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ABSTRACT
In this paper we present a complete measurement study that
compares YouTube traffic generated by mobile devices (smart-
phones, tablets) with traffic generated by commons PCs (desk-
tops, notebooks, netbooks). We investigate the user behav-
ior and correlate it with the system performance. Our mea-
surements are performed using unique data sets which are
collected from vantage points in nation wide ISPs and Uni-
versity campuses of two countries in Europe, and one in the
US.

Our results show that the user access patterns are similar
across a wide range of user locations, access technologies
and user devices. Users stick with default player configura-
tions, e.g., not changing video resolution or rarely enabling
full screen playback. Furthermore it is very common that
users abort video playback, with 60% of videos watched for
less than 20% of their duration.

We show that the YouTube system is highly optimized
for PC access and leverages aggressive buffering policies to
guarantee excellent video playback. This however causes
25%-39% of transferred data to be unnecessary, since users
abort the playback very early. The unnecessary data trans-
fer is even higher when mobile devices are considered. The
limited storage offered by those devices makes the video
download more complicated and overall less efficient, so that
clients typically download more data than the actual video
length. This result is particularly critical especially for wire-
less networks and calls for better system optimization.

1. INTRODUCTION
Created in 2005 and bought by Google in November

2006, YouTube is the most popular and bandwidth in-
tensive service of today Internet: it accounts for 20-35%
of the Internet traffic [6, 9, 8] with 35 hours of videos
uploaded every minute and more than 700 billions play-
back in 2010 [15, 16]. With such a high popularity, it
presents a challenge both for the system itself and for
the Internet Service Providers (ISP) that need to offer a
good quality of service for the download streaming ser-
vice. Therefore the YouTube phenomenon attracted the
interest of the research community, and several works
appeared to study it [7, 17, 3, 4, 1, 11, 13], focusing

on either video characterization, infrastructure, or user
behavior.

A second recent change in the way people access the
Internet is due to the exploding popularity of mobile
devices. Smartphones and Internet tablets are today
commonly used both at home and at public places, and
the phenomenon is still growing in popularity. Recent
estimates forecast that within a few years mobile de-
vices will be the users’ preferred choice for accessing
the Internet [10] while according to [9, 12] multime-
dia content represents a big share of the mobile traffic,
with YouTube as the main contributor. Still, mobile
operators are struggling with the intrinsically limited
capacity of mobile access technologies.

The mix of the two phenomena has serious impli-
cations for both content providers and ISPs. Indeed,
while YouTube is already commonly accessible on mo-
bile devices from 3G/4G networks, the video encoding
rate (and quality) is, by design, much more limited than
the one offered to PCs. At the same time, mobile ISPs
adopt tariff plans with the explicit goal to limit the
amount of traffic a device can consume, a trend that is
becoming popular among wired ISPs as well.

In this paper, we focus on the differences and simi-
larities of YouTube usage when accessed from regular
“PC player” or from a “mobile player”. The first cat-
egory includes accesses performed from a regular web
browser equipped with the Adobe Flash plugin on a
standard PC, e.g., a desktop, a notebook, or a net-
book. The second category includes accesses performed
through the special mobile version of the YouTube por-
tal, or through the custom application found on devices
running Apple iOS, Google Android, or other smart-
phone operating systems. By dissecting the YouTube
traffic observed in operational networks, we explore the
impact of devices and corresponding infrastructure syn-
ergies on the user experience and the network. Our data
sets span over three different countries, including cus-
tomers in both the United States and Europe, includ-
ing both campus and residential networks, with very
different access technologies, i.e., high speed campus
LANs, WiFi hot-spots and home Access Points, ADSL
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and Fiber-To-The-Home links.
Our paper exposes the fact that YouTube is highly

optimized to deliver video to PC users and considerably
more inefficient in serving requests from mobile devices.

To the best of our knowledge, this is the first work
to present an in-depth analysis of the YouTube system
accessed from mobile devices. Moreover, performing
a systematic comparison respect to common PCs, and
taking advantage of our unique and heterogeneous data
sets, we derive a comprehensive set of results. Our key
findings are:

Users access content in the same manner inde-
pendent of the device used:

i) content downloaded has the same characteristics
both in size and duration independent of the mon-
itored network or type of device used;

ii) the type of device does not modify the way people
watch YouTube videos. Most of the watched videos
are interrupted within the first 40 s, with only 10%
of them lasting more than 50% of the actual video
duration;

iii)people stick with default parameters, with neg-
ligible voluntary change of video resolution, and
marginal fraction of views in full screen mode.

YouTube adopts different mechanisms according
to the device used: the download is highly optimized
for PC based players, while mobile players show consis-
tently worse performance. This is related to the limited
capabilities of the mobile devices but results shows that
the mechanisms used by YouTube to serve this type of
devices causes i) higher access time, ii) lower download
rate, iii) more bursty traffic which impair the quality
achieved by mobile players.

The amount of traffic downloaded by clients but
not used by the player is large:

i) due to aggressive buffering policies, 25-39% of
downloaded traffic is useless when PCs are used;
this fraction grows to 35-48% when mobile devices
are considered;

ii) due to a possibly unoptimized implementation in
the mobile players, the amount of data transferred
exceeds the actual video size for 15-25% of the
download;

The last two findings are striking, and call for a possi-
ble system improvement, especially for mobile players.
This is of crucial importance considering the growing
popularity of mobile devices. Although our data set
does not include 3G/4G mobile access clients, we be-
lieve this is even more critical for those operators for
which the lack of bandwidth is and will be always a
bottleneck.

The remaining of the paper is organized as follows:
Sec. 2 provides a high level description of the YouTube
protocols; the vantage points used are described in Sec. 3,

while details on the YouTube traffic characteristics are
shown in Sec. 4. Sec. 5 and Sec. 6 details the user be-
havior and performance, respectively. Related works
are discussed in Sec. 7 before summarizing our findings
in Sec. 8.

