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ABSTRACT
A significant drawback of text passwords for end-user authenti-
cation is password reuse. We propose a novel approach to detect
password reuse by leveraging gaze as well as typing behavior and
study its accuracy. We collected gaze and typing behavior from
49 users while creating accounts for 1) a webmail client and 2) a
news website. While most participants came up with a new pass-
word, 32% reported having reused an old password when setting
up their accounts. We then compared different ML models to detect
password reuse from the collected data. Our models achieve an ac-
curacy of up to 87.7% in detecting password reuse from gaze, 75.8%
accuracy from typing, and 88.75% when considering both types
of behavior. We demonstrate that using gaze, password reuse can
already be detected during the registration process, before users
entered their password. Our work paves the road for developing
novel interventions to prevent password reuse.

CCS CONCEPTS
• Security and privacy→ Usability in security and privacy.
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1 INTRODUCTION
After more than six decades, passwords remain a ubiquitous ap-
proach to authentication. While their end has been repeatedly pre-
dicted and other forms of authentication, such as fingerprint, facial
recognition, and behavioral biometrics, have gained substantial pop-
ularity we are far from getting rid of passwords anytime soon [8].
The main reason is that passwords currently present a Pareto equi-
librium between usability, security, and administrability [11], i.e.
there is no other mechanisms providing an equally good trade-off
between the effort required for implementation, ease of administra-
tion (e.g., reset / changing credentials), ease of use, and security.

At the same time, as a result of still having to remember too
many and too complex passwords, users develop coping strategies
(using simple passwords, writing down passwords) of which many
compromise security. A particularly problematic strategy is the
reuse of passwords. One reason is that if a reused password is
leaked, attackers can easily gain access to other accounts of the
user for which the same password is being used [23].

Having recognized this issue, both researchers and practitioners
worked towards solutions. One popular approach is password man-
agers. However, a substantial number of users are hesitant to use
such password managers: a recent survey1 ran by PasswordMan-
ager.com and YouGov among 1280 US American citizens showed

1Password Manager Survey: https://www.passwordmanager.com/password-manager-
trust-survey/
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Figure 1: We investigate an approach to identify whether a
user reuses a prior password during the registration process.
In particular, we analyze eye movement and keystroke data
while a user creates a password (1). We infer whether the
user created a new password or reused an old one from the
behavioral data only, without the need to know the actual
password. The approach can serve as a basis for interventions
to support users in creating more secure passwords (2).

that almost two thirds of participants do not trust password man-
agers. Furthermore, prior work also showed that password man-
agers not necessarily solve the issue, as a substantial number of
password manager users still reuse passwords [39].

Preventing people from reusing passwords is a challenging task
for several reasons: First, it requires knowledge about whether or
not a user is reusing a password. One approach is comparing the just
created password to a database of known, breached passwords. Yet,
this does not prevent cases in which users are reusing a password
that has, so far, not been leaked. Another approach is comparing
all passwords in use by a person – this becomes possible as people
are using a service to centrally manage their passwords (e.g., the
aforementioned browser-based or standalone password managers).
Such analyses are offered, as part of Google’s password checkup2
or as features of common password managers, such as LastPass’s
Security Challenge3. The drawback, again, is that a substantial
number of people are not using password managers and post-hoc
alerts on password breaches are often ignored by many users [49].
Furthermore, convincing people to post-hoc change their password
is not easy. Prior work showed that even in cases where their
passwords were verifiably breached, only 13% of users changed
their passwords in the three months following the breach [10].

To overcome the aforementioned issues, we explore a novel ap-
proach to detect the password reuse based on sensing physiological
user information. In particular, we assess users’ gaze to infer the
reuse of passwords (a) independent of people’s password history,
(b) without access to the actual password, and (c) already during
the password creation process. Our approach is based on the as-
sumption that cognition and behavior are different when reusing or
creating a new password. For instance, users might "think harder"
about a new password (which would affect fixations) and be re-
quired to direct their gaze to the input device more often, due to
not having developed a motor memory of the password as a result
of frequent use (which would affect the gaze path).

2Google Security Checkup: https://passwords.google.com/
3LastPass Security Challenge: http://blog.lastpass.com/2016/06/protecting-lastpass-
users-from-password-reuse/

To investigate this concept, we collected data on gaze behavior
and keystroke dynamics from 49 participants. In particular, we
asked participants to create passwords for two types of accounts
(a news website and a webmail client), protecting data of different
sensitivity. We did not log participants’ passwords, but asked them
post-hoc, whether or not they reused any passwords. Similar to
prior work, participants in about 30% of cases reused passwords.

Based on the collected data, we built prediction models using
different machine learning classifiers. More specifically, we look
at the different phases of the password registration process – (1)
preparing for the registration (orientation), (2) entering the login
/ ID (identification), (3) entering the password (password), and (4)
confirming the password (confirmation) – and analyze users’ eye
gaze during those phases as well as calculate prediction accuracy.

Our results show that by analyzing typing behavior only, an
accuracy of up to 76% can be achieved, which is similar to accuracy
in the literature. Predictions based on gaze increase the accuracy
up to 88%. We also found that using gaze we can assess password
reuse before users enter the password with an accuracy of 86%.
Contribution Statement. The contribution of our work is twofold.
Firstly, we lay out and investigate the novel concept of assessing
password reuse based on gaze data. Secondly, we provide an in-
depth analysis of the approach. In particular, we (a) provide a com-
parison of gaze to other behavior data commonly available during
password creation (that is typing behavior) and (b) analyze the be-
havior of users in the different phases of the password registration
process as well as the possibility to predict password reuse during
these phases using a Machine Learning-based approach.
Eye tracking is increasingly finding its way into users’ everyday life
and the value of (real-time) information on users’ gaze behavior has
been recognized by the usable security community [29]. Hence, we
believe the research community as well as practitioners can benefit
from our work in several ways. We envision that our approach can
inspire researchers and designers to come up with novel concepts
that better address password reuse. We see a particular potential
of our approach in its independence from the authentication inter-
face, in contrast to existing techniques where users have to enter
their password first for it to be assessed. Our approach does not
require any knowledge about the actual password, hence minimiz-
ing the attack surface. Furthermore, concepts can be implemented
in a technology-independent way. For example, by using a mobile
eye tracker, the system could detect password reuse on arbitrary
devices, such as laptops, tablets, smartphones, or other surfaces.
Interventions educating the user or helping them compose a better,
unique password could be provided to the user via a smart watch or
AR interface. Another strength is that through our concept of using
gaze behavior as a means to detect password reuse, it will become
feasible to recognize password reuse instantly and, in some cases,
even before entering the password. This is not possible using key-
stroke dynamics. In this way, chances can be increased that users
follow recommendations of not reusing passwords – compared to
many current approaches hinting at password reuse post-hoc.

2 RELATEDWORK
Our work draws from prior work on users’ password habits and
work on typing and gaze behavior in security contexts.

https://passwords.google.com/
http://blog.lastpass.com/2016/06/protecting-lastpass-users-from-password-reuse/
http://blog.lastpass.com/2016/06/protecting-lastpass-users-from-password-reuse/
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2.1 Users’ Passwords Habits
People have on average 80 accounts for which they use 3.5 pass-
words. This makes passwordmemorability challenging [23]. Coping
strategies are choosing easy to remember passwords (e.g., ’pass-
word’ or ’123456’), reusing passwords, and writing down passwords.
According to a survey by Google, 65% of users reuse passwords for
some or all of their accounts4. Hence, the community focused on
better understanding user behavior regarding password reuse and
concepts to mitigate such behavior.

Wash et al. have studied users’ password reuse behavior [52].
The authors created aWeb browser plugin to collect user passwords
across frequently used websites. Their results showed that people
reuse strong passwords more frequently across different websites.
Pearman et al. conducted an in-situ study to understand users’
passwordmanaging behavior [38]. The authors found that the larger
the number of accounts a user has, the higher the chances are that
they reuse parts or all of their passwords across their accounts. This
was also confirmed by another study done in 2006 by Florencio et al.
[20]. Here, the authors assessed the average number of passwords
and accounts users have and conducted a large scale study over 3
months to understand howmany passwords users type per day, how
often passwords are shared across sites, and how often users forget
passwords. Findings show that on average participants have 6.5
passwords, each of which is shared across 3.9 different sites. In 2011,
Campbell et al. [14] investigated the impact of imposing restrictive
password composition rules on password choices made by users,
such as requiring a minimum number of special or upper and lower
case characters. They found that imposing password policies had a
positive affect on password reuse, i.e. less people reused passwords
if policies were enforced. The same was confirmed by Abbott et al.,
[1] in a study involving several US Universities. They found that
stricter password policies led to a lower rate in reused passwords.

