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Abstract

Despite a recent push towards large-scale object recog-

nition, activity recognition remains limited to narrow do-

mains and small vocabularies of actions. In this paper, we

tackle the challenge of recognizing and describing activi-

ties “in-the-wild”. We present a solution that takes a short

video clip and outputs a brief sentence that sums up the

main activity in the video, such as the actor, the action and

its object. Unlike previous work, our approach works on

out-of-domain actions: it does not require training videos

of the exact activity. If it cannot find an accurate prediction

for a pre-trained model, it finds a less specific answer that

is also plausible from a pragmatic standpoint. We use se-

mantic hierarchies learned from the data to help to choose

an appropriate level of generalization, and priors learned

from web-scale natural language corpora to penalize un-

likely combinations of actors/actions/objects; we also use a

web-scale language model to “fill in” novel verbs, i.e. when

the verb does not appear in the training set. We evaluate

our method on a large YouTube corpus and demonstrate it

is able to generate short sentence descriptions of video clips

better than baseline approaches.

1. Introduction

Despite recent advances in activity recognition [27, 24,

2, 5] automatic understanding and description of activities

“in-the-wild” remains challenging. While object recog-

nition methods have gone large-scale, with datasets such

as ImageNet[7] and LabelMe [25], activity datasets have

lagged behind. Most activity recognition methods focus on

narrow domains with a handful of actions (e.g., Figure 1(a-

b)), in which labelled example videos of all actions (as well

as actors and objects) are available for training. Contrast

these with YouTube videos (Figure 1(c)), where the range

of both activities and objects is broad and training data for

each label is scarce or unavailable.
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Figure 1: Unlike conventional approaches which recognize

a limited set of actions in datasets like (a-b), we recognize

a broad range of activities in short YouTube video clips,

and generate brief text summaries similar to the human-

generated ones shown in (c).

Furthermore, methods for generating human-

understandable natural language descriptions, such as

those shown in Figure 1(c), have yet to scale to such

broad domains. Potential applications of automatic video

description include summarization, text-based retrieval, or

auto-captioning for the visually impaired. Recent results on

activity description in video have been restricted to a small

set of actions and objects [12, 2]. Work on large-vocabulary

description has focused mostly on nouns/adjectives and

on still imagery [19]. Large-vocabulary video activity

description present unique challenges, including modeling

dynamics and actor-action-object relationships from lim-

ited training data, as well as dealing with polysemy and

ambiguity.

In this paper, we take steps towards scalable “in-the-

wild” description of short videos by making two observa-

tions: 1) that there are several valid ways to describe the

same activity, and 2) the description does not need to be
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very specific to be useful. This is illustrated by Figure 1(c),

where the top-left video was described by human annota-

tors (who were asked to describe the main activity) as ei-

ther “a person cooking”, “a woman chopping vegetables”,

or “a cook preparing a meal”, etc. We see that not only do

people use the different verbs (“chop”, “slice”) and nouns

(“woman”, “cook”) interchangeably for descriptions, but

also use words with varying specificity, i.e. “cooking” is

less specific than “slicing”, but still useful in conveying the

gist of the activity.

Inspired by these insights, we propose a novel language-

driven approach to describe short YouTube videos. First,

we mine the natural sentence descriptions provided by hu-

mans to learn semantic relationships. For example, “beach”

and “rocks” are similar in that they are both correlated with

“play”, as in “playing on the beach”, or “playing on the

rocks”. Then, based on these relationships, we build seman-

tic hierarchies and develop a model that is able to trade off

between more or less general descriptions. Our model is re-

lated to Deng et al.[6], but formed over Subject/Verb/Object

(S,V,O) relationships, and optimized with respect to seman-

tic similarity (Section 4). Figure 2 illustrates the advantage

of our approach: while the conventional method attempts

(unsuccessfully) to predict the most accurate basic category

classifiers (leaf nodes), our model “backs off” to the more

general phrase that is more accurate visually and with re-

spect to the human annotations.