2. YOUTUBE PRIMER
In this section we provide a high level description of

the protocol used to retrieve the video content. In gen-
eral, two phases can be distinguished when accessing
the YouTube service: 1) content look-up, 2) content
download and playback. The first phase is typically
performed using a web browser or a custom applica-
tion running on the local client and querying regular
sites (e.g., youtube.com, or a website that embeds a
YouTube video). The second phase starts after the
user selects the video of interest. This involves resolv-
ing the video server name for the selected video and
subsequently downloading the video stream from the
server. YouTube employs DNS-based mechanisms to
direct clients to a server in a data center close to the
user. However, in some cases HTTP-based signaling
can be exploited to further redirect the user to other
video servers (e.g., in the case of server congestion, or
content unavailability) [13]. In this paper, we focus our
analysis on the second phase.

YouTube can be accessed from a wide range of de-
vices, each with different capabilities and hardware con-
straints. Depending on the client device, two mecha-
nisms are used to retrieve the video content:
• PC-player: the client is a regular PC running ei-
ther a web browser with the Adobe Flash plugin or
HTML5 compliant browser 1; we tested with several
browsers and found no differences during the second
phase. Hence, we will refer to them as PC-player with-
out further distinction2.
• Mobile-player: the client is a smartphone, a Internet
tablet or a set-top-box which uses a custom applica-
tion3. Also in this case we tested different combination
of devices running both Apple iOS, Google Android and
other custom operating systems. While several differ-
ences are found when considering the first phase, they
all behave similarly in the second phase. Therefore, we
will refer to them as Mobile-player.

Fig. 1 sketches the temporal evolution of the HTTP
messages exchanged between the client and the YouTube
servers. The top plot refers to the PC-player while the
bottom plot refers to the Mobile-player. Clients ex-

1http://www.youtube.com/html5
2Notebooks and netbooks using regular browsers belong to
the PC-player category.
3Even if set-top-boxes and TV appliances are hardly mo-
bile, they use the same access mechanism than the much
more widespread smartphones, and we consider them in the
Mobile-player category.
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Figure 1: YouTube video download mecha-
nisms. Example of possible evolution when ac-
cessing to youtube.com from a PC (top) and
m.youtube.com from a smart-phone (bottom).

change messages either with a front-end server, web con-
tent servers or video servers. The front-end is responsi-
ble for the access to the YouTube portal (www.youtube.com
and m.youtube.com), the web content servers provide
thumbnails or other content while the video servers are
in charge of the streaming. In the HTTP requests the
downloaded video is identified by its videoID - a unique
11 characters long identifier. In the following we de-
tail the HTTP messages that will be considered in our
analysis to study the evolution of a download.

2.1 PC-player
Let us consider a client accessing the www.youtube.com

web site from a regular PC using a browser as shown in
Fig. 1 (top). We can split the interaction between the
browser and the YouTube servers in three steps: (1)
Video web page retrieval, (2) Video prefetch message
and (3) Video download.

During (1), the client downloads the web page de-
scribing the video. The HTML document contains a
combination of text and other “objects” (e.g., the Adobe
Flash player) that the browser needs to fetch to prop-
erly display the page. Among the different objects,
a javascript function triggers a generate204 request
sent to the video server that is supposed to serve the
video. This starts the video prefetch (2), which has
two main goals: first, it forces the client to perform the
DNS resolution of the video server name. Second, it
forces the client to open a TCP connection toward the
video server. Both help to speed-up the video down-

load phase. In addition, the generate204 request has
exactly the same format and options of the real video
download request, so that the video server is eventu-
ally warned that a client will possibly download that
video very soon. Note that the video server replies with
a ‘204 No Content’ response, as implied by the com-
mand, and no video content is downloaded so far.

At this point, the browser handles the control to the
player which will manage the actual video download
(3). The player sends a HTTP videoplayback request
to get the video. Note that the same TCP connection
previously opened during (2) can be used if HTTP per-
sistent capability is supported between the browser and
the Flash plugin. Because of server congestion or lack
of content, the server can redirect the client to other
servers [13]. In this latter case the video server replies
with a HTTP ‘302 Found’ response which specifies the
name of another video server to contact. The player
then resolves the name, and sends a new videoplayback

request. This process can be iterated until a valid video
server is found. The final video server of the chain
replies with the usual HTTP ‘200 OK’ response, start-
ing the video download so that the video is locally buffered
on the disk of the PC while being played on the screen.

We highlight that the generate204 request is a spe-
cific optimization that is found only when accessing a
video through the www.youtube.com. YouTube videos
embedded in regular HTML pages do not exploit this,
so the player have to retrieve the video server name
and perform the DNS resolution before sending the first
videoplayback request.

2.2 Mobile-player
Mobile devices use a different protocol as shown in

Fig. 1 (bottom). First, no prefetch message is sent in the
first phase. Second, differently from the PC-player case,
the content is downloaded in “chunks”, each one re-
quested in a separate TCP connection, using the HTTP
Range request header to specify the requested portion
of the video. The video server then replies with a ‘206

Partial Content’ response.
This mechanism is the result of a design choice that

tries to cope with the tighter constraints in terms of
storage availability for mobile devices. In fact, the mo-
bile devices cannot buffer the entire video so the player
progressively requests portions according to the evolu-
tion of the playback.

In the following sections we will investigate the im-
pact of the different mechanisms both on the user ex-
perience and on the system infrastructure.

3. DATA COLLECTION
In this section we first introduce the tool we used to

collect the traffic, giving a high level description of the
mechanisms used to classify the YouTube traffic. Then,
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Name Type Flows Vol.[GB] SrcIP Videos
US-Campus Campus 2,172,250 10,898 20,455 446,870
EU1-Campus Campus 173,024 714 1,203 50,205
EU1-ADSL Home 740,330 2,615 8,154 189,788
EU1-FTTH Home 135,907 480 1,136 33,762
EU2-ADSL Home 830,476 3,688 5,826 205,802

Table 1: Collected data sets.

we present the collected data sets that we used for the
analysis.

