
YSmart: Yet Another SQL-to-MapReduce Translator

Rubao Lee #1, Tian Luo #2, Yin Huai #3, Fusheng Wang $4, Yongqiang He ∗5, Xiaodong Zhang #6

#Department of Computer Science and Engineering, The Ohio State University

{1liru, 2
luot,

3
huai,

6
zhang}@cse.ohio-state.edu

$Center for Comprehensive Informatics, Emory University
4
Fusheng.Wang@emory.edu

∗Facebook Data Infrastructure Team
5
heyongqiang@fb.com

Abstract—MapReduce has become an effective approach to big
data analytics in large cluster systems, where SQL-like queries
play important roles to interface between users and systems.
However, based on our Facebook daily operation results, certain
types of queries are executed at an unacceptable low speed by
Hive (a production SQL-to-MapReduce translator). In this paper,
we demonstrate that existing SQL-to-MapReduce translators that
operate in a one-operation-to-one-job mode and do not consider
query correlations cannot generate high-performance MapRe-
duce programs for certain queries, due to the mismatch between
complex SQL structures and simple MapReduce framework.
We propose and develop a system called YSmart, a correlation
aware SQL-to-MapReduce translator. YSmart applies a set of
rules to use the minimal number of MapReduce jobs to execute
multiple correlated operations in a complex query. YSmart can
significantly reduce redundant computations, I/O operations and
network transfers compared to existing translators. We have im-
plemented YSmart with intensive evaluation for complex queries
on two Amazon EC2 clusters and one Facebook production
cluster. The results show that YSmart can outperform Hive and
Pig, two widely used SQL-to-MapReduce translators, by more
than four times for query execution.

I. INTRODUCTION

Large online stores and Web service providers must timely

process an increasingly large amount of data represented by

Web click-streams, user-generated contents, online transaction

data, and others. To understand user behaviors and acquire use-

ful information hidden in these huge data sets, extensive data

processing applications are needed, such as Web-scale data

mining, content pattern analysis (e.g. [1]), click-stream ses-

sionization (e.g. [2]), and others. With the rapid advancement

of network technologies, and the increasingly wide availability

of low-cost and high-performance commodity computers and

storage systems, large-scale distributed cluster systems can be

conventionally and quickly built to support such applications

[3]. MapReduce [4] is a distributed computing programming

framework with unique merits of automatic job parallelism

and fault-tolerance, which provides an effective solution to the

data analysis challenge. As an open-source implementation of

MapReduce, Hadoop has been widely used in practice.

The MapReduce framework requires that users implement

their applications by coding their own map and reduce func-

tions. Although this low-level hand coding offers a high flex-

ibility in programming applications, it increases the difficulty

in program debugging [5]. High-level declarative languages

can greatly simplify the effort on developing applications

in MapReduce without hand-coding programs [6]. Recently,

several SQL-like declarative languages and their translators

have been built and integrated with MapReduce to support

these languages. These systems include Pig Latin/Pig [7], [8],

SCOPE [9], and HiveQL/Hive [10]. In practice, these lan-

guages play a more important role than hand-coded programs.

For example, more than 95% Hadoop jobs in Facebook are

not hand-coded but generated by Hive.

These languages and translators have significantly improved

the productivity of writing MapReduce programs. However, in

practice, we have observed that auto-generated MapReduce

programs for many queries are often extremely inefficient

compared to hand-optimized programs by experienced pro-

grammers. Such inefficient SQL-to-MapReduce translations

bring two critical problems in the Facebook production en-

vironment. First, auto-generated MapReduce jobs cause some

queries to have unacceptably long execution times in some

critical Facebook operations in the production environment.

Second, for a large production cluster, the programs generated

from inefficient SQL-to-MapReduce translations would create

many unnecessary jobs, which is a serious waste of cluster

resources. This motivates us to look into the bottlenecks in

existing translators such as Hive, and develop more efficient

SQL-to-MapReduce translator to generate highly optimized

MapReduce programs for complex SQL queries.

The Performance Gap

To demonstrate the problem, we compared the performance

between Hive-generated program and hand-coded MapReduce

program for a click-stream query that represents a typical

Facebook production workload. This query (Q-CSA) is used

to answer “what is the average number of pages a user

visits between a page in category X and a page in category

Y?” based on a single click-stream table CLICKS(user id int,

page id int, category id int, ts timestamp). It is a complex

query that needs self-joins and multiple aggregations of the

same table. Its SQL statement is shown in Fig. 11, and its

execution plan tree is shown in Fig. 2(a). To demonstrate the

1This query is modified based on the SQL statement presented in paper
[2] (page 1411) by replacing the non-SQL-standard “DISTINCT ON” clause
with standard grouping and aggregation clauses. The semantics of the query
is still the same.

performance gap, we also used a simple query (Q-AGG) that

counts the number of clicks for each category. It only executes

an aggregation with one pass of table scan on CLICKS.

SELECT avg(pageview_count) FROM

(SELECT c.uid,mp.ts1,(count(*)-2) AS pageview_count

FROM clicks AS c,

(SELECT uid,max(ts1) AS ts1,ts2

FROM (SELECT c1.uid,c1.ts AS ts1,min(c2.ts) AS ts2

FROM clicks AS c1,clicks AS c2

WHERE c1.uid = c2.uid AND c1.ts < c2.ts

AND c1.cid = X AND c2.cid = Y

GROUP BY c1.uid,ts1) AS cp

GROUP BY uid,ts2) AS mp

WHERE c.uid=mp.uid AND c.ts>=mp.ts1 AND c.ts<=mp.ts2

GROUP BY c.uid,mp.ts1) AS pageview_counts;

Fig. 1. The SQL statement for the clickstream analysis query (Q-CSA).

Fig. 2(b) shows the experiment results. For the simple Q-

AGG query, Hive has comparable performance with our hand-

coded program2. However, for query Q-CSA, the hand-coded

MapReduce program outperforms Hive by almost three times.

In fact, Hive generates a chain of MapReduce jobs according

to the query plan, and each job is independently responsible

for executing one operation in the plan tree. However, our

hand-coded program, on the basis of query semantic analysis,

uses only a single job to execute all the operations except the

final aggregation (AGG4). This significantly reduces redundant

computations and I/O operations in the MapReduce execution.

Translating SQL to MapReduce: Where Is the Bottleneck?

The above example shows that the source of inefficiency

comes from the naive approach for translating SQL queries

into MapReduce jobs. SQL-like declarative languages for

MapReduce, such as Hive, use a subset of SQL language con-

structs. In practice, when translating a query expressed by such

a language into MapReduce programs, existing translators take

a one-operation-to-one-job approach. For a query plan tree,

each operation in the tree is replaced by a pre-implemented

MapReduce program, and the tree is finally translated into

a chain of programs. For example, Hive generates six jobs

to execute the six operations (JOIN1, AGG1, AGG2, JOIN2,

AGG3, and AGG4) in the plan tree shown in Fig. 2(a). Such a

translation approach is inefficient since it can cause redundant

table scans (e.g., both JOIN1 and JOIN2 need to scan CLICKS)

and unnecessary data transfers among multiple jobs. Thus,

existing translators cannot generate high-performance MapRe-

duce programs for two reasons. First, they cannot address the

limitations of the simple MapReduce structure for a complex

query. Second, they cannot utilize the unique opportunities

provided by intra-query correlations in a complex query. We

further give more specific explanations as follows.

a) Limitations of MapReduce for Complex Queries:

A one-operation-to-one-job translation does not fully utilize

MapReduce’s flexible programming capabilities, instead, it is

constrained by the structure and implementation of MapRe-

duce in two ways. First, MapReduce requires materialization

of intermediate results on local disks in order to deal with

2This is because Hive uses an optimized execution strategy for aggregations
by maintaining an internal hash-aggregate map in the map phase of a job [11].