Researchers looked at users behavior when registering and using
passwords. Shay et al. [46] show that more than half of participants
modify an old password or reuse a password when signing up. Von
Zezschwitz et al. [51] found through user interviews that 45% of
users reuse the exact passwords. Hanamsagar et al. [23] found that
after registration, participants 98% of the time reused the same
passwords and in 2% of cases modified them. Data was collected
using a Chrom extension, capturing passwords upon each attempt.

Reusing passwords can become a considerable threat for users as
attackers get access to the server on which the password or a hash
thereof is stored. As a result, attackers may use this information
to impersonate the user for getting access to another account [23].
Prior work has investigated approaches to address this from a
system perspective. For example, Das et al. [17] show how client-
side password hashing can be used to generate unique passwords
for different websites, thus helping mitigate the risk of password
reuse. In addition, some systems enforce that passwords are not
used beyond a certain time span, require minimum password length,
or do not accept a password containing a sub string of a blacklisted
password [45]. In the same direction, Seitz et al. suggested using
dynamic password policies which adjust the password policy if a
system detects a password that could be widely used [44].

4Google Survey: https://services.google.com/fh/files/blogs/google_security_
infographic.pdf

Another counter-measure for password reuse is two- or multi-
factor authentication. These solutions accept that passwords have
weaknesses and try to mitigate this by requiring users to perform
additional forms of authentication (e.g., entering a TAN). However,
this comes at the expense of additional effort each time the user
seeks to access an account. In contrast, our approach addresses the
root cause, that is the password being insecure as a result of reuse.
Rather than adding a burden upon each authentication attempt,
our approach enables concepts that require additional effort only
once, that is upon password registration. Note, that generally our
approach can also be combined with multi-factor authentication.
The result is that the password factor becomes stronger.

2.2 Gaze and Typing Behavior
Prior research looked into how knowledge on users’ behavior can
serve to enhance security mechanisms. We will particularly review
work on typing and gaze behavior.

Much of prior work on typing behavior was motivated by the
endeavor of building new authentication mechanisms based on be-
havioral biometrics. An early example is the work of Monrose et al.
[36]. The authors showed that the way people type on a keyboard
can be used to identify them. In particular, the authors identified
latency between keystrokes, keystroke pressing duration, finger
position on the keyboard and applied pressure on the keys as suit-
able features to build a classifier, based on which a user can be
predicted. Buch et al. [13] looked at how users can be authenticated
while writing longer texts, comparing copying text and entering
free text. Similarly, Tappert et al. [48] built an authentication sys-
tem based on free text entry, comparing different lengths entered
on both laptop and desktop computers. The results suggest that
the keyboard affects the classification accuracy. Hereby, typing on
desktop keyboards led to a higher accuracy compared to laptops.
Also the keyboard layout was shown to have a strong impact on
typing behavior. Researchers compared different keyboards and
languages [6, 7, 22, 35].

More recently, gaze behavior has moved into the focus of re-
search. An ever-increasing number of mobile devices and laptops
are being equipped with eye trackers [29]. Research showed how
gaze behavior can be leveraged in different ways, for example, to
detect personality traits [26] and to measure cognitive load [25]. At
the same time, gaze has also been used for continuous verification
[4, 16, 53] and for implicit identification [9, 15, 50]. In 2018, Katsini
et al. [30], investigated users’ visual behavior and how it relates
to the strength of the created picture passwords. The authors used
cognitive style theories to interpret their results. They show that
users with different cognitive styles followed different patterns of
visual behavior, affecting the strength of the created passwords.
The findings introduce a new perspective for improving password
strength in graphical user authentication. Furthermore, the authors
looked at whether the strength of user-created graphical passwords
can be estimated based on eye gaze behavior during password com-
position [31]. They analyzed unique fixations per area of interest
(AOI) and the total fixation duration per AOI. Their results revealed
a strong positive correlation between the strength of the passwords
and the mentioned gaze features.

https://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://services.google.com/fh/files/blogs/google_security_infographic.pdf
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Abdrabou et al. showed that creating strong passwords increases
users‘ cognitive load, reflected in users‘ pupil diameter [2]. They
followed up by showing that gaze behavior can indicate password
strength without revealing the actual password [3]. In both studies,
participants created 12 weak and 12 strong passwords and entered
half of them on a smartphone and the other half on a laptop.

2.3 Summary
From prior work we learn that password reuse is still a major chal-
lenge in usable security research. There are several reasons for this.
Firstly, detecting password reuse is difficult. If a system has access
to users’ passwords, reused passwords can be detected by compar-
ing them to corpus of leaked passwords or to other passwords of
the user. Secondly, when designing concepts for password reuse
mitigation, the time of the intervention plays an important role
as, when being asked at a later point in time, people are rather
unwilling to change their password [23]. We conclude, that being
able to know as early as possible that users are about to reuse a
password can be valuable when designing mitigation concepts.

Of particular interest is prior research that tried to infer password
reuse from keystroke dynamics [28], achieving an accuracy of up
to 81.71%. At the same time, prior work showed that the keyboard
layout has a considerable influence on accuracy, suggesting that
using other modalities might further increase the accuracy and the
time at which a reasonable prediction can be made as well as enable
novel opportunities for interventions. In addition, prior work has
shown that gaze behavior differs between weak and strong graphi-
cal and text-based passwords. This led us to assume that reusing
passwords might equally be reflected in users’ gaze behavior.

Next, we will lay out the concept for using gaze as a means
to detect reuse of text-based passwords and discuss study design
considerations. We then present a proof-of-concept implementation
and evaluation. To compare our work to prior research, we included
detection password reuse from keystroke dynamics as a baseline.

3 CONCEPT AND RESEARCH QUESTIONS
We explore the concept of identifying the reuse of text-based pass-
words from gaze and typing behavior. The objective of our work
is (1) to improve state-of-the-art by showing that the use of gaze
can enhance the prediction accuracy, (2) to investigate how the pre-
diction accuracy changes across different phases of the password
creation process, and (3) to understand how the sensitivity of the
data being protected by the passwords influences the approach.

We first provide background information on eye gaze analysis.
Thenwe explain the different steps of the password creation process.
Finally, we present the main research questions driving our work.

3.1 Gaze Behavior Analysis
Eye tracking research showed that from gaze, information can be
derived on the user’s state, intentions, and behavior. We explain
how, based on different metrics, password reuse might be inferred.

Eye tracking provides information on where the user looks in
the form of gaze points (fixations) and the transition between these
(saccades). Fixations might provide valuable hints as to whether or
not people are reusing passwords. The reason is that when reusing
passwords, people can likely draw from motor memory (i.e. they

Figure 2: Phases of password registration: People first get
familiar with the registration interface, then provide their ID
and enter the password, and finally confirm their password.
In parallel, they reflect on the password.

Figure 3: Study Setup: Participants were asked to register for
two web services on a laptop. We logged keystroke dynamics
and gaze using an eye tracker.

know without looking how to enter the password). As a result, one
can expect that people reusing a password fixate less on the input
device (keyboard fixation count). Furthermore, the need to think
about a new password is likely to result in a longer average fixation
duration (fixation duration / average fixation duration) similar to
literature where Katsini et al. found that users fixate longer while
creating strong passwords [30]. Closely related is the distribution
of fixations. We expect that users might, while trying to come up
with a new password, differently distribute their gaze on the screen,
resulting in longer/shorter saccades (saccadic length / average sac-
cadic length) and in more/less time spent on transitioning between
fixations (saccadic duration / average saccadic duration). In addi-
tion, we define two areas of interest (AOI): the screen with the
authentication interface and the input device (here a keyboard).

3.2 Phases of Password Creation
One important aspect of our work is when a system could pre-
dict password reuse based on gaze data. To investigate this, we
decompose the password registration process:

Orientation Phase (O Phase) The authentication process be-
gins with a phase of orientation, where the user is exposed
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to the authentication interface. During this phase, the user
not only gets familiar with the interface, but might already
start to think about the password they will use. This phase
begins when the authentication interface is displayed, and
ends when the user begins to enter their ID.