3.1 Collection tool
To inspect the network traffic we relied on Tstat [14],

an Open Source packet sniffer with Deep Packet Inspec-
tion (DPI) capabilities, which implements both traffic
classifiers and fine-grained flow-level statistics. Tstat is
able to rebuild TCP flows by monitoring packets that
are sent and received by clients. Leveraging on this,
we improved Tstat so as to identify and distinguish all
possible HTTP messages that can be observed when a
client downloads a YouTube video. In this paper, we
focus only on the videoplayback and generate204 re-
quests from the client, and distinguish among all possi-
ble server replies (HTTP 200, 204, 206, 302 responses).
By parsing the URL of the HTTP messages, we can dis-
tinguish between PC-player and Mobile-player accesses4

and extract specific video information as the videoID
and the video format. Instead, from the head of the
packets payload are extracted others video metadata as
the resolution, total duration and size of the videos.

In addition to the video properties, we also collected
several TCP flow-level statistics, such as the total num-
ber of packets and bytes transmitted and received, the
the total flow duration and the average RTT. Further
information on Tstat capabilities as well as the source
code can be obtained from [14, 5].

3.2 Data sets
We collected data sets at five vantage points spread

across three countries including both Points-of-Presence
(PoP) in nation-wide ISPs and University campuses.
These data sets represent a unique heterogeneous mix
of users and technologies. At each vantage point, we
installed a probe consisting of a high-end PC running
Tstat and monitoring all traffic generated by local clients.

This paper focuses on week-long traces, collected si-
multaneously at the five locations, starting at 12:00 AM
(local time) on February 25th, 2011. Table 1 summa-
rizes the data sets reporting the name, the type of cus-
tomers, the number of YouTube video flows and the
corresponding volume of bytes, the number of distinct

4URL requests from mobile devices contain
app=youtube gdata or app=youtube mobile. We do
not make any further distinction on the type of browser
or mobile device used since we are not interested in this
information.
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Figure 2: Distribution of the TCP flow size.

client IP addresses and the number of videos down-
loaded. Overall, the data sets account for more than
16 TB of traffic, more than 900,000 videos, and more
than 35,000 different client IP addresses.

The Home data sets have been collected from nation-
wide ISPs of two different European countries. EU1-ADSL
and EU1-FTTH correspond to two different PoPs within
the same ISP aggregating users with ADSL and Fiber
To The Home (FTTH) access technology. The campus
data sets are collected in two different University cam-
pus networks, one in the United Stated and the other in
Europe. To confirm the popularity of YouTube service,
we observe that in all monitored networks the volume of
traffic generated by YouTube videos accounts for more
than 25% of the total traffic during peak time. Finally,
note that the mobile traffic collected in our data sets
refers to devices accessing the Internet via WiFi access
networks and not via 3G ISPs.

4. FLOW AND VIDEO CHARACTERISTICS
We begin our analysis by giving an overview of the

traffic generated by PC-player and Mobile-player clients.
Fig. 2 reports the Cumulative Distribution Function
(CDF) of TCP flow size, i.e. number of bytes (B) re-
ceived by clients in a flow. Let us focus on the PC-player
traffic (top plot). Steps in the CDF clearly show the
presence of flows of typical size corresponding to specific
HTTP messages: ‘204 No Content’ flows are about
120B long, ‘302 Found’ flows are in [800-1000] B range,
while flows containing the 200 OK responses are typi-
cally longer than 80 kB since they contain the video
data. Interestingly, the initial part of the distribution
is different for different probes, with EU1-Campus and
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Name %Flows %Bytes
US-Campus 32.5 3.5
EU1-Campus 15.6 2.8
EU1-ADSL 27.2 3.9
EU1-FTTH 42.2 6.6
EU2-ADSL 4.2 1.6

Table 2: Fraction of flows and bytes due to mo-
bile terminals

EU2-ADSL suffering a higher fraction of redirections
(‘302 Found’) messages. However, the tail of the dis-
tribution look rather similar, suggesting that the size of
videos downloaded in the networks monitored is similar.
We will detail this better in Sec. 5.

Looking at results for Mobile-player (bottom plot),
we observe that the flow length is similar over different
data sets, with EU1-Campus and EU2-ADSL again ex-
hibiting higher fraction of redirection messages. How-
ever, comparing PC-player and Mobile-player we ob-
serve interesting differences: (i) the absence of the prefetch-
ing phase causes the ‘204 No Content’ responses, of
size 120 B, to disappear in Mobile-player; (ii) the abun-
dant presence of the HTTP requests using the Range

header causes the flows carrying the video data to be
one order of magnitude shorter than in PC-player. This
is a direct artifact of the video chunking mechanisms
and not a difference in the actual video length (see
Fig. 3). Interesting, the 500 B long flows are due to ‘206
Partial Content’ replies to the first videoplayback

request using the ‘Range: bytes 0-1’ header that
the mobile players use to discover the actual video length
(see Sec. 2.2).

The effect of the chunking mechanism adopted by
Mobile-player has clearly an impact on the number of
flows generated by mobile devices to download the con-
tent. Table 2 quantifies this by reporting the frac-
tion of flows and bytes that are due to Mobile-player
for the different data sets. We can notice that, while
Mobile-player traffic is a small fraction of the total vol-
ume, it amounts to a much larger fraction of flows. This
may pose performance issues on flow-based devices, like
NAT boxes or full state firewall which keep per-flow
state.

Consider now the volume of bytes. Unexpectedly,
only less than 6% of YouTube traffic is due to users from
mobile devices. The networks we consider offer both
wired and WiFi access with large penetration of smart-
phones, especially in the Campus networks. Therefore,
one would expect that a large fraction of YouTube ac-
cesses is done from such terminals. Our measurements
contrast this intuition. Moreover, some recent stud-
ies [6, 9] show that multimedia content is responsible
for more than 40% of the total volume due to wire-
less terminals, with YouTube as the main contributor.
Our results shows that this traffic is little compared to
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the volume generated by wired networks. A possible
explanation for this is the fact that wireless users in
our networks still prefer to access YouTube videos from
standard PC browsers, including laptops and netbooks,
which offer a better user experience compared to smart-
phones.

