

(IGE). It is the most commonly used summary measure of IGM due to its easy interpretation

much like a correlation (Lefgren et al., 2012; Durlauf and Shaorshadze, forthcoming). Solon (1992)

acknowledges the fact that permanent income is unobservable; and that simply replacing it with

observed annual income can thus lead to a measurement error problem. In the case of the classical

measurement error (i.e., Xt = X∗ + Ut where t is age and Ut can be considered as exogeneous

transitory shocks), a well-known result is that OLS estimates of β are biased downward to zero,

thereby leading one to find a smaller IGE and hence overstate the level of intergenerational mobility.

For the linear specification it is relatively easy to address the measurement error problem. One of

the solutions proposed by Solon (1992) is to average father’s observed annual incomes across all

time periods.3 Solon (1992) finds that addressing the measurement error problem indeed leads to a

larger estimate of IGE, which can reconcile the divergent views to some extent. Solon’s averaging

method has been traditionally followed in the subsequent literature (Black and Devereux, 2011).

An implicit assumption in the averaging method is that the association between annual and

permanent incomes is the same over the life cycle. This assumption has been challenged in Solon’s

later work (Haider and Solon, 2006) and others (Grawe, 2006; Böhlmark and Lindquist, 2006; and

Nilsen et al., 2012). By considering a non-classical measurement error framework, Haider and Solon

(2006) show that annual incomes in one’s early career tend to understate one’s permanent income,

but this downward bias (also known as life-cycle bias) becomes less severe as one matures. This

issue has since often been acknowledged, but we are not aware of any papers that systematically deal

with this problem in estimation of IGE. In their work, Haider and Solon (2006) derive bias formulae

based on the linear specification to correct for life-cycle bias, but their method, as noted in Grawe

(2006), actually assumes that we have data on permanent income, which is clearly unavailable!4

3Another solution proposed in Solon (1992) is the instrumental variable (IV) approach. See II. Section E in
Mazumder (2005) for a brief summary of the existing results using this approach. However, this approach has not
been applied widely, presumably because it is not a trivial task to find a valid IV.

4Additional distributional assumptions are also required for estimation of permanent income in Haider and Solon
(2006). Grawe (2006) discuss inferential issues inherent in their multi-step approach.
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Moreover, Haider and Solon (2006) also implicitly assumes that the life-cycle bias remains constant

over generations, which can fail to hold in practice.

Further, measurement error in child’s permanent income has often been ignored in this litera-

ture since, in the linear context, classical measurement error in child’s income can affect only the

precision, but not the consistency of the estimates. This log-log specification has also been shown

to be sensitive to inclusion of very small income values (Chetty et al., 2014a).

It is obvious that the benchmark regression, assuming a constant IGE (β) across population,

cannot accommodate heterogeneity. A typical solution to allow for heterogeneity/nonlinearity is

to employ the transition-matrix approach (e.g., Zimmerman (1992) and Corak and Heisz (1999)).

This approach calculates transition probabilities to describe the rates of movement across specific

parts (e.g., quartiles) of the distribution over a generation. While useful to capture heterogeneity

to some degree, it also has two important shortcomings: one is related to measurement errors and

the other to its “overtly disaggregate nature”.

First, Bhattacharya and Mazumder (2011) note that in the presence of measurement errors, the

results using the transition matrix approach will hold only if the ranks of individuals are preserved

despite measurement errors. This assumption is often restrictive and has been shown to fail to hold

in practice. O’Neill et al. (2007) show via limited simulation exercises that measurement error can

bias the estimates as much as 20% in some cases; and that the bias is most severe in the tails of

the distribution (which are often of main interest to policymakers and alike). However, there has

not been a systematic way to deal with measurement error in this framework.5 Notable exceptions

include Corak and Heisz (1999) and Bhattacharya and Mazumder (2011), but again using the

averaging method.

Another substantive shortcoming of the transition matrix approach is “its overtly disaggregate

nature” (Bhattacharya and Mazumder, 2011). One needs to discretize the support of the income

distribution, and only a finite number of income categories is used in practice (sometimes as few as

four groups e.g., Zimmerman, 1992). An immediate consequence is that mobility depends on the

chosen threshold for an income group, and that any mobility within a particular group is ignored.

This could also produce an artificial nonlinearity where people in the very top and very bottom of the

father’s income distribution tend to have higher probabilities to stay in the same income category,

simply because those at the very top are restricted from further upward movement and those at

the very bottom further downward movement; the so-called floor-ceiling effect associated with the

transition-matrix approach (Corak and Heisz, 1999). More importantly, the estimated transition

probabilities are not directly comparable to IGEs. For example, if the estimated probability from

the second to the top quartiles is 25%, this figure cannot tell us by how much the child’s income will

increase should the father’s income increase by a certain amount, as IGE does. Furthermore, Hertz

5O’Neill et al. (2007) discuss several papers on other topics that attempt to account for measurement error.
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(2005) points out that with transition matrices, “there is no best way to summarize their content”,

prompting development of an easier-to-interpret summary measure of mobility. Our approach based

on continuous measures of income allows a simple metric of persistence.

Other approaches used to address heterogeneity/nonlinearity such as spline regressions (e.g.,

Björklund et al., 2012), standard nonparametric estimations (e.g., Corak and Heisz, 1999), and

rank-rank regressions (e.g., Chetty et al., 2014a) share some similar issues with the transition-

matrix approach.

Considering the foregoing issues, we propose a nonparametric approach to address heterogeneity,

while acknowledging the latent nature of both child and parental permanent incomes. Unlike the

averaging method, our approach does not require that all observed annual incomes be accurate

representations of permanent income. Neither do we require knowledge of permanent income to

address the life-cycle bias in estimation. To anchor our approach to the past studies, we choose a

nonparametric log-log specification since IGE is the most commonly used measure of IGM and is

easy to interpret.

2.2 Common Limitations to this Literature

Prior to continuing, it is also important to point out some of the limitations common to most of

the literature including ours. First, the literature is largely descriptive. Most of the literature is

still focusing on obtaining precise measures of IGEs, although increasing attention has been paid

to causal mechanisms underlying the observed patterns (Black and Devereux, 2011). While some

attempts in this direction have been made, they are still far from satisfactory. Notable examples

among others include Björklund et al. (2012), Chetty et al. (2014a), and Lefgren et al. (2012), which,

for example, consider the impacts of parental income on several potential intermediate outcomes.

Fagereng et al. (2015) isolate the impact of parental income from genetic differences in abilities by

using a sample of adoptees. The goal of this paper is to provide credible estimates of the patterns of

IGEs, which is a necessary step before any research can be done finding the potential mechanisms.

Second, despite the number of studies on this topic, most U.S. studies are basing on only two

different surveys, either the Panel Study of Income Dynamics (PSID) or the National Longitudinal

Survey of Youth (NLSY), both of which have some shortcomings. For example, the intergenerational

samples based on these datasets can be small, especially for minorities such as blacks (e.g., Hertz,

2005; Mazumder, 2005; Corak and Heisz, 1999). Few studies have used alternative data sources

such as SIPP matched to Social Security Adminstration data (Mazumder, 2005) and federal income

tax records (Chetty et al., 2014a,b). These alternative datasets are generally not readily available

to the public, and hence we utilize the PSID in this paper. Our use of this commonly used dataset

facilitates direct comparisons to the existing results to highlight the flexibility of our approach.
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Although all the data problems pertaining to the use of PSID/NLSY still carry through to our

paper as well, we try our best to follow the standard procedure to deal with the shortcomings

(discussed in more detail below). Moreover, there is also some simulation evidence that some of

these issues (such as small sample sizes) may not necessarily impact our estimates severely.

3 Empirical Strategy

3.1 The Model

Consider a model that describes an intergenerational income transition:

Y ∗ = g(X∗, Z) + ε (1)

where Y ∗ and X∗ are respectively the permanent (log) income of children and parents. Z is an

exogenous vector of covariates of childrens, e.g, race, gender and region; ε are other factors that

might affect the intergenerational income transition that we cannot control for. g(·) is an unspecified

mobility function relating parental income X∗ to child income Y ∗. This nonparametric specification

nests the linear specification commonly used in the literature as a special case. The IGE at a realized

Z = z is captured by the derivative of the mobility function, i.e., ∂g(X∗, Z = z)/∂X∗ |X∗=x∗ , which

is allowed to vary with the parental income X∗.

Note further that the econometrician cannot observe permanent income directly in the data. In-

stead, we can only have access to actual annual incomes of each individual at different stages of their

lives, which are imperfect measures of the permanent income. Following Haider and Solon (2006),

we can model the relationship between the observed and the permanent incomes (by incorporating

age-dependent property due to heterogeneous age-earnings profiles):

Yt = δtY
∗ + Ut,

Xt = αtX
∗ + Vt, t = 1, 2. (2)

where t represents the stage of each individual in her life cycle such as ages, Yt and Xt are the

observed incomes at period t for the two generations respectively, Ut and Vt are transitory shocks,

and δt > 0 and αt > 0 capture the weight of the income in age t in the permanent income (or how

well annual income in a particular period approximates the permanent income); δt and αt are often

called life-cycle coefficients.6

This specification implies that the averaging method cannot reduce measurement error in the

presence of non-classical measurement error. Consider a simple case where one is a permanent

6As will be shown, two periods of data are enough for identification and estimation.
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income with a classical measurement error, and the other is not (i.e., X1 = X∗+V1, X2 = αX∗+V2).

The averaging method gives X = 1
2
(X1+X2) = α̃X∗+Ṽ with E[X−X∗|X∗] 6= 0 where α̃ = (1

2
+ 1

2
α)

and Ṽ = 1
2
(V1 + V2). This implies that the averaging method, although it may reduce the impact

of transitory income shocks, actually leads to a non-classical measurement error (or life-cycle bias),

whose direction of bias is priori unknown.