Another contribution of our paper is to use a web-scale

language model to “fill in” novel verbs, i.e. when the verb

does not appear in the training set. We call this “zero-shot”

verb recognition. Intuitively, it works by hypothesising that,

e.g., given the subject “person”, object “car” and the model

prediction “move”, the most likely verb is “drive”. Our final

contribution is to provide an end-to-end generation system,

complete with surface realization of the best predicted sub-

ject/verb/object triple as a grammatical sentence.

2. Background and Related Work

Most prior work on natural-language description of vi-

sual data has focused on static images [30, 15, 19, 10, 29].

S. Li et al. in [19] generate sentences given visual detec-

tions of objects, visual attributes and spatial relationships,

but do not consider actions. A. Farhadi et al. proposed a

system [10] that maps images and the corresponding tex-

tual descriptions to a “meaning” space with an object, action

and scene triplet, but deal with a fixed small set of training

triplets. Y. Yang et al. in [29] used text-mined knowledge to

generate descriptions of static images after performing ob-

ject and scene detection, but do not perform activity recog-

nition.

The existing work on describing videos with sentences

[12, 17, 13, 8, 14, 5] deals with constrained domains with

a limited set of actions or objects, and does not exploit text

������������	
��	�	��������������������������	�
��	� 

������
��
����

��������

�����	�

��.�����*��#�


���"�

���

��+�%��	�

��

�����	�

����#��*��#�

�##�
����

��

��
���)�/�

���������������������

%�"����

�����������������

�����
������
��������������������������������
�
����	����

���)��� ��

�� ��

��

��

�� ��

Figure 2: Conventional methods try to predict a caption

composed of the most visually likely objects and actions

(leaf nodes), whereas our method can predict a less specific

phrase that is nonetheless visually plausible and informa-

tive. The bars inside nodes indicate the posterior probabil-

ity of the node given the input video (more red and taller

indicates higher probability).

mining or semantic hierarchies. T.S. Motwani in [20] ex-

plored how object detection and text mining can aid activ-

ity recognition in videos; however, they do not determine

a complete SVO triple for describing a video nor generate

a full sentential description. Our work also differs from

all previous description work in that we reason over hier-

archical phrases, allowing us to predict more general but

more semantically correct sentences when the visual detec-

tors are unsure. A similar recent approach [6] also trades

off accuracy and specificity, but does not deal with video or

optimize over SVO triplets. Ours is also the first approach

to evaluate on generic, large and diverse set of challenging

YouTube videos that cover an unprecedented range of activ-

ities. There has been existing work on “in-the-wild” video

tagging on YouTube (e.g., [1]) but their focus is on mining

text tags, and not on describing actions.

3. Overview of our Approach

Our overall activity description approach consists of the

following main steps. We first mine (S,V,O) triplets from

the natural language descriptions of the videos, and build a

separate semantic hierarchy for each part of the triplet (HS ,

HV , and HO). Second, we learn a visual model for each

leaf of HS , HV , and HO. Third, we learn to predict node

triplets over the learned hierarchies by maximizing the se-

mantic similarity to the training data. These first three steps

are described in Section 4. Fourth, we learn a language

model from web-scale text corpora and use it as a prior on

triplets, to infer verbs missing from our vocabulary. Finally,
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we generate sentences based on the best triplets. These last

two steps are described in Section 5.

We demonstrate our method on a diverse activity dataset.

Previously published activity recognition methods that

work on datasets such as KTH [26], Drinking and Smok-

ing [16] and UCF50 [24] have a very limited recognition

vocabulary of activity classes, ranging from 6 to 12 action

classes. Our dataset on the contrary contains more than 218

different verbs in the human descriptions (see Section 4),

and over 241 different objects. We use the English portion

of the YouTube data collected by Chen et al. [4], consis-

ting of 1,970 short video clips, each with an average of

16 natural-language descriptions provided by Amazon Me-

chanical Turk workers. Subsets of this data were previously

used by [20] and [14], however, contrary to these works, we

use all the videos, and not only the 20 objects included in

the PASCAL dataset [9].