(a) Q-CSA plan. (b) Execution times.

Fig. 2. Comparison between Hive and hand-coded MapReduce programs.

node failures. Furthermore, temporary result of each step in

a job chain must be uploaded to the global file system. This

could cause extra overhead of disk I/O and network transfers.

Second, the run-time system (e.g., Hadoop) is not aware

whether concurrent jobs are correlated, thus it does not provide

any mechanism to support intermediate data reusing between

concurrent jobs. Due to the two limitations, MapReduce pro-

grams automatically translated in a one-operation-to-one-job

approach may have low performance.

Indeed, an experienced programmer with the knowledge

of database query engine can write efficient MapReduce

programs, although not preferable, to execute a complex query,

by analyzing and considering the intra-query correlations.

b) Intra-query Correlations: One typical type of com-

plex queries in MapReduce is queries on multiple occurrences

of the same table, including self-joins. Such queries are

common in various data analysis applications. In traditional

decision Support System (DSS) workloads characterized by

TPC-H and TPC-DS, many queries are performed on multiple

occurrences of the same table [12]. It is also very common to

find such queries in spatial database systems [13] and other

applications [14]. For Web data analysis, a query (e.g. Q-CSA)

can have several times of self-join of the only table for storing

click-stream [2]. More importantly, such type of queries are

typical MapReduce workloads in Web-scale systems.

By considering intra-query correlations, SQL-to-

MapReduce translations and executions can be automatically

optimized to significantly improve performance through

minimizing computation and I/O operations by merging

correlated query operations. For example, in Q-CSA (in Fig.

2(a)), instead of three table scans of the same CLICKS table,

JOIN1 only needs a single table scan for two instances of

the same table, and AGG1, AGG2, JOIN2, AGG3 can be

directly executed in the same job for JOIN1 without the need

of additional jobs. Therefore, a single table scan of table

CLICKS can support all the three instances in JOIN1 and

JOIN2, and a single MapReduce job can execute all the five

operations from JOIN1 to AGG3 in the query execution plan.

Our Contribution: YSmart

Our goal is to build a correlation-aware SQL-to-MapReduce

translator to optimize complex queries without modification to

the MapReduce framework and the underlying system. YSmart

is built on top of Hadoop as it is a widely used system and

also used by Facebook. YSmart supports three types of intra-

query correlations defined based on the key/value pair model

of the MapReduce framework. After automatically detecting

such correlations in a query, YSmart applies a set of rules to

generate optimized MapReduce jobs, which are managed by

the Common MapReduce Framework (CMF) in YSmart, so

that it can use the minimal number of jobs to execute multiple

correlated operations in the query. This provides significant

query performance improvement by reducing redundant com-

putations, unnecessary disk accesses, and network overhead.

We have conducted intensive experiments with both DSS

workloads and click-stream analysis workloads on different

scales of clusters: a small local cluster, two Amazon EC2

clusters, and a large production cluster in Facebook. The

results show significant advantages of YSmart in terms of both

performance and scalability over existing translators even with

diverse configurations and unpredictable run-time dynamics.

The rest of this paper is organized as follows. Section II

briefly introduces background knowledge; Section IV presents

the definitions of intra-query correlations and their usages in

YSmart; In Section V, we present how MapReduce jobs are

generated in YSmart; The Common MapReduce Framework

(CMF) is discussed in Section VI; Performance evaluation is

presented in Section VII; Section VIII discusses related work,

and Section IX concludes this paper.

II. BACKGROUND

A. MapReduce and Hadoop

In the MapReduce framework, a computation is represented

by a MapReduce job. A job has two phases: the map function

phase and the reduce function phase. The underlying run-time

system executes the functions in a way that it automatically

partitions the output of the map function and copies it to

the input of the reduce function. Furthermore, a complex

computation process can be represented by a chain of jobs.

MapReduce does not allow arbitrary interfaces of the map

and reduce function. Rather, their input and output must be

based on key/value pairs. A map function accepts a key/value

pair (k1, v1) and emits another key/value pair (k2, v2). After

the map phase, the run-time system collects a list of values

for each distinct key in the map output. Then, for each k2, a

reduce function accepts the input of (k2, a list of (v2)), and

emits (k3, a list of (v3)). MapReduce allows users to define the

format of a key/value pair. It can be a simple scalar value (e.g,

an integer value or a string) or a complex composite object. In

this way, it provides high flexibility to express computations

and data processing operations in MapReduce jobs.

Hadoop is an open-source implementation to MapReduce

designed for clusters of many nodes. It provides a Hadoop

Distributed File System (HDFS) as the global file system

running on a cluster. The execution of a MapReduce job

in Hadoop has three steps. First, the JobTracker assigns a

portion (e.g. a 64MB data chunk) of an input file on HDFS

to a map task running on a node. Then the TaskTracker on

the node extracts key/value pairs in the chunk, and invokes

the map function for each pair. The map output, namely the

intermediate result, is sorted and stored in local disks. Second,

all the intermediate results on all nodes are transmitted into

inputs of reduce functions. This step fetches the results via

HTTP requests, partitions and groups the results according

to their keys, and stores each partition to a node for reduce.

Finally, each reduce function reads its input from its local

disks, and outputs its result to HDFS via network.

B. Relational Operations in MapReduce

In order to evaluate an SQL query in MapReduce, the query

must be represented into a single or a chain of MapReduce

jobs. The critical issue is that each operation (e.g. selection,

aggregation, join) must be implemented into a transformation

between input key/value pairs and output key/value pairs.

It is straightforward to implement selection and projection.

For aggregation with grouping, the columns for grouping

can be the keys for data partitioning in the map phase, and

the aggregation is finished in the reduce phase. For join

between two data sets, an efficient way is that each data set

is partitioned by its columns for join condition, and the join

is finished in the reduce phase. In this way, each key/value

pair produced by a map function should have a tag to indicate

the source of the pair so that the following reduce can know

where an input pair comes from [11][15][16].

III. CORRELATION-AWARE MAPREDUCE: AN OVERVIEW

As we have introduced in the previous Section, a MapRe-

duce job can efficiently execute a relational operation. How-

ever, using a chain of jobs to execute a complex SQL query

with multiple operations could be inefficient, if the SQL-to-

MapReduce translator does not consider possible intra-query

correlations and works in a one-operation-to-one-job mode

used by DBMSs. In a DBMS, when converting a logical query

plan tree to the final physical plan, each logical operation is

replaced with one pre-implemented physical operator [17]. For

example, a join operation can be represented by a hash join

operator. Eventually, in the physical plan, multiple physical

operators are linked in an executable binary. We call the way of

using one-to-one mapping from logical operations to physical

operators as a one-operation-to-one-job translation mode.