Identification Phase (ID Phase) In the second phase, the user
enters their user ID, which can be a user name or email ad-
dress. Users might still continue to think about their pass-
word while they are already entering their identification
information. The phase begins with the first keystroke of the
user, as they start entering their ID and ends as the cursor is
moved to the password field.

Password Phase (P Phase) In this phase, the user enters the
password they thought about. It begins as the cursor ismoved
into the password field and ends as the user moves the cursor
to the password confirmation field.

Confirmation Phase (C Phase) In the final phase, the user
re-enters the password. This phase begins as the cursor is
moved to the password confirmation field and ends as the
user moves the cursor to the register button.

Figure 2 depicts the process. Note that users might have different
strategies of when they think about the password they want to
use. Whereas some users might think about the password already
during the orientation phase, others might do so only after they
entered their ID. Also, this reflection might span across multiple
phases and it could be that users even during the identification
phase think about the password.

3.3 Research Questions
Prior work used keystroke dynamics to detect if a password entered
is new or reused [28]. We hypothesize that physiological signals
better indicate password reuse. Hence, the first driving research
question is: How well can we predict the reuse passwords from gaze
behavior, keystroke dynamics, or both (RQ1)? We investigate the
best gaze and typing features reflecting password reuse.

Second, we expect the sensitivity of protected data to play a role,
resulting in the second driving question: Is password reuse behavior
different as passwords protect data with a different degree of sensitivity
(RQ2)? We compare behavior while creating a password for 1) a
webmail client and 2) a customer account for a news website.

4 DATA COLLECTION
We conducted a data collection study in which we recorded users’
gaze and typing behavior while creating passwords for two fictitious
accounts, protecting data of different sensitivity.

4.1 Study Design Considerations
Our study design was driven by a number of considerations, most
importantly how to observe natural user behavior, how to preserve
privacy by not storing users’ passwords, and how to minimize
influences from the hardware.

Observing Natural User Behavior Haque et al. [24] showed
the sensitivity of the data being protected by a password to
have an influence on password choice. Participants create
shorter and less secure password when registering a pass-
word for a website protecting less sensitive data. As a result,

we followed common practice from the literature [2, 3], in-
vestigating both cases where users were to chose passwords
protecting a web mail account (more sensitive data) and a
news website account (less sensitive data).

Password Privacy Our study had two objectives regarding
password use: (a) ensuring users chose reasonable passwords
they could remember and (b) not storing the actual pass-
words (which would be necessary for password verification).
To address this we only store password characteristics. For
example, as users chose A!3, we would store the following in-
formation <upper case letter><special character><digit>.We
used this information later to verify whether the re-entered
password matched those characteristics. The trade-off is that
we could not exactly verify the password. However, as this
was not the purpose of this approach, we prioritized privacy.

Influence of Hardware Prior work on keystroke dynamics
showed that the keyboard hardware has an influence on user
behavior [43]. Hence, we decided to collect data from all
participants using the same hardware and setup.

4.2 Study Design and Apparatus
We designed a within-subjects study with one independent variable
(authentication interface), resulting in two conditions: 1)Webmail
Client – a web-based authentication interface, meant to protect
sensitive, personal email data. The interface resembled the web-
mail client of our University. 2) News Website – a web-based au-
thentication interface, protecting less sensitive data. The interface
resembled the authentication interface of a popular regional news
website (see Figure 4).

All participants experienced both conditions in a counter-balanced
order. We measured 8 dependent variables: duration for the pass-
word registration process, gaze metrics, keyboard metrics, time
spent on each form field, password characteristics, and perceived
password memorability. We did not store the raw password, but
instead its length and the characteristics of each character, i.e.,
whether it was lowercase, uppercase, a number, or a symbol). For
the apparatus we used a Lenovo Yoga 900s 12ISK laptop with a 12,5"
screen (3200 × 1800 pixels) and off-the-shelf Tobii 4C eye tracker
with a framerate of 90 Hz. We also implemented a demographics
questionnaire at the end of the study. The questionnaire had ques-
tions about, age, gender, background, profession, experience with
eye tracking and experience with IT security.

4.3 Study Setting, Procedure and Recruiting
We setup a booth in a quiet area of one of our local university’s
cafeteria (Figure 3). We approached people on campus and asked
them to participate in the study. When participants agreed, we
went with them to the cafeteria and asked them to sit at the booth.
Participants were facing the booth wall to eliminate the influence
of people in the vicinity.

We first asked participants to fill in a brief demographic question-
naire and a consent form. They were then told that we conducted a
usability test of a slightly updated version of the University’s web
mail’s password registration interface. Hereby, we specifically told
them that the interface was not connected to the actual web mail
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Figure 4: We rebuilt the webmail registration interface of the local University (left) and of a regional news website (right) to
investigate differences in user behavior when creating passwords for accounts with more and less sensitive data.

system of the University. Furthermore, we explained that we com-
pared it to the password registration interface of a regional news
website. We also told them that we recorded gaze data to identify
issues with the interface. After that, the eye tracker was calibrated
using Tobii’s 5 point calibration. Participants were asked to register
an account for both websites. Participants were told that we did not
store their passwords but that they had to remember them as they
would be asked to later sign on with them. Participants were then
shown the first registration page with three fields – one each for
ID, password and password confirmation – and a register button
(Figure 4). After participants had filled in the ID and passwords,
they clicked the register button and were directed to the second
interface, following the same procedure. Afterwards, participants
were asked for each of the passwords how memorable they thought
it was (5-Point Likert scale; 1=not memorable at all; 5=very memo-
rable). Then, they were asked to log into both interfaces again in the
order of registration. Finally, we wanted to know from participants
whether they reused a password or created a new one. At the end
of the study, we explained participants the true objective of the
study and asked them to explain their strategy behind creating
the passwords. On this occasion we were also able to clarify what
password reuse means, if needed.

The experiment took around 10 minutes and participants were
compensated with chocolates/treats. The study complied with our
university’s ethics requirements.

4.4 Limitations
We acknowledge the following limitation. Firstly, we cannot verify
whether participants truthfully answered the questions regarding
password reuse. Participants might have lied about non-compliant,
insecure behavior. We tried to minimize any such influence by run-
ning the study in a completely anonymized way where no personal
information was collected so as to establish trust. Furthermore, the
percentage of reused passwords aligns with the literature, suggest-
ing that participants mostly answered in a truthful way. Secondly,
while the number of participants is in line with much similar prior
work, we acknowledge the rather small size of our sample.

5 FEATURE EXTRACTION AND
CLASSIFICATION

We describe our step-by-step process to evaluate eye gaze and key-
stroke dynamics for password reuse detection. First, we analyzed
the collected passwords’ characteristics and evaluated the effect of
password type on password characteristics. Second, we extracted
keystroke and gaze features required for classification and tested
their statistical significance for the two types of passwords. Third,
we built and tested different classifiers based on these features. We
distinguish two categories: new and reused passwords. All features
below were extracted for both categories.

5.1 Feature Extraction
We extracted a feature set describing keystroke dynamics and gaze
behavior from the collected data in addition to password character-
istics. We also analyze perceived password memorability.

5.1.1 Password Characteristics. We extracted the following pass-
word characteristics: password length, number of upper-case letters,
number of lower-case letters, number of digits, and number of sym-
bols. We also tracked the study duration, i.e. time in seconds from
when the UI was shown until the ‘Register’ button was pressed.

5.1.2 Gaze Features. From the collected raw gaze data (X and Y
positions on the screen), we derived the following characteristic
eye movement features [27, 41]:

Fixations Count: Number of fixations performed during task.
Fixation Duration: Time for which users dwelled with their

eyes on the laptop screen as well as on the keyboard.
Saccadic Length: Euclidian distance between two consecutive

fixations with the eyes, determined in pixel.
Saccadic Duration: Duration between consecutive fixations.
Screen Fixation Count: Number of fixations on screen.
Keyboard Fixation Count: Number of fixations on keyboard.

The features are computed and analysed for each password phase,
as well as over all phases.
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5.1.3 Keystroke Dynamics Features. We collected 5 keystroke dy-
namics, informed by the literature [21, 28, 37].

Total Duration: Duration for typing email and password in
milliseconds (not considering password confirmation).

Password Typing Duration: Time taken by the participant
to enter the password in milliseconds.

Password Keystrokes Count: Number of keystrokes needed
to type the passwords (including insertion, deletion).

Flight Time: Average latency between key presses in ms.
Pre-input Time: Time from the moment the interface was

shown until the first key was pressed in milliseconds.