4. Hierarchical Semantic Model

Building the Semantic Hierarchies: We capitalize on the

rich linguistic variation in the corpus to learn semantic hier-

archies suitable for video activity description. We followed

Motwani and Mooney’s [20] approach to automatically ex-

tract semantic SVO triplets from the human generated sen-

tences. We then filtered those labels that don’t appear at

least in the description of 5 videos, obtaining 45 Subjects,

218 Verbs, and 241 Objects. During this filtering, we al-

low synonyms of nouns by including all words with a Lesk

similarity (as implemented in [21]) of at least 0.5. For in-

stance, this groups together “person, he, she, man, woman,

someone, ...” into “person”, and “car, auto, automobile, mo-

torcar” into “car”.

We tested different ways to build the hierarchies for sub-

jects, verbs and objects using the idea of distributional clus-

tering [22] and co-occurrence of the labels. Using 5 fold

cross-validation on the training data, we found that the best

way was to use the sample Spearman rank correlation be-

tween their number of mentions in the descriptions of the

videos to compute the distance between labels, and the av-

erage distance between all pairs of labels to compute the

distance between clusters (see Figure 3 for examples).

As can be seen in Figure 3, the learned hierarchies group

labels that would be separated in the WordNet hierarchy.

For example for the group of verbs “cut, chop, dice, piece,

slice”, WordNet would group “cut” with “tear, trim, drill”

instead of with “chop, dice, piece, slice”; and the group of

objects “food, dish, noodle, pasta, plate, spaghetti” would

be split into “dish, plate”, “food” and “pasta, noodle and

spaghetti”. Thus our learned hierarchies capture better the

similarity of nouns and verbs in terms of how they are used

to describe activities.

Defining Semantic Accuracy over Hierarchies: We con-

struct a hierarchy H = (V,E) of labels for each category
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Figure 3: Small portions of the Hierarchies learned over

Subjects, Verbs and Objects

(S,V, and O), as tree with an unique root v̂ ∈ V , and where

each node v ∈ V represents the set of labels under it (see

Figure 3). We use two measures of accuracy, the first is a

0-1 loss defined over the leaf or internal nodes (similar to

the accuracy defined in [6]) and the second is based on a

similarity function between pairs of nodes in the hierarchy

as described below. A matching function µLt
: V → [0, 1]

is then defined over a hierarchy H with respect to a ground

truth set leaf nodes Lt ⊂ L (L is the set of all leafs in the

tree) as:

(1)µLt
(v) = max

l∈Lt

{st(v, l)}

where st is the similarity between any two nodes in the hi-

erarchy.

We define a binary accuracy s01 at the leaf nodes of the

hierarchy as the 0-1 loss:

(2)s01(v, l) = I[v==l]

The 0-1 loss can be unduly harsh, for instance if we in-

correctly choose “pasta” instead of a “spaghetti” as the ob-

ject, it should be considered better than choosing “guitar”.

Similarly, predicting “cut” instead of “make” is better than

choosing “run”. In order to account for such similarities,

we use WUP similarity [28] between the predicted and cor-

rect items (other similarity functions defined over semantic

hierarchies could also be used):

(3)sWUP(v, l) =
2 · depth(lcs)

depth(v) + depth(l)

where lcs is the least common ancestor of v and l, and

depth is the depth in the hierarchy, starting at 1 for

the root. For example, sWUP (motorbike, dog)=0.10,
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sWUP (motorbike, bicycle)=0.78, sWUP (slice, go)=0.28,

sWUP (slice, chop)=0.80.

The accuracy φH(f) of the classifier f with respect to a

hierarchy H is then:

φH(f) = E[µLt
(f(X))]

Visual Leaf Node Classifiers: To train visual classifiers for

the leaf node concepts we use the following steps: First, for

each video we extract Dense Trajectories [27] and encode

each activity descriptor using a previously learned code-

book. Second, for each video we extract 2 frames per sec-

ond, and for each frame, apply the object detectors proposed

in [11] and [18], and select the maximum score assigned to

each object in any frame. Then we combine activity and

object descriptors using a multi-channel approach [31] and

pass it to a non-linear SVM [3] (see Section 7).