However, the outcome can be very different if a SQL-

to-MapReduce translator takes the same approach, because

MapReduce does not have the same execution environment as

that in a DBMS. A DBMS exploits a pipelined and iterator-

based interconnection among multiple operators [18] that are

in the same memory space. As the overhead of operator

communications is very low, the physical plan can be executed

efficiently. However, in a MapReduce environment, if each

operator is represented by a MapReduce job, the efficiency of

the physical plan (a chain of jobs) can be low. MapReduce,

with the merit of fault-tolerance in large-scale clusters, re-

quires that intermediate map outputs be persistent on disks and

reduce outputs be written to HDFS over the network. Under

such a materialization policy, the way of executing multiple

operations in a single job (many-to-one), if possible, could be

a much more effective choice than the one-to-one translation.

YSmart is designed for translating a SQL query into

MapReduce programs with specific considerations of intra-

query correlations. YSmart batch-processes multiple correlated

query operations within a query thus significantly reduces

unnecessary computations, disk I/Os and network transfers.

During job generation, YSmart applies a set of optimization

rules to merge multiple jobs, which otherwise would have

been run independently without YSmart, into a common

job. It provides a Common MapReduce Framework (CMF)

that allows multiple types of jobs, e.g., a join job and an

aggregation job, to be executed in a common job. The CMF

has low overhead on managing multiple merged jobs.

To achieve its goals, YSmart must address the following

three issues (in the next three sections, respectively):

1) What types of correlations exist in a query and how can

they affect query execution performance?

2) With the awareness of correlations, how to translate a

query plan tree into efficient MapReduce programs?

3) How to design and implement the Common MapReduce

Framework that need to merge different types of jobs

with low overhead?

IV. INTRA-QUERY CORRELATIONS AND THEIR

OPTIMIZATION PRINCIPLES

In this paper, we target SQL queries with following op-

erations: selection, projection, aggregation (with or without

grouping), sorting, and equi-join (inner join or left/right/full

outer join). These operations are the most common and impor-

tant for relational queries. We define intra-query correlations

as possible relationships between join nodes or aggregation

nodes, or both, in a query plan tree.

A. Types of Correlations and the Optimization Benefits

For an operation node in a query plan tree, YSmart intro-

duces a property Partition Key (PK) to reflect how map output

is partitioned in the operation execution with MapReduce’s

key/value pair model. Since a map function is to transform

(k1, v1) to (k2, v2), the partition key actually represents k2.

The partition key of an equi-join is the set of columns used

in the join condition. The partition key of an aggregation

can be any non-empty subset from the set of columns used

in grouping. For example, for a join operation R(A,B) ⋊⋉

S(A,C), the partition key is (A). For an aggregation operation

on R with grouping attributes G1 and G2, the partition key

can be (G1), (G2), or (G1, G2).

In a query plan tree, we define three correlations:

1) Input Correlation: Multiple nodes have input correlation

(IC) if their input relation sets are not disjoint;

2) Transit Correlation: Multiple nodes have transit corre-

lation (TC) if they have not only input correlation, but

also the same partition key;

3) Job Flow Correlation: A node has job flow correlation

(JFC) with one of its child nodes if it has the same

partition key as that child node.

These definitions do not cover the correlation within a self-

join of the same table, since such a correlation does not help

reduce the number of jobs. We develop a special optimization

for self-join as discussed in Section V-A.

If an aggregation node has multiple partition key candidates,

YSmart has to determine which one is its partition key.

Currently YSmart does not seek a solution based on execution

cost estimations due to the lack of statistics information of data

sets. Rather, YSmart uses a simple heuristic by selecting the

one that can connect the maximal number of nodes that can

have these correlations.

These correlations between nodes provide an opportunity so

that the jobs for the nodes can be batch-processed to improve

efficiency. First, if two nodes have input correlation, then the

corresponding two jobs can share the same table scan during

the map phase. This can either save disk reads if the map is

local or save network transfers if the map is remote. Second, if

two nodes have transit correlation, then there exists overlapped

data between map outputs of the jobs. Thus, during a map-

to-reduce transition, redundant disk I/O and network transfers

can be avoided. Finally, if a node has a job flow correlation

with one of its child nodes, then it is possible that the node

actually can be directly evaluated in the reduce phase of the

job for the child node. Specifically, in this case of exploiting

job flow correlation, there are following scenarios:

1) An aggregation node with grouping can be directly

executed in the reduce function of its only child node;

2) A join node J1 has job flow correlation with only one

of its child nodes C1. Thus as long as the job of another

child node of this join node C2 has been completed, a

single job is sufficient to execute both C1 and J1;

3) A join node J1 has job flow correlation with two child

nodes C1 and C2. Then, according to the correlation

definitions, C1 and C2 must have both input correlation

and transit correlation. Thus a single job is sufficient to

execute both C1 and C2. Besides, J1 can also be directly

executed in the reduce phase of the job.

B. An Example of Correlation Query and Its Optimization

We take the query shown in Fig. 3 as an example to demon-

strate the three types of correlations and their optimization

benefits. The query is re-written from the original TPC-H

Q17 (more details covered in Section VII.) As we can see

from the query plan tree (Fig. 4), an aggregation node (AGG1)

generates inner, a join node (JOIN1) generates outer, and a

join node (JOIN2) joins inner and outer.

To illustrate correlations and their benefits, we show the

generated MapReduce jobs without and with the awareness

of correlations respectively. Without the awareness of correla-

tions, a one-to-one translation will generate three MapReduce

SELECT sum(l_extendedprice) / 7.0 AS avg_yearly

FROM (SELECT l_partkey, 0.2* avg(l_quantity) AS t1
FROM lineitem
GROUP BY l_partkey) AS inner,

(SELECT l_partkey,l_quantity,l_extendedprice
FROM lineitem, part
WHERE p_partkey = l_partkey) AS outer

WHERE outer.l_partkey = inner.l_partkey;

AND outer.l_quantity < inner.t1;

Fig. 3. A variation of TPC-H Q17.

Fig. 4. The query plan tree for Q17.

jobs for the three nodes through a post-order tree traverse.

Fig. 5 shows the three jobs: Job1 for AGG1, Job2 for JOIN1,

and Job3 for JOIN2. In each job, the map function transforms

an input record to a key/value pair. For example, Job1’s map

function transforms a lineitem record to a key/value pair that

uses column l partkey as the key and column l quantity

as the value. The reduce function is the actual worker for

aggregation or join. For example, Job1’s reduce function

executes aggregation on l quantity for each unique input key

(l partkey).

Job1: generate inner by group/agg on lineitem
Map:

lineitem -> (k:l_partkey, v:l_quantity)
Reduce:
calculate (0.2*avg(l_quantity)) for each (l_partkey)

Job2: generate outer by join lineitem and part
Map:
lineitem -> (k: l_partkey,

v:(l_quantity,l_extendedprice))

part -> (k:p_partkey,v:null)
Reduce:
join with the same partition (l_partkey=p_partkey)

Job3: join outer and inner
Map:
outer-> (k:l_partkey, v:(l_quantity,l_extendedprice))

inner-> (k:l_partkey, v:(0.2*avg(l_quantity)))
Reduce:
join with the same partition of l_partkey

Fig. 5. A chain of jobs for the plan in Fig. 4. (We ignore the fourth
job for evaluating the final aggregation AGG2)

We can determine the correlations among the nodes by

looking into their corresponding MapReduce jobs. First, both

AGG1 and JOIN1 need the input of the lineitem table, which

means these two nodes have input correlation. Second, AGG1

and JOIN1 have the same partition key l partkey. This fact

can be reflected by the map output key/value pairs in Job1 and

Job2. Both jobs use l partkey to partition their input table

lineitem3. Based on correlation definitions, AGG1 and JOIN1

3Job2 uses p partkey to partition the part table. The columns in the two
sides of the equi-join predicate l partkey = p partkey are just aliases of
the same partition key.

have transit correlation. Finally, as the parent node of AGG1

and JOIN1, JOIN2 has the same partition key l partkey as all

its child nodes. As shown in the map phase of Job3, l partkey

is used to partition outer and inner, thus JOIN2 has job flow

correlation with both AGG1 and JOIN1.