5.2 Classification Approach
The goal of our classifier is to map a feature vector computed from a
time window of data to one of the classes corresponding to the pass-
word type (new vs reused). We first built an interface-dependent
classifier, accounting for data sensitivity (webmail client vs news
website). The classifier is trained on the data from different users
but on the same interface. We then built an interface-independent
classifier, not accounting for data sensitivity.

We used 3 feature sets: 1) keystroke features + password charac-
teristics, 2) gaze features, and 3) both features combined. Keyboard
and gaze data were saved and synchronized using the timestamp.

We compared the performance of three classifiers: Support Vec-
tor Machines (SVM), decision trees, and random forest, as done by
Abdrabou et al. when detecting password strength [3]. To optimize
performance, hyper parameters for each classifier were empirically
optimized on a small set of values.

5.2.1 Interface-Dependent Classifier: Webmail Client vs. News Web-
site. To understand how generalizable our approach is across differ-
ent interfaces, we created interface-dependent classifiers by training
the models on all users’ data for each of the two interfaces sepa-
rately. For each of the previously mentioned phases, we created
one classifier. We implemented a two-fold cross validation. Figure
5 shows the steps for creating the classifier. We start with cleaning
the data by removing the data outside our areas of interest (i.e.,
the screen and keyboard). During the pre-processing we assign
the label ‘new’ or ‘reused’ to each sample, according to the par-
ticipants’ responses. After that we calculate the features for both
gaze and keystroke dynamics. The collected data is synchronized
using the timestamp for the analysis. This is followed by assigning
the data to the 2 folds and running the classification. These steps
are repeated for each phase. At the end, we report the AUC (Area
Under the Curve) score which measures the ability of a classifier
to distinguish between the two classes (‘new’ and ‘reused’) and is
used as a summary of the ROC curve5.

5.2.2 Interface-Independent Classifier: Both Interfaces. To under-
stand whether a classifier working for interfaces protecting data
of different sensitivity could be built, we created models that were
independent of the data to be protected – in our case the web mail
and the news page data. To do so, the classifier is trained on the
data of all users and both interfaces. We split the data similar to the
interface-dependent classifier into a training set and a test set.

5AUC: https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-
learning/

6 RESULTS
In this section, we present and analyze the collected data.

6.1 Participants
A total of 52 participants (10 females) were recruited. The study
ran over two weeks. Participants’ age varied between 17 and 54
years (𝑀 = 25.27; 𝑆𝐷 = 6.76). 30 participants were students, 10
academic staff and the remaining 12 administrative staff. Most
participants stated to be rather inexperienced with IT security (5-
Point Likert scale; 1=no experience at all; 5=strong experience;
𝑀 = 2.23; 𝑆𝐷 = .35). 23 participants wore glasses.

6.2 Data Pre-Processing and Overview
We removed data from 2 participants due to poor calibration quality.
We lost data from one participant due to technical issues while sav-
ing. Overall we collected 98 passwords, half of which were created
on the news website interface and the other half on the webmail in-
terface. Table 1 shows the number of the newly created and reused
password for each interface. As can be seen, participants reuse more
passwords for the news website than for the webmail client. Par-
ticipants needed on average 52 seconds to create a new password
for the webmail interface and 42 seconds for the news website. In
contrast, for the reused passwords, participants needed on average
38 seconds for the webmail interface and 25 seconds for the news
website. A Wilcoxon test, revealed statistically significant differ-
ences between the study duration for reused and new passwords
for the news website (𝑍 = −2.85, 𝑃 = .004) but not for the webmail
client (𝑃 > .05). For both gaze and keystroke data, we sampled data
at 90Hz from the eye tracker and from key input events. This led
to an average of 3149 samples per password, resulting in overall
340K samples for all participants for both interfaces.

6.3 New vs. Reused Passwords
We analyzed and compared cases where passwords were newly
created or re-used.

Regarding password memorability, we found a statistically sig-
nificant difference between reused (𝑀 = 4.8; 𝑆𝐷 = .6) and new
passwords’ memorability (𝑀 = 3.9; 𝑆𝐷 = 1.1) for the webmail
client, (𝑍 = −2.226,𝑃 = .026). This show that reused passwords (at
least those protecting sensitive data), are more memorable than
newly generated ones. Table 2 presents characteristics of passwords
obtained during the study, and their distribution over conditions.

No statistically significant differences were found between the
two interfaces regarding password characteristics (password length,
number of digits / special characters / upper-case letters).

Table 3 summarizes findings regarding keystroke features. Our
results indicate that participants took more time to think about and
type new passwords compared to when reusing passwords. This
includes shorter times when reusing passwords for pre-input time,
typing duration and flight time.

Regarding eye movement features, we found several statistically
significant differences between new and reused passwords (Table
4). The password type has a significant effect on several features for
both interfaces. Furthermore, it shows that when considering both
interfaces, for the reused passwords, users gaze was characterized
by significantly shorter fixation times, shorter saccadic duration,

https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/
https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/
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Figure 5: ML Classification Steps from data preparation until sending the data to the classifier.

Table 1: Number of new and reused passwords and task completion time.
Webmail Client News Website

New
Passwords

Reused
Passwords

New
Passwords

Reused
Passwords

Number of Passwords 35 14 31 18
Task Completion Time 52.28 37.89 42.07 25.99

Table 2: Wilcoxon signed-rank tests for both new and reuse password features on both interfaces. The results show that there is
no statistically significant differences for the password characteristics between new and reuse passwords.

Password
Characteristics
Feature

Email Interface News Interface Both Interfaces
New
Mean

Reuse
Mean Wilcoxon New

Mean
Reuse
Mean Wilcoxon New

Rank
Reuse
Rank Wilcoxon

Password Length 9.5 10.6 Z=-1.517, P>.05 9.5 10.3 Z=-.573, P>.05 10.4 10.3 Z=-1.154, P>.05
Upper-case Letters 1 1.1 Z=-.583, P>.05 .6 .6 Z=-.372, P>.05 0.8 0.8 Z=-.655, P>.05
Digits 3.3 3.2 Z=-.394, P>.05 2 3.3 Z=-1.800, P>.05 3.2 2.7 Z=-.892, P>.05
Symbols .29 .71 Z=-1.403, P>.05 .3 .1 Z=-1.134, P>.05 0.4 0.3 Z=-.573, P>.05

Table 3: Wilcoxon signed-rank tests for keystroke features. For Webmail there is a significant effect of password type on the
password typing duration. For the news website the password type had significant effects on flight time and thinking time.

Keystroke Feature Webmail Client News Website Both Interfaces
New
Mean

Reused
Mean Wilcoxon New

Mean
Reused
Mean Wilcoxon New

Mean
Reused
Mean Wilcoxon

Typing Duration 33.7 25.2 Z=-1.664, P >.05 27.5 16.9 Z=-1.764, P >.05 30.8 20.5 Z=-2.711, P=.007
Password Keystroke Count 16.5 13 Z=-.345, P >.05 13.6 12.3 Z=-.980, P >.05 15.1 12.6 Z=-.841, P >.05
Password Typing Duration 23 13.7 Z=-2.103, P=.035 15.8 10.2 Z=-1.851, P >.05 19.6 11.8 Z=-3.048, P=.002
Flight Time 1.7 1.1 Z=-1.852, P >.05 1.3 .9 Z=-2.025, P=.043 1.5 1 Z=-3.160, P=.002
Thinking Time 14.6 8.5 Z=-1.782, P >.05 7.4 4.2 Z=-3.027, P=.002 11.3 6 Z=-3.586, P<.001

less fixations, shorter saccades and less fixations on both the screen
and keyboard. Overall, the many significant differences suggest
eye movement features to be well suitable to accurately identify
password reuse. We discuss practical implications in Section 8.

6.4 Gaze Path
As a complementary analysis, we visually inspected the eye move-
ments in the form of the gaze path. Figure 6 shows some selected
examples. We found that participants fixate more often on the
screen (area 1) and keyboard (area 2) while creating new passwords,
compared to when entering a reused password. This was indepen-
dent of the interface on which passwords were created.

6.5 Classifier Performance
We compared the performance of three different models: SVM, ran-
dom forest, and decision trees. We conducted two classifications:
phase-based classification (i.e. per phase of the password registra-
tion) and multiple phases classification.

