
 Open access Journal Article DOI:10.1109/MS.2012.173

Your "What" Is My "How": Iteration and Hierarchy in System Design — Source link

Michael W. Whalen, Andrew Gacek, Darren Cofer, Anitha Murugesan ...+2 more authors

Institutions: University of Minnesota, Rockwell Collins

Published on: 01 Mar 2013 - IEEE Software (IEEE)

Topics: Non-functional requirement, System requirements specification, Software requirements specification,
Systems design and Software architecture

Related papers:

 Weaving together requirements and architectures

 Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis & Design Language

 Compositional verification of a medical device system

 Compositional verification of architectural models

 The synchronous data flow programming language LUSTRE

Share this paper:

View more about this paper here: https://typeset.io/papers/your-what-is-my-how-iteration-and-hierarchy-in-system-design-
2t5vckbrk3

https://typeset.io/
https://www.doi.org/10.1109/MS.2012.173
https://typeset.io/papers/your-what-is-my-how-iteration-and-hierarchy-in-system-design-2t5vckbrk3
https://typeset.io/authors/michael-w-whalen-2uvanqx63l
https://typeset.io/authors/andrew-gacek-24nvlyef0f
https://typeset.io/authors/darren-cofer-1yixscs9hl
https://typeset.io/authors/anitha-murugesan-7f0ct4q4vx
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/institutions/rockwell-collins-j7xu8d6f
https://typeset.io/journals/ieee-software-2xp8dbta
https://typeset.io/topics/non-functional-requirement-gr7s9r1i
https://typeset.io/topics/system-requirements-specification-10nc9772
https://typeset.io/topics/software-requirements-specification-24vhgux1
https://typeset.io/topics/systems-design-229cayj3
https://typeset.io/topics/software-architecture-3l1mcs2f
https://typeset.io/papers/weaving-together-requirements-and-architectures-bbm6l3kyoc
https://typeset.io/papers/model-based-engineering-with-aadl-an-introduction-to-the-sae-4b6knowko9
https://typeset.io/papers/compositional-verification-of-a-medical-device-system-9bxn9gk7f2
https://typeset.io/papers/compositional-verification-of-architectural-models-4qt9bnt9ti
https://typeset.io/papers/the-synchronous-data-flow-programming-language-lustre-2j8zn4zee2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/your-what-is-my-how-iteration-and-hierarchy-in-system-design-2t5vckbrk3
https://twitter.com/intent/tweet?text=Your%20%22What%22%20Is%20My%20%22How%22:%20Iteration%20and%20Hierarchy%20in%20System%20Design&url=https://typeset.io/papers/your-what-is-my-how-iteration-and-hierarchy-in-system-design-2t5vckbrk3
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/your-what-is-my-how-iteration-and-hierarchy-in-system-design-2t5vckbrk3
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/your-what-is-my-how-iteration-and-hierarchy-in-system-design-2t5vckbrk3
https://typeset.io/papers/your-what-is-my-how-iteration-and-hierarchy-in-system-design-2t5vckbrk3

Your What is My How:

Iteration and Hierarchy in System Design

Michael W. Whalen∗, Andrew Gacek†, Darren Cofer†,

Anitha Murugesan∗, Mats P. E. Heimdahl∗ and Sanjai Rayadurgam∗

∗ Department of Computer Science and Engineering

University of Minnesota, Minneapolis, MN, USA

{whalen, anitha, heimdahl, rsanjai}@cs.umn.edu

† Rockwell Collins

Minneapolis, MN, USA

{ajgacek, ddcofer}@rockwellcollins.com

Abstract—Systems are naturally constructed in hierarchies in
which design choices made at higher levels of abstraction levy
requirements on system components at lower levels of abstrac-
tion. Thus, whether an aspect of the system is a design choice
or a requirement depends largely on one’s vantage point within
the hierarchy of system components. Furthermore, systems are
often constructed middle-out rather than top-down; compatibility
with existing systems and architectures, or availability of specific
components influences high-level requirements. We argue that
requirements and architectural design should be more closely
aligned: that requirements models must account for hierarchical
system construction, and that architectural design notations
must better support specification of requirements for system
components. We briefly describe work to this end that was
performed on the META II project and describe the gaps in
this work that need to be addressed to meet practitioner needs.