There are many objects for which we lack a pre-trained

model, and we have models for several objects that don’t

appear in the dataset. As in [18], we use the outputs of the

object detections as features and learn leaf node classifiers

for each individual Subject, Verb, and Object.

Optimizing Phrase Specificity for Maximum Semantic

Similarity: Once the leaf visual classifiers are trained, we

use the hierarchies constructed in Section 4 to predict nodes

by trading off specificity with semantic similarity, i.e. how

semantically close the predicted triplet is to the true action.

The specificity ψH(v) of node in a hierarchy is defined

by the decrease in entropy:

ψH(v) = log
2
|L| − log

2

∑

l∈L

[v ∈ π(l)]

Given the specificity of a node and the posterior proba-

bility pY |X(v|x) over the set of nodes, we define a classifier

that trades-off between accuracy and specificity using a pa-

rameter λ as follows:

fλ(x) = argmax
v∈V

(ψH(v) + λ)pY |X(v|x)

In a way similar to that proposed in [6], we obtain the

posterior probabilities by learning one-vs-all SVM classi-

fiers for the leaf nodes, obtain probability estimates via Platt

scaling [23], and sum them to get internal node probabili-

ties. The difference in our case is that, instead of using the

WordNet hierarchy, we use the hierarchy learned from the

data (as explained in section 4).

Another crucial difference between from [6] is the way

we estimate λ. Instead of fixing it by specifying a desired

accuracy (for example 90%) for each hierarchy, we set λ to

maximize the WUP similarity between the predicted triplet

and the set of correct triplets using cross-validation on the

training set. This allows our model to trade off specificity

by exploiting the relationships between valid combinations

of subjects, verbs and objects, whereas simply fixing a high

accuracy can lead to over-generalization (see results in Sec-

tion 7).

Since our internal nodes are set of labels, to generate

a sentence we must pick a representative word for them.

Choose the node in WordNet with highest cumulative WUP

similarity to all the labels in the set. For example, for the

prediction (’person’, ’cut’, ’carrot, tomato, potato, onion,

bread’) it chooses (person, cut, vegetable).

5. Zero-shot Language Model

For zero-shot activity recognition, knowledge mined

from web-scale textual corpora can help determine unseen

verbs for describing the video. In order to discover activ-

ities that were unseen during training, we expand the top

detected verbs with their most similar verbs to generate a

larger set of potential verbs for describing the action. Text-

mined likelihoods are then used to determine the activity

that best fits the detected objects. For example, if “per-

son” and “car” are the top subject and object detections and

“move” is the top verb detection, we can expand “move”

with similar verbs like “ride” and “drive” to describe the

video as “A person is driving a car” without needing any

training videos for “ride” or “drive”. This idea can be used

to expand “coarse” activity detections, obtained by training

classifiers on available (possibly limited) activity training

data, with “finer” activities unseen at training time.

We employ language models trained on four large text

corpora (English Gigaword - 1200 million words, British

National Corpus – 100 million words, ukWac – 2000 mil-

lion words, and WaCkypedia EN – 800 million words) for

obtaining S-V-O triplet likelihoods.

For zero-shot detection we follow the method suggested

in [14] and expand the detections of observed verbs with

their most similar verbs from the set of unseen verbs. To

combine the vision detection scores with their real-world

likelihood and determine the best overall SVO, we use sim-

ple linear interpolation. When computing the overall vision

score, we make a conditional independence assumption and

multiply the probabilities of the subject, activity and ob-

ject. To account for expanded verbs, we additionally multi-

ply by the WUP similarity between the original (Vorig) and

expanded (Vexp) verbs. The resulting SVO triplets are then

scored using Equation 4 to select the best triplet.

(4)
score = P (S|vid) ∗ P (Vexp|vid) ∗ Sim(Vexp, Vorig)

∗ P (O|vid) ∗ svo likelihood

A template-based approach is utilized for surface real-

ization such that each sentence is of the form:

“Determiner (A,An,The) - Subject - Verb (Present, Present

Continuous) - Preposition - Determiner - Object.”

where the subject, verb and object are obtained from the
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content planning stage. Determiners and prepositions are

allowed to be optional. To get a list of appropriate prepo-

sitions, we mine the text corpora for “prep ” dependencies

and for every verb-object combination we find the most fre-

quently occurring prepositions. The candidate sentences

generated using the template above, are ranked for plausi-

bilty using a language model trained on the GoogleNgram

corpus and the top ranked sentence is used to describe the

video.