By exploiting these correlations, instead of generating three

independent jobs, YSmart only needs to use a single MapRe-

duce job to execute all functionalities of AGG1, JOIN1,

and JOIN2, as shown in Fig. 6. Such job merging has two

advantages. First, by exploiting input correlation and transit

correlation, AGG1 and JOIN1 can share a single scan of the

lineitem table, and remove redundant map outputs. Second,

JOIN2 can be directly executed in the reduce phase of the

job. Therefore, the persistence and re-partitioning of interme-

diate tables inner and outer are actually avoided, which can

significantly boost the performance of the query.

Job1: generate both inner and outer,
and then join them

Map:
lineitem -> (k: l_partkey,

v:(l_quantity,l_extendedprice))
part -> (k:p_partkey,v:null)

Reduce:
get inner: aggregate l_quantity for each (l_partkey)
get outer: join with (l_partkey=p_partkey)

join inner and outer

Fig. 6. The optimized job by exploiting correlations.

Thus, the major task of YSmart is to translate a SQL

query into efficient MapReduce jobs with the awareness of

intra-query correlations. Next, we will discuss how YSmart

translates such complex queries as jobs in Section V and then

present the Common MapReduce Framework for executing

merged jobs and generating final results in Section VI.

V. JOB GENERATION IN YSMART

The initial task of YSmart is to translate a SQL query into

MapReduce jobs. We first present the primitive job types in

YSmart, and then introduce how to merge these jobs.

A. Primitive Job Types

Based on the programming flexibility of MapReduce, YS-

mart provides four types of MapReduce jobs for different

operations.

• A SELECTION-PROJECTION (SP) Job is used to ex-

ecute a simple query with only selection and projection

operations on a base relation;

• An AGGREGATION (AGG) job is used to execute

aggregation and grouping on an input relation;

• A JOIN job is used to execute an equi-join (inner or

left/right/full outer) of two input relations;

• A SORT job is used to execute a sorting operation.

If selection and projection operations come with a job on

a physical table, these operations are executed by the job

itself, but not executed by an individual job. For a JOIN

job, in addition to the equi-join condition, other predicates,

for example an “IS NULL” predicate after an outer join, are

executed by the job itself without the need of additional jobs.

A JOIN job for a self-join of the same table is optimized to

use only a single table scan in the map phase. For each raw

record, according to the select conditions of the two instances

of the table, the mapper adds a tag in the output key/value

pair to indicate which instance (or both) the pair belongs to.

With these primitive jobs, it is possible to provide a one-

operator-to-one-job based translation from a query plan tree to

MapReduce programs. By traversing a tree with post-order and

replacing a node with its corresponding type of the job, a chain

of MapReduce jobs can be generated with data dependence.

YSmart, beyond this straightforward translation, is able to

optimize jobs via job merging.

B. Job Merging

With the awareness of the three intra-query correlations,

YSmart provides a set of rules to merge multiple jobs into a

common job. The merging of jobs can either be at the map

phase or at the reduce phase, performed in two different steps

– the first step applies for input correlation and transit corre-

lation, and the second step applies for job flow correlation.

Rule 1: If two jobs have input correlation and transit

correlation, they will be merged into a common job. This

is performed in the first step, where YSmart scans the chain

of jobs generated from the above one-to-one translation. This

process continues until there is no more input correlation and

transit correlation between any jobs in the chain. After this

step, YSmart will continue the second step to detect if there

are jobs that can be merged in the reduce phase of a prior job.

Rule 2: An AGGREGATION job that has job flow corre-

lation with its only preceding job will be merged into this

preceding job.

Rule 3: For a JOIN job with job flow correlation with its

two preceding jobs, the join operation will be merged into the

reduce phase of the common job. In this case, there must be

transit correlation between the two preceding jobs, and the two

jobs have been merged into a common job in the first step.

Based on this, the join operation can be put into the reduce

phase of the common job.

Rule 4: For a JOIN job that has job flow correlation with

only one of its two preceding jobs, merge the JOIN job with

the preceding job with job flow correlation – which has to be

executed later than the other one. For example, a JOIN job

J1 has job flow correlation with P1 but not P2. In this case,

J1 can be merged into P1 only when P2 was finished before

P1. In this case, YSmart needs to determine the sequence of

executing two preceding jobs for a JOIN job. That is, the

preceding job that has no job flow correlation with the JOIN

job must be executed first. YSmart implements this rule when

traversing the query plan tree with post-order. For a join node,

its left child and right child can be exchanged in this case.

C. An Example of Job Merging

We take the query plans shown in Fig. 7 as an example to

demonstrate the job merging process. The difference between

the two plans is that the left child and right child of node

JOIN2 are exchanged. We assume that 1) JOIN1 and AGG2

have input correlation and transit correlation, 2) JOIN2 has

job flow correlation with JOIN1 but not AGG1, and 3) JOIN3

has job flow correlation with both JOIN2 and AGG2. In the

figure, we show the job number for each node.

Fig. 7. Two query plan trees.

For the plan in Fig. 7 (a), a post-order traverse will generate

five jobs in a sequence {J1, J2, J3, J4, J5}. In the first step to

use input correlation and transit correlation, J1 and J4 will be

merged. Thus, the job sequence becomes {J1+4, J2, J3, J5}.
In the second step to use job flow correlation, J5 will be

merged into J3 since when J3 begins J4 has already finished

in the merged job J1+4. Thus, finally we get three jobs in

a sequence {J1+4, J2, J3+5}. However, since YSmart uses

Rule 4 to exchange J1 and J2, the plan can be automatically

transformed to the plan in Fig. 7 (b).

For the plan in Fig. 7 (b), since J2 is finished before J1,

the plan can be further optimized by maximally using job flow

correlation. The initial job sequence is {J2, J1, J3, J4, J5}.
After the first step that merges J1 and J4, the sequence is

{J2, J1+4, J3, J5}. At the second step, since J2 has finished,

J3 can be directly executed in the job J1+4. Furthermore,

J5 can also be merged into the job. Therefore, the final job

sequence is {J2, J1+4+3+5} with only two jobs.

VI. THE COMMON MAPREDUCE FRAMEWORK

The Common MapReduce Framework (CMF) is the foun-

dation of YSmart to use a common job to execute function-

alities of multiple correlated jobs. CMF addresses two major

requirements in optimizing and running translated jobs.

The first requirement is to provide a flexible framework

to allow different types of MapReduce jobs, for example a

JOIN job and an AGGREGATION job, to be plugged into

a common job. Therefore, the map and reduce function of a

common job must have the ability to execute multiple different

codes belonging to independent jobs.

The second requirement is to execute multiple merged jobs

in a common job with minimal overhead. Since a common

job needs to manage all computations and input/output of its

merged jobs, the common job needs to bookkeep necessary

information to keep track of every piece of data and their

corresponding jobs, and provides efficient data dispatching for

merged jobs. Due to the intermediate materialization limitation

of MapReduce, any additional information generated by the

common job will be written to local disks and transferred over

the network. Thus, CMF needs to minimize the bookkeeping

information to minimize the overhead.