Index Terms—formal methods; requirements; refinement;
model checking; architecture

I. INTRODUCTION

Consider a modern aircraft, such as a Boeing 747. It is

an extraordinarily complex system containing over 6 mil-

lion parts, 171 miles of wiring, and 5 miles of tubing [1].

Viewed another way, it is a complex software and hardware

infrastructure containing 6.5 million lines of code distributed

across dozens of different computing resources [2]. To make

design and construction possible, the components—physical

and software—are necessarily organized as a hierarchical fed-

eration of systems that interact to satisfy the safety, reliability,

and performance requirements of the aircraft.

This hierarchical aspect of design is of crucial importance;

design considerations at one level of abstraction, such as how

to partition a system into subsystems and allocate functionality

to each, determine what the subsystems should do at the next

level of abstraction. Requirements at a particular level in the

hierarchy are implemented in terms of a set of design decisions

(an architecture), which in turn induces sets of requirements on

the components of that architecture; this is an idea that spans

An earlier version of this article as a position paper is included in the Pro-
ceedings of First International Workshop on the Twin Peaks of Requirements
and Architecture, Chicago, 2012.

This work has been partially supported by DARPA/AFRL on project
FA8650-10-C-7081, and NSF grants CNS-0931931 and CNS-1035715.

both physical and software architectures. Yet, we frequently

speak of “the requirements” on a system as separate from,

and more abstract than, “the architecture” of that system.

Although some requirements engineering techniques (no-

tably KAOS [3], and i* [4]) do support hierarchical decom-

position of requirements, these decompositions are in general

not bound to the architecture of the system, nor is there a

prescribed process for coevolution with architectural models.

Therefore, when practitioners derive an architecture to address

a systems engineering challenge, there is often little guidance

on how the requirements should be decomposed and allocated

to architectural components.

II. ITERATIVE REQUIREMENTS AND ARCHITECTURE

Even in safety-critical systems with well-understood do-

mains, it remains difficult to correctly specify requirements. In

previous work involving requirements verification in Model-

Based Development, we found that the requirements were

almost as likely to be incorrect as the models [5]. For

example, one class of errors involves inconsistencies between

requirements:

• When button X is pressed, the mode shall be A

• When button Y is pressed, the mode shall be B

These requirements are inconsistent if X and Y can be

pressed simultaneously and A and B are mutually exclusive.

By constructing and analyzing models, we were able to find

such inconsistencies, as well as implicit assumptions about

the environment in which the system was to be deployed. In

fact, because the models regularly brought to light problems

in the requirements, the approach used by the engineers was

to iteratively refine models and requirements, using a “model

a little, test a little” approach.

Given very large systems (or systems-of-systems), it appears

even less likely that the top-level requirements will be correct

[6]. Even if top-level requirements are correct, an additional

challenge is demonstrating that, given the architectural solu-

tion, the hierarchically decomposed requirements are sufficient

to meet the system-level requirements. An approach to re-

quirements validation, architectural design, and architectural

verification that uses the requirements to drive the architectural

decomposition and the architecture to iteratively validate the

Digital Object Indentifier 10.1109/MS.2012.173 0740-7459/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

requirements would be highly desirable. Further, we would

like this verification and validation to occur prior to building

code-level implementations.