3.2 Identification and Estimation of Mobility Function and IGE

The identification and estimation of the IGE is obtained by first identifying and estimating the

mobility function g(·). Below we discuss how we can use repeated measures of the latent variables

to nonparametrically identify g(·): in our case, the observed incomes Xt and Yt from multiple

years are repeated measurements of the permanent income X∗ and Y ∗, respectively. Intuitively,

the joint distribution of the observed incomes from multiple periods reveals information of the

distribution of the permanent income, whereas the joint distribution of parental and children’s

incomes further helps us recover the unspecified mobility function g(·). We consider both point

and partial identification of the mobility function. For the sake of simplicity, we suppress z below

whenever there is no ambiguity.

3.2.1 Point Identification

We first make the following observation:

Claim 1. Not all the δt and αt, t = 1, 2 are uniquely determined from the observed Yt and Xt in

model (1).7

This claim implies that additional restrictions or normalizations are necessary for any attempts

for point identification. Normalization is commonly required even in the linear case (see, e.g.,

Cunha et al., 2010; Black and Smith, 2006). For example, Black and Smith (2006) consider a linear

GMM method to estimate the returns to the latent school quality. They normalize the variance of

the underlying latent school quality to one. Such normalization is obviously not plausible in our

context when the underlying variable is permanent income. As is commonly used in the previous

literature, our normalization is instead on the coefficient on only one of the single year income. This

normalization is more natural and economically plausible: it simply requires that there exists a stage

7This claim can be easily verified. We exemplify it using αt. The original specification can be transformed to
an alternative specification as follows: Xt = αtX

∗ + Vt = α1αt(X
∗/α1) + Vt. The two specifications would be

observably equivalent with the permanent income being X∗ and X∗/α1 and the coefficients being αt and α1αt,
respectively. Note that in Haider and Solon (2006) the coefficient αt is identified as Cov(V,Xt)/V ar(Xt) under a
simple dynamics for the observed income Xt = a + bt, where V is the present discounted value of lifetime earnings
and V ≈ a+ r − logr + b

r (r is a constant real interest rate ).
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of one’s life where the annual income in this year is the permanent income plus some unobservable

transitory shocks. Formally,

Assumption 1. There exist a period t0, t1 ∈ {1, 2} such that (i) Xt1 = X∗ + Vt1 and (ii) Yt0 =

Y ∗ + Ut0, where t0 and t1 are not necessarily to be the same. We call t0, t1 baseline years.

In the absence of any transitory shocks (measurement errors), one’s income will eventually reach

their permanent income at one point (i.e., classical measurement errors). There is strong evidence

supporting this normalization.8 Unlike the average method, we allow for the scale of the annual

incomes in any other years to differ from permanent income with a non-classical measurement error

(α2, δ2 6= 1). For ease of notation, we denote the normalization period as 1 and the other periods

as 2 for both children and parents.

To recover the mobility function, we first need to identify the life-cycle coefficient for the other

period at least for parents by the results in the measurement error literature. We first provide the

assumptions needed for identifying the other coefficients, i.e., δ2 and α2.

Assumption 2. (i) Cov(Ut, X
∗) = Cov(V1, Ut) = 0, (ii) Cov(Vt, Y

∗) = Cov(U1, Vt) = 0, t=1, 2.

Parts (i) and (ii) impose restrictions on parental and children’s income, respectively. The first

part of (i) is standard in the literature; it states that the parental permanent income is uncorrelated

with the transitory shocks to parental income in both periods. The second part of (i) imposes

restrictions on the transitory shocks in the baseline year (in which the observed income is equal to

the permanent income plus transitory shocks). This assumption, while not necessarily less restrictive

than the assumption of no serial correlation in transitory shocks that is typically assumed in the

literature, is more plausible. To see this, suppose baseline years for both parents and children are age

36, and a second-year observation for children age 26. Cov(U2, V1) = 0 requires that the transitory

shock to a child’s income at age 26 is uncorrelated with any transitory shock to father’s income at

age 36. It is hard to imagine these two shocks will be correlated because they are at least 15 years

apart (assuming father’s age at his birth is 25). A similar argument applies to Cov(U1, V1) = 0.

The discussion above can be readily extended to part (ii) for children.

Under Assumptions 1 and 2, δ2 and α2 can be identified as follows.

Lemma 1. The coefficients δ2 and α2 are identified under Assumptions 1 (i), 2 (i), and 1 (ii) and

2 (ii), respectively.

δ2 =
Cov(X1, Y2)

Cov(X1, Y1)
, α2 =

Cov(X2, Y1)

Cov(X1, Y1)
. (3)

8For example, Haider and Solon (2006) estimate αt and δt for the 1951-1991 Social Security Administration
earnings histories of the members of the Health and Retirement Study sample. Assuming the life-cycle coefficients of
children and parents are the same, i.e., αt = δt, they show that at the age of 32 the coefficient crosses one and keeps
insignificantly different from one till mid or late forties. Böhlmark and Lindquist (2006) provide a similar analysis
based on the Sweden income tax data, and they find that the coefficient is closest to one at the age of 34.
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Once α2 and δ2 are identified, we obtain repeated measurements for the permanent income X∗

and Y ∗ which allow us to identify their distributions nonparametrically. Such an approach has been

widely used in the literature of measurement errors. The basic idea is to investigate the identifying

power of characteristic function (ch.f. hereafter) for a density function. Let R denote a random

variable and fR(r) be its density evaluated at R = r.

To identify the mobility function, additional assumptions are needed and presented as follows.

Assumption 3. (i) X∗ is independent of V2. (ii) E[V1|X2] = 0.

Part (i) is a textbook assumption on transitory shocks, requiring the permanent income X∗

to be independent of the transitory shock V2 at period 2. Note that in the specification (2), we

have E[X2 − X∗|X∗] = E[(α2 − 1)X∗ + V2|X∗] = E[(α2 − 1)X∗] 6= 0 whenever α2 6= 1. Thus

the independence assumption in part (i) does not require the measurement error to be classical

(i.e., E[X2 − X∗|X∗] = 0). Part (ii) imposes mean independence of the transitory shocks at the

normalized period from the remaining observed income. In practice, we have the flexibility to choose

the period t = 2 so that this part of assumption can be easily satisfied. For example, given t = 1

being 36, we can choose t = 2 to be, say, 40 so that E[V1|X2] = 0 is plausibly met because it is

likely that one’s annual income at age 40 has no predictive power of the transitory shock to her

income at age 36. Note that our Assumption 3 is less restrictive than the assumption of mutual

independence of V1, V2, and X∗ for parents, which is commonly imposed in the literature.

Lemma 2. The density fX∗ is nonparametrically identified under Assumptions 1 (i), 2 (i) and 3.

Proof. See Appendix. �

The identification of the density fX∗ from two measurements of X∗ follows the insights in Li

(2002) where the information of the latent variable X∗ is explored in the characteristic functions of

its measurements. Similarly, we may identify the density of the children’s permanent income fY ∗

under a similar restriction to Assumption 3. Nevertheless, as will be shown below, the density fY ∗

is not necessary for identifying the mobility function g(·).

Assumption 4. (i). E[ε|X2] = 0. (ii). E[U2|X2] = 0.

Part (i) of this assumption is assumed in nearly all the studies of IGE, stating that those unob-

served and random factors ε that affect intergenerational income mobility are mean independent of

parental income X2. Violation of this assumption simply means that we cannot necessarily interpret

the result as a causal relationship. Part (ii) requires that there exists an age (not necessarily the

same for parents and sons) where the transitory shock to children’ income is mean independent of

parental income.

The ch.f. of the density fR is defined as φR(s) ≡ E[eisr] =
∫∞
−∞ e

isrf(r)dr. Similarly, a joint

ch.f. of two random variables R,R′ is φR,R′(s1, s2) ≡ E[eis1r+is2r
′
] =

∫∞
−∞ e

is1r+is2r′f(r, r′)drdr′.
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Assumption 5. (i) φX2 does not vanish on R. (ii) fX∗ and φX∗(·) are continuous and absolutely

integrable. (iii) The convolution of fX∗ and g(·), fX∗ ∗ g(·) is continuous and absolutely integrable,

so is
∫∞
−∞(fX∗ ∗ g)dx.

Part (i) is a widely imposed restriction in the literature on measurement errors, where charac-

teristic functions oftentimes appear as denominators. Many commonly used distribution families

satisfy this requirement, e.g., exponential, gamma, chi-squared, and normal distributions. Parts

(ii) and (iii) are commonly used regularity conditions that enable us to apply the Fourier transform

and inversion to those functions.

Proposition 1. [Hu and Sasaki (2014)] Suppose Assumptions 1 (i), 2 (i), 3-5 hold, then the mobility

function g(X∗) is nonparametrically identified from two periods’ income of parents and one period

of children’s income. Moreover, g(X∗) has a closed-form.

Proof. See Appendix. �

Proposition 1 provides a closed-form solution to the unknown function g(X∗) conditional on the

covariate Z. The closed-form estimator does not rely on any optimization algorithms and it has

several advantages over a MLE or a GMM: (i) A closed-form estimator is global by construction. By

contrast, an optimization algorithm, e.g., MLE can only guarantee a local maximum or minimum

even a global solution exists. (ii) It allows us to analyze how parameters affect the estimate con-

structively while this can only be done numerically for an estimator using optimization algorithms.