6. Experimental Setup

We split the 1,970 videos in the YouTube corpus into

two: (1,300) for training and validation, and (670) for test;

splits were contiguous groups of videos by index number to

reduce any locality effect in the dataset.

Activity Descriptors: We used the motion descriptors de-

veloped by Wang et al [27] as they achieve state-of-the-art

activity recognition performance; their approach extracts

dense trajectories and computes HoG (Histograms of Ori-

ented Gradients), HoF (Histograms of Optical Flow) and

MBH (Motion Boundary Histogram) features over space-

time volumes around the trajectories. We used the default

parameters proposed in their paper and their code (N = 32,

nσ = 2, nr = 3), and adopted a standard bag-of-features

representation. We construct a codebook for each descrip-

tor (Trajectory, HoG, HoF, MBH) separately. For each de-

scriptor we randomly sampled 100K points and clustered

them using K-means into a codebook of 4000 words. De-

scriptors are assigned to their closest vocabulary word using

Euclidean distance. Each video is then represented as a his-

togram over these clusters.

Object Descriptors: Our object descriptors are based on

the well-known Deformable Parts Model (DPM) [11] as

it achieves state-of-the-art performance on the PASCAL

(VOC) Challenge, and also forms the substrate for the Ob-

jectBank representation [18], which has itself demonstrated

strong performance as a concept representation in contem-

porary challenges. For each extracted keyframe, we com-

puted DPM-based representations using ObjectBank and

the standard PASCAL object classes. We defined a feature

vector corresponding to the PASCAL classes based on the

max score of each category per image, and returned both

the PASCAL scores and the ObjectBank scores with max-

pooling over the set of frames, as the object descriptors for

a video clip.

Multi-channel SVM: For classification we use a non-linear

SVM [3] and combine the information from both object

and activity features using a multi-channel approach as pro-

posed in [31], with a RBF-kernel over the pairwise dis-

tances:

(5)K(xi, xj) = exp

(

−
∑

c

1

Ac
Dc(x

c
i , x

c
j)

)

where Dc(x
c
i , x

c
j) is the distance between video xi and xj

with respect to the c-th channel, and Ac is the mean value

of the distances between the training samples for the c-

th channel (as proposed in [31]). We use χ2 distance for

the activity descriptors Trajectory,HoG,HoF,MBH ,

and Correlation distance for the objects descriptors

DPM,ObjectBank. To set the C hype-parameters of the

SVMs we used grid search and 5 fold cross-validation over

the training set. (We have also tested other distances but

they were performing worse during the cross-validation).

Defining Ground Truth: Since every video can have mul-

tiple SVO-triplets we define two ways to account for ground

truth, one based on the most common triplet (denoted ’Most

Common’) and another one based on the set of valid triplets

(’Valid Set’), defined as triplets where each component S,

V and O is mentioned in at least two descriptions. For ex-

ample, for the video shown in Figure 2 the set of triplets

extracted from the descriptions with their associated fre-

quencies are: {(person, mix, egg):10, (person, mix, yolk):2,

(person, prepare, dough):1, (person, mix, maida):1, (per-

son, mix, ingredient):1, (person,mix,gel):1, (person, mix,

flour):1, (person, mix, cream):1, (person, make, dough):1,

(person, cut, yolk):1, (person, cut, egg):1, (person, add,

paste):1 (egg, mix, flour):1, (cook, prepare, dough):1}
From this set of triplets the ’Most Common’ answer is

(person,mix,egg), and the ’Valid Set’ {(person, mix, egg),

(person, mix, yolk), (person, prepare, dough), (person, mix,

flour)}.