A well-defined set of requirements is discovered through

informed deliberations between stakeholders with shared as

well as competing interests. We can view the starting point

as an incomplete articulation of their key concerns and in the

course of these deliberations the participants make rational

choices and trade-offs. The quality of the resulting require-

ments largely reflects how well the participants engaged in

this process. Key stakeholders include the systems, safety,

and software engineers, whose overriding concern is how to

successfully build a system that would meet the resulting

requirements. The architecture, we believe, is essential for

these stakeholders to understand the main concerns that should

inform their positions during the negotiations. It highlights

important aspects of “how the system would work?” leaving

out the minutiae, helping focus attention on concerns likely to

affect system feasibility. Therefore, we assert, it is but natural

that in any practical development process, requirements and

architecture evolve together.

In this respect, we concur with the Twin Peaks model

of Nuseibeh [7], which recognizes that requirements and

architecture coevolve, and that this evolution is healthy for

creating both a sound architecture and correct requirements.

Nuseibeh also points out that system development often starts

from candidate architectures that have been used in similar

systems. These architectures may restrict the set of achiev-

able requirements, but still be desirable for many reasons,

including: (1) familiarity of designers and software engineers

with the architecture, and (2) amortization of cost due to the

candidate architecture getting refined over several systems, as

in e.g., program families. Thus, iteration between architectural

models and requirements can better deal with Boehm’s sources

of uncertainty for requirements [8].

In this paper, we extend this view further and posit that

(a) the dynamic model of coevolution induces a static model

of interrelationship that ties requirements with architectural

elements in an inherently hierarchical fashion, and (b) such a

mapping is equally essential for both building and verifying

complex systems. The following sections attempt to articulate

this position in a more concrete manner.

III. ORGANIZING REQUIREMENTS

Once systems become sufficiently complex, they are de-

composed into subsystems that are created by several distinct

teams. Thus, the requirements on the system as a whole

must be decomposed and allocated to each of the subsystems.

This decomposition touches both requirements and archi-

tecture since the structure of the decomposition will affect

how requirements are “flowed down” to each subsystem.

We believe that requirements can (and should) be organized

into hierarchies that follow the architectural decomposition of

the system. This organization promotes a natural notion of

refinement and traceability between layers of requirements.

Flow down:

Requirements for C2

� Determine subcomponents

� Allocate requirements to

subcomponents

� Verify that subcomponent

requirements establish system

System A
System C2

C2 C1
X

Y

Z

Flow up: Environmental

constraints and modified

system requirements from C2

…

System Z

…

Fig. 1. Interplay between architecture and requirements

By organizing the requirements using the architectural de-

composition, we highlight the idea that system decomposition

is both an architectural and requirements exercise. The act of

decomposing a system into components (and then assembling

the components into a system) induces a requirements analysis

effort in which we need to ascertain whether the requirements

allocated to subcomponents in the architecture are sufficient to

establish the system-level requirements. Equally importantly,

we need to determine whether any assumptions on a com-

ponent’s environment made when allocating requirements to

that component can be established. This is shown informally in

Figure 1. As we begin to allocate requirements to components,

we may find that the architecture we have chosen simply

cannot meet the system-level requirements. This may cause

us to re-architect the system to allow us to meet the system-

level requirement, levy additional constraints on the external

environment, or to renegotiate the system-level requirement.

IV. ARCHITECTURAL MODELS

Architectural models include components and component

interfaces, interconnections between components, and require-

ments on the components (but not their implementations).

Thus, the architectural models describe the interactions be-

tween components and their arrangement in the system. By

annotating them with requirements for component behavior,

these models become a means to support iteration between

requirements allocation and architectural design.

At the leaf level, component implementations are defined

separately using model-based development tools or by tradi-

tional programming languages, as appropriate. They are repre-

sented in the system model by the subset of their specifications

that is necessary to describe their system-level interactions;

these specifications may include information about component

functionality, performance, security, bindings to hardware, and

other concerns.