6.5.1 Phase-based Classification. We use data from the different
registration phases (cf. Figure 2) to build themodel. The phase-based
model helped us understand how each phase contributes to the
model. To understand which features are best for our classification
task, we ran the classifier on gaze features only, keystroke features
only, and both. Random forest and SVM classifiers resulted in a
similar AUC (Area Under the Curve) score. However, SVM resulted
in a better AUC score in most cases. Hence, the remainder of our
analysis will focus on and report the SVM results.

For the interface-dependent classifier, Table 5 shows the overall
performance of classification for each interface for all classifiers
across the different phases. For webmail, the AUC is best when
combining all phases. The highest AUC is 87.73% for gaze features
and 88.75% for the combination of gaze and keystroke features. This
means that users‘ behavior is more reflected in their gaze behavior
features than in their typing behavior. Also, gaze features better
reflect users‘ password behavior across the different phases. For
the news website, similar to the webmail client, the best AUC is
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Table 4: Wilcoxon signed-rank tests for the gaze features. The results show that for both Webmail and the News Website, the
password type had a significant effect on serveral gaze features.

Gaze Feature Webmail Client News Website Both Interfaces
New
Mean

Reused
Mean Wilcoxon New

Mean
Reused
Mean Wilcoxon New

Mean
Reused
Mean Wilcoxon

Fixation Duration 28041.9 15728.1 Z=-2.542, P =.011 20143.4 13631.6 Z=-2.330, P =.020 24497.3 14548.7953 Z=-3.964, P <.001
Avg. Fixation Duration 222.8 203.1 Z=-1.66, P >.05 210.9 208.8 Z=-.152, P >.05 219.9 206.2945 Z=-2.375, P =.018
Saccadic Duration 20850.4 18704.9 Z=-.471, P >.05 18896.4 10490.1 Z=-2.199, P =.028 19988.7 14084.1108 Z=-2.001, P =.045
Avg Saccadic Duration 174.6 257 Z=-2.982, P =.003 196.6 171.1 Z=-.370, P >.05 186.2 207.3771 Z=-2.618, P =.009
Fixation Count 2595.8 1458 Z=-2.542, P =.011 1862.1 1265.7 Z=-2.330, P =.020 2266.4 1349.7500 Z=-3.927, P <.001
Avg. Fixation Count .6 .5 Z=-2.982, P =.003 .6 .6 Z=-1.067, P >.05 .6 .5327 Z=-3.385, P =.001
Saccadic Length 1677.9 1539 Z=-.282, P >.05 1436 960.3 Z=-2.199, P =.028 1574.5 1213.2813 Z=-2.094, P =.036
Avg. Saccadic Length .4 .5 Z=-2.982, P =.003 .4 .4 Z=-1.067, P>.05 .4 .4673 Z=-3.385, P =.001
Screen Fixation Count 2149.5 1193.9 Z=-2.668, P =.008 1690.7 1122.7 Z=-2.461, P =.014 1947.7 1153.8437 Z=-3.843, P <.001
Keyboard Fixation Count 446.3 264 Z=-1.915, P >.05 173.2 142.9 Z=-1.918, P >.05 318.8 195.9063 Z=-2.786, P =.005

Reuse Passwords

New Passwords

Webmail

Reuse Passwords

New Passwords

News Website
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Figure 6: Visualization of selected users’ gaze paths, both for the webmail (left) and news website (right) interface: In both cases,
fixations are primarily focused on the input fields in the middle of the screen. Yet, for cases in which participants created new
passwords, more transitions between screen and keyboard occur and more fixations are located in the keyboard area.

achieved when considering gaze features and the combination of
gaze and keystroke features. The accuracy here is highest in the
“identification phase” (84.56%). Our interpretation of this is that the
password choice is primarily made during this phase. The keystroke
features allow for an equally good prediction, but only when consid-
ering all phases. This means that for interfaces protecting sensitive
content, password reuse is more accurately detected using gaze or
both gaze/keystroke features during the identification phase.

For the interface-independent classifier, Table 6 shows the overall
performance of the classifiers for all interfaces across the features.
The highest AUC is achieved for gaze features and both features
when combining all phases (71.87%).

6.5.2 Multiple-Phase Classification. This model accumulates all
information available on users‘ behavior, from the beginning of the
registration process to a particular phase. The aim of this model is
to understand which features are best for classification. We ran the
classifier on gaze features only, keystroke features only, and both.

Random forest and SVM classifiers resulted in a similar AUC score.
However, SVM resulted in a better AUC score in most cases. Hence,
in the following we will focus on and report the SVM results.

For the interface-dependent classifier, Table 7 shows the over-
all performance for the classification for each interface across all
classifiers for the accumulated phases. For webmail, the AUC is
best, when all phases are combined. The highest AUC is 87.73% for
gaze features. However, the model shows a decrease of only 2% for
considering only the O + ID phase as well as when the O + ID + P
phases are considered. This means that our model can predict pass-
word reuse in the identification phase before the user start typing
the actual password reasonably well. For the keystroke features,
the best AUC is still the same as the phase-based classification.
However, looking at the accuracy after each phases along the regis-
tration process, we found a difference in accuracy of 6% across the
grouped phases. This means that by using the keystroke features
only, the best accuracy is achieved when the user has clicked ‘reg-
ister’. Finally, for both features combined, the picture was diverse.
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Table 5: Interface-dependent Classifier: Classification Performance per Phase for the Different Features (best AUC bold)

Email Web-client
Orientation

Phase (O Phase)
Identification

Phase (ID Phase)
Password

Phase (P Phase)
Confirmation
Phase (C Phase)

All
Phases

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

Gaze
Features

SVM 64.79 ± 9.50% 55.63 ± 1.51% 74.35 ± 2.12% 62.77 ± 9.46% 70.22 ± 4.78% 48.61 ± 1.39% 80.81 ± 0.67% 61.46 ± 5.21% 87.73 ± 0.23% 77.08 ± 14.58%
Random Forest 72.18 ± 0.76% 55.87 ± 1.75% 67.62 ± 0.03% 56.94 ± 6.94% 81.67 ± 8.14% 61.29 ± 10.93% 81.92 ± 0.44% 55.90 ± 0.35% 83.44 ± 0.35% 61.46 ± 5.21%
Decision Tree 49.05 ± 0.95% 61.54 ± 10.36% 60.33 ± 0.78% 58.33 ± 8.33% 55.56 ± 5.56% 65.75 ± 17.59% 56.83 ± 0.58% 60.33 ± 0.78% 75.84 ± 1.94% 72.22 ± 2.78%

Keystroke
Features

SVM - - 53.40 ± 2.48% 52.78 ± 2.78% 66.23 ± 1.42% 49.14 ± 7.48% 54.89 ± 0.26% 50.00 ± 0.00% 63.58 ± 4.02% 68.06 ± 6.94%
Random Forest - - 61.04 ± 7.34% 50.27 ± 3.04% 69.23 ± 2.10% 66.24 ± 0.43% 75.54 ± 2.40% 50.18 ± 0.18% 75.83 ± 0.10% 68.75 ± 6.25%
Decision Tree - - 47.64 ± 0.89% 42.91 ± 4.31% 69.23 ± 2.10% 70.75 ± 1.31% 61.83 ± 6.69% 50.90 ± 6.45% 72.16 ± 5.62% 63.11 ± 3.55%

Both
Features

SVM - - 76.85 ± 1.85% 62.77 ± 9.46% 71.51 ± 5.34% 48.61 ± 1.39% 81.37 ± 1.96% 61.46 ± 5.21% 87.73 ± 0.23% 78.47 ± 15.97%
Random Forest - - 70.11 ± 0.26% 67.97 ± 4.08% 80.47 ± 8.42% 56.70 ± 9.48% 75.83 ± 0.10% 67.36 ± 4.86% 88.75 ± 0.14% 62.77 ± 9.46%
Decision Tree - - 55.82 ± 2.51% 58.60 ± 5.29% 56.93 ± 3.25% 57.39 ± 3.72% 54.51 ± 1.74% 57.29 ± 1.04% 74.92 ± 2.86% 72.22 ± 2.78%

News Website
Orientation

Phase (O Phase)
Identification

Phase (ID Phase)
Password
Phase

Confirmation
Phase (C Phase)