(iii) A closed-form estimator is computationally more convenient since most of the optimization

algorithms involve iterations. Also, note that our method may be preferred especially because of

the paucity of long panel data. We need simply the baseline year and another year of the data for

parents, whereas only one year data for children are necessary.

3.2.2 Partial Identification and Bounds

Following the literature, we have thus far considered a necessary normalization to point identify

the mobility function. A useful advantage of our closed-form solution is that it allows us to provide

informative bounds on the mobility function when such normalization is mis-specified. Below,

we consider a scenario in which we have only some imperfect knowledge of the range of the life-

cycle coefficient, as opposed to having precise knowledge of which period the coefficient equals to 1.

Specifically, we allow the coefficient to vary around 1 within a plausible neighborhood. The following

identification result on bounds without normalization is new and important in the literature.
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Assumption 6. Suppose the observed income Y1 and X1 in baseline years satisfy

Y1 = δ1Y
∗ + U1, δ1 ∈ [δ1, δ̄1]

X1 = α1X
∗ + V1, α1 ∈ [α1, ᾱ1], (4)

where δ1 and α1 are unknown, but δ1, δ̄1, and α1, ᾱ1 are known and positive.

This assumption relaxes the normalization requirement in Assumption 1. The well-established

empirical evidence in the literature provides with us reasonable bounds for α1 and δ1. For instance,

the point-wise confidence interval of α1, which is assumed to equal δ1, in Haider and Solon (2006)

can be used as a reasonable bound.

Below we show that δ1 and α1 affect the closed-form of the function g(·) in a particular way

such that a bound of g(·) can be obtained given that δ1, δ̄1, α1 and ᾱ1 are known. We first present

an important result concerning the functional form of g(·) under Assumption 6.

Theorem 1. Suppose Assumptions 2(i) and 3-6 hold. Let g̃(·) denote the mobility function identified

based on Proposition 1 by falsely assuming Assumption 1 holds. Then:

g̃(x∗) = δ1g(x∗/α1) or equivalently g(x∗) =
1

δ1

g̃(α1x
∗). (5)

Proof. See Appendix. �

This theorem expresses explicitly how an inaccurate relationship between permanent income

and an observed one affects the mobility function. Interestingly, the coefficient for the children

(δ1) affects only the scale of the mobility function, and the effect is independent of the underlying

mobility function g(·), whereas the effects of the coefficient for parents α1 depend on g(·).
The results in Theorem 1 have some important implications. Specifically, if the true life-cycle

coefficients for the baseline years are the same across generations (i.e., δ1 = α1) as in Haider and

Solon (2006), mis-specified normalization does not bias the estimation of the true mobility function

when the true function is either homogeneous with degree one or linear. First, when the true

mobility function is homogeneous with degree one g(x∗/α1) = g(x∗)/α1 (e.g., a linear function

without an intercept), the estimated mobility function is g̃(x∗) = δ1
α1
g(x∗); hence g̃(x∗) = g(x∗).

Second, if the mobility function is linear g(x∗) = β0 + β1x
∗ as widely used in the literature, the

following corollary holds.

Corollary 1. Suppose the latent mobility function is linear g(x∗) = β0 + β1x
∗, and the two gen-

erations follow the same relationship between permanent and observed income δ1 = α1, then the

intergenerational income elasticity (β1) is identified as g̃′(·) under the conditions for Theorem 1.
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Proof. See Appendix. �

The conditions of linearity for the mobility function and the same income model for two gen-

erations are standard and widely imposed in the literature of intergenerational mobility of income.

Thus, Corollary 1 implies a distinct advantage of our method in dealing with a latent linear mobil-

ity function, which is the approximation of permanent income does not affect our estimate of the

function if the true mobility function is linear.

For more general mobility function, the results in Theorem 1 also enable us to obtain bounds

for both the mobility function g(·) and the income mobility elasticities when the normalization

assumption fails to hold.

Theorem 2. Under Assumptions 2(i) and 3-6, the bounds of the mobility function and its derivative

are identified to be

1

δ̄1

min
α1∈[α1,ᾱ1]

(g̃(α1x
∗)) ≤ g(x∗) ≤ 1

δ1

max
α1∈[α1,ᾱ1]

(g̃(α1x
∗)) (6)

and

α1

δ̄1

min
α1∈[α1,ᾱ1]

(
g̃′(α1x

∗)
)
≤ g′(x∗) ≤ ᾱ1

δ1

max
α1∈[α1,ᾱ1]

(
g̃′(α1x

∗)
)
, (7)

respectively.

Proof. See Appendix. �

Theorem 2 states that our method provides bounds for the nonparametric mobility function

when Assumption 1 fails but some prior information about the range of the coefficient may be

available from the literature.

3.2.3 Estimation

The identification results on the mobility function and its bounds are constructive. This allows us to

follow the identification argument in estimation. Given an observed sample of the two generations’

incomes for two years, the mobility function is estimated in three steps. We sketch the steps of

estimation and leave the technical details in the Appendix.

1. First, the coefficients α2 and δ2 are estimated using the sample analog of equation (3).

2. Second, we recover the density of the permanent income fX∗ basing on the estimated α2,

together with the closed-form expression provided in Lemma 2.
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3. Finally, we estimate the mobility function by plugging the estimates in the first two steps into

the closed-form mobility function in Proposition 1. The estimate of the mobility function also

allows us to further estimate the derivative as well as the bounds (basing on Theorem 2).

As discussed before, the estimation of mobility function as well as its derivatives only requires two

years of income data of parents and one year of income data of children. In the case where many

years of data are available for both generations, one may obtain multiple mobility functions and

use the average of those estimates as the estimator. Such an approach may improve the precision

of the estimate.

4 Monte Carlo Experiments

In this section, we design several Monte Carlo studies to illustrate the finite-sample performance

of our estimators. We assume that both αt and δt are random draws from a uniform distribution

U [0.2, 1.2]. They are not necessarily equal for a given t. The transitory shocks Ut, Vt, and the

structure error ε are i.i.d. draws from the standard normal N (0, 1). Since our estimation procedure

is conditional on Z, we need not worry about covariates in our Monte Carlo studies.

We consider two specifications of the function g(X∗):

g(X∗) = 0.6X∗,

g(X∗) = X∗ − 0.2X∗2, (8)

where X∗ is distributed according to a normal distribution N (0, 4). The number of periods T = 2

and the sample size N = 100, 300, 500 (we only present the results of N = 300 for brevity). We

replicate each experiment for 1000 times.

In the first set of experiments, we maintain the normalization assumption α1 = δ1 = 1 as in

proposition 1. We present the estimates of α2, δ2 in Table 1. As an intermediate step, we also

estimate the densities for X∗ and Y ∗ and report the results in Figure 1, where the top panels are for

the linear specification, while the bottom ones for the quadratic one. In each subfigure, we present

the true density, the estimated mean and the [5%, 95%] point-wise confidence intervals. The figure

illustrates that our estimates perform very well even for a modest sample size of 300 observations,

which is smaller than the sample size used in most of the existing studies in this context. The

estimates of the mobility function g(·) are presented in the top panel of Figure 2 where the linear

specification is shown on the left and the quadratic on the right. The results illustrate that the

estimated function captures the true function closely for both the linear and quadratic cases. It is

worth noting that the estimates at both tails are noisy, because the number of observations at tails

is small for normal distributions. Nevertheless, the estimates, especially the point-wise confidence
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intervals, improve significantly as the sample size increases. Based on the estimated function g(·),
we employ equation (B.3) in the Appendix to estimate the derivative g′(·). The results are presented

in the middle panel of Figure 2.

In the second set of experiments, we consider estimation of bounds for the true function when

α1 and δ1 are mis-specified. Specifically, we set α1 = 0.8 and δ1 = 1.2 but pretend that these values

are unknown yet with knowledge that α1 ∈ [0.6, 1] and δ1 ∈ [0.9, 1.5]. Following Proposition 2, we

estimate the bounds of g(·). The estimates are displayed in the bottom panel of Figure 2, where the

left one is for the linear specification. We observe that the estimated bounds (blue lines) successfully

contain the true mobility function. We also use these bounds to obtain an interval of the marginal

effect of x∗ on g(·). We now turn to the empirical application of our proposing method.

5 Data

Our data are drawn from the Panel Study of Income Dynamics (PSID), a longitudinal survey

consisting of a nationally representative sample of over 18,000 individuals living in 5,000 families

in the U.S.. The original sample has been re-interviewed annually starting from 1968 through 1997

and biennially afterward. The PSID has also continued to follow children from the original sample

even after they left their parents to form their own households. This allows us to match children

to parents and obtain their incomes at different ages. More importantly, the PSID collects data on

annual income for the preceding calendar year. Because of these advantages, the PSID has been

widely used for empirical studies of IGM, despite its relatively small sample size. We therefore

provide only limited detail here.

Following the standard practice in the literature, we focus on (the logarithm of) family income

for both parents and children, as it is “the more inclusive measure of economic status and preferable

for most applications” (Bowles and Gintis, 2002); and “reflects the objective of measuring mobility

after accounting for secular income growth in a society” (Durlauf and Shaorshadze, forthcoming).

See, also, Chadwick and Solon (2002) and (Lee and Solon, 2009, p.767) for more discussions of this

point. In our analysis, we exclude negative income and adjust for top-coded earnings by a factor of

1.4, as in Lemieux (2006).

Because of the use of family income for both parents and children, we cannot separate the income

of children from that of their parents’ if children live with their parents. Following the literature

(e.g., Mayer and Lopoo (2004, 2005); Lee and Solon (2009)), we measure children’s income at

different ages by the family earnings in the household in which they become the head or head’s

spouse. Since family income is used, we need only map the income of children to that of their

fathers because mothers’ incomes are the same as that of fathers.