7. Experimental Results

Binary Accuracy. First we evaluate our learned hierar-

chy on predicting subject, verb and object labels in terms

of binary (0-1 loss) accuracy. Since the words at higher-

level nodes of our trees do not tend to appear in the human

descriptions, here we use the first level of our hierarchies,

which group the flat raw labels (see Section 4). The number

of first-level nodes is 8 for Subjects, 100 for Verbs and 100

for Objects. Table 1 compares: a baseline (Prior) that uses

the prior distribution of subject, verbs and objects in the

training set and simply predicts the triplet composed of the

most frequent items (person, play, guitar); the SVM classi-

fiers for flat, raw labels (FL) and for the first level of our

hierarchies (OU). We see that visual classifiers do signif-

icantly better than a triplet-prior baseline (except for sub-

ject, for which simply guessing person does very well), and

semantic grouping improves performance.

WUP Accuracy. Next, in Table 2 we compare our full hi-

erarchical method with two baselines. To evaluate higher-

level node predictions, we use the WUP similarity score.

The flat (FL) baseline predicts the most confident output for

each SVM trained over the whole set of labels without any

hierarchy or grouping. The hierarchical (HE) baseline is

an implementation of the “Hedging Your Bets” method [6],
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Method
0-1 Loss

S% V% O%

Prior 78.36 13.43 6.12

FL 78.51 22.09 12.84

OU 80.90 29.10 17.01

Table 1: Binary 0-1 accuracy of predicting subject, verb and

object labels with Prior:most frequent triplet, FL:flat visual

classifiers, OU:first level of our semantic hierarchies.

Alg

WUP Similarity

Most Common Valid Answer

S% V% O% S% V% O%

FL 88.94 43.56 36.77 93.28 59.52 51.91

HE 78.13 31.29 23.37 81.03 45.71 28.45

OU 92.57 46.83 46.66 93.72 61.19 58.41

Table 2: Comparison of WUP Similarity

which combines the outputs of the SVMs according to the

WordNet hierarchy and chooses the appropriate level of

generalization by setting the accuracy to some prespecified

value (0.9 in our experiments). Our method (OU) com-

putes a probability distribution over the learned semantic

hierarchies and chooses the appropriate level of generaliza-

tion by optimizing the WUP similarity of the predictions us-

ing cross-validation on the training set. The table measures

the similarity to both the ’Most Common’ gold-standard an-

swer (single triplet for each video), and the ’Valid Answer’

(any of the Subjects, Verbs and Objects mentioned by hu-

mans). Since the WUP similarity depends on the hierarchy

used, to do a fair comparison in Table 2 we use the WUP

similarity defined over the WordNet hierarchy for all the

methods. Our approach predicts words that are more sim-

ilar on average to the human triplets than either baseline,

especially for the most common answer.

Generation. Table 4 shows example sentences generated

based on the triplets predicted by the three methods, as well

as (the most common) human annotation. The top exam-

ples are ones where our model does better than FL and HE,

and the bottom three are examples where it does similar or

worse. We see that HE tends to predict very general words

most of the time, whereas FL predicts specific nodes but

makes a lot of mistakes. In contrast, OU method outputs

more general descriptions that are nonetheless informative

about the content of the video, what make it more suitable

for video retrieval.

Zero-shot Activity Recognition. We also conducted an ex-

periment to see if our method can use a language model

to learn to describe activities involving verbs for which no

training videos are provided. We held out a random fraction

of verbs during training and judged the system’s ability to

still predict them during testing based on subject and object

context. Figure 4 reports the percentage of unseen verbs

Figure 4: Zero-shot Activity Recognition

correctly predicted (0-1 loss) using our model. We measure

the accuracy over all videos that contain unseen verbs as

well as the subset of these videos where the subject and ob-

ject were correctly identified. The results in Figure 4 were

averaged across 8 runs, removing a different random set of

verbs for zero-shot recognition in each run. Since we have

no information on the test verbs during training, we cannot

assume any priors about their likelihoods. So, we compare

to a baseline where the system picks a verb uniformly at

random (0.459%). Even with a large portion of verb mod-

els missing, in a reasonable fraction of cases, our language

model is still able to “fill in” the correct verb from context.