As we are working on the embedded safety-critical systems,

we need an architectural modeling language that can support

descriptions of both hardware and software components and

their interactions. For this reason, we have been examining

the SysML and AADL [9] notations. These languages were

Digital Object Indentifier 10.1109/MS.2012.173 0740-7459/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

developed for different but related purposes. SysML was

designed for modeling the full scope of a system, including

its users and the physical world, while AADL was designed

for modeling real-time embedded systems. While both SysML

and AADL are extensible and can be tailored to support either

domain, the fundamental constructs each provides reflect these

differences. For example, AADL lacks many of the constructs

for eliciting system requirements such as SysML requirement

diagrams and use cases. On the other hand, SysML lacks

many of the constructs needed to model embedded systems

such as processes, threads, processors, buses, and memory.

Our approach has been to use AADL as our working notation

and support translation from SysML (with some additional

stereotypes for certain components corresponding to AADL

constructs) into AADL models.

V. SYSTEM VERIFICATION

In critical systems, significant progress has been made in

analyzing the behavior of “leaf-level” components against

their requirements. In the 2000s, tools and techniques for unit

testing of source code improved to the point where coding

errors that escape detection through testing are today relatively

rare [10]. During the last decade, Model-Based Development

has increased the level of abstraction at which engineers design

software components and moved much of the testing forward

into the design phase. During that same time period, model

checking has become a practical form of analysis that finds

errors that testing would miss and does so earlier in the design

process [11].

While we have become better at demonstrating that leaf-

level components meet their requirements, checking whether

component-level requirements are sufficient to demonstrate the

satisfaction of higher-level requirements is still an area of

ongoing research. Not surprisingly, component integration has

become the most important source of errors in systems [6]. In

fact, while techniques for specifying and verifying individual

components have become highly automated, the most common

tools used to specify the complex system architectures in

which they are embedded remain word processors, spread-

sheets, and drawing packages. Better support for decomposi-

tion of requirements throughout the system architecture, and

subsequent verification that these decompositions are sound,

is very important.

In the initial stages of requirements and architectural co-

design, this process is relatively informal and fluid. However,

for critical systems, this informality can lead to problems. It is

often the case that many of the errors in system development

manifest themselves in integration; each of the leaf-level com-

ponents meets its requirements, but these are not sufficient to

establish the satisfaction of the system requirements. In order

to prevent these integration errors, we would like to perform

virtual integration in which we can determine whether leaf-

level requirements are sufficient to demonstrate satisfaction of

system level requirements at arbitrary levels of abstraction.

If the requirements and architecture efforts are based on

natural-language requirements and modeling notations lack-

ing rigorous semantics, the reasoning process we promote

would closely resemble the Satisfaction Argument advocated

by Hammond et al. in their outstanding paper “Will it

work?” [12]. The Satisfaction Argument, based on the World

and the Machine model [13], attempts to establish that system

requirements hold through an argument involving (i) the

specification of the system behavior and (ii) assumptions about

the domain of the system. When systems are decomposed, the

“domain assumptions” of a subcomponent will likely include

assumptions about the behaviors of other subcomponents with

which it communicates. Hammond et al. introduce rich trace-

ability links to argue that subcomponent specifications together

satisfy system requirements using structured (but informal)

justifications.

To formalize satisfaction arguments, assume-guarantee con-

tracts [14] provide an appropriate mechanism for capturing the

information needed from other modeling domains to reason

about system-level properties. In this formulation, guarantees

correspond to the component requirements. These guarantees

are verified separately as part of the component development

process, either by formal or traditional means. Assumptions

correspond to the environmental constraints that were used to

verify that the component satisfies its requirements. For for-

mally verified components, they are the assertions or invariants

on the component inputs that were used in the proof process.

A contract specifies precisely the information that is needed

to reason about the component’s interaction with other parts

of the system. Furthermore, contract mechanism supports a

hierarchical decomposition of verification process that follows

the natural hierarchy in the system model.