As in Solon (1992), we use only the Survey Research Center component of the PSID, but exclude
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the Survey of Economic Opportunity (SEO) component to prevent over-representing the poverty

sample. Previous literature has also pointed out some serious irregularities in the sampling of SEO

respondents, which can “preclude easy generalization to any well-defined population” (Bloome,

2015).

We consider information on income for both children and parents at their ages from 26 to 50.

There are two things about the number of observations available for our analysis that we need to

keep in mind; these figures will become useful when making our choice of baseline and alternative

measurement of incomes in our estimations (Table 2). We note that the number of observations

available for children on income decreases with age monotonically, while the number of observations

for parents exhibit an inverted-U shape. The number of observations would decrease further in

estimations because we require information on income be available for both child and parent. Thus,

the combination of child’s and parent’s ages that we choose will determine the sample size. We

discuss our choice further below.

6 Results

6.1 Life-cycle Bias

We begin by showing estimates of association between annual and permanent incomes over the life

cycle for both fathers and children. As shown in the prior literature, if the association varies with

age, the use of annual income at different ages in traditional estimation can thus result in what is

called life-cycle bias. An insight from Haider and Solon (2006) is that with complete information on

earnings over a full career, it is possible to estimate permanent income and hence the corresponding

associations over life-cycle (by simply regressing annual income at certain age on the permanent

income). Such discussion is, however, only hypothetical as noted in Grawe (2006): if the data on

the permanent income were available, we can simply regress child’s permanent income on parental

permanent income, and the estimates are free of life-cycle bias.

Our estimation is basing on observed annual incomes, and hence does not require data on

permanent incomes. As mentioned previously, we normalize the association between annual income

observed in one of the years and permanent income to be one. In other words, there must be

one year when one’s income reaches her permanent income (with some random transitory shocks).

This normalization is economically plausible. Moreover, such normalization is innocuous in terms

of interpretations. The estimated associations can be interpreted as relative association between

permanent and annual incomes (or the (relative) importance of the income in each stage of the life

cycle).

The previous literature has typically found that the associations become close to 1 between
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individuals’ mid thirties and forties (e.g., Haider and Solon, 2006; Böhlmark and Lindquist, 2006;

Grawe, 2006). As such, we choose t0 = t1 = 36, the first year during this period to illustrate

our approach. Figure 3 present the estimates for the coefficients of α2 and δ2 when the income

of different years (t = 2) are used for estimation. Examining the patterns for fathers, we reach

quite similar conclusions to the previous literature. There exhibits an inverted-U shape in the

relationship between association and age. We first notice that estimates are generally smaller than

one before mid-thirties. Such differences are statistically significant since the bootstrapped 90%

confidence intervals generally exclude one. This result indicates that relative to the baseline year,

the income in one’s early years are less precise in capturing her permanent income. During this

period, the relationship between the association and age is nearly monotonic: as one gets older, her

annual income gradually becomes closer to her permanent income. Afterward, the estimates remain

relatively stable around 1 until mid-forties. Starting from one’s late forties and on, the estimates

are generally again smaller than one. This pattern certainly rejects the assumption of equal weights

often imposed in the literature when using the average method. Consistent with the literature,

these estimates suggest that life-cycle bias in IGEs for linear regressions could be more likely when

fathers’ incomes aged younger than 35 are used in estimations.

Turning to the estimates for children, we observe a slightly different pattern. While we continue

to observe that the estimates are generally smaller than one before mid-thirties, these estimates are

not necessarily statistically different from one. Moreover, there exists no inverted-U observed as

for fathers. The estimates generally fluctuate around one. Comparing the results between children

and fathers, we uncover the relative representation of the permanent income has changed between

fathers and children. The weight of observed income relative to the permanent income (α2, δ2)

changes not only over life cycle but also across generations. Also, we may conclude that at least in

the case of linear framework, life-cycle bias is more likely a result of use of fathers’ income at early

ages.

6.2 Baseline Results

We now turn to our baseline results of IGEs that use the pooled sample. To illustrate our approach,

the baseline year is set to be age 36 for both children and parents, as discussed above. The second

period is set to be age 26 for children and 38 for fathers. The choice of different periods for children

and fathers is motivated by two reasons. We first want to maximize the number of child-father

pairs for the cohort of children born between 1952 and 1974, a cohort typically used in the previous

literature (to facilitate comparison). Recall that we need information on incomes for both parent and

child available not only for the baseline year, but also for the second year. This data requirement

reduces the sample size. To visualize the patterns, we present the number of observations associated
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with each combination of the second years for children and parents in Table 3 and display these

results in Figure 4 in the appendix. There are two distinct patterns of how the sample sizes vary

with age for both parents and children when the baseline year for parents is 36. Given the choice of

age for parents, the sample size decreases with child’s age nearly monotonically. Given the choice for

children, the sample size exhibits an inverted-U shape peaking at around 36. Thus, the combination

of age 26 for children and 37 for parents appears to be the best choice. Recall, however, that our

assumptions require that the baseline and second years should not be too close to each other. We

thus choose 38 for parents instead, which, along with 26 for children, gives us the second largest

sample for our empirical analysis.

Turning to our IGE results, we uncover substantial variation in the intergenerational mobility

elasticities across population. To visualize this finding, we plot the histogram of the derivatives of

the estimated mobility function in the left panel of Figure 5 and report quartiles (along with their

corresponding bootstrapped 90% confidence intervals) in Table 4. We first note that similar to much

of the previous literature, the median elasticity is 0.263 with 90% bootstrapped confidence interval

[0.124, 0.514]. However, the elasticity from our nonparametric model is clearly not a constant.

Specifically, the interquartile range, a measure of dispersion of the distribution, is as large as 0.353.

The majority of the estimated IGEs lie in the neighborhood [0.130 (the first quartile), 0.483 (the

third quartile)], covering the estimates typically found in the literature examining the same cohort

of children.9

To further examine how the IGEs differ by parental income, we display the IGEs (i.e., the

derivatives of the estimated mobility function g(·)) evaluated at each possible log income level of

parents in Figure 5 (the right panel). The solid line is our nonparametric estimates of IGEs, and the

blue ones are 90% bootstrapped confidence intervals.10 For comparison purposes, we also estimate

the intergenerational income elasticity using the traditional linear approach (which is the horizontal

line). The conventional OLS approach yields an estimate of the intergenerational elasticity of 0.231.

This number falls into the range of the estimates typically found in the previous literature using

PSID. However, this estimate drastically conceals important features of the nonlinear relationship

in incomes across the generations. Our nonparametric results in Figure 5 reveal a nearly U-shape

pattern of the IGEs. Specifically, we find that the income associations are high for the very poor,

but the degree of associations quickly decreases as parental income increases and becomes relatively

weak and closer to the average IGE for the broadly defined middle-income class (whose log income

is between 8.5 and 11.5). Afterward, the income associations across generations quickly increase

9Note that as in the influential work by Corak and Heisz (1999), we also find that our nonparametric estimates
cover some negative values, but none of them are statistically significant.

10The estimates for extremely low (log income less than 8) and high (log income greater than 12) parental income
are excluded to facilitate presentation because they have been shown to be noisy and less reliable as illustrated in
the Monte Carlo simulations.
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and become high again in the top of the distribution of parental income. Note that the estimates

are not significantly different from zero for log income from 8.6 to 10, which might be due to the

small sample size.11

Our results corroborate previous findings of significant nonlinearity in the relationship in incomes

across generations. Similar to Corak and Heisz (1999) and Björklund et al. (2012), we find that the

degree of lack of mobility is concentrated in the extremes of the earnings distribution, while there

is a considerable degree of mobility among the middle class. The finding of “twin peaks” is also

prevalent in the studies using the transition matrix approach (e.g., Hertz 2005). Comparison of

OLS and our nonparametric estimates highlights that the average IGE is drastically different from

the IGE across the population. This finding indeed reconciles the divergent views discussed in the

introduction that motivates our paper.

While largely similar to the previous studies examining nonlinearity, two distinct features of

our results emerge. First, we find that there exists pronounced persistence in both the top and

the bottom of the income distribution in the U.S.. This result is in contrast to Björklund et al.

(2012) using Sweden data, where the authors find the marked persistence only in the very top of the

income distribution, but much mobility in the lower tail (see their Figure 1) even more than other

parts of the income distribution. Second, our results indicate mobility is potentially a more severe

issue in the U.S. than in Canada. Although Corak and Heisz (1999), using Canadian data, find a

similar nonlinear pattern as ours, their estimates are generally in smaller magnitudes. Specifically,

out of three nonparametric specifications in Corak and Heisz (1999), the maximum value of the

IGE (Figure 4 in their paper) is less than .8 among the top of the income distribution and close to

0.4 at the bottom of the distribution. By contrast, we find that the elasticity is around one at both

extremes of the income distribution, indicating a close to complete transmission of income from

parents to children (similar to Björklund et al. (2012)). Further, for very small proportions of the

income values in the very top (whose log income is close to the maximum of 12), we find that the

estimated IGE is even slightly greater than 1, although the difference is not statistically significant.

Taken literally, our estimates paint a pessimistic picture: the very poor cannot escape the poverty

trap, while the very rich continues to enjoy at least as much success as their parents.