CMF provides a general template based approach to gen-

erate a common job that can merge a collection of correlated

jobs. The template has the following structures. The com-

mon mapper executes operations (selection and/or projection

operations) involved in the map functions of merged jobs.

The common reducer executes all the operations (e.g. join or

aggregation) involved in the reduce functions of merged jobs.

The post-job computation is a subcomponent in the common

reducer to execute further computations on the outputs of

merged jobs.

A. Common Mapper

A common map function accepts a line (a record) in the

raw data file as an input. Then it emits a common key/value

pair that would contain all the required data for all the merged

jobs. (The pair could be null if nothing is selected.)

Since different merged jobs can have different projected

columns, and different jobs can have different selection condi-

tions, the common mapper needs to record which part should

be dispatched to which query in the reduce phase. Such

additional bookkeeping information can bring overhead caused

by intermediate result materialization in MapReduce. To mini-

mize the overhead, CMF takes the following approaches. First,

the projection information is kept as a job-level configuration

property since this information is fixed and record-independent

for each job. Second, for each value in the output key/value

pair, CMF adds a tag about which job should use this pair

in the reduce phase. Since each tag is record-dependent,

their aggregated size cannot be ignored if a large number

of pairs are emitted by the common mapper. Therefore, in

our implementation, a tag only records the IDs of jobs (if

they exist) that should not see this pair in their reduce phases.

This could support common cases with highly overlapped map

outputs among jobs.

B. Common Reducer and Post-job Computations

A common reduce function does not limit what a merged

reducer (i.e., the reduce function of a merged job) can do.

The core task of the common reducer is to iterate the input

list of values, and dispatch each value with projections into

the corresponding reducers that need the value. CMF requires

a merged reducer be implemented with three interfaces: (1) an

init function, (2) a next function driven by each value, and (3)

a final function that does computations for all received values.

This approach has two advantages: It is general and allows

any types of reducers to be merged in the common reducer;

It is efficient since it only needs one pass of iterations on the

list of values. The common reducer outputs each result of a

merged reducer to the HDFS, and an additional tag is used for

each output key/value pair to distinguish its source.

However, in the common reduce function, if another job

(say Ja) has job flow correlation to these merged jobs, it can

be instantly executed by a post-job computation step in the

function, so that Ja would not be initiated as an independent

MapReduce job. In this case, the results of the merged jobs

would not be outputted, but are treated as temporary results

Algorithm 1: the Common Reduce Function

input: key, a list of values

foreach merged Reducer R do R.init(key);

while there are left values do

cur val = get current value();

foreach merged Reducer R do

if R can see cur val (according to the tag) then
do projection on cur val and get p cur val

R.next(key, p cur val);

foreach merged Reducer R do R.final(key);

if there are no post-job computations then

foreach merged Reducer R do output R.get result();

else

execute post-job computations;

output final result;

and consumed by Ja. Thus, the common reducer only outputs

the results of Ja. (See Algorithm 1 for the workflow).

VII. EVALUATION

To demonstrate the performance and scalability of YSmart,

we provide comprehensive study of YSmart versus the most

recent version of Hive [10] and Pig [8], two widely-used

translators from SQL-like queries to MapReduce programs.

A. Workloads and Analysis

1) Workloads: We used two types of workloads. The first

workload consists of Q17, Q18, and Q21 from the TPC-

H benchmark which has been widely used in performance

evaluation for complex DSS workloads. The original queries

have nested sub-queries. Since the MapReduce structure does

not support iterative jobs and nested parallelism [19], these

queries have to be “flattened” so that they can be ex-

pressed by MapReduce programs. In our work, we took the

first-aggregation-then-join algorithm [20] to flatten the three

queries. The second workload comes from a Web click-stream-

analysis workload. The query Q-CSA has been introduced in

the Introduction Section.

The codes for running three TPC-H queries on Hive can

be found in an open report4. For YSmart, we modified the

Hive queries (they are flattened by first-aggregation-then-join)

to standard SQL statements. For Pig, we tried our best to write

highly efficient queries according to available features of the

Pig Latin language [7]. For example, we used multi-way join

and the SPLIT operator whenever possible. Fig. 8 shows query

plans of Q18 and Q21 (Q17 in Fig. 4, Q-CSA in Fig. 2(a)).

2) Analysis of query execution: Next we explain how the

four queries are executed in YSmart. The three TPC-H queries

have similar situations. First, as the analysis in Section IV-B,

for Q17 (Fig. 4), YSmart can generate one MapReduce job to

4http://issues.apache.org/jira/secure/attachment/12416257/
TPC-H on Hive 2009-08-11.pdf

Fig. 8. Query plan trees for Q18 and Q21.

execute all the operations in the sub-tree of JOIN2. Second,

for Q18 (Fig. 8(a)), JOIN1, AGG1, and JOIN2, which have the

same PK (l orderkey), can be executed by a single job. In the

job, the map phase is used to partition the input tables lineitem

and orders, and the reduce phase is used to execute the three

operations. Third, similar to Q18, for Q21 (Fig. 8(b)), all the

five operations in the sub-tree of “Left Outer Join1” have the

same PK (l orderkey), and can be executed by a single job.

Real SQL code for this sub-tree is included in Appendix.

The execution of Q-CSA (Fig. 2(a)) is similar to the three

TPC-H queries. YSmart can generate one job to execute all

the operations in the sub-tree of AGG3. There are a special

situation for this query. As aggregation nodes, both AGG1

and AGG2 have multiple candidate PKs since their Group-By

clauses have more than one column. For example, the PK of

AGG1 (i.e. group by uid, ts1) can be (uid), (ts1), or (uid, ts1).

YSmart determines uid as the PK so that AGG1 can have job

flow correlation with JOIN1 since JOIN1’s PK is uid. The

same choice is for AGG2. Finally, YSmart determines that all

the five operations (JOIN1, AGG1, AGG2, JOIN2, and AGG3)

have correlations so that they can be executed by one job.

After having optimized the above sub-trees in the whole

plan trees, YSmart cannot provide any further optimizations

for the rest operations that have no available correlations. They

will be executed in consequent jobs which are generated in the

same way as a one-operator-to-one-job translation. Note that as

shown by the following experimental results, these consequent

jobs are lightly-weighted. Thus YSmart’s effort is the most

critical for improving performance of the whole query.

B. Experimental Settings

We have conducted comprehensive evaluation on three types

of clusters:

1. A small-scale cluster with only two nodes connected by

a Gigabit Ethernet. Each node comes with a quad-core Intel

Xeon X3220 processor (2.4 GHz), 4GB of RAM, a 500GB

hard disk, running Fedora Linux 11. One node is used to run

JobTracker, and another node is used to run TaskTracker. The

TaskTracker is configured to provide 4 task slots. The Hadoop

version is 0.19.2 (map output compression is disabled.)

2. Two middle-scale clusters provided by Amazon EC2

commercial cloud service. These two clusters have 11 nodes

and 101 nodes, respectively. Each node is a default small

instance comes with 1.7 GB of memory, 1 EC2 Compute

Unit (1 virtual core), 160 GB of local instance storage, 32-

bit platform5. One node is selected from each cluster for Job-

Tracker. We use the Cloudera Distribution AMI for Hadoop6.