All
Phases

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

Gaze
Features

SVM 67.35 ± 1.97% 37.36 ± 9.80% 84.56 ± 2.74% 74.56 ± 0.44% 77.82 ± 3.69% 67.85 ± 7.36% 60.37 ± 2.33% 51.98 ± 1.98% 77.49 ± 2.67% 60.32 ± 10.32%
Random Forest 48.00 ± 3.13% 52.56 ± 2.56% 78.82 ± 0.15% 63.28 ± 4.18% 75.23 ± 0.40% 60.54 ± 4.59% 63.28 ± 4.55% 61.09 ± 2.00% 73.94 ± 0.53% 55.16 ± 5.16%
Decision Tree 43.07 ± 0.12% 44.99 ± 1.81% 60.85 ± 1.06% 60.05 ± 0.26% 62.99 ± 6.34% 69.53 ± 6.94% 48.77 ± 9.96% 49.14 ± 4.03% 63.19 ± 0.10% 55.16 ± 5.16%

Keystroke
Features

SVM - - 73.85 ± 3.92% 73.92 ± 5.04% 54.36 ± 19.07% 76.35 ± 10.62% 72.94 ± 4.68% 56.24 ± 4.25% 74.65 ± 4.72% 66.16 ± 5.67%
Random Forest - - 73.22 ± 0.21% 64.16 ± 0.52% 67.53 ± 0.30% 71.14 ± 9.95% 72.87 ± 0.14% 59.61 ± 5.07% 80.97 ± 3.99% 62.77 ± 0.87%
Decision Tree - - 70.22 ± 3.55% 63.51 ± 6.77% 60.92 ± 0.43% 59.59 ± 1.60% 58.91 ± 0.18% 65.81 ± 6.02% 62.68 ± 2.36% 57.28 ± 2.51%

Both
Features

SVM - - 84.56 ± 2.74% 74.56 ± 0.44% 77.82 ± 3.69% 66.38 ± 5.89% 61.61 ± 4.47% 51.98 ± 1.98% 76.70 ± 1.87% 60.32 ± 10.32%
Random Forest - - 80.77 ± 1.40% 67.82 ± 0.36% 76.73 ± 2.26% 65.75 ± 5.26% 78.21 ± 2.34% 65.55 ± 1.91% 77.96 ± 1.76% 72.19 ± 4.00%
Decision Tree - - 64.32 ± 3.14% 61.44 ± 1.65% 63.71 ± 2.37% 68.83 ± 7.64% 73.18 ± 3.74% 58.91 ± 0.18% 63.19 ± 0.10% 55.16 ± 5.16%

Table 6: Interface-independent Classifier: Classification Performance Per Phase for the Different Features (best AUC bold).

Orientation Phase
(O Phase)

Identification Phase
(ID Phase)

Password Phase
(P Phase)

Confirmation Phase
(C Phase) All Phases

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

Gaze
Features

SVM 66.27 ± 0.95% 46.91 ± 1.91% 58.12 ± 2.58% 49.59 ± 1.51% 59.28 ± 5.78% 63.95 ± 3.62% 65.64 ± 3.56% 51.19 ± 4.69% 71.87 ± 2.82% 51.84 ± 1.84%
Random Forest 62.40 ± 1.00% 48.65 ± 2.42% 56.81 ± 0.07% 61.28 ± 1.49% 76.91 ± 1.77% 63.42 ± 15.34% 68.37 ± 1.18% 56.94 ± 0.12% 68.22 ± 0.06% 58.50 ± 0.07%
Decision Tree 52.22 ± 1.04% 52.15 ± 1.27% 52.79 ± 5.73% 56.26 ± 2.25% 59.81 ± 2.58% 56.00 ± 6.09% 52.61 ± 0.42% 53.74 ± 7.62% 61.21 ± 1.53% 57.20 ± 2.48%

Keystroke
Features

SVM - - 56.70 ± 0.85% 53.49 ± 3.49% 54.05 ± 0.69% 52.78 ± 2.78% 64.43 ± 1.90% 52.16 ± 1.98% 60.34 ± 0.43% 53.40 ± 3.40%
Random Forest - - 62.66 ± 1.63% 57.40 ± 2.16% 57.68 ± 1.29% 61.10 ± 2.76% 59.91 ± 1.82% 49.94 ± 0.06% 69.22 ± 0.49% 61.88 ± 4.35%
Decision Tree - - 61.77 ± 3.87% 54.23 ± 13.79% 55.75 ± 2.25% 56.06 ± 4.40% 55.90 ± 4.19% 61.93 ± 4.99% 66.28 ± 1.47% 57.80 ± 2.34%

Both
Features

SVM - - 58.30 ± 2.41% 51.10 ± 3.02% 59.74 ± 6.27% 63.95 ± 3.62% 65.96 ± 2.84% 51.19 ± 4.69% 71.87 ± 2.82% 51.10 ± 1.10%
Random Forest - - 61.15 ± 0.94% 59.88 ± 7.25% 66.89 ± 1.65% 58.77 ± 3.40% 69.13 ± 0.26% 57.46 ± 3.52% 70.73 ± 0.08% 64.03 ± 3.54%
Decision Tree - - 57.99 ± 4.67% 56.37 ± 4.28% 52.39 ± 1.89% 59.01 ± 5.54% 60.51 ± 5.02% 56.65 ± 8.88% 62.41 ± 3.63% 57.20 ± 2.48%

For webmail, accuracy continuously increased. Yet, for the news
website, the highest accuracy was achieved in the identification
phase. In subsequent phases, accuracy differed minimally.

For the interface-independent classifier, combining the phases did
not yield a better accuracy compared to phase-based classification.
This indicates that for the interface independent classifier anymodel
will lead to a similar accuracy.

6.5.3 True Positive and True Negative Values. As multiple phase
classification did not affect the true positive and true negative rate,
we only report values for the phase-based classification for the gaze
features models. The data set was unbalanced. The guessing base-
line (i.e. trivial classifier always guessing majority class) is 71% for
webmail and 63% for the news website. Our classifiers outperform
the baseline (81.6% for webmail, 74.6% for news website).

For webmail we found that 32 out of 35 new passwords were
correctly classified as new. For the reused passwords, 8 out of the 14
reuse passwords were correctly classified. For the news website we
found that out of the 31 newly generated passwords, 21 passwords
were correctly classified as new. Out of the 18 reused passwords,
15 were correctly classified as reused. For the interface independent
classifier, out of the 66 newly generated passwords, 56were correctly

classified as new. Out of the 32 reuse passwords, 12 were correctly
classified as reuse. We reflect on these results in the discussion.

6.5.4 Feature Importance. We investigated which features mostly
contribute to the accuracy of the classifiers. We found only small
differences between both interfaces and here show the features for
webmail only. We used SHAP [34], a tool that explain the output of
a machine learning model by computing the contribution of each
feature to its prediction. Figure 7 shows the feature importance.

We observed that for the gaze features, the fixation and regis-
tration duration are mostly contributing (.23 and .14 respectively).
For the keystroke features, we observed that the overall registra-
tion duration and flight time contributed most to prediction of the
password category (.09 and .06 respectively). For both features,
we found that the gaze features have a stronger influence on the
model‘s accuracy than the keystroke features.

6.5.5 Prediction Over Time. Figure 8 visualizes the AUC over time
for the investigated conditions. Between interfaces, we can see that
gaze leads to a higher accuracy much faster for webmail, i.e. when
passwords are created to protect more sensitive data. The prediction
accuracy for keystrokes is plateauing in the identification phase
(i.e. after about 13 seconds for the news website and 22 seconds for
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Table 7: Classification performance for interface-dependent classifier (multiple phases): Phases represented by O (orientation),
ID (identification), and P (password entry). Best AUC in bold.