6.3 Robustness Analysis

In the baseline results, we include all children regardless of their gender or race. For these results,

we also normalize the association between annual income in age 36 and permanent income to one,

but choose annual incomes in certain ages as the second measurement of permanent income. It

11Please see the left panel in Figure 6 for the density of parental permanent income, where the density from 8.6
to 10 is very small. The densities are estimated using the result in Lemma 2. The data used are parental income at
36 and 38, children income at 26 and 36.
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is natural to ask whether our results are sensitive to these choices. In this section we assess the

robustness of our results to the use of alternative second measurements, alternative normalization,

relaxation of normalization, and different sub-samples. We find that the basic pattern uncovered

above is generally robust to these changes. Recall that IGEs are the derivatives of the estimated

mobility function. Any small changes in the mobility functions can result in significant changes in

the derivatives. The fact that they look similar indicates the robustness of our results and increases

our confidence in our estimates.

Prior to continuing, it is worth emphasizing that although the simulation exercises above have

indicated superior finite-sample performances of our approach, it is still a nonparametric approach,

which is data demanding. Many of the decisions, when illustrating our approach, are made so as

to obtain a reasonably large sample of the particular cohort of interest and hence more reliable

estimates.

6.3.1 Alternative Second Measurements of Permanent Income

Given the number of annual incomes observed across ages available for both child and parent, there

are many possible combinations of the second measurements of permanent incomes for children and

parents. Here we experiment with two types of alternative combinations, while maintaining that

the base year is 36. In the first experiment, we set the second period to be age 26 for children and

39 for fathers. The idea behind this experiment is to see whether or not our results are robust to

small departures from the original setting. The results are displayed in panel (a) of Figure 7. As

we can see, we again find a nearly U-shape in the relationship between child and parent incomes.

This result confirms our earlier finding of a lack of mobility at the both upper and lower tails of the

income distribution, but a much higher degree of mobility in the middle.

In the second experiment, we set the second period to be age 30 for children and 40 for fathers.

The idea behind this experiment is to use the years that are father away from the original setting,

while still keeping a reasonably large amount of observations; this can make sure that the difference

in estimates is not a result of large difference in the data. Only such comparison is meaningful.

The results are displayed in panel (b) of Figure 7. We continue to find that there exists a nearly

U-shape in the relationship between child and parent incomes. As is in the first experiment, we

observe a large persistence of incomes across generations for both the very top and the very bottom

of the income distribution. Comparing both experiments, we can see that the basic pattern is rather

similar to what we find in the baseline results. Using the second measurements that are farther

away from the original combination, we can see that the estimates of IGE at the parental (log)

income very close to 10 become much noisier because of reduction in the number of observations,

which is a pattern expected of our experiments.

We further conduct an experiment by averaging our baseline results and the robustness results
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in this subsection. In theory, because all these results are consistent, averaging them can potentially

lead to some efficiency gain. This may not hold in practice, however, because the use of different

years can reduce the sample sizes. To evaluate this claim, we present the average of three results

with the second measurement being: (1) 26 (children) and 38 (parents), (2) 26 (children) and 39

(parents), and (3) 30 (children) and 40 (parents) in panel (c) of Figure 7. As we can see, while

there does not appear to be significant efficiency gain, the main result continues to hold.

6.3.2 Alternative Normalization: Average Income

Earlier we borrow the insights from the literature on the life-cycle bias and consider annual income at

age 36, the first year of the period that the literature has generally found to be good representation of

permanent income. Here we instead consider the average of annual income in several adjacent years

as permanent income. Specifically, we normalize the association between the three-year average of

annual incomes in age 35, 36 and 37 and permanent income to one. This exercise is motivated by the

averaging method that the literature typically uses to address the life-cycle bias. Remember that

even if the normalization is true, the three-year average income is only a measurement of permanent

income with error. Supplementing it with second measurements as above (26 for children and 38 for

fathers), our approach can be seen as an improvement of the averaging method to take into account

the life-cycle bias. The results are displayed in panel (d) of Figure 7. We again find that estimated

IGEs are much higher for both the top and the bottom tails of the income distribution, while

estimates are much moderate in the middle; and that there are small proportions of the individuals

who continue to move either downward and upward, depending on their parents’ original situation.

6.3.3 Bounding Analysis: Completely Relaxing Normalization

Normalization is required for any methods in this context to point identify the model. However, we

are able to bound the true mobility function when such normalization is relaxed. Using the results

in Theorem 2, we estimate the bounds of the mobility function given various degrees of departures

from the normalization. In other words, we require only that the annual income in the baseline

year is plausibly (as opposed to exactly) good representation of permanent income.

For this exercise, we focus on fathers because the results above have shown the estimates of the

life-cycle association for children are relatively stable over the life cycle. We experiment with three

different choices of α and ᾱ (we assume α = δ, ᾱ = δ̄): [α, ᾱ] being [0.98, 1.02], [0.96, 1.04] and

[0.95, 1.05], respectively. These neighborhoods correspond to small, moderate, and large departures

from the “plausibly” good representation of permanent income. Their corresponding results are

displayed in Panels (1), (2), and (3) of Figure 8, respectively. In all these figures, we contrast the

bounds (along with our estimated mobility function) with a linear mobility function (the red line).
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As we can see, we can clearly reject a linear mobility function in favor of a nonlinear one when the

amount of violation is small. As the degree of the violation of normalization increases, we are less

likely to reject the linearity as expected. However, this finding is mainly concentrated in the upper

tail of the parental income distribution. We continue to reject linearity easily in the lower tail of

the parental income distribution even when the degree of violation is relatively large. The bounding

analysis here does not allow us to point identify the mobility function and corresponding derivatives

(i.e., IGEs), but it does provide significant evidence supporting the nonlinearity and heterogeneity

uncovered above.

6.3.4 Sub-sample Analysis

Excluding non-Whites As is in most of the previous literature, our baseline analysis includes

children of all races. This does not take into account the fact that the transmission of income over

generations may differ by races, and that there may exist permanent differences in opportunities

between families of different ethnic groups (Durlauf and Shaorshadze, forthcoming). Consistent with

this possibility, some recent research has shown that the degree of intergenerational mobility does

differ by races. For example, Chetty et al. (2014a) find that the mobility is significantly lower in areas

with a larger share of African-American population. Bhattacharya and Mazumder (2011) find more

upward mobility for whites than blacks. As such, we exclude non-whites and repeat our analysis.

The results are displayed in the left panel of Figure 9. The baseline result continues to hold when we

focus only on whites. This is probably not surprising because PSID has a relatively small sample of

non-whites, and thus exclusion of these observations should not drastically impact our estimates.12

Furthermore, we also find that there exist substantial heterogeneity even within whites. Specifically,

the interquartile range is about .51 ≈ 0.618(the third quartile) − 0.110(the first quartile), much

greater than the interquartile range for the whole sample.

Excluding Females One may be concerned that income is not necessarily a good indicator

of daughters’ economic success because of relatively limited labor force participation of women

(Mazumder, 2005). How selection into labor force affects estimation of IGE depends on the direction

of selection, which can be correlated with fathers’ income (Mazumder, 2005). For example, if it

is positive selection, i.e., higher-income women who are more likely to come from higher-income

families would work, we are more likely to observe higher persistence only in the upper tail of the

income distribution, but not in the lower tail. There are two implications of positive selection for

estimation. First, it is, on average, more likely to observe IGE of smaller magnitudes for women

than for men. This is indeed what the literature has found; the average IGEs for daughters are

12Bhattacharya and Mazumder (2011) note that the intergenerational samples of blacks in PSID are indeed so
small that it may likely inhibit research for blacks.
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often in the 0.1 to 0.2 range using NLSY and in the vicinity of 0.4 using PSID (Mazumder, 2005).13

Second, inclusion of daughters in our nonparametric analysis will more likely bias the estimates

of IGE in the lower tail of the income distribution. To verify this, we exclude daughters in our

analysis and the results are displayed in the right panel of Figure 9. And we indeed find that

there is much larger persistence in the lower tail for sons, indicating lack of mobility. However,

we continue to find the basic pattern in the IGE as above. Furthermore, we again find that

there exist substantial heterogeneity even within sons. Specifically, the interquartile range is about

.24 ≈ 0.392(the third quartile) − 0.153(the first quartile), although smaller than the interquartile

range for the whole sample.

Summary Prior to continuing, it is useful to mention that race and gender are by no means the

only ways to split the sample, but they are the categories that the previous literature has typically

considered. There could, of course, be many other between-group heterogeneity to consider as well.

For example, the most recent paper by Chetty et al. (2014a) also finds substantial heterogeneity in

IGEs across geographic areas. However, further sample splits can drastically reduce the number of

observations in each group and hence result in imprecise estimates.14 We leave more exercises of

this kind to future research when larger datasets are readily available.

Two main messages are nevertheless clear. First, the nonlinear, U-shape pattern continues to

hold, indicating substantial heterogeneity in IGEs. Second, such heterogeneity exists even within

a more narrowly defined group. This within-group, as opposed to between-group, heterogeneity in

IGEs is also a new finding, which is usually masked by the traditional approach.

6.4 Interpretations of the Main Result

A major question that emerges from our analysis is, what can explain the U-shape or twin-peak

pattern in IGE, where children are stuck in poverty and affluence? There are several different

mechanisms through which parental income can affect child economic success. For example, income

can be spent on resources that are passed on to children in the form of expenditures on human

capital (or various skills), financial assets, and wealth bequest as well as inter vivos wealth transfer.

Families with different incomes may invest differently in their children; the existence of nonlinearity,

particularly the “twin peaks”, suggests that distinct transmission mechanisms may be at work at

13Chadwick and Solon (2002) find that the differences between daughters and sons are not always statistically
significant. This may be due to a much smaller estimation sample of daughters, and the inference is not as reliable.
This is indeed what we find as well: the estimates are much smaller for daughters than for sons, but the estimates
for daughters are very imprecise. The results are available from the authors upon request.