7.1. Human Evaluation

We use Amazon Mechanical Turk (AMT) to compare the

methods by evaluating them on a video retrieval task. We

use each of the methods proposed in this paper to build sep-

arate video retrieval systems. We then ask humans to judge

how well each system does and use the human judgements

to compare the methods. The FL, HE and OU algorithms

are used to predict SVO triplets for all 670 test videos. For

each test video, we measure the similarity of its SVO triplet

with the triplets of all the test videos to retrieve the 3 most

similar videos. Similarity between triplets is measured us-

ing WUP scores. The retrieval is done independently for

the FL, HE, OU, and ground truth triplets. We then ask

AMT workers to rate, on a scale of 1 to 5, how relevant the

retrieved videos are with respect to the given video. The av-

Retrieval Method FL HE OU Ground Truth

Average Rating 1.81 1.54 1.99 3.90

Table 3: Amazon mechanical turker ratings for videos re-

trieved by FL, HE, OU and ground truth triplets.

erage ratings of the videos retrieved by each method is pre-

sented in Table 3. The Kruskal-Wallis test (H=77.27, 2 d.f,

p<0.0001) and ANOVA test (F(2,1947)=43.92, p<0.0001)

confirm that the differences in the ratings of the three sys-
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tems are statistically significant. The human evaluation re-

sults are consistent with the WUP similarity based evalua-

tion (see table 2). This also indicates that WUP is a good

intrinsic measure of evaluation.

8. Conclusions

Broad-coverage activity recognition has wide applica-

tion in surveillance and retrieval applications, yet few ex-

isting methods work outside limited verb vocabularies. We

presented a system that takes a short video clip and outputs

a brief sentence that sums up the main activity in the video,

such as the actor, the action and its object. We addressed the

challenge of recognizing and describing activities “in-the-

wild”. Unlike previous work, our approach has broad verb

and object coverage and works on out-of-domain actions: it

does not require training videos of the exact activity. If it

cannot find an accurate prediction for a pre-trained model,

it finds a less specific answer that is also plausible. The

semantic hierarchies learned from the data help to choose

an appropriate level of generalization, and a prior learned

from web-scale natural language corpora penalizes unlikely

combinations of actors/actions/objects and allows zero-shot

activity recognition. We evaluated our method on a large

YouTube corpus and demonstrated it was able to generate

short sentence descriptions of video clips better than base-

line approaches.
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GT:

FL:

OU:

HE:

A woman is mixing some egg with flour.

A person cuts the water.

A person cooks something.

A person does something.

GT:

FL:

OU:

HE:

A cat is playing with a ferret.

A person plays a water.

An animal plays something.

An animal does something.

GT:

FL:

OU:

HE:

A man is riding a motorcycle.

A person rides a person.

A person rides a vehicle.

The person does something.

GT:

FL:

OU:

HE:

A toy train runs into a toy car.

A car rides the motorbike.

A car rides the vehicle.

Someone does something.

GT:

FL:

OU:

HE:

A dog is attacking a vacuum.

A dog plays a water.

An animal does something with the instrument

An animal does something.

GT:

FL:

OU:

HE:

A man is pushing a car.

A person plays a motorbike.

A person rides a vehicle.

A person does something.

GT:

FL:

OU:

HE:

A baby panda is climbing a step.

The cat plays with the water.

An animal plays an instrument.

An animal does something.

GT:

FL:

OU:

HE:

A man is doing exercise.

A person plays a person.

A person dances a device.

A person does something.

GT:

FL:

OU:

HE:

A man is playing a guitar.

A person plays a guitar.

A person plays a guitar.

A person plays a guitar.

GT:

FL:

OU:

HE:

A man is pouring noodles into a bowl.

A person plays a guitar.

A person plays a guitar.

A person does something.

GT:

FL:

OU:

HE:

A train passes by Mount Fuji.

A person plays a motorbike.

The person moves something.

Someone does something.

Table 4: Some examples of videos and: (GT) most common human sentence; (FL) the flat classifiers; (OU) our semantic

hierarchical method; (HE) the method in [6]. The top examples are ones where our model does better than FL and HE, and

the bottom three are examples where it does similar or worse.
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