4.1 Video content duration and size
Fig. 3 reports the videos duration in time of the video

content for both PC-player and Mobile-player on left
and right plots, respectively. Note that this corresponds
to the total duration not to the portion of video watched
by the user. This information has been extracted from
the metadata of the video streams, and is a measure-
ment of the type of videos i) that can be found on
the YouTube system and ii) that are watched by users.
Consider PC-player scenario, and comparing the mea-
surements from the different data sets. The similarity
among the curves is striking so that it is impossible to
distinguish between the different vantage points. For
example, in all vantage points 40% of the videos last
less than 3 min, with less than 5% of the videos that
last more than 10 min.

Consider now the Mobile-player case. We observe a
slightly large difference among the video duration ac-
cessed from different probes. Still, 40-50% of all video
accessed from mobile terminals are shorter than 3 min,
and 5% of video last more than 10 min. Indeed, the
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ID Video Codec Audio Codec Container Res. Name

13 H.263 AMR 8khz 3GP
144p

others
17 MPEG-4 ASP AAC 22khz 3GP others
5 FLV1 MP3 22khz FLV

240p
240p-Fl

36 H.264 AAC 44.1khz 3GP others
34 H.264 AAC 44.1khz FLV

360p
360p-Fl*

18 H.264 AAC 44.1khz MP4 360p-Mp+

35 H.264 AAC 44.1khz FLV
480p

480p-Fl
43 VP8 Vorbis 96khz WebM others
22 H.264 AAC 44.1khz MP4

720p
720p-Mp

45 VP8 Vorbis 128kh WebM others
37 H.264 AAC 44.1khz MP4 1080p others
38 H.264 AAC 48khz MP4 3072p others

(*) PC-player default format , (+) Mobile-player default format

Table 3: YouTube supported video formats.

Mobile-player and the PC-player CDFs are very similar
among them too. Some artifact may be also due to the
smaller Mobile-player dataset (see Table 1).

This is a very strong results which shows that peo-
ple with very different cultural bias (e.g., Europeans vs
Americans, students/teachers vs residential users) and
using very different terminals (smartphones vs PCs)
and with Internet access bandwidth (ADSL vs FTTH
vs WiFi vs high speed campus network) are interested
in the same type of content: short videos which can be
quickly watched from YouTube.

Fig. 4 reports the total video size in bytes of the
videos that have been seen in our data sets. Similar con-
sideration holds, even if one would expect the distribu-
tion to be more variable, e.g., due to the availability of
videos with different resolutions, and different encoding
formats. We notice that video length is very similar be-
tween Mobile-player and PC-player data sets too. The
intuition would instead suggest that the video length
would be larger for PC-player than for Mobile-player, if
the quality of the videos watched via smartphone were
assumed lower than via PC. In the following Section we
dig into the impact of video codecs and resolution to
give more details on these findings.

4.2 Video format characteristics and popular-
ity

A “video” is a complex object that multiplexes en-
coded video and audio streams. Encoding is done ac-
cording to different algorithms, and the result is then
organized into a container of different type. The combi-
nation of the encoding algorithm, video resolution, and
the type of container defines the video format. This
leads to a plethora of video formats, some of which are
proprietary, some others are standard.

YouTube supports the formats listed in Table 3. Each
format is identified by a unique ID corresponding to the
itag parameter in the video requests. Each ID corre-
spond to a unique combination of video codec, audio
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Figure 5: Fraction of videos for popular video
format.

codec, container and resolution as reported in Table 3
columns. Finally, the last column reports the name we
use in this paper. A marker highlights the default video
format.

The variety of formats reflects the evolution of the
system and technology over the last years. In the early
days, only Flash Video (FLV) content was supported
with only the 240p-Fl format. In 2007 the MP4 con-
tainer has been introduced along with 360p resolution.
This switch was driven by the introduction of new de-
vices that did not support the FLV container (probably
Apple iOS devices). More recently, YouTube has in-
troduced the WebM formats [15] which are part of the
HTML5 specifications while the 3GP formats are spe-
cific for mobile traffic. As of today, H.264 video codec is
the most adopted standard. Note that the same content
is made available in different formats that are automat-
ically generated by the system when the user upload a
new video. The video format handling anyway is com-
pletely transparent to the user.

Instead, at playback time the user can eventually
choose among multiple resolutions via the player user
interface. For PC-player, the Adobe Flash player presents
a menu button listing the available resolutions, e.g.,
240p, 360p and 480p. Some Mobile-player users instead
offer the choice among “good and bad” quality toggle
button without the explicit indication of the available
resolutions.

The supported format do not have the same popu-
larity. Fig. 5 reports the breakdown of video format
considering PC-player and Mobile-player data sets on
top and bottom plots, respectively. There is a clear dif-
ference respect to the device used to access the video:
Flash based formats are largely preferred by PC-player,
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while MP4 is the preferred container for Mobile-player.
This is not surprising considering that Apple iOS prod-
ucts (iPhone, iPad, iPod touch) cannot handle FLV con-
tent. The higher fraction for Flash based formats in the
Mobile-player data sets in EU1-Campus and EU2-ADSL
are possibly related to economical reasons that could
motivate certain users (e.g., students) to prefer cheaper
smartphones running Android O.S. or Windows Mobile
which instead supports Flash content.

The default video resolution offered by the server is
360p for PC-player, while for Mobile-player the sys-
tem tries to offer the best quality available according
to the network/device capabilities. Indeed, the 720p
(popularly known as High Definition - HD) formats
are surprisingly more popular for Mobile-player than
PC-player. This is the result of a design choice of the
YouTube service that will be investigated in more detail
in Sec. 5.

The previous findings hold true independent from
the vantage point, showing the ubiquitousness of the
YouTube service. We expect however this to change in
3G networks, where the 3GP formats are known to be
used and low resolution videos are offered by default.