14We indeed carry out such exercise by region, but find that most estimates are imprecisely estimated. The
estimates, however, do continue indicate a similar U-shape pattern for the Western region, while the nonlinearity is
relatively modest for the rest of the country.
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different parts of the distribution of parental income (Bowles and Gintis, 2002).

The larger IGE for the families with very little income is consistent with the presence of credit

constraints. In the standard intergenerational mobility models (e.g., Becker and Tomes 1986; and

Mulligan 1997), families cannot fully borrow against the future incomes of either their own or

children to finance child human capital investment. To the extent that credit constraints are most

severe for families at the very low tail of the income distribution, these families may not be able

to attain the optimal amount of human capital investment for their children.15 As a result, income

is positively related to human capital investment, and the IGE would also be much higher for the

children of these families. Indeed, there has been enormous evidence that income is positively related

to education and a broader conception of cognitive and non-cognitive skills, suggesting the presence

of credit constraints. In line with our results, Cunha et al. (2006) find that permanent income, as

opposed to transitory income, matters for the accumulation of human capital. Moreover, Carneiro

and Heckman (2002) suggest that only 8% of American households are actually credit constrained.

This finding is consistent with the fact that we observe a higher IGE only for the families at the

very low tail of the distribution.

Unlike that for the lower tail of the parental income distribution, the borrowing constraint

for human capital investment becomes less binding for the majority of the population. Instead,

other channels may matter more for the transmission of income. Bowles and Gintis (2002) note

that wealth bequests as well as inter vivos wealth transfers to children may play a major role at

the top of the income distribution, but not for most families. Inter-vivos and bequest transfers

of significant magnitude, which are typically only available to children of rich families, can open

up more opportunities that are not accessible to others (Grawe 2008).16 For example, children

of very rich families may be more likely to become self-employed, because upon receipt of wealth

inheritance or transfer they can afford substantial start-up capital required for such ventures, while

others may be “locked out of self employment due to lack of fund”.17 Entrepreneurship plays an

important role in generating a high concentration of wealth. For example, Quadrini (1999) finds

that about 50 percent of households in the very top of the wealth distribution are self-employed.

The connection between income, wealth transfer and bequest, and self-employment implies a much

greater persistence in income, especially at the upper tail of the income distribution. Indeed, Bowles

and Gintis (2002) find that roughly one-third of the IGE can be explained by child wealth. Similarly,

Björklund et al. (2012) find that inherited wealth, instead of cognitive and non-cognitive skills, is

15Black and Devereux (2011) note that this is not the only approach to classify the families that are credit
constrained. Indeed, Grawe (2004) and Mulligan (1997) have considered other approaches to define credit-constrained
families.

16Few individuals receive inheritances of significant magnitude (see, e.g., Mulligan (1997) for evidence)
17Grawe (2008) cites evidence that individuals receiving inheritances are twice as likely to become self-employed,

whose business prospects also increase by about 20 percent.
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the most likely mechanism to explain the strong persistence at the top of the income distribution.

A recent paper by Cavaglia (2015) provides another explanation for our results. Her explanation

is based on the differing role of social network in determining a child’s educational and labor

market outcomes. Both high- and low-income families have relatively homogeneous social networks,

and generally cannot help their children outside of their own networks. Also, considering the job

opportunities facing their children, high-income families are more likely to invest in their children,

while low-income families not. As a result, the children of these families tend to find the jobs

with similar skill levels as their parents, which strengthens the intergenerational persistence. By

contrast, middle-income families have relatively diverse networks (perhaps due to their similar

costs in investing in highly skilled and unskilled friends), and the role of social networks is also

less determinant for medium-skilled positions. Therefore, the children of middle-class families will

be less likely to end up in the jobs with similar skill levels as their parents, which weakens the

intergenerational persistence. This explanation is consistent with our finding, and Cavaglia (2015)

provides some empirical evidence supporting this explanation.

7 Further Implications of the Main Result

The nonlinearity uncovered here seems to be a robust finding and has some important implications

for the literature estimating the IGM. First, our results reassure that the results obtained using

the transition-matrix in the previous literature are not an artifact of the floor-ceiling effect; the

nonlinear pattern – the higher probabilities for the workers whose parents are at the very top and

very bottom of the income distribution to stay the same income category – is not due to the fact that

people in the tails of the distribution are restricted from further upward or downward movement,

but indeed a result of strong persistence in income associations among them. On the other hand,

our results do indicate that mobility is a continuous measure, and that some at the extremes of

the income distribution can continue to move upward further, which is completely masked by the

approaches based on ranks or percentiles. Our nonparametric results thus provide more detailed

characterization of the magnitude of the persistence across population.

Second, our nonparametric estimates can accommodate a wide range of IGEs found in the

literature. As noted in Durlauf and Shaorshadze (forthcoming), estimates of the IGE in the U.S.

for similar cohorts range from 0.2 (Behrman and Taubman, 1985), to .4 (Solon, 1992) and to .6

(Mazumder, 2005). As is now well known, in the presence of nonlinearity, OLS estimator is a

weighted average of marginal effects over the distribution of covariates (see Løken et al. (2012) for

more detail). The underlying weighting scheme gives more weight to marginal effects close to the

sample median of the covariate (parental income in this case). As a result, estimated IGE using

OLS can vary with different samples and aggregation methods, even if it is free of life-cycle bias.
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This implies that the underlying marginal effects should cover at least these observed average IGEs,

and our estimates indeed do.

Finally, in addition to documenting IGEs for a particular cohort, there has also been more

attention paid to the changes in IGEs across cohorts. Although there has been some evidence

that the IGEs are relatively stable over time (Corak, 2013; Chetty et al., 2014b), it is nevertheless

important to apply our approach to investigate this issue. Due to lack of data, we cannot pursue this

issue further and leave it for future research. However, we do want to point out a subtle implication

that may not be immediately obvious for studies on IGEs over time or across countries. Again, as

discussed above, OLS estimator is a weighted average of marginal effects over the distribution of

covariates. It is possible that even if the marginal effects are the same, we may find different IGEs,

which can lead to completely different conclusions about the cross-cohort or -country analysis.

8 Conclusions

Economists have long been interested in estimation of intergenerational mobility elasticities (IGE)

of children’s income with respect to parental permanent income, a good indication of equality of

opportunity in society. This paper provides a new framework to estimate the IGE. Our approach

confronts two important issues surrounding the estimations that have yet to be addressed together

in a systematic fashion, namely the heterogeneity/nonlinearity in IGE and the latent nature of the

permanent income.

Using the proposed method, we find that there exists substantial heterogeneity in IGEs. More

importantly, we observe a U-shape pattern with twin peaks for the IGE. This finding indicates

substantial persistence in income across generations for both rich and poor families, but lack of

persistence for the majority of the population. This finding reconciles the divergent views that

motivate our paper in the introduction. The “twin peaks” is surprisingly close to the perception by

the general public of income mobility at both extremes of the income distribution in the U.S.. At

the same time, a modest connection between parental and child economic success for most of the

families confirms that the U.S. was indeed the “land of opportunity” to live the “American Dream”,

just not for everyone! We believe that this is an interesting finding. In the paper we attempt to

offer an explanation for the main result, but it is nevertheless speculative at best. Future research

should focuse on shedding light on the potential mechanisms giving rise to this pattern, which could

in turn help us better understand the income evolution over generations in the U.S.. It is also our

hope that our approach can be applied to explore within-group heterogeneity in IGEs when datasets

with a larger number of individuals for each type of characteristics exist, to examine whether such

nonlinearity exists in other countries, and to examine other important topics with similar issues.
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Appendix

A Proofs

Proof of Lemma 2. We only prove the identification of fX∗ . The proof for the density fY ∗

follows a symmetric argument.

First consider the two measures of X∗

X1 = X∗ + V1, X2 = α2X
∗ + V2,

with α2 being a known. First define the joint ch.f. of X1 and X2 as:

φX1,X2(s1, s2) ≡ E[eis1X1+is2X2 ].

Take the derivate of the ch.f. above with respect to s1 and evaluate it at s1 = 0:

φX1,X2(s1, s2)

∂s1

∣∣∣∣
s1=0

= E[i(X∗ + V1)eis2X2 ]

= E[iX∗eis2X2 ] + E[iV1e
is2X2 ]

= E[iX∗eis2α2X∗ ]E[eis2V2 ],

where E[iV1e
is2X2 ] = 0 is due to the assumption E[V1|X2] = 0, and the third equality holds because

of the independence of V2 from X∗. Similarly, we have φX2(s2) = E[eis2α2X∗ ]E[eis2V2 ]. Consider that

φX1,X2
(s1,s2)

∂s1

∣∣∣
s1=0

φX2(s2)
=
E[iX∗eis2α2X∗ ]

E[eis2α2X∗ ]
=
∂ lnE[eirX

∗
]

∂r

∣∣∣∣
r=α2s2

.

Thus, the ch.f. of fX∗ , φX∗ can be recovered as

φX∗(s) = exp

∫ s

0

∂
∂s1
φX1,X2(s1, s2/α2)

∣∣∣
s1=0

φX1,X2(s2/α2)|s1=0

ds2

 .
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The density fX∗ can be recovered using inverse Fourier transform

fX∗(x
∗) =

1

2π

∫ ∞
−∞

e−isx
∗
φX∗(s)ds

=
1

2π

∫ ∞
−∞

e−isx
∗

exp

∫ s

0

∂
∂s1
φX1,X2(s1, s2/α2)

∣∣∣
s1=0

φX1,X2(s2/α2)|s1=0

ds2

 ds. (A.1)

�

Proof of Proposition 1. The proof follows Hu and Sasaki (2014) and we present here for com-

pleteness. Once fX∗ is identified, the identification of the mobility function g(·) can be obtained

by using the joint distribution of only one measurement for both generations. Thus, one can iden-

tify the mobility function using any combination of children and parental observed incomes, i.e.,

{X1, Y1}, {X1, Y2}, {X2, Y1}, or {X2, Y2}. We illustrate the identification using {X2, Y2} where the

life-cycle coefficients are not equal to 1.