It provides scripts to automatically configure Hadoop, Hive,

and Pig. We use its default configuration for our experiments.

3. A large-scale production cluster in Facebook. In this

cluster, 747 nodes are assigned to perform our experiments.

Each node has 8 cores, 32GB memory, and 12 disks of 1TB.

The used Hadoop version is Hadoop 0.20.

C. On Small-scale Cluster: YSmart vs Hand-coded Program

This small execution environment allows us to make de-

tailed measurement in an isolated mode. We used a 10GB

TPC-H data set for TPC-H queries, and a large 20GB data set

for Q-CSA. In this subsection, we compare performance of

YSmart and hand-coded MapReduce program for the most

complex query (Q21). Then, we compare performance be-

tween YSmart, Hive, and Pig for all the four queries in the

next subsection.

We made detailed tests to compare YSmart and hand-coded

programs for Q21. We only tested the execution of the sub-tree

“Left Outer Join 1” (see Fig. 8 (b)), since it is the dominated

part for the whole query execution of Q21.

In order to understand how each type of correlations can

be beneficial to query execution performance, we test the

following cases:

1. Without applying any correlations, the sub-tree is trans-

lated in a one-operator-to-one-job approach into five jobs,

corresponding to JOIN1, AGG1, JOIN2, AGG2, and Left

Outer Join1 respectively.

2. Only applying input correlation and transit correlation (ig-

noring job flow correlation), the sub-tree is translated into three

jobs. Job1 is to batch-process JOIN1, AGG1, and AGG2. Job2

and Job3 are for JOIN2 and Left Outer Join1, respectively.

For Job1, since we do not applying job flow correlation, there

are no post-job computations. Its common reduce function is

only used to execute the functionalities of the three merged

operations (JOIN1, AGG1, and AGG2), and their own output

key/value pairs will be written to the HDFS and be read again

by Job2 and Job3.

3. By considering all correlations, YSmart translates the

sub-tree into only one job. That means the three jobs in the

above case are combined in a way that Job2 and Job3 are

executed in the reduce phase of Job1.

4. We also used a hand-optimized MapReduce program to

execute the sub-tree on the basis of query semantic analysis.

Its major difference from YSmart is that, in its reduce function,

it does not need to execute multiple operations in a strict way

as indicated by the query plan tree. For example, as shown in

the query plan tree and the SQL code (Appendix), if JOIN1

(orders ⋊⋉ lineitem) has no output, then the sub-tree (i.e. Left

5http://aws.amazon.com/ec2/
6http://archive.cloudera.com/docs/ getting started.html

Fig. 9. Breakdown of job finishing times of Q21

Outer Join1) will certainly have no output. Thus, the existence

of such type of short-paths makes it unnecessary to execute any

further computations in the tree. For example, in the reduce

function, if there is no input key/value pairs from orders,

due to the selection condition o orderstatus =′ F ′ that is

executed in the map phase, the function returns immediately

since the function will certainly have no output.

Fig. 9 shows the results. Each bar shows the execution time

of the map/reduce phase for each job. We ignored the time

between two jobs (at most 5 seconds in our results). We have

the following four observations:

First, a one-operator-to-one-job translation has the worst

performance, due to its unawareness of intra-query correla-

tions. For its total execution time (1140s), the map phases of

Job1, Job2, and Job4, each of which needs a table scan on

lineitem, take 65% of the total time (742s).

Second, when ignoring job flow correlation and only using

input correlation and transit correlation, the total execution

time is 773s (167% speedup over that of one-operator-to-one-

job translation). It only executes one pass of scan on lineitem

in the map phase of Job1 (387s).

Third, when using all correlations, YSmart can further

decrease the total execution time to 561s (203% speedup over

that of one-operator-to-one-job translation). The reduce phase

(185s) is slower than the one (130s) in Job1 of the above case

without job flow correlation, because it executes more lines of

codes which have to be executed by two additional jobs.

Finally, by the hand-coded program, the query execution

time is only 479s. YSmart is only 17% slower. As shown in

the figure, the major difference between YSmart and the hand-

coded program is YSmart’s reduce phase (185s) is longer than

that in the hand-coded program (91s).

These results show the importance of correlation aware-

ness during SQL-to-MapReduce translations. YSmart’s per-

formance is very close to the hand-optimized program.

D. On Small Cluster: YSmart vs Hive, Pig, and DBMS

Next we show how YSmart can outperform Hive and

Pig in our experiment. In this experiment, we also included

PostgreSQL 8.4 on the TaskTracker node to execute these

queries. Our goal is to simulate a parallel DBMS on the

basis of the single-threaded PostgreSQL engine. Because the

node has 4 computing cores, we assume a parallel DBMS

can achieve an ideal 400% speedup. Therefore, we set the

data set size (2.5GB for TPC-H and 5GB for Q-CSA) for

PostgreSQL as 1/4 of the original size. Furthermore, we try

our best to optimize performance of PostgreSQL with index

building, query plan arrangement and buffer pool warm-up.

Fig. 10 shows the job execution times for the four systems:

YSmart, Hive, Pig and PostgreSQL. Due to page limit, we

omit breakdowns for map/reduce phases.

We first examine the total execution times. The results

consistently show the performance advantages of YSmart over

Hive and Pig. For the four queries YSmart’s speedup over

Hive (the consistent winner between it and Pig for all the

four queries) is 258%, 190%, 252%, and 266% respectively.

We notice that Pig cannot finish Q-CSA with the 20GB data

set because it would generate much larger intermediate results

than the capacity of our test disk.

With dynamical job composition, YSmart executes much

less number of jobs than those of Hive and Pig using one-

operator-to-one-job translations. For example, for Q-CSA,

YSmart executes two jobs, while Hive executes six jobs with

the strict operators as in the query plan shown in Fig 2(a).

For Q17 by Hive, there are four jobs, and the detailed job

execution breakdowns show that most of the times are spent

on the jobs to scan the raw table lineitem. Each of the first

two jobs involves a time-consuming full scan on the largest

lineitem table. However, YSmart avoids the second pass of

table scan on lineitem, and reduces redundant disk I/O and

network transfers between a map-reduce transition.

There are two distinct observations when comparing YSmart

and the ideal parallel PostgreSQL. First, for the three TPC-H

queries that represent traditional data warehouse workloads,

the database solution shows much better performance than the

MapReduce solutions including YSmart. However, for Q-CSA

that represents typical web click-stream analysis workloads,

the database solution does not have significant performance

advantage. Moreover, with query-correlation-awareness, YS-

mart can generate highly-efficient MapReduce programs that

have almost the same execution time as the DBMS (note that

it is normalized with 1/4 data set, i.e., 5GB).

E. Results on Amazon EC2

In this section, we show YSmart’s performance in two

Amazon EC2 clusters with 11 nodes and 101 nodes, re-

spectively. We conduct two groups of experiments. The first

group is for the three TPC-H queries executed by YSmart

and Hive. We selected different data set sizes for the two

clusters respectively (10GB and 100GB), so each worker node

can process one GB of data. Different from the above local

cluster, query executions on the two clusters will generate

a lot of data transfers via network. Therefore, we measured

both the execution times by enabling map output compression

(with the default configuration by the Cloudera Distribution

AMI) and disabling compression. The second group is for Q-

(a) Q17 (b) Q18 (c) Q21 (d) Q-CSA
Fig. 10. Execution Breakdowns of job execution times (pgsql for the ideal parallel PostgreSQL).