4.3 Video encoding bitrate
Given a codec and a video resolution, the video qual-

ity has a strict relation with the video encoding bitrate.
It is therefore interesting to observe what is the typ-
ical encoding bitrate of YouTube videos. Fig. 6 re-
ports the CDF of the video encoding bitrate for the
most important video formats. Each curve aggregates
statistics from all videos of the data sets (each single
dataset presents the same distribution, being this a sys-
tem choice). MP4 based formats are highlighted by
line-points patterns. In general, the actual encoding bi-
trate is the minimum between the maximum allowed
bitrate, and the bitrate that allows to achieve the de-
sired quality. The latter depends on the video content,
e.g., more static video sequences allow to reach lower
encoding bitrate. This is reflected in the curves. For ex-
ample, consider 240p-Fl (FLV) videos. The sharp knee
around 300 kbps is the effect of the maximum bitrate

limit, which is reached by 70% of videos. About 30%
of videos is instead quality limited. Similarly, 360p-Mp
(MP4) videos are configured to not exceed 600 kb/s,
with most of the video that are quality limited.

As well known, the higher is the resolution, the higher
is the bitrate. For example, the 360p videos (currently
the default choice) do not exceed 1 Mb/s video rate,
while 480p videos ranges up to 1.5 Mb/s. Up to 3 Mb/s
and 6 Mb/s are required when going 720p and 1080p
respectively. This allows to speculate on the impact of
YouTube switching to higher resolution by default. For
example a switch from 360p to 480p would correspond
to almost double the amount of traffic due to YouTube,
with possibly large impact on both the YouTube CDN
and on ISP networks. Going to 720p would correspond
to multiply by a factor of 4 the offered traffic. Given
that YouTube already accounts for more than 20% of
Internet traffic and assuming the users demand remains
the same, this would correspond to a critical traffic
surge that may impair the YouTube service too, e.g.,
the network cannot handle it.

5. USER BEHAVIOR AND IMPLICATIONS
In this section we focus our attention on the way peo-

ple watches videos from the YouTube system, observing
if they interact with the GUI, e.g., switching resolution
or going in full screen mode, and which portion of the
video people actually watches. Both have interesting
implication on the workload the system has to handle
and the efficiency it achieves in serving the requests.
We first introduce the concept of video session which is
required to characterize the user’s behavior.

5.1 Methodology
As we have already seen in Sec. 4, the video down-

load can be performed using multiple TCP connections,
which is predominant for Mobile-player. This imposes
to define a “download session” concept, i.e., a mecha-
nisms to group all connections related to the download
of the same content. To illustrate this, Fig. 7 shows the
bitrate evolution obtained downloading the same video
from a PC (top) and a mobile device (bottom) inside the
EU1-Campus network. In both cases, the server starts
sending an initial burst of data at a very fast rate to
quickly fill the play-out buffer at the player. This is con-
ventionally called “fast-start” mechanism. The server
then starts shaping the rate as observed in [2]. Note
that this is a server-based shaping mechanism in which
the client has no role (neither application layer nor TCP
connection control messages are sent). For PC-player,
after the initial burst, the download proceeds within the
same single TCP connection, whose throughput is prac-
tically equal to the average video encoding rate. Note
that the average download rate is computed discarding
the initial burst.
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Figure 7: Example of evolution over time of
the download bitrate for a video encoded at 540
kb/s.

For Mobile-player instead, the bitrate evolution is
more bursty. This is a consequence of leveraging dif-
ferent TCP connections to download chunks of video.
Indeed from second 23 and on, the mobile terminal
aborts the ongoing TCP connection, and starts request-
ing chunks of video on separate TCP connections. They
last about 1 second and are separated in time by about 2
seconds of silence. Since a new TCP connection is used,
the server enters the “fast-start”, which is early inter-
rupted by the client which aborts again the underlying
TCP connection. We believe this mechanisms is due to
a client-side buffer management policy which abruptly
interrupts the TCP connection when the play-out buffer
is filled up. The client then re-starts the download when
the buffer depletes below a certain threshold. This re-
sults in an inflation of TCP connections, and a possible
inefficient download.

The early abortion of the TCP connection can be
due to other causes as well. For example, a resolu-
tion change or a fast forward in the video are handled
by aborting the previous download and starting a new
one for both PC-player and Mobile-player. Finally, the
initial control messages possibly sent on separate TCP
connections are also fundamentals to capture the dy-
namic of the download.

We thus aggregate TCP connections in video sessions.
Each video session corresponds to the set of connections
that i) share the same source IP address and ii) same
videoID, iii) and are separated by a silence shorter than
T seconds. I.e., two connections c1 and c2 belongs to
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Figure 8: Sensitivity of the number of TCP con-
nections per session for different values of T .
EU1-ADSL data set.

PC-player Mobile-player
Data set 0 1 >1 0 1 >1
US-Campus 95.10 4.60 0.30 99.75 0.19 0.05
EU1-Campus 96.62 3.12 0.27 99.28 0.61 0.10
EU1-ADSL 95.27 4.45 0.28 99.63 0.28 0.09
EU1-FTTH 95.73 3.99 0.28 99.39 0.42 0.19
EU2-ADSL 95.14 4.40 0.46 98.07 1.36 0.57

Table 4: Percentage of resolution switch.

the same session if the time before the start (time of
TCP SYN packet) of c2 and end (time of last packet)
of c1 is smaller than T .

Fig. 8 reports the number of connections per session
for different values of T . The EU1-ADSL data set is
considered, the others showing identical results. The
choice of T is not critical for PC-player, while T > 5 s
is required to properly aggregate Mobile-player connec-
tions. In the following, we set T = 60 s, a conservative
choice to better capture user’s actions that could hap-
pen after the download has been completed but while
the playback is still running.

Fig. 8 shows also the impact of the Mobile-player
mechanisms. In fact, for PC-player, only 2% of the ses-
sions have more than 6 connections, while for Mobile-player
more than 4% of the sessions involve more than 100 con-
nections.