We first define the joint ch.f. of X2 and Y2 in the following:

φX2,Y2(s, v) ≡ E[eisX2+ivY2 ].

Note that Y2 = δ2Y
∗ + U2 = δ2(g(X∗) + ε) + U2 = δ2g(X∗) + δ2ε+ U2.

Taking derivative of the ch.f. above with respect to v and evaluate the objective at v = 0.

∂

∂v
φX2,Y2(s, 0) = iE

[
(δ2g(X∗) + δ2ε+ U2)eis(α2X∗+V2)

]
= iE

[
(δ2g(X∗)eis(α2X∗+V2)

]
+ iE[(δ2ε+ U2)eisX2 ]

= iE
[
(g(X∗)eiα2sX∗

]
δ2E[eisV2 ]

= iE
[
(g(X∗)eiα2sX∗

]
δ2

φX2(s)

φX∗(α2s)
,

where φX2(s) ≡ E[eisX2 ] and φX∗(α2s) ≡ E[eiα2sX∗ ] are ch.fs of X2 and X∗ evaluated at s and α2s,

respectively. The third equation holds because of Assumption 4, (E(ε|X2) = 0 and E(U2|X2) = 0).

As a result, the equation above enables us to obtain:

E
[
g(X∗)eiα2sX∗

]
= φX∗(α2s)

∂
∂v
φX2,Y2(s, 0)

iδ2φX2(s)
.

It can be equivalently expressed as,

E
[
g(X∗)eisX

∗]
=

∫
eisX

∗
g(X∗)fX∗(x

∗)dx∗ = φX∗(s)
∂
∂v
φX2,Y2(s/α2, v)

∣∣
v=0

iδ2φX2(s/α2)
.
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Using the inverse Fourier transform,

g(X∗)fX∗ =
1

2πδ2

∫ +∞

−∞
e−isX

∗
φX∗(s)

∂
∂v
φX2,Y2(s/α2, v)

∣∣
v=0

iφX2(s/α2)
ds.

Consequently, the mobility function g(X∗) can be identified as

g(X∗) =
1

2πδ2fX∗

∫ +∞

−∞
e−isX

∗
φX∗(s)

∂
∂v
φX2,Y2(s/α2, v)

∣∣
v=0

iφX2(s/α2)
ds, (A.2)

where φX∗ and fX∗ are identified in Lemma 2. �

Proof of Theorem 1. The effect of inappropriately assuming δ1 and α1 to be one can be analyzed

by comparing the mobility function g(·) based on the inappropriate normalization with that of δ1

and α1 are known to the researcher.

When both α1 and α2 are known, a direct application of Lemma 2 implies that the density of

X∗ can be identified as

fX∗(x
∗) =

1

2π

∫ ∞
−∞

e−isx
∗

exp

∫ s

0

1

α1

∂
∂s1
φX1,X2(s1, s2/α2)

∣∣∣
s1=0

φX2(s2/α2)
ds2

 ds.

Note that this closed-form identification degenerates to (A.1) when α1.

Let δ̃2 and α̃2 denote the identified coefficients in model (1) if the normalization is mis-specified,

i.e., α1 6= 1 and δ1 6= 1. Then

δ̃2 =
δ2

δ1

6= δ2, α̃2 =
α2

α1

6= α2.

When α1 is mistakenly assumed to be one, we have α̃2 = α2

α1
. Following Lemma 2, the density

function fX∗ is obtained by plugging α2 as α̃2 and α1 as 1. Thus, we may obtain an incorrect
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density function as follows:

f̃X∗(x
∗) =

1

2π

∫ ∞
−∞

e−isx
∗

exp

∫ s

0

∂
∂s1
φX1,X2(s1, s2/α̃2)

∣∣∣
s1=0

φX2(s2/α̃2)
ds2

 ds

=
1

2π

∫ ∞
−∞

e−isx
∗

exp

∫ s

0

∂
∂s1
φX1,X2(s1, α1s2/α2)

∣∣∣
s1=0

φX2(α1s2/α2)
ds2

 ds

=
1

2π

∫ ∞
−∞

e−isx
∗

exp

∫ α1s

0

∂
∂s1
φX1,X2(s1, s3/α2)

∣∣∣
s1=0

α1φX2(s3/α2)
ds3

 ds

=
1

2π

∫ ∞
−∞

e
−iα1s

x∗
α1 exp

∫ α1s

0

∂
∂s1
φX1,X2(s1, s3/α2)

∣∣∣
s1=0

α1φX2(s3/α2)
ds3

 ds

=
1

2π

∫ ∞
−∞

1

α1

e
−iv x

∗
α1 exp

∫ v

0

∂
∂s1
φX1,X2(s1, s3/α2)

∣∣∣
s1=0

α1φX2(s3/α2)
ds3

 dv

=
1

α1

fX∗

(
x∗

α1

)
. (A.3)

A similar relationship holds for the density of Y ∗, i.e., f̃Y ∗(y
∗) = 1

δ1
fY ∗

(
y∗

δ1

)
.

To analyze the effects of inappropriate normalization on the mobility function, we compare the

incorrect mobility function (denoted by g̃(·)) with the one that identified when all the coefficients are

known. With slight abuse of notation, let g(x∗; δ1, α1) be the mobility function identified correctly

under Assumption 6. Following Proposition 1, the true mobility function is identified as follows.18

g(x∗;α1, δ1) =
1

2πδ2fX∗(x∗)

∫ ∞
−∞

e−isx
∗

exp

∫ s

0

1

α1

∂
∂s1
φX1,X2(s1, s2/α2)

∣∣∣
s1=0

φX1,X2(s2/α2)|s1=0

ds2


×

∂
∂v
φX2,Y2(s/α2, v)

∣∣
v=0

iφX2(s/α2)
ds. (A.4)

In contrast, when we mistakenly pick the normalization period, again the life-cycle coefficient for

18Note that when α1 = δ1 = 1, g(x∗;α1, δ1) becomes the expression we obtain in Proposition 1, when δ1 does not
affect the identification because only {X1, X2, Y2} are used for identifying the mobility function.
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period 2 is mis-identified, i.e., α̃2 = α2

α1
and δ̃2 = δ2

δ1
. Consequently, the mobility function becomes

g̃(x∗;α1, δ1)

=
1

2πδ̃2f̃X∗(x∗)

∫ ∞
−∞

e−isx
∗

exp

∫ s

0

∂
∂s1

φX1,X2
(s1, s2/α̃2)

∣∣∣
s1=0

φX2(s2/α̃2)
ds2

 ∂
∂wφX2,Y2

(s/α̃2, w)
∣∣
w=0

iφX2(s/α̃2)
ds

=
δ1α1

2πδ2fX∗(x∗/α1)

∫ ∞
−∞

e−isx
∗

exp

∫ s

0

∂
∂s1

φX1,X2(s1, α1s2/α2)
∣∣∣
s1=0

φX2
(α1s2/α2)

ds2

 ∂
∂wφX2,Y2(α1s/α2, w)

∣∣
w=0

iφX2
(α1s/α2)

ds

=
δ1α1

2πδ2fX∗(x∗/α1)

∫ ∞
−∞

e−isx
∗

exp

∫ α1s

0

∂
∂s1

φX1,X2
(s1, v/α2)

∣∣∣
s1=0

α1φX2(v/α2)
dv

 ∂
∂wφX2,Y2

(α1s/α2, w)
∣∣
w=0

iφX2(α1s/α2)
ds

=
δ1α1

2πδ2fX∗(x∗/α1)

∫ ∞
−∞

1

α1
e−iux

∗/α1 exp

∫ u

0

∂
∂s1

φX1,X2(s1, v/α2)
∣∣∣
s1=0

α1φX2
(v/α2)

dv

 ∂
∂wφX2,Y2(u/α2, w)

∣∣
w=0

iφX2
(u/α2)

du

=
δ1

2πδ2fX∗(x∗/α1)

∫ ∞
−∞

e−iux
∗/α1 exp

∫ u

0

∂
∂s1

φX1,X2
(s1, v/α2)

∣∣∣
s1=0

α1φX2(v/α2)
dv

 ∂
∂wφX2,Y2

(u/α2, w)
∣∣
w=0

iφX2(u/α2)
du

= δ1g(x∗/α1;α1, δ1). (A.5)

�

Proof of Corollary 1. From Theorem 1, g̃(x∗) = δ1g(x∗/α1), so the IGM satisfies the following

relationship

g̃′(x∗) =
δ1

α1

g′(x∗/α1).