(a) Q17 (b) Q18 (c) Q21 (d) Q-CSA
Fig. 11. Query execution times on Amazon EC2 11-node and 101-node clusters (c for map output compression, nc for no compression). Results for Q-CSA
are only on the 11-node cluster (no compression).

CSA executed by YSmart, Hive, and Pig respectively. For this

group, we only use the 11-node cluster and disable map output

compression. We selected a 20GB data set for the query.

Fig. 11 (a - c) show performance comparisons between

YSmart and Hive, with and without compression. Here we

omit detailed job execution breakdowns since they are very

similar to the ones in previously presented experiments. One

special case is that Hive with compression cannot finish Q21

on the 101-node cluster in one hour, and here for drawing, we

use one hour as the query execution time. Fig. 11 (d) shows

performance comparisons for Q-CSA among YSmart, Hive

and Pig, with detailed job execution time breakdowns. Next

we summarize the three major conclusions drawn from our

experiments.

First, YSmart outperforms Hive in all cases. For the TPC-H

queries, without map output compression, YSmart’s maximal

speedup over Hive is 297% for Q21 on the 101-node cluster.

For Q-CSA, YSmart has a 487% speedup over Hive and a

840% speedup over Pig on the 11-node cluster.

Second, both YSmart and Hive show nearly linear speedup

from the 11-node cluster to the 101-node one. In particular,

query execution times by YSmart are almost unchanged when

comparing the same case between the two clusters.

Third, map output compression does not provide perfor-

mance improvement, but significantly degrades performance

of YSmart and Hive in all cases. For example, the execution

time of Q17 in YSmart on the 101-node without compression

is 5.93 minutes. However, it is increased to 12.02 minutes

with compression, although the size of reduce input can be

compressed from 11.09GB to 3.87GB. It reflects that, in this

isolated cluster, it is not beneficial for performance to trade-off

between the cost of compression/decompression and network

transfer times. Note that, YSmart outperforms Hive regardless

if compression is enabled, because YSmart can reduce the size

of map output via merging correlated MapReduce jobs.

F. Results on Facebook’s Cluster

In order to further test the scalability of YSmart, we conduct

experiments on a physical cluster with 747 nodes, each of

which has 8 cores, in Facebook with 1TB data set. Map output

compression is not enabled. Since this is a production cluster,

there are also other jobs running on it. In order to compare the

performance between YSmart and Hive, for each query, we

concurrently execute three YSmart instances and three Hive

instances. In our tests, we find there are many unexpected

dynamics in this large-scale production cluster. Moreover, our

results are much more complicated than what we collect from

the previous isolated cluster environments.

1) Q17: Among the three YSmart instances and three

Hive instances, YSmart can outperform Hive with a maximal

speedup of 310% and a minimal speedup of 230%. We show

the execution time phases of the six instances in Fig. 12. The

performance differences between YSmart and Hive, from the

perspective of total query execution times, are similar to those

at our local server and Amazon EC2 virtual clusters. However,

the time breakdowns, when compared with those in Fig. 10

Fig. 12. Execution times of six Q17 instances on Facebook’s cluster.

(a), show significant differences between the results in this

experiment and the previous results.

For Hive, Job3 used to execute JOIN2 with the inputs from

JOIN1 and AGG1 (see Fig. 4) has a notably long execution

time. In the first instance of Hive (the bar for “Hive 1”

in the figure), it can even take 38.9% of the whole query

execution time (only 4.5% in Fig. 10 (a)). Furthermore, its

reduce phase (721s) is much longer than its map phase (53s).

Its fast map phase is a result of small input data sets. However,

its slow reduce phase is unexpected. We believe this is

because Hive cannot efficiently execute join with temporarily-

generated inputs. This unexpected situation further confirms

the necessary effort of reducing the number of jobs if jobs can

be dynamically composed, as done by YSmart. In addition, we

also find that the time between two jobs is small (at most 50s)

in this experiment.

2) Q18 and Q21: Fig. 13 shows the total execution times

for the two queries. We calculate the average execution times

of three instances for each case. The average speedups of

YSmart over Hive are 298% and 336%, respectively.

We are not able to complete the executions of the two

queries on the same day as Q17 in the above section. When

comparing the results for the two queries with the above results

for Q17, we find a noticeable uncertain effect on this large-

scale production cluster. The two queries are significantly

slower than Q17, executed by YSmart or Hive. Especially for

Q21, its average execution times are 3.46 times larger than

that of Q17 by YSmart, and even 4.88 times larger than that

of Q17 by Hive. These ratios are much higher than those in

isolated clusters. For example, on the isolated Amazon EC2

cluster with 101 nodes, for YSmart, Q21 is at most 1.5 times

slower than Q17. This reflects unexpected dynamics due to

resource contentions of co-running workloads.

Despite the existence of such high dynamics, YSmart out-

performs Hive significantly. Moreover, its speedups in this

experiment are higher than in the experiments conducted on

the isolated clusters. On Amazon EC2 without compression,

YSmart’s speedup over Hive for Q21 is at most 259% (Fig.

11(c)), while the average speedup is 336% in this experiment.

One important reason is that with highly unexpected dynamics,

the time interval between two sequential jobs can be very large

due to job scheduling. In this experiments, we observe that the

Fig. 13. Execution times of Q18 and Q21 on Facebook’s cluster.

maximal interval is 5.4 minutes between the first two jobs of

one Q21 instance by Hive. Because Hive executes more jobs

than YSmart, it causes higher scheduling cost.

VIII. RELATED WORK

In database systems, co-operative scan [21][22] and multi-

query optimization [23][12] use shared table scans to reduce

redundant computations and disk accesses. However, optimiz-

ing query execution in the MapReduce environment is more

challenging due to MapReduce’s two unique characteristics.

First, data sharing must be maximized under the constraint of

the MapReduce programming model that is based on key/value

pairs. Second, the number of jobs must be minimized because

of MapReduce’s materialization mechanism for intermediate

results and final results. Therefore, YSmart must consider all

possible intra-query correlations during the translation from

SQL to MapReduce.

Much work has been done recently on improving query

performance in MapReduce. The first category is on en-

hancing the MapReduce model or extending the run-time

system Hadoop. MapReduce Online [24] allows pipelined job

interconnections to avoid intermediate result materialization. A

PACT model [25] extends the MapReduce concept for complex

relational operations. The HaLoop [26] framework is used to

support iterative data processing workloads. These projects do

not focus on SQL-to-MapReduce translation and optimization.

The second category is on improving query performance

without modification of the underlying MapReduce model.

Our work falls into this category. Hadoop++ [27] injects

optimized UDFs into Hadoop to improve query execution

performance. RCFile [28] provides a column-wise data storage

structure to improve I/O performance in MapReduce-based

warehouse systems. Researchers studied scheduling shared

scans of large files in MapReduce [29]. MRShare [30] takes

a cost model approach to optimizing both map input and

output sharing in MapReduce. Since the job flow correlation

is not considered, MRShare will not support batch-processing

jobs that have data dependency, thus the number of jobs for

executing a complex query is not always minimized. A recent

work introduced an approach to optimizing joins in MapRe-

duce [31], however, it did not consider a general correlation-

exploiting mechanism for various operations. Another recent

work presented a query optimization solution that can avoid

high-cost data re-partitioning when executing a complex query

plan in the SCOPE system [32]. YSmart aims at providing a

generic framework on translating a complex SQL query into

optimized MapReduce jobs by exploiting various correlations.