5.2 Resolution switch
Given the above definition of a session, a change of

video resolution is easily detected by observing requests
with the same videoID, but different video format.
Table 4 reports the percentage of sessions involving

zero, one or more than one resolution switch for both
PC-player and Mobile-player. Surprisingly, results show
that this happens only for less than 5% of PC-player
sessions: users stick with the default video format. This
means that the users are not interested in this feature
(or they are unaware of it). For Mobile-player the choice
of resolution is either hidden or not available, and a
marginal fraction of users exploit it.
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Data set Low-to-High High-to-Low
US-Campus 95.7 4.3
EU1-Campus 86.1 13.9
EU1-ADSL 93.9 6.1
EU1-FTTH 90.5 9.5
EU2-ADSL 83.6 16.4

Table 5: Percentage of resolution switch break-
down for PC-player.
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Figure 9: Time at which Low-to-High resolution
switch happens.

We can further classify the resolution changes in “Low-
to-High” and “High-to-Low” considering the involved
video resolution. Table 5 reports the breakdown. We
can see that Low-to-High are largely predominant, with
the majority of them being 360p-Fl→480p-Fl switch.
Interestingly, this resolution switch is triggered auto-
matically by the player when the full screen playback is
enabled (the converse is not true). Combining Tables 4
and 5 we can conclude that full screen mode is not pop-
ular, but it is the main cause of resolution switch.

As final note, the largest majority of High-to-Low
switch are 360p-Fl→240p-Fl. This suggests that those
are triggered by the user because of bad performance
too. EU2-ADSL and EU1-Campus shows a slightly
larger High-to-Low switch fractions. As we will see in
the following, those are the two vantage points with
slightly worse performance.

To complete the analysis, we investigate when the
resolution switch is triggered. Fig. 9 shows the CDF
of the time between the session start and Low-to-High
resolution switch. Due to buffering at the player, this is
an overestimate of the actual switch time. 50% of these
events happens in the first 10 seconds, while only 10%
of users trigger them after 1 minute. In terms of video
size, more than 80% of the switches happens in the first
20% of the video length while only 5% occurs in the
second half of the video. The same consideration holds
for High-to-Low changes. Overall we can conclude that
resolution changes are usually performed at the very
beginning of the playback.

Amazingly, results are practically identical in all data
sets despite they include very heterogeneous users habits
and cultures.
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Figure 11: Fraction of video downloads having
η < 0.25 and η < 0.50

5.3 Fraction of watched video
We now focus our attention on the time a user spends

watching a video. To measure this, we exploit the fact
that the player aborts the video downloads if the user
changes web page on the browser (or custom player).
Let η be the fraction of downloaded video with respect
to the video length. If η < 1, then the user did not
watch the entire video5.

Fig. 10 shows the CDF for η for EU1-ADSL data set.
Two considerations hold: first, about 80% of video ses-
sions are abruptly interrupted. Second, Mobile-player
results show that the player can download more data
than the video length. We will investigate this better
in the following.

To better compare results, Fig. 11 details the fraction
of video downloads having η < 0.25 and η < 0.5. Inter-
estingly this metric is very similar for all vantage points,
with users on Mobile-player consistently aborting ear-
lier then users on PC-player. Fig. 12 shows the absolute
and relative time at which the user stops watching the

5By checking the Range of requests, we filter out those ses-
sions in which the user fast-forward the playback to a posi-
tion outside the already buffered portion of the video.
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video on left and right plot, respectively. It shows that
people tends to abort the playback very soon, with 60%
of videos that are watched for less than 20% of their
duration. This can be due to a mismatch between the
users’ interests and the content they find on YouTube.
Notice that this is also an interesting fact that could
be exploited to better handle the content distribution
among the CDN nodes, e.g., caching only some por-
tion of the videos. The impact of Mobile-player versus
PC-player is very limited, testifying that the probability
of aborting the playback is not biased by the device.

5.4 Impact of buffering policy and user early
abort

Consider now all video data already buffered at the
player at the time the user aborts the playback. That
data has been downloaded in vain. Fig. 13 precisely
quantify it by reporting the amount of downloaded bytes
over the among of data possibly consumed by the player.
The latter is evaluated assuming that the playout started
immediately after the first byte has been received, and
that data is consumed at the video encoding bitrate.
Since the initial buffering is neglected, the actual waste
of data is higher than this. Results are dramatic for
PC-player: 40% of sessions download more than two
times the amount of data that was watched. This is
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Figure 14: Fraction of sessions downloading
more than the entire video.
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the result of aggressive buffering policies adopted by
YouTube servers (recall that server-side shaping is adopted).
Even worse, the Mobile-player waste is higher, with 20%
of sessions downloading more the 5 times the amount
of watched data.

This waste could be reduced by limiting the buffer
size at the player, e.g., by implementing a more careful
control based on a player-side management policy.

5.5 Sessions downloading more than video length
Let us now focus on the session for which η > 1. In-

tuitively, those should be very limited, since one would
expect that the player should not download more data
than the total video length. Fig. 14 shows the fraction
of session for which this happens. Only sessions with
no switch of resolution are considered. For PC-player,
less than 2% of session show this. We have found that
the exceeding amount of volume is possibly related to
users watching the same video multiple times causing
the player to re-download the video. Overall, this effect
is marginal.