If the mobility function is linear, i.e., g(x∗) = β0 + β1x
∗ as widely used in the literature, then

g̃′(x∗) =
δ1β1

α1

,

which is also a constant for any x∗. If δ1 = α1, then the IGM becomes

g̃′(x∗) = β1. (A.6)

As a result, if we have a linear mobility function, mis-specifying the normalization does not affect

the estimation of the IGM given the life-cycle coefficient is the same across generations. �

Proof of Theorem 2. From Theorem 1, we know that g(x∗) = 1
δ1
g̃(α1x

∗), naturally, we can bound

the mobility function through
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min
α1∈[α1,ᾱ1],δ1∈[δ1,δ̄1]

(
1

δ1

g̃(α1x
∗)

)
≤ g(x∗) ≤ max

α1∈[α1,ᾱ1],δ1∈[δ1,δ̄1]

(
1

δ1

g̃(α1x
∗)

)
⇒ 1

δ̄1

min
α1∈[α1,ᾱ1]

(g̃(α1x
∗)) ≤ g(x∗) ≤ 1

δ1

max
α1∈[α1,ᾱ1]

(g̃(α1x
∗)) (A.7)

Similarly, we can bound the IGM elasticities as follows:

α1

δ̄1

min
α1∈[α1,ᾱ1]

(
g̃′(α1x

∗)
)
≤ g′(x∗) ≤ ᾱ1

δ1

max
α1∈[α1,ᾱ1]

(
g̃′(α1x

∗)
)
, (A.8)

�

B Estimation

Since the identification results in the previous section are constructive, we follow the identification

argument in estimation. Given that an observed sample of {Xjt, Yjt}Nj=1, t = 1, 2, the mobility

function g(x∗) is estimated in three steps. First, the coefficients α2 and δ2 can be directly estimated

using the sample analog of equation (3).

δ̂2 =
1
N

∑
j X1jY2j − 1

N

∑
j X1j

1
N

∑
j Y2j

1
N

∑
j X1jY1j − 1

N

∑
j X1j

1
N

∑
j Y1j

. (B.1)

α2 can be estimated analogously. Based on the estimate of α2 and δ2, together with the closed-form

provided in Lemma 2, we estimate the densities of permanent income fX∗ and fY ∗ in the second

step. Such an approach has been widely used, e.g, Li (2002).

f̂X∗(x
∗) =

1

2π

∫ SN

−SN
e−isx

∗
exp

(
i

∫ s

0

∑N
j=1X1j exp(iX2jv/α̂t)∑N
j=1 exp(iX2jv/α̂2)

dv

)
φK(s/SN)ds,

where i ≡
√
−1, exp

(
i
∫ s

0

∑N
j=1X1j exp(iX2jv/α̂t)∑N
j=1 exp(iX2jv/α̂t)

dv

)
is an estimate of φX∗(s), the characteristic func-

tion of fX∗ , and φK(·) is the Fourier transform of a kernel function K(·) with a bandwidth 1/SN .

The smoothing parameter SN depends on the sample size N . To assure that the estimate of φX∗(s)

uniformly converges to its true function over [−SN , SN ] at a geometric rate with respect to the

sample size N , Hu and Ridder (2008) suggest a form of SN

SN = O

(
N

logN

)γ
for γ ∈

(
0,

1

2

)
.
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Table 1: Estimate of α and δ

Parameter=(True Value)†

α2 = 1.105 δ2 = 1.184
Mean Std. Dev. Mean Std. Dev.

Mobility function: g(X∗) = 0.6X∗

N = 100 1.112 0.123 1.189 0.155
N = 300 1.110 0.068 1.189 0.083
N = 500 1.108 0.054 1.186 0.063
Mobility function: g(X∗) = −0.2X∗2 +X∗

N = 100 1.110 0.108 1.184 0.094
N = 300 1.110 0.059 1.186 0.049
N = 500 1.108 0.047 1.185 0.038
† The coefficients at period t = 1 are α1 = δ1 = 1 by construction.

In the last step, we estimate the mobility function using the closed-form in Proposition 1:

ĝ(x∗) =
1

2πδ̂2f̂X∗
×∫ SN

−SN
e−isx

∗
exp

(
i

∫ s

0

∑N
j=1 X1j exp(iX2jv/α̂2)∑N
j=1 exp(iX2jv/α̂2)

dv

)∑N
j=1 Y2j exp(isX2j/α̂2)∑N
j=1 exp(isX2j/α̂2)

φK(s/SN)ds.

(B.2)

If we are further interested in the derivative of the mobility function, several methods are available

for the estimation. In our paper, we employ the simple kernel method proposed in Rilstone and

Ullah (1989).

d̂g(x∗)

dx∗
=
ĝ(x∗ + hN)− ĝ(x∗ − hN)

2hN
, (B.3)

where hN is a bandwidth and hN → 0 as N →∞.

The results in Theorem 2 allows us to estimate the bounds of the mobility function g(·) when

δ1 and α1 are known to be in certain closed interval while their exact values are unknown. The

procedure is similar to the steps above. �
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Figure 1: Estimate of income densities, N = 300
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Figure 2: Estimate of mobility function, derivatives and bounds: N = 300

X*
-5 -4 -3 -2 -1 0 1 2 3 4 5

g(
X*

)

-10
-8
-6
-4
-2
0
2
4
6
8

10
(a) Estimated Mobility Function: Linear

true g
est. g
est. 5th perct
est. 95th perct

X*
-5 -4 -3 -2 -1 0 1 2 3 4 5

g(
X*

)

-25

-20

-15

-10

-5

0

5

10
(d) Estimated Mobility Function: Quadratic

true g
est. g
est. 5th perct
est. 95th perct

X*
-4 -3 -2 -1 0 1 2 3 4

de
riv

at
iv

e 
of

 g
(X

*)

-6

-4

-2

0

2

4

6

8
(b) Estimated Derivative Function: Linear

true g
est. g
est. 5th perct
est. 95th perct

X*
-4 -3 -2 -1 0 1 2 3 4

de
riv

at
iv

e 
of

 g
(X

*)

-10

-5

0

5

10

15

20
(e) Estimated Derivative Function: Quadratic

true g
est. g
est. 5th perct
est. 95th perct

X*
-4 -3 -2 -1 0 1 2 3 4

g(
X*

)

-4

-3

-2

-1

0

1

2

3

4
(c) Estimated Bounds of Mobility Function: Linear

true g
est.bound of g
est. bound of g
est. g

X*
-4 -3 -2 -1 0 1 2 3 4

g(
X*

)

-14

-12

-10

-8

-6

-4

-2

0

2
(f) Estimated Bounds of Mobility Function: Quadratic

true g
est.bound of g
est. bound of g
est. g

41



Table 2: Summary statistics

Son Father
Var. Obs. Mean Std. Min Max Obs. Mean Std. Min Max

Gender 1839 1.508 .5 1 2 1839 1 0 1 1
Region 1685 1.631 .68 1 3 1685 1.631 .68 1 3
Birth 1839 1973.016 9.517 1945 1985 1839 1945.31 10.156 1917 1966
Race 1839 1.092 .289 1 2 1839 1.092 .289 1 2

Age

26 1050 8.592 1.033 3.045 12.373 987 10.477 .863 5.724 11.798
27 995 8.587 1.02 1.609 11.732 1015 10.463 .975 4.394 11.936
28 953 8.628 1.025 3.871 12.156 1040 10.376 1.159 1.13 12.234
29 878 8.636 .961 4.625 11.892 1087 10.305 1.253 .831 12.298
30 839 8.654 .965 2.485 11.686 1123 10.224 1.299 .704 12.561
31 775 8.729 .874 4.663 12.113 1171 10.156 1.27 .606 12.315
32 732 8.733 .83 5.565 11.723 1229 10.093 1.314 .938 12.643
33 683 8.75 .787 5.602 11.69 1219 9.984 1.309 5.762 12.587
34 632 8.718 .776 5.209 11.438 1216 9.898 1.336 .472 12.524
35 571 8.755 .817 3.091 11.613 1249 9.893 1.341 5.746 12.489
36 542 8.773 .795 2.708 11.744 1303 9.778 1.35 .472 13.07
37 485 8.791 .744 6.48 11.566 1365 9.736 1.34 .704 13.883
38 454 8.785 .758 4.248 11.624 1394 9.629 1.302 4.554 12.882
39 401 8.818 .76 4.585 11.491 1406 9.65 1.302 .606 12.456
40 385 8.812 .763 4.477 11.388 1438 9.643 1.245 6.14 12.603
41 344 8.805 .792 4.934 11.194 1425 9.629 1.309 .472 12.665
42 317 8.907 .794 3.434 11.443 1436 9.608 1.347 .472 13.365
43 283 8.849 .831 4.304 13.092 1407 9.618 1.294 .472 13.11
44 266 8.953 .684 6.236 11.278 1395 9.587 1.214 5.333 12.874
45 226 8.903 .828 6.275 11.603 1347 9.534 1.343 3.584 12.939
46 221 8.937 .724 6.127 11.122 1376 9.594 1.272 4.477 12.97
47 174 8.869 .879 5.598 12.08 1317 9.524 1.245 4.382 12.927
48 174 8.905 .929 2.639 11.609 1251 9.507 1.215 4.883 12.701
49 141 8.938 .862 5.313 11.987 1245 9.525 1.234 3.989 12.796
50 139 8.988 .794 6.492 11.364 1207 9.442 1.197 5.182 12.73

Gender: male (1) and female (2); region: northeast+south(1), north central (2) and west (3); race: white (2) and nonwhite (2).
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Figure 3: Estimated Pattern of Income
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Figure 4: Sample size by ages of parent and child

(a) Child (conditional on Parent’s age) (b) Parent (conditional on Child’s age)
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Figure 5: Estimated derivatives of mobility function
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Figure 6: Estimated densities of permanent income
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Table 4: Quartiles of Estimated Derivatives

25-th 50-th 75-th
Estimate 90% C.I. Estimate 90% C.I. Estimate 90% C.I.

Overall 0.130 [-0.033,0.351] 0.263 [0.124,0.514] 0.483 [0.065,1.140]
White 0.111 [-0.099,0.356] 0.311 [0.111,0.572] 0.618 [0.035,1.478]
Male 0.153 [-0.073,0.454] 0.250 [0.068,0.587] 0.392 [0.140,1.010]
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Figure 7: Robustness checks
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Figure 8: Bounds of mobility function
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Figure 9: Sub-sample analysis
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