IX. CONCLUSION

Execution of complex queries with high efficiency and

high performance is critically desirable for big data analyt-

ics applications. Our solution YSmart aims at providing a

generic framework to translate SQL queries into optimized

MapReduce jobs, and executing them efficiently on large-

scale distributed cluster systems. Our extensive experimental

evaluations with various workloads in different platforms have

shown the effectiveness and scalability of YSmart. YSmart

will be merged into the Hive system as a patch, and will also

be an independent SQL-to-MapReduce translator.

X. ACKNOWLEDGMENTS

This work is supported in part by the US National Science

Foundation under grants CCF072380 and CCF0913050, the

National Cancer Institute, National Institutes of Health under

contract No. HHSN261200800001E, and the National Library

of Medicine under grant R01LM009239.

REFERENCES

[1] L. Guo, E. Tan, S. Chen, X. Zhang, and Y. E. Zhao, “Analyzing patterns
of user content generation in online social networks,” in KDD, 2009.

[2] E. Friedman, P. M. Pawlowski, and J. Cieslewicz, “SQL/MapReduce:
A practical approach to self-describing, polymorphic, and parallelizable
user-defined functions,” PVLDB, vol. 2, no. 2, pp. 1402–1413, 2009.

[3] D. J. DeWitt, E. Paulson, E. Robinson, J. F. Naughton, J. Royalty,
S. Shankar, and A. Krioukov, “Clustera: an integrated computation and
data management system,” PVLDB, vol. 1, no. 1, pp. 28–41, 2008.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in OSDI, 2004.

[5] J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Visual, log-based
causal tracing for performance debugging of mapreduce systems,” in
ICDCS, 2010, pp. 795–806.

[6] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin, “MapReduce and parallel DBMSs: friends or
foes?” Commun. ACM, vol. 53, no. 1, pp. 64–71, 2010.

[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” in SIGMOD, 2008.

[8] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston,
B. Reed, S. Srinivasan, and U. Srivastava, “Building a highlevel dataflow
system on top of MapReduce: The Pig experience,” PVLDB, 2009.

[9] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou, “SCOPE: easy and efficient parallel processing of massive
data sets,” PVLDB, vol. 1, no. 2, pp. 1265–1276, 2008.

[10] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive - a warehousing solution over a Map-
Reduce framework,” PVLDB, vol. 2, no. 2, pp. 1626–1629, 2009.

[11] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Sil-
berschatz, “HadoopDB: An architectural hybrid of MapReduce and
DBMS technologies for analytical workloads,” PVLDB, 2009.

[12] Y. Cao, G. C. Das, C. Y. Chan, and K.-L. Tan, “Optimizing complex
queries with multiple relation instances,” in SIGMOD Conference, 2008.

[13] S. Shekhar and S. Chawla, Spatial Databases: A Tour. Prentice Hall,
2003.

[14] Q. Zou, H. Wang, R. Soulé, M. Hirzel, H. Andrade, B. Gedik, and
K.-L. Wu, “From a stream of relational queries to distributed stream
processing,” PVLDB, vol. 3, no. 2, pp. 1394–1405, 2010.

[15] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-reduce-
merge: simplified relational data processing on large clusters,” in SIG-

MOD Conference, 2007, pp. 1029–1040.

[16] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in SIGMOD Conference, 2009, pp. 165–178.

[17] S. Chaudhuri, “An overview of query optimization in relational systems,”
in PODS, 1998, pp. 34–43.

[18] G. Graefe, “Query evaluation techniques for large databases,” ACM

Comput. Surv., vol. 25, no. 2, pp. 73–170, 1993.
[19] B. Hindman, A. Konwinski, M. Zaharia, and I. Stoica, “A common

substrate for cluster computing,” in HotCloud, 2009.
[20] W. Kim, “On optimizing an SQL-like nested query,” ACM Trans.

Database Syst., vol. 7, no. 3, pp. 443–469, 1982.
[21] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki, “QPipe: A simulta-

neously pipelined relational query engine,” in SIGMOD, 2005.
[22] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz, “Cooperative scans:

Dynamic bandwidth sharing in a dbms,” in VLDB, 2007, pp. 723–734.
[23] T. K. Sellis, “Multiple-query optimization,” ACM Trans. Database Syst.,

vol. 13, no. 1, pp. 23–52, 1988.
[24] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and

R. Sears, “MapReduce Online,” in NSDI, 2010.
[25] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,

“Nephele/pacts: a programming model and execution framework for
web-scale analytical processing,” in ACM SoCC, 2010, pp. 119–130.

[26] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: Efficient
iterative data processing on large clusters,” in VLDB, 2010.

[27] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad, “Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing),” PVLDB, vol. 3, no. 1, pp. 518–529, 2010.

[28] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, “Rcfile:
A fast and space-efficient data placement structure in mapreduce-based
warehouse systems,” in ICDE, 2011.

[29] P. Agrawal, D. Kifer, and C. Olston, “Scheduling shared scans of large
data files,” PVLDB, vol. 1, no. 1, pp. 958–969, 2008.

[30] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas, “Mr-
share: Sharing across multiple queries in mapreduce,” in VLDB, 2010.

[31] F. N. Afrati and J. D. Ullman, “Optimizing joins in a Map-Reduce
environment,” in EDBT, 2010.

[32] J. Zhou, P.-Å. Larson, and R. Chaiken, “Incorporating partitioning and
parallel plans into the scope optimizer,” in ICDE, 2010, pp. 1060–1071.

XI. APPENDIX

The following code is corresponding to the sub-tree “Left

Outer Join 1” in the plan in Fig. 8(b). The relationships

between the code and the tree are as follows: 1) Lines 3-7

are for JOIN1, 2) Lines 8-12 are for AGG1, 3) Lines 2-16

are for JOIN2 that is the parent node of JOIN1 and AGG1,

4) Lines 18-23 are for AGG2, and 5) at the top level, Line 17

and line 24 show a left outer join between JOIN2 and AGG2.

1: SELECT sq12.l_suppkey FROM

2: (SELECT sql.l_orderkey,sq1.l_suppkey FROM

3: (SELECT l_suppkey,l_orderkey

4: FROM lineitem, orders

5: WHERE o_orderkey = l_orderkey

6: AND l_receiptdate>l_commitdate

7: AND o_orderstatus = ’F’) AS sq1,

8: (SELECT l_orderkey,

9: count(distinct l_suppkey) AS cs

10: max(l_suppkey) AS ms

11: FROM lineitem

12: GROUP BY l_orderkey) AS sq2

13: WHERE sq1.l_orderkey = sq2.l_orderkey

14: AND ((sq2.cs>1) OR

15: ((sq2.cs=1) AND (sq1.l_suppkey<>sq2.ms)))

16:) AS sq12

17: left outer join

18: (SELECT l_orderkey,

19: count(distinct l_suppkey) AS cs

20: max(l_suppkey) AS ms

21: FROM lineitem

22: WHERE l_receiptdate>l_commitdate

23: GROUP BY l_orderkey) AS sq3

24: ON sq12.l_orderkey = sq3.l_orderkey

25: WHERE (sq3.cs IS NULL) OR

26: ((sq3.cs=1) AND (sq12.l_suppkey=sq3.ms))