For Mobile-player instead we observe that 15-30%
of sessions downloads more than the video size. Per-
forming some active experiments, we have confirmed at
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Data set PC-player Mobile-player
US-Campus 39.17 47.9
EU1-Campus 36.91 38.1
EU1-ADSL 24.93 38.7
EU1-FTTH 38.43 53.5
EU2-ADSL 29.27 35.6

Table 6: Average percentage of wasted bytes
considering peak hour with respect to useful
data.

least two causes for this: 1) in case of backward seeks,
the player can re-download the same content because it
has been already discarded from the player local buffer.
This does not happen for PC-player. 2) the aggressive
chunk-based download mechanisms is source of ineffi-
ciency: the Mobile-player often requests chunks bigger
than needed, i.e., requesting from desired position x up
to the end of the video. The server then starts send-
ing data from x at a high rate, quickly filling up the
application-layer player buffer with data up to y. This
in turn causes the abortion of the underlying TCP con-
nection, stopping the download. However TCP had al-
ready received some data at the transport-layer receiver
buffer up to y′ > y, which is discarded. The player then
start asking data from y and not from y′. The aggres-
sive server buffering policy coupled with player limited
buffering capabilities is thus origin of inefficiency.

To quantify the waste of traffic due to this, Fig. 15
reports the CDF of the ratio of downloaded data versus
video length for sessions with η > 1. 50% of sessions
downloads 25% more data, and 4% of the sessions down-
loads more than the twice of the video size!

5.6 Video wasted data
Table 6 quantifies the overall percentage of wasted

bytes with respect to useful data. It includes both the
effect of aggressive buffer management and of chunk
based video retrieval mechanisms. Measurements refer
to the peak-hour time, when YouTube traffic peaks to
several hundreds of Mb/s in most vantage points. Re-
sults show that the amount of traffic downloaded by
clients but not used by players is comparable with the
useful data traffic. For example, for US-Campus, the
wasted traffic in a single hour amounts to 28.8GB and
1.5GB for PC-player and Mobile-player, respectively,
corresponding to more than 7Mb/s of traffic. This cor-
responds to a quite large amount of wasted bandwidth
both from the point of the operator and of the YouTube
CDN.

We have performed experiments on Mobile-player con-
nected to a 3G network. The problem shows up exactly
in the same way, with clients downloading lot more data
than the video played and length. This is a issue that
is particularly critical given the increasing popularity
YouTube access from mobile devices in 3G networks.
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Figure 16: Fraction of sessions with high startup
latency.

6. STREAMING PERFORMANCE
In this section we focus on the streaming performance

considering two metrics that reflect the user experience:
startup latency and bitrate ratio between download rate
and video encoding bitrate. We then pinpoint possible
causes that can impair them.

6.1 Startup latency
We define the startup latency as the time elapsed be-

tween the first videoplayback request and the 1st video
packet received. This corresponds to a lower bound of
the delay experienced before the actual video playback
starts since the initial buffering time is ignored. The
latter indeed is hard to know and player dependent.
We prefer thus to focus on a simpler, more precise and
accurate measure.

Fig. 16 reports the fraction of sessions with the startup
latency higher than a certain threshold. Given that we
are interested in studying the user experience, we se-
lected threshold values that can be appreciated by the
user, i.e., 1, 5 and 10 s. Results show that the per-
formance is heterogeneous across the data sets, with
Mobile-player suffering larger delays. We found that
the delay is due to a combination of causes.
Redirections: Video requests can suffer from a differ-
ent number of redirections. Each redirection involves i)
a DNS query to resolve the hostname of the next video
server, ii) the opening of a new TCP connection, iii)
a new video query. The network distance between the
client and the server plays also a significant role, since
YouTube CDN is likely to direct clients to video servers
with the closest RTT. In case of redirection, the server
will therefore be the not preferred one.

Fig 17 reports the fraction of sessions affected by redi-
rections. More than 70% of PC-player session does not
suffer from redirections in all data sets, while Mobile-player
sessions are more likely to be redirected. Understanding
why this is happening is difficult. A possible cause of
redirection is due to cache miss. [13] shows that after
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Figure 17: Fraction of sessions suffering redirec-
tions.
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Figure 18: CDF of startup latency for different
number of redirections. EU1-ADSL data set.

a cache miss at the closest data center, the following
requests for the same content are directly served by the
first server. This hints to a caching mechanism based on
pull schemes. Since Mobile-player videos are less popu-
lar (also because of the different video format adopted
by Mobile-player) a cache miss is possibly more likely
to happen. Thus more redirections are suffered.

Fig. 18 depicts the impact of the redirections on the
startup latency. We can see that the higher is the num-
ber of redirection in the video session, the higher is the
startup delay. 20% of sessions with more than 1 redi-
rections have a startup latency higher than 3 s for both
PC-player and Mobile-player.
Video request processing time: Another possible
cause of large startup time can be due to the server
processing time, i.e., time needed by the video server
to elaborate a video request. To estimate it, we com-
pute the time between the last videoplayback requests
sent by the client and the first video packet sent by the
server. To eliminate the network delay we subtract the
RTT.

Fig. 19 reports the CDF of the estimated process-
ing time for both PC-player and Mobile-player in the
EU1-ADSL data set. Other data sets show similar trends.
We can see that 50% of the requests are served within

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001  0.001  0.01  0.1  1  10

C
D

F

Processing Time of Request [s]

PC-player
Mobile-player

Figure 19: CDF of the video query processing
time. EU1-ADSL data set.

< 50 ms. A sharp knee around 30 ms is present and
a heavy tail is found with processing time growing up
to 5 s. The distribution reflects the time required by
the cache to retrieve the requested content from the
database before serving it. Very low latencies can be
related to the video being already cached in the server
memory; values in [30,300] ms can be related to disk
access; finally values larger than 300 ms can be due to
congestion in the back-end or to packet loss recovered
by lengthy TCP timeout, or to rare content that has to
be fetched from some slower storage system. The fact
that Mobile-player response require higher processing
time can again be explained by the lower popularity of
video content. Note also that the prefetching mecha-
nism (see Sec. 2) implemented by PC-player can also
speed-up the content retrieval.

6.2 Bitrate ratio
The download bitrate of the video has a fundamental

role in defining the quality of the video playback. In
fact, if data is not received fast enough, buffer “under-
run” events will be suffered, causing the video playback
to pause. To measure the smoothness of the playback,
we define the bitrate ratio as the ratio between the av-
erage session download bitrate and the video encoding
bitrate. The first corresponds to the total amount of
bytes downloaded aggregating flows of the same video
session, divided by the time between the first and the
last video packet. According to this definition, a bi-
trate ratio smaller than 1 is a clear sign of impaired
performance.