A

B

C

Assumption:

Input < 20

Guarantee:

Output < 2*Input

Assumption:

Input < 20

Guarantee:

Output < Input + 15

Assumption: none

Guarantee:

Output = Input1 + Input2

Assumption:

Input < 10

Guarantee:

Output < 50

Fig. 2. Toy Architecture with Properties

The idea is that, for a given layer of the architecture, we

use the contracts of the subcomponents within the architecture

to establish the satisfaction of the system level requirements

allocated to that level. A toy example of the idea is shown in

Figure 2. In this figure, we would like to establish at the system

level that the output signal is always less than 50, given that

the input signal is less than 10. We can prove this using the

assumptions and guarantees provided by the subcomponents

A, B, and C. This figure shows one layer of decomposition,

but the idea generalizes to arbitrarily many layers. To create

a complete proof, it is necessary to prove that each layer

establishes its system level property.

In a recent project, Rockwell Collins and the University of

Minnesota have created a tool suite called the Assume Guar-

Digital Object Indentifier 10.1109/MS.2012.173 0740-7459/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

antee Reasoning Environment (AGREE), which we briefly

describe in the next section. The tools themselves and anal-

ysis techniques briefly mentioned here have been previously

described in a longer paper [15].

The system-level properties that we wish to verify fall into a

number of different categories requiring different verification

approaches and tools. At the topmost level, we are interested in

behavioral properties that describe the state of the system as it

changes over time. Behavioral properties are used to describe

protocols governing component interactions in the system,

or the system response to combinations of triggering events.

Currently, we use the Property Specification Language (PSL)

to specify most behavioral properties of components. This

allows straightforward formulation of a variety of (discrete

time) temporal logic properties.

There were two goals in creating this verification approach.

The first goal was to reuse the verification already performed

on components. The second goal was to enable distributed

development by establishing the formal requirements of sub-

components that are used to assemble a system architecture.

If we are able to establish a system property of interest using

the contracts of its components, then we have a means for

performing virtual integration of components. We can use

the contract of each of the components as a specification

for suppliers and have a great deal of confidence that if all

the suppliers meet the specifications, the integrated system

will work properly. Thus, we can choose arbitrarily the “leaf

level” of components (and their requirements) that we wish to

analyze.

Figure 2 illustrates the compositional verification conditions

for a toy example. Components are organized hierarchically

into systems. We want to be able to compose proofs starting

from the leaf components (those whose implementation is

specified outside of the architecture model) recursively through

all the layers of the architecture. Each layer of the architecture

is considered to be a system with inputs and outputs and

containing a collection of components. A system S can be

described by its own contract (AS , PS) plus the contracts of its

components CS , so we have S = (AS , PS , CS). Components

”communicate” in the sense that their formulas may refer to

the same variables. For a given layer, the proof obligation is to

demonstrate that the system guarantee PS is provable given the

behavior of its subcomponents CS and the system assumption

AS . That is, PS should be derivable as a consequence of

CS and AS by applying the rules of the logic used to

formulate these contracts. Such a proof, in effect, assures a

successful integration of the contract-conforming components

to realize a system that can meet its contract, reducing both the

burden and the risk associated with system integration during

development.

In our framework, we use past-time linear temporal logic

(PLTL) to formulate the correctness obligations for systems.

Temporal logics like PLTL include operators for reasoning

about the behavior of propositions over a sequence of instants

in time. For example, to say that property P is always true

at every instant in time (i.e., it is “globally” true), one would

write G(P), where G stands for “globally”. The correctness

obligations are the form G(H(A) ⇒ P), which informally

means, it is always the case that if assumption A has been true

from the beginning of the execution up until this instant (A is

historically true), then guarantee P is true. For the obligation

in Figure 2, our goal is to prove the formula G(H(AS) ⇒ PS)
given the contracted behavior G(H(Ac) ⇒ Pc) for each

component c within the system. It is conceivable that for a

given system instance a sufficiently powerful model checker

could prove this goal directly from the system and component

assumptions. However, we take a more general approach:

we establish generic verification conditions that together are

sufficient to establish the goal formula. In the example, this

means that for the system S we want to prove that Output <

50 assuming that Input < 10 and the contracts for components

A, B, and C are satisfied. For a system with n components

there are n+1 verification conditions: one for each component

and one for the system as a whole. The component verification

conditions establish that the assumptions of each component

are implied by the system level assumptions and the properties

of its sibling components. For this system the verification

conditions generated would be:

G(H(AS) ⇒ AA)
G(H(AS ∧ PA) ⇒ AB)
G(H(AS ∧ PA ∧ PB) ⇒ AC)
G(H(AS ∧ PA ∧ PB ∧ PC) ⇒ PS)

In general, these verification conditions may be cyclic, but if

there is a delay element in the cycle we can use induction over

time as in [14]. The system level verification condition shows

that the system guarantees follow from the system assumptions

and the properties of each subcomponent. This is essentially

an expansion of the original goal, G(H(AS) ⇒ PS), with the

additional information obtained from each component.

VI. SCALING TO REAL SYSTEMS

Of course, reasoning about toy examples is neither inter-

esting nor useful for practitioners attempting to build large-

scale systems. For the DARPA META II project, we modeled

an avionics system architecture involving an autopilot, two

redundant flight guidance systems, and a variety of redundant

sensors (the top layer of the architecture is shown in Figure 3).

Using this model, we proved properties describing limits on

the transient commanded pitch behavior of the flight control

system, described in detail in [15]. Even given a relatively

complex architecture, the time necessary for each composi-

tional analysis was small due to the decomposition of the

analysis problem into layers; on the order of 5 seconds for

each layer of the avionics system.

An important limitation in the current tool suite is that it can

only deal with systems that are synchronous with a one-step

communication delay between connected components. The

synchrony hypothesis in this case means that the components

share a global clock. In order to be appropriate for full-scale

use, we must accurately support notions of time in our com-

position framework. This will likely not require any changes

to the underlying formalism of composition, but we must

Digital Object Indentifier 10.1109/MS.2012.173 0740-7459/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM R

Flight_Control_System

Flight_Control_System_Impl

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM R

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

GC

LSO

FGS_L : Fl ight_Guidance_System

AD

AH

GC

LSO

AD

AH

VNAV

LSI

GC

FGS_R : Flight_Guidance_System

AD

AH

VNAV

LSI

GC

FGSRtoAP

AP2CSA

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR
FGSRtoFGSL

FGSLtoFDL

FM_L
FM_R

NAV_L

NAV_R

THROT L THROT RYOKE L YOKE R

A

FM_L
FM_R

NAV_L

NAV_R

THROT L THROT RYOKE L YOKE R

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

VNAV

NAV

LSI

FCI

VNAV

NAV

LSI

FCI

VNAV

NAV

FCI

LSO
VNAV

NAV

FCI

LSO

YOKER2FCIYOKEL2FCI

THROTL2FCI

NAVLtoFGSL

FMLtoFGSL

THROTR2FCI

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

Fig. 3. Dual-Redundant FGS Avionics Architecture

account for the delays induced by computation time, network

traffic, and other architectural properties of the model through

extraction of this information from the AADL model and

incorporation into the formal analysis model. PSL provides

some support in that it is possible to add clocks to properties

representing the instants at which they should be examined.

These clocks can be used to describe instants in which a

component operates in the context of a larger system. This

is the major focus of the next phase of our work, in which we

will be modeling more realistic avionics and medical device

architectures.

A more general question has to do with the choice of

representing components as sets of PSL properties as opposed

to other formalisms, such as process algebras . In our work, we

have found that declarative properties can be closely aligned

with “shall”-style requirements that are traditionally used in

avionics systems. However, complex coordination activities

between multiple components within an architecture can be

difficult to represent using temporal logic. In future work, we

hope to examine whether the process-algebraic view of the

system can be aligned with our temporal-logic view.