Email Web-client O Phase O + ID Phases O + ID + P
Phases All Phases

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

Gaze
Features

SVM 64.79 ± 9.50% 52.06 ± 2.06% 77.11 ± 3.04% 73.61 ± 1.39% 85.04 ± 5.41% 54.17 ± 4.17% 87.73 ± 0.23% 71.53 ± 9.03%
Random Forest 72.18 ± 0.76% 55.87 ± 1.75% 85.68 ± 5.13% 61.81 ± 0.69% 85.16 ± 2.81% 65.97 ± 3.47% 83.44 ± 0.35% 63.46 ± 2.35%
Decision Tree 49.05 ± 0.95% 50.00 ± 0.00% 65.22 ± 0.52% 49.92 ± 2.86% 66.07 ± 6.15% 66.07 ± 6.15% 75.84 ± 1.94% 70.32 ± 7.46%

Keystroke
Features

SVM - - 53.40 ± 2.48% 45.85 ± 1.37% 67.35 ± 1.17% 63.11 ± 3.55% 63.58 ± 4.02% 48.53 ± 1.47%
Random Forest - - 61.04 ± 7.34% 52.78 ± 2.78% 65.36 ± 0.08% 54.17 ± 4.17% 75.83 ± 0.10% 61.81 ± 0.69%
Decision Tree - - 47.64 ± 0.89% 40.30 ± 4.19% 69.96 ± 7.82% 68.85 ± 8.93% 72.16 ± 5.62% 72.16 ± 5.62%

Both
Features

SVM - - 77.60 ± 4.81% 70.85 ± 1.37% 85.04 ± 5.41% 54.17 ± 4.17% 87.73 ± 0.23% 71.53 ± 9.03%
Random Forest - - 77.40 ± 0.54% 61.38 ± 8.07% 84.50 ± 0.68% 65.62 ± 9.38% 88.75 ± 0.14% 63.11 ± 3.55%
Decision Tree - - 65.22 ± 0.52% 49.92 ± 2.86% 66.07 ± 6.15% 66.07 ± 6.15% 74.92 ± 2.86% 70.32 ± 7.46%

News Website O Phase O + ID Phases O + ID + P
Phases All Phases

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

Gaze
Features

SVM 67.35 ± 1.97% 46.45 ± 0.99% 83.62 ± 0.29% 72.98 ± 4.80% 81.43 ± 0.31% 69.76 ± 0.88% 77.49 ± 2.67% 67.30 ± 6.11%
Random Forest 48.00 ± 3.13% 52.88 ± 2.88% 76.20 ± 2.77% 68.33 ± 4.69% 77.61 ± 1.42% 75.05 ± 2.33% 73.94 ± 0.53% 61.80 ± 7.25%
Decision Tree 43.07 ± 0.12% 43.07 ± 0.12% 60.05 ± 0.26% 60.05 ± 0.26% 70.46 ± 0.18% 70.46 ± 0.18% 63.19 ± 0.10% 56.55 ± 6.55%

Keystroke
Features

SVM - - 73.85 ± 3.92% 56.15 ± 6.15% 71.12 ± 1.89% 60.51 ± 4.57% 74.65 ± 4.72% 66.07 ± 10.12%
Random Forest - - 73.22 ± 0.21% 59.61 ± 5.07% 75.11 ± 0.29% 63.28 ± 4.18% 80.97 ± 3.99% 67.14 ± 3.50%
Decision Tree - - 70.22 ± 3.55% 67.48 ± 2.80% 68.69 ± 1.55% 65.36 ± 4.87% 62.68 ± 2.36% 62.68 ± 2.36%

Both
Features

SVM - - 84.42 ± 0.50% 73.68 ± 4.10% 81.43 ± 0.31% 72.73 ± 2.10% 76.70 ± 1.87% 61.11 ± 11.11%
Random Forest - - 77.00 ± 0.78% 63.28 ± 4.18% 76.21 ± 0.02% 62.39 ± 7.85% 77.96 ± 1.76% 58.82 ± 4.27%
Decision Tree - - 58.91 ± 0.18% 58.91 ± 0.18% 71.65 ± 1.37% 71.65 ± 1.37% 63.19 ± 0.10% 56.55 ± 6.55%

Table 8: Comparison of eye movements for the webmail client / news website (only factors with statistically significant effects).

Gaze Features Saccadic Duration Avg. Fixation Duration Saccadic Length Keyboard Fixations
Email
Rank

News
Rank Wilcoxon Webmail

Rank
News
Rank Wilcoxon Webmail

Rank
News
Rank Wilcoxon Webmail

Rank
News
Rank Wilcoxon

Reuse Passwords 4.25 8.80 Z=-2.22, P=.026 5.25 8.40 Z=-1.97, P=.048 4.75 8.60 Z=-2.10, P=.035 7.50 7.50 Z=-2.35, P=.019

Table 9: Comparison of keystroke dynamics for the webmail client / news website (only factors with statistical significance).

Keystroke Features Typing Duration Keystrokes Count Thinking Time
Email
Rank

News
Rank Wilcoxon Email

Rank
News
Rank Wilcoxon Email

Rank
News
Rank Wilcoxon

Reuse Passwords 4.50 8.70 Z=2.17, P=.03 6.67 7.73 Z=-2.04, P=.041 4 7.90 Z=-2.34, P=.019

webmail). Gaze enables predictions are possible from the beginning
of the identification phase, providing a time advantage.

6.6 Effect of Data Sensitivity on User Behavior
To study the effect of content sensitivity on user behavior, we ran
a Wilcoxon signed-rank test on users’ gaze features and keystroke
features. We didn’t find a statistically significant effect of data
sensitivity, neither on gaze behavior nor on keystroke dynamics.
However, for reused passwords, we found significant effects of data
sensitivity on behavior.

Table 8 and 9 show the statistical significant features. For users’
gaze behavior, we found significant differences for the saccadic
duration, average fixation duration, saccadic length, and number of
keyboard fixations between the webmail client (more sensitive) and
the news website (less sensitive). For users’ keystroke dynamics, we
found statistical differences for users’ typing duration, keystrokes
count, and thinking time. The results show differences in users’ be-
havior between interfaces protecting data with different sensitivity,
but only when registering reused passwords.

7 DISCUSSION
We presented an investigation of eye movement behaviour and
keystroke dynamics to identify whether people reuse passwords,
specifically during the password registration phase. In the following,
we discuss several insights gained from our study before discussing
practical implications for authentication systems in the next section.

7.1 Gaze is More Informative than Typing
We found that a classifier based on gaze-related features (88% AUC
for the interface-dependent classifier) outperforms a classifiers
based on typing behavior only (80% AUC). Note that the results for
typing behavior are in line with prior work [28]. Furthermore, the
accuracy can be improved by combining typing and gaze features
in some cases. Prediction accuracy for keystroke features is higher
only at a later stage – namely after users have typed the password.

These findings answer RQ1. More specifically they show that it
is not only possible to detect password reuse from these features
but to also obtain rich additional information.
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Figure 7: Results of the feature importance analysis across the tested feature groups for the email client.
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Figure 8: AUC comparison for multiple the phases classifier between gaze and keystroke features for new and reuse passwords
across interfaces. It shows that our addition of using gaze outperformed using keystrokes.

7.2 Data Sensitivity Influences Accuracy of
Password Reuse Prediction

We found that the sensitivity of the protected data affects the char-
acteristics of the chosen password and whether it is a new one or a
reused one is reflected in the user’s gaze data. More participants
reused passwords for the news website than for the webmail client.
This suggests that the more sensitive the protected information is,
the more effort people put into their password and the less often
they reuse passwords. This also leads to users’ behavior getting
more distinguishable. This is revealed by the statistical analysis
where, for the webmail client, most features (gaze and typing) were
significantly different between reused and new passwords. In con-
trast for the news website we could not find significant difference
in our collected data.

7.3 Dissecting Password Registration Process
Enriches Modeling and Prediction

Contributing to the literature, we dissected the observation of pass-
word creation behavior into multiples phases.

For the webmail client, we found that considering users’ behavior
during the whole password generation (all phases combined) to
detect password reuse leads to the best accuracy. In contrast, for the
news website, we found that the identification phase better reflects
users’ behavior to detect password reuse. This suggests that people
think about passwords during different phases of the registration
process and that this thinking takes longer when protecting more
sensitive data. We ran a Wilcoxon test to see whether the duration
of the identification phase differed for new (𝑀𝑒𝑎𝑛𝑅𝑎𝑛𝑘 = 10.27)

and reused passwords (𝑀𝑒𝑎𝑛𝑅𝑎𝑛𝑘 = 8.29) for the news website.
We did not find statistical significant differences (𝑍 = −1.98, 𝑝 >

.05). This motivates a future study, striving to obtain a deeper
understanding of when and how much people ‘think ahead’ when
creating passwords.

8 PRACTICAL IMPLICATIONS FOR THE
DESIGN OF PASSWORD SYSTEMS

Being able to identify password reuse before the end of the regis-
tration process, we envision interfaces to implement interventions
ultimately leading to better passwords. We reflect on the role of eye
tracking, the design of interventions, the implications of user and
interface characteristics on modeling, and on privacy implications.