Fig. 20 reports the fraction of sessions with a bi-
trate ratio lower than one. Some interesting observation
holds: First, the access technology has a clear impact
on the performance with the ADSL networks perform-
ing worst for more than 10% of the downloads respect
to the other networks. Compare indeed EU1-ADSL and
EU1-FTTH (the latter offers 10Mb/s full duplex access
capacity). Both refer to customer of the same ISP in the
same city. Still, EU1-ADSL customers suffer worse per-
formance. Unexpectedly, EU1-Campus performs also
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Figure 20: Fraction session with bitrate ratio
< 1.

quite bad. Further investigation revealed that this is
the result of a local network policy that limits the band-
width of subnets of some dorms. Most of sessions hav-
ing poor performance are indeed coming from that sub-
nets. Fig. 20 shows that Mobile-player presents con-
sistently lower performance than PC-player. This can
be due to the presence of a WiFi network that is used
by Mobile-player devices. The shared WiFi connection
can indeed impair the download throughput. This is
the case for US-Campus.

Other causes of reduced performance can be related
to the YouTube infrastructure performing less when
serving Mobile-player requests. Consider EU2-ADSL,
in which more than 32% of Mobile-player session are
performing poorly versus less than 13% of PC-player
sessions. We pinpoint that Mobile-player impaired per-
formance are related to the YouTube system. Consider
Fig. 21. It reports the CDF of the fraction of bytes
downloaded by different video servers respect to the
RTT to the EU2-ADSL vantage point. Each point in
the figure aggregates video servers that belong to the
same CDN data center [13]. We found that EU2-ADSL
clients can use a data center which is very close to the
vantage point (RTT< 1 ms). However, it can only serve
35% of the PC-player sessions. The majority of sessions
are indeed served by a second data center which is 20 ms
far from the vantage point. For PC-player, these two
data centers handle 96% of video requests. However,
due to the lower popularity of Mobile-player accessed
content, 35% of Mobile-player sessions are served by
other data centers, 10% of which are found outside Eu-
rope and suffer RTT > 106 ms. These sessions are im-
paired by network congestion and exhibit lower down-
load bitrate. Finally, recall the Mobile-player chunking
mechanism. The cost of opening a new TCP connec-
tion to request a new chunk becomes significant when
the RTT is order of hundreds of ms. This impairs the
download bitrate too.

Overall, measurements presented in this section show
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Figure 21: CDF of the fraction of bytes delivered
by each data center. EU2-ADSL data set.

that Mobile-player performance result generally less ef-
ficient than PC-player. The intrinsically smaller popu-
larity of Mobile-player accessed videos poses additional
challenges to the YouTube CDN infrastructure, which
results highly optimized for PC-player as of now.

7. RELATED WORK
We consider three categories of works related to us.
YouTube Videos Characterization: These works

have focused on characterizing various aspects of YouTube
videos as well the usage patterns. On the one hand, [7]
and [17] characterized video popularity, durations, size
and playback bitrate, as well as usage pattern statistics
such as day versus night accesses and volume of traffic
considering a campus network. On the other hand, [3]
and [4] crawled the YouTube site for an extended pe-
riod of time and performed video popularity and user
behavior analysis. Further, [3] compares YouTube to
other video providers such as Netflix and [4] investigates
social networking in YouTube videos. In contrast, our
work is focused on the comparison between PC-player
and Mobile-player downloads and goes deeper in the
characterization of the content also taking advantage of
the heterogeneous set of users and networks monitored.

YouTube Infrastructure Studies: These works
characterize the YouTube video delivery infrastructure [1,
11, 13]. [11] shows that most YouTube videos are dis-
tributed from a single datacenter in the US. [1] shows
that a few datacenters in the US were in charge of dis-
tributing the videos around the world. Finally, [13]
shows that datacenters spread around the world, are in
charge of distributing the video and that latency be-
tween clients and servers plays a role in content server
selection, In contrast, our work is focused on under-
standing the difference on video delivery between mo-
bile devices and PCs. In particular, we show how mo-
bile devices control the video download rate while in
the case of PC-player, the download rate is controlled
by the server [2].

User Behavior on Mobile Devices: More recently,
there have been several works characterizing high level
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usage patterns of mobile devices [9, 6, 12]. [9] shows
that the number of mobile devices doubled between
2009 and 2010 and that more than 80% of mobile de-
vices traffic is HTTP, with multimedia traffic alone ac-
counting for more than 30% of HTTP. [6] compares the
content and flow characteristics of mobile devices and
PCs traffic. Using a DPI tool, the authors are able to
show that YouTube alone accounts for more than 35%
of the Internet traffic. In contrast to these works, we go
much deeper into the behavior and performance of users
accessing YouTube from mobile devices. In addition, we
highlight problems caused by the YouTube infrastruc-
ture when delivering videos to mobile devices.

8. CONCLUSIONS
Considering a large and heterogeneous data set of

YouTube traces, we have presented our findings about
user behavior when watching videos and how the type
of user device and infrastructure influence the perfor-
mance of the playback.

Interestingly, users access YouTube in a very similar
manner, independent of their location, the device they
use, and the access network that connects them. In ad-
dition, they typically watch only a small portion of the
video, and typically stick to default player configura-
tions.

While YouTube guarantees very good playback qual-
ity by means of aggressive buffering policies, we pin-
pointed sources of unnecessary data transfer, and the
potential for future performance optimization. For ex-
ample, a less aggressive buffering mechanism could be
used to limit the amount of unnecessary traffic when
the user aborts the playback. For mobile devices, beside
the adoption of the prefetching scheme that is useful to
speed-up the video playback, a more precise control of
the buffering is essential to avoid duplicate transmission
of data. Finally, CDN caching schemes can be improved
by leveraging the fact that only a fraction of videos are
actually watched by users.
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