VII. CONCLUSION

In this paper, we have argued that coevolution of require-

ments and systems architectures is necessary for the construc-

tion of large-scale, hierarchical systems. It is necessary for

many reasons, notably (1) systems often start from candidate

architectures that have been used in similar systems that

constrain system requirements, and (2) for large systems,

whether a constraint is viewed as an aspect of (architectural)

design or a requirement depends on the level of abstraction

from which it perceived—a requirement for a system at a

lower level of abstraction is often derived from an architectural

design choice at the next higher level of abstraction. Therefore,

in our view, requirements decomposition often naturally maps

to architectural decomposition of a system.

If we are able to formalize requirements at different levels

of architectural abstraction, we have a powerful tool for per-

forming virtual integration of components, where we attempt

to prove system-level requirements from the requirements

allocated to components. This proof can prevent a class

of integration errors that occur when subcomponents satisfy

their requirements, but these requirements are inadequate to

establish system-level requirements. In our experience, this

is a significant source of errors in modern safety critical

systems. To this end, we have been exploring approaches for

embedding requirements into architectural models with sup-

port for formalization and automated analysis in our AGREE

tool. Although there are several limitations with the current

tool—most notably, the lack of support for asynchronous

communication—we have used it on substantial models and

are in the process of extending the language and tools to

support asynchrony.

REFERENCES

[1] Boeing, “747 fun facts,” http://www.boeing.com/commercial/ 747fam-
ily/pf/pf facts.html.

[2] R. Charette, “This car runs on code,” IEEE Spectrum, February 2009.
[3] A. van Lamsweerde, “Engineering requirements for system reliability

and security,” Software System Reliability and Security, vol. 9, 2007.
[4] E. Yu, P. Giorgini, N. Maiden, and J. Myopoulos, Social Modeling for

Requirements Engineering. The MIT Press, January 2011.
[5] S. P. Miller, A. C. Tribble, M. W. Whalen, and M. P. E. Heimdahl,

“Proving the shalls: Early validation of requirements through formal
methods,” Int. J. Softw. Tools Technol. Transf., vol. 8, no. 4, pp. 303–
319, 2006.

[6] R. Lutz, “Analyzing software requirements errors in safety-critical,
embedded systems,” in Requirements Engineering, 1993., Proceedings

of IEEE International Symposium on. IEEE, 1993, pp. 126–133.
[7] B. Nuseibeh, “Weaving together requirements and architectures,” Com-

puter, vol. 34, pp. 115–117, 2001.
[8] B. Boehm, “Requirements that handle ikiwisi, cots, and rapid change,”

IEEE Computer, vol. 32, no. 7, pp. 99–102, July 2000.
[9] SAE-AS5506, Architecture Analysis and Design Language. SAE, Nov

2004.
[10] J. Rushby, “New challenges in certification for aircraft software,” in

Proceedings of the ninth ACM international conference on Embedded

software. ACM, 2011, pp. 211–218.
[11] S. P. Miller, M. W. Whalen, and D. D. Cofer, “Software model checking

takes off,” Commun. ACM, vol. 53, no. 2, pp. 58–64, 2010.
[12] J. Hammond, R. Rawlings, and A. Hall, “Will it work? [requirements

engineering],” in Requirements Engineering, 2001. Proceedings. Fifth

IEEE International Symposium on, 2001, pp. 102 –109.
[13] M. Jackson, “The world and the machine,” in Proceedings of the 1995

Internation Conference on Software Engineering, 1995, pp. 283–292.
[14] K. L. McMillan, “Circular compositional reasoning about liveness,”

Cadence Berkeley Labs, Berkeley, CA 94704, Tech. Rep. 1999-02.
[15] D. D. Cofer, A. Gacek, S. P. Miller, M. W. Whalen, B. LaValley,

and L. Sha, “Compositional verification of architectural models,” in
Proceedings of the 4th NASA Formal Methods Symposium (NFM 2012),
A. E. Goodloe and S. Person, Eds., vol. 7226. Berlin, Heidelberg:
Springer-Verlag, April 2012, pp. 126–140.

Digital Object Indentifier 10.1109/MS.2012.173 0740-7459/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