8.1 Ubiquitous Eye Tracking
We believe the vision sketched in this paper to be timely as eye
tracking is about to become ubiquitously available and to, in partic-
ular, gain relevance in usable security [29]. Access to gaze data is
possible today in different ways. Firstly, there is laptop and desktop
computers being equipped with dedicated eye tracking hardware.
The fact that Apple bought SMI, one of the world’s leading manu-
facturers of eye tracking hardware suggests, that one of the next
generations of Macbooks might come with integrated eye tracking.
Secondly, advances in computer vision made it possible to perform
appearance-based gaze estimation simply by means of analyzing
the video feed of a web cam or smartphone cam [32]. Thirdly, eye
wear (such as augmented reality glasses and head-worn devices) are
envisioned to use gaze as a communication medium for everyday
interactions [40], and thus could open doors for security use cases.
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Figure 9: Interplay of Actual User Behavior and System Prediction (normalized confusion matrix). Optimally, a system would
correctly predict whether a password is new or reused. In the first case, no action would be needed – our approach predicts this
case with around 70% accuracy. In the second case an intervention should be shown – we predict this case with around 80%
accuracy. Interestingly, gaze is particularly powerful for reused passwords, where a prediction based on keystrokes is only
successful in about 56% of cases.

Our approach could be implemented in various forms. Providers
wishing to support users in choosing better passwords could inte-
grate the approach with their password registration interface (e.g.,
by accessing the webcam on a PC, by a smartphone app accessing
the front-facing camera, or the built-in eye tracker of head-worn
devices). A provider-independent solution would be a browser plu-
gin that accesses the camera and assesses users’ gaze data as they
enter a website requiring the registration of a password. Finally,
the approach could run as a service in eye wear, that activates
when users are about to register a password and then assesses their
physiological data.

8.2 Creating Design Interventions
A system that integrates the predictive model can provide several
interventions based on the outcome of the prediction. Figure 9
depicts four different cases based on two dimensions. The first
dimension is the actual behavior of the user, i.e. whether they used
a new password or reused an old one. The second dimension is the
prediction of the system, i.e. whether the system thinks the user
created a new password or reused an old one.

New user password + system predicts new password No ac-
tion is needed as this is the optimal behavior.

Reused user password + system predicts reused password
In this case, the system presents an intervention that opti-
mally motivates the user to rethink their choice.

New user password + system predicts reuse Interventions
by the system may lead to potential adverse effect to the
users and should be avoided. This should carefully weigh
off potential factors, e.g., the more invasive the intervention
is (e.g., forcing the user to enter a new password), the more
negative it can influence user perception. Providing options
to easily cancel this will become handy to the user.

Reused user password + system predicts new Here, a sys-
tem would not intervene. Hence, the user would not be both-
ered, but potentially use an insecure password. This should
be minimized for cases requiring high security.

Based on the accuracy of the trained model, designers could verify
how likely the above-mentioned cases are and decide, which inter-
ventions are suitable, regarding their level of invasiveness. Other
factors could influence this choice, e.g., how important it is that
users do not reuse a password. Interventions could take various
forms, as proposed in the literature: warnings, i.e. reminding users
about security risks resulting from their behavior [33], attractors,
i.e., modifications in the UI that draw user’s attention to important
information for decision making [12], or nudges, i.e. interventions
that guide users to make beneficial suggestion [5, 19, 42].

8.3 Modeling
Different factors can influence the classification modeling.

8.3.1 Ground Truth: Determining Password Reuse. The first step to
building predictive models is to collect behavioral data during the
authentication process. The challenge during this data collection is
to obtain a ground truth, i.e. whether or not users are creating new
password or reusing an existing ones. Several alternatives exist.
Firstly, users could be asked to provide this information. Yet, this
creates an overhead for the user. Secondly, the created password
could be compared to (the hashes of) passwords other users cre-
ated for the data or service the mechanism is protecting. Third, the
created password could be compared to databases of leaked pass-
words. Afterwards, a model can be trained based on the labeled set
of behavioral data, following the approach outlined in this paper.

8.3.2 Influence of Typing Proficiency. In our study, we sampled
among a University population where people were likely to have
a rather high typing proficiency. However, this might be different
for other samples. Typing behavior is mainly a result of how long
people type daily. In addition, typing and keystroke dynamics are
influenced by cognition, which differs when typing routine words
(i.e. password reuse) as opposed to non-routine words (i.e. new
passwords) [28]. Dhakal et al. [18] analyzed typing behavior in an
online survey and they clustered typists into eight groups based
on their typing performance, accuracy, rollover, and hand usage.
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Given all this, we learn that user’s typing proficiency plays a role
to affect keystroke behavior and, hence, the accuracy of a classifier
predicting password reuse. A user-dependentmodel is more suitable
to capture individual characteristics and can enhance accuracy.

8.3.3 Influence of Screen Properties. Users might access the same
password registration interface on devices with different screen
properties (e.g., a laptop vs. a large external monitor). While we
maintained the same screen in our study for data consistency, other
display types might be worth considering. In our analysis, we in-
spected the degree of influence the features have on prediction
accuracy. Fixation and registration durations are among the most
prominent features. We expect the influence of the screen proper-
ties on such relative features to be low. However, to further enhance
the classification accuracy and take into account device-dependent
features such as saccadic duration and path, it might be useful to
consider screen-optimised classifiers.

8.3.4 Influence of Layout. Ideally, a model would make highly
accurate predictions independent of the password registration in-
terface layout. In our study, we investigated two examples from
the real world that we believe are representative for many of the
layouts in use. However, other registration interfaces might look
different and ask the user, for example, to provide information be-
yond credentials on the same page, such as an address or payment
information. One might speculate whether users already display
behavior related to password composition before working on the
respective part of the form. If so, this would be interesting, as it
gives a system employing our concept more time for an interven-
tion and also more typing and gaze data. At the same time this
would require a new model to be trained.

Future work could investigate, how exactly the registration inter-
face, in particular, the requested information and the layout (e.g., at
which part of the registration interface the password is composed)
influence prediction accuracy.

8.3.5 Influence of Interaction Modality. We hypothesize that differ-
ent interaction modalities will likely affect typing behavior, because
input devices vary across systems (e.g., using a mechanical vs. a
soft keyboard). The same is potentially true for gaze as different
forms of eye trackers might be employed with different systems
and typing behavior might influence gaze behavior in a different
way. At the same time, it is plausible that the implicit nature of eye
movements could represent a more constant predictor of password
reuse across systems. This should be pursued by future research.

8.4 User Privacy
Note that it is important to consider the potential privacy impli-
cations of using gaze data. There is an ongoing discussion on the
need to use gaze data carefully. From gaze, information beyond
password reuse can be inferred, including but not limited to the
users’ interest, attention, fatigue, or sexual orientation (see Steil et
al. [47] for an in-depth assessment of this topic). One could assume
that users might be willing to share gaze data if it was to their
benefit, in particular, in a security context. Yet, consent to collect
and assess gaze data should not only be obtained by the provider
of a password reuse identification system but be limited to this
authentication procedure.

9 FUTUREWORK
Our work opens up many avenues for future research. Firstly, as
mentioned above, one interesting direction is to investigate the
influence of the interface properties on the concept, in particular,
the integration of password registration with the assessment of
other information. Secondly, we plan create novel interventions that
prevent password reuse or that nudge users towards rethinking
their strategy. The choice for the intervention might be based on
the prediction and could also take the likeliness for password reuse
into account. We are also interested in understanding during which
phases of the password registration process this is most effective.
Thirdly, we plan to explore how concepts that are independent of
the input device can be realized – for example, password reuse is
detected through a mobile eye tracker and interventions are then
provided as AR overlay or on a smart watch. A final direction
for future research might be investigating additional types of user
behavior and physiological states to predict password reuse.

10 CONCLUSION
We presented a novel approach for predicting password reuse. We
separated password registration into different phases, namely the
1) orientation phase, 2) identification phase, 3) password typing
phase, and 4) confirmation phase. We then looked at how well
password reuse can be detected in the different phases (separately
and accumulated) based on gaze, keystroke dynamics and both. In
addition, we compared two interfaces, meant to protect more and
less sensitive data.Beyond showing that our approach improves
the accuracy of prior work, we additionally demonstrated that
prediction becomes now feasible throughout the entire password
registration process. In addition, we provide insights how gaze and
typing feature contribute to detecting password reuse and reflect
on the practical implications of our findings. We hope to have
provided a powerful approach for researchers and practitioners
based on which novel interventions mitigating password reuse can
be built